Site selectivity of electron trapping in two Eu-activated phosphors for dosimetry

Z. T. Yang, D. Van der Heggen, P. F. Smet, D. Poelman and H. Vrielinck

Ghent University, Dept. Solid State Sciences, Lumilab and DiSC Research Groups, Krijgslaan 281-S1, B-9000 Gent, Belgium

In the search for new and improved materials for ionizing radiation detection, dosimetry and imaging at Lumilab, $Ba_3(PO_4)_2$:Eu and Ba_2SiO_4 :Eu have recently proven very promising. $Ba_3(PO_4)_2$:Eu can be applied as UV-radiation dosimeter featuring good erythemal equivalence.¹ With Ba_2SiO_4 :Eu combined X-ray imaging and dosimetry is obtained.² Both materials are so-called photoluminescence (PL) dosimeters: the dose read-out is based on a change in the photoluminescence spectrum under UV light excitation. As opposed to thermoluminescence or optically stimulated luminescence dosimeter systems, the PL read-out does not erase the dose. The mechanism behind the change in PL spectrum is a valence state conversion in the dopant: $Eu^{3+} + e^- \rightarrow Eu^{2+}$. As can be seen in Figure 1, before exposure the phosphor only exhibits a multiline parity-forbidden intra-4f-shell luminescence spectrum of Eu^{3+} with wavelengths in the orange-red. Upon exposure, a broad 5d \rightarrow 4f luminescence band of Eu^{2+} grows in, which is situated in the violet-blue for $Ba_3(PO_4)_2$:Eu, and in the green for Ba_2SiO_4 :Eu. In both materials, only a limited fraction of the Eu dopant can undergo such valence state change. EPR spectroscopy is invoked to help elucidating the reasons for this limited dopant activity.

Combining PL and Q-band EPR (34 GHz) results, we could show that in both materials electron trapping at Eu³⁺ is site-selective. Both Ba₃(PO₄)₂ and Ba₂SiO₄ exhibit two crystallographically inequivalent Ba²⁺ sites, on which Eu substitution is expected. Eu³⁺ luminescence reveals that the dopant ions are incorporated on different sites. EPR demonstrates that stable electron trapping occurs at only one of the sites. Via estimates of the Eu²⁺ concentration from EPR spectra, we found that for Ba₂SiO₄:Eu the site-selectivity is a dominant factor in the limited activity of the dopant. On the contrary, for Ba₃(PO₄)₂:Eu only a small fraction of the Eu³⁺ incorporated at the right site can be reduced by UV exposure. Further EPR and experiments are planned to solve the remaining mysteries.

Figure 1: PL spectrum under UV light excitation for Ba₃(PO₄)₂:Eu (left) and Ba₂SiO₄:Eu (right). x indicates the fraction of Eu in the material Ba_{3-x}Eu_x(PO₄)₂ and Ba_{2-x}Eu_xSiO₄:Eu.

References

- 1. Z. Yang et al., Advanced Optical Materials (2023) DOI:10.1002/adom.202300733
- 2. Z. Yang et al., Advanced Functional Materials (2022), 32, 2201684 DOI:10.1002/lpor.202200809