
Promoters:	 Prof. Dr Inneke Van Nieuwenhuyse | Hasselt University
	 Prof. Dr Ivo Couckuyt | Ghent University	

Co-promoter:	 Prof. Dr Koenraad Vanhoof | Hasselt University

DOCTORAL DISSERTATION

Essays on Machine Learning:
Advances in Forecasting and
Optimization

www.uhasselt.be
Hasselt University
Martelarenlaan 42 |BE-3500 Hasselt

Alejandro Morales Hernández

2023 | Faculty of Business Economics

Doctoral dissertation submitted to obtain the degrees of
- Discipline UHasselt: Doctor of Business Economics
- Discipline UGent: Doctor of Computer Science Engineering

DOCTORAL DISSERTATION

Essays on Machine Learning:
Advances in Forecasting
and Optimization

Promoters:	 Prof. Dr Inneke Van Nieuwenhuyse | Hasselt University
	 Prof. Dr Ivo Couckuyt | Ghent University
	
Co-promoter:	 Prof. Dr Koenraad Vanhoof | Hasselt University
	

2023 | Faculty of Business Economics

D/2023/2451/43

Alejandro Morales Hernández

Doctoral dissertation submitted to obtain the degrees of
- Discipline UHasselt: Doctor of Business Economics
- Discipline UGent: Doctor of Computer Science Engineering

Essays on Machine Learning: Advances in
Forecasting and Optimization

Alejandro Morales Hernández

ISBN

NUR: 984

Deposit number: D/2023/2451/43

This thesis is part of the PhD thesis series of the Beta Research School for Operations Manage-

ment and Logistics in which research groups participate of CWI, Eindhoven University of Technol-

ogy, Ghent University, Hasselt University, KU Leuven, Maastricht University, Tilburg University,

University of Antwerp, University of Twente, VU Amsterdam, VU Brussels, and Wageningen Uni-

versity and Research

This research has been supported by the Flanders Artificial Intelligence Research Program

(FLAIR), funded by the Flemish government.

Members of the Examination Board

Chair

Honorary Prof. Dr. Piet Pauwels, PhD, Hasselt University

Other members entitled to vote

Dr. Ir. Jolan Wauters, PhD, Ghent University

Prof. Dirk Deschrijver, PhD, Ghent University

Prof. Gonzalo Nápoles Ruiz, PhD, Tilburg University

Prof. Agnieszka Jastrzebska, PhD, Warsaw University of Technology

Prof. Isel Grau Garćıa, PhD, Technische Universiteit Eindhoven

Prof. Dirk Valkenborg, PhD, Hasselt University

Supervisors

Prof. Inneke Van Nieuwenhuyse, PhD, Hasselt University

Prof. Koenraad Vanhoof, PhD, Hasselt University

Prof. Ivo Couckuyt, PhD, Ghent University

“There is nothing to be feared from a body, Harry, any more than there is anything to be

feared from the darkness. Lord Voldemort, who of course secretly fears both, disagrees. But

once again he reveals his own lack of wisdom. It is the unknown we fear when we look

upon death and darkness, nothing more.

Albus Percival Wulfric Brian Dumbledore

Harry Potter and the Half-Blood Prince, Chapter 26

Acknowledgements

A
wooden bench has just appeared around the turn of the road. Thank god because

walking on these dunes in Hechtel-Eksel has not been easy. One would think that

going for a walk every weekend prepares you for this type of terrain, but no. It

doesn’t matter having done more than 70 hiking trails, there are some places that take your

breath away, literally. This bench has seen better days but my feet are killing me. So, let’s

take a break. An old oak is some meters behind me. A gentle breeze of early autumn plays

with some yellow leaves. Soon the ground will be covered with them and winter will begin.

Oh boy! What a journey! Almost four years already. It seems like yesterday when

Gonzalo suggested this opportunity to me. 2019. The year of big changes. I remember

that I was preparing to go to Russia for 10 months. Fortunately, that changed. Because I

wouldn’t be here if it wasn’t for you, and for being you and Isel like family all these years,

my most sincere and deep thanks.

A fine drizzle is beginning to fall now. Classic Belgian weather. Nothing terrible, and

definitely “much better” than the suffocating heat of Cuba. It was a particularly hot after-

noon when I told my mom about the possibility of leaving the country. She looked at me

and said, “You can count on me for everything”. She has been always like that. Strong,

independent, determined. Despite the more than 7000 km separating me from my family,

we have always been close. No one could have prepared us for the difficult years that were

to come. Yet, we survived. We always do. Thanks.

A notification appeared on my phone. Something about a deadline approaching. If I have

learned anything over the years, it’s that being a PhD student doesn’t stop when you are out

of the office. Oh shoot! It’s that draft for Inneke I still have to finish. I better take care of

it asap. Sometimes we remember people for small details that may go unnoticed. Patience,

for instance, is what I got for Inneke. Thank you for your willingness to listen, understand

and guide this “timid”, sometimes stubborn, sometimes clueless Cuban. You have been of

great support and motivation so that today I end this adventure.

All right, break time’s over. I should hurry up to take the next bus to Hasselt. I still have

some kilometers to walk before reaching the bus stop, and the rain is getting stronger. As

I take the cape out of the backpack, I think of all the people who have been with me over

the years. That kind soul that is Sasan. Thanks for being my friend. Thanks to my other

supervisors, Koen and Ivo, for trusting that I could wear bigger shoes than I was entitled

to and helping me with all kinds of bureaucratic procedures. Of course my gratitude to all

my colleagues and friends; to Sebastian, because I could not have had all the experimental

results without your laptop; to Gert, because this document would have been less elegant

without his help; to Lilo, because we cried together; and GG why not, because fate brought

vii

viii

us together to achieve world domination (her idea, not mine).

The forest is very quiet now. Before, you could hear the chirping of some birds, but now

the rain has silenced them. The road begins to head slightly towards the town and you can

already see the back yard of some houses. There is still a lot to explore, to live. This is not

the end, for sure. Another day will come tomorrow and a new adventure with it. Will we

be ready?

Alejandro Morales

Hasselt, April 2023

Contents

Acknowledgements vii

List of Figures xiii

List of Tables xv

Symbols and notations xvii

Abstract xix

Samenvatting xxi

1 A NECESSARY INTRODUCTION 1

1.1 Motivation and challenges . 2

1.2 Scope and research goals . 3

1.3 Main contributions and thesis organization 3

first part 7

2 OPTIMIZATION ALGORITHMS AND PERFORMANCE VARI-

ABILITY MODELING 9

2.1 Bayesian optimization in a nutshell . 9

2.1.1 Gaussian Process Regression: deterministic versus noisy observations . 11

2.1.2 Tree Parzen Estimators . 13

2.2 Overview of multi-objective optimization concepts 15

2.3 Multi-objective optimization algorithms for expensive and/or noisy problems 20

2.4 Performance variability in the validation of Machine Learning algorithms . . 23

3 MULTI-OBJECTIVE HYPERPARAMETER OPTIMIZATION WITH

PERFORMANCE VARIABILITY 27

3.1 Multi-objective hyperparameter optimization 27

3.2 Using TPE sampling strategy with GPR metamodeling 29

3.3 Numerical simulations . 32

3.4 Results . 34

3.5 Concluding note . 37

ix

x CONTENTS

4 TREE PARZEN ESTIMATORS WITH PERFORMANCE VARIABIL-

ITY 39

4.1 Adjusted TPE for stochastic objectives . 39

4.2 Experimental settings . 42

4.3 Results . 44

4.4 Concluding note . 47

second part 49

5 BAYESIAN MULTI-OBJECTIVE OPTIMIZATION OF PROCESS

DESIGN PARAMETERS IN CONSTRAINED SETTINGS WITH

NOISE: AN ENGINEERING DESIGN APPLICATION 51

5.1 Adhesive bonding process: problem setting 51

5.2 Constrained Bayesian multi-objective optimization: proposed algorithms . . . 53

5.2.1 Probability of feasibility . 54

5.2.2 cMEI-SK acquisition function . 56

5.2.3 cEHVI-SK acquisition function . 56

5.3 Design of experiments . 57

5.4 Results . 59

5.5 Concluding note . 63

6 ONLINE LEARNING OF WINDMILL TIME SERIES USING LONG

SHORT-TERM COGNITIVE NETWORKS 65

6.1 Forecasting models with recurrent neural networks 65

6.2 Long Short-term Cognitive Network . 67

6.2.1 Data preparation for online learning simulations 68

6.2.2 Network architecture and neural reasoning 68

6.2.3 Parameter learning . 71

6.3 Numerical simulations . 72

6.3.1 Description of windmill datasets . 72

6.3.2 Baseline models . 73

6.3.3 Results and discussion . 74

6.4 Concluding note . 79

7 CONCLUDING REMARKS 83

7.1 Conclusions . 83

7.2 Recommendations for future research . 85

Appendices 87

A Additional materials from Chapter 3 89

A.1 Comparison of Hypervolume values computed in validation and test set . . . 89

B Additional materials from Chapter 4 91

B.1 Agglomerative clustering of the settings considered in the sensitivity analysis

performed in Chapter 4 . 91

CONTENTS xi

C Additional materials from Chapter 5 95

C.1 Constrained Expected Improvement (CEI) . 95

C.2 Wilcoxon test results . 96

D Additional materials from Chapter 6 99

Bibliography 101

Publications 113

List of Figures

2.1 Typical steps in BO for single-objective optimization 11

2.2 Selection of infill points in Bayesian optimization 11

2.3 Selection of infill points in TPE . 14

2.4 Influence of the bandwidth parameter in KDE 15

2.5 Example of non-domination ranks in an optimization problem of two objectives . 16

2.6 Linear scalarization function with different weights 17

2.7 Augmented Chebychev scalarization function with different weights 18

2.8 Illustration of a 2-D hypervolume surface . 18

2.9 Illustration of the IGD+ indicator for a minimization problem of two objectives.

The blue line is the reference Pareto front and the black line represents the

approximated Pareto front. 19

2.10 Summary of the uncertainty quantification techniques for ML and DL 24

2.11 Cross-validation of ML algorithms . 25

3.1 Example of the interplay between the HPO algorithm and the target ML algorithm 28

3.2 Infill point selection in GP MOTPE . 31

3.3 Optimization results of test analytical functions using ParEGO, GP MOTPE,

and MOTPE . 35

3.4 Ranks of optimization algorithms analyzing HV differences between validation

and test set . 36

4.1 Illustration of a 5-fold cross-validation protocol for selecting the best HP config-

uration . 40

4.2 Noisy performance of a function . 41

4.3 PDF and CDF of the noisy replication of some points 41

4.4 (Weighted) Kernel Density Estimation . 42

4.5 Sensitivity analysis for TPE with noisy observations (cont.) 45

4.6 Sensitivity analysis of the parameters of TPE . 45

4.7 Evolution of the mean classification error based on 10 macro-replications (cont.) 46

4.8 Comparison of the optimization algorithms using confidence intervals 48

5.1 Schematic overview of the adhesive bonding process 52

5.2 Failure modes in stress tests applied to a sample 52

5.3 Sample mean of break strength versus production cost, estimated by the simulator

for 60 000 random process configurations (γ = 0%). 59

xiii

xiv LIST OF FIGURES

5.4 Differences between the EAFs using different acquisition functions in the BO

methods . 60

5.5 Best, median, and worst Pareto front obtained by the BO methods 61

5.6 Evolution of the IGD+ and hypervolume indicator 61

5.7 Distribution of the Pareto-optimal input values obtained by MO-GP cEI (EHVI),

across 50 macro-replications. 62

6.1 Data preparation for online learning simulations 69

6.2 LSTCN architecture of three STCN blocks . 69

6.3 Reasoning within an STCN block . 70

6.4 Workflow of the iterative learning process of an LSTCN model 72

6.5 MAE values obtained by the LSTCN-based model when changing the w and L

parameters . 75

6.6 Benefits of using prior knowledge in LSTCN . 76

6.7 Distribution of weights for the first five STCN blocks in WT1 77

6.8 Moving average power predictions (w = 24) for the first windmill with L = 6,

L = 48, and L = 72 . 77

6.9 Moving average power predictions (w = 24) for the second windmill with L = 6,

L = 48, and L = 72 . 78

6.10 Moving average power predictions (w = 24) for the third windmill with L = 6,

L = 48, and L = 72 . 79

6.11 Moving average power predictions (w = 24) for the fourth windmill with L = 6,

L = 48, and L = 72 . 80

B.1 Clustering of the settings considered in the sensitivity analysis of the TPE pa-

rameters with noisy observations . 93

C.1 Evolution of the mean hypervolume throughout the optimization 96

C.2 Wilcoxon test results for significant differences between algorithms, using Hyper-

volume and IGD+ indicators . 97

D.1 Behavior of weights in W1 and W2 . 99

D.1 Behavior of weights in W1 and W2 . 100

List of Tables

3.1 Details of the ML datasets analyzed in Chapter 3 32

3.2 Configuration space of the ML algorithms optimized in Chapter 3 33

3.3 Summary of the parameters for the experiments in Chapter 3 34

3.4 Average rank (given by the mean hypervolume of 13 macro-replications) of each

algorithm analyzed in Chapter 3 . 36

4.1 OpenML datasets used in the experimentation of Chapter 4 42

4.2 Setup of hyperparameters in the HPO experiments of Chapter 4 43

4.3 Summary of the parameters for TPE and the proposed modification 44

5.1 Range of the process settings considered in the optimization in Chapter 5 57

5.2 Summary of the parameters of the optimization algorithms analyzed in Chapter 5 58

5.3 Average IGD+ and HV of the fronts obtained over 50 macro-replications, for

γ = 30% . 62

6.1 Descriptive statistics for the windmill datasets 72

6.2 Results for the windmill case study for L = 6 (1 hour) 78

6.3 Results for the windmill case study for L = 48 (8 hours) 79

6.4 Results for the windmill case study for L = 72 (12 hours) 80

A.1 Comparison of the optimization algorithms according to the difference between

the hypervolume computed using the HP evaluation in the validation set and

then evaluated with the test set . 89

xv

Symbols and notations

Vectors are in bold type and matrices are capitalized with a subscript indicating their di-

mension. If needed, the letter is replaced by an equation between box brackets to indicate

how the elements are obtained.

f(·) = The true function, which is assumed to be unknown

G(·) = Function representing an inequality constraint

H(·) = Function representing an equality constraint

p = Number of inequality constraints

q = Number of equality constraints

x = Input vector

d = Dimension of the input search space or number of variables in a multivariate

time series

X = Configuration space domain

n = Number of observed input configurations

T = Number of observations in a univariate time series

X = Set of observed input configurations, Xn×d. For multivariate time series, Xd×T

is a sequence of d variables observed T times

m = Number of unknown functions to model. In multi-objective optimization 1 <

m ≤ 3

Y = Set of true function values, Yn×m

x(i) = Configuration i in X, or i-th time series in the multivariate time series X

x
(i)
j = Input parameter j of i-th configuration in X, or j-th variable observed at time

i

y(i) = True function value of i-th configuration in Y

y
(i)
j = True value of the j-th function for configuration i in Y

r = Number of simulation replications in a noisy problem

εi = Noise in function value i

ỹ
(r,i)
j = Observed j-th function value in the r-th simulation replication of i-th point

ỹ
(r,i)
j = yi

j + ε(i)

y = Function value estimate y =
∑r

i=1 ỹ

r

k(·, ·) = Kernel function

xvii

xviii SYMBOLS AND NOTATIONS

ŷ (·) = Surrogate prediction. Underscore is replaced by s or o to indicate the function

prediction of a stochastic or deterministic surrogate that models an optimiza-

tion objective. Alternatively, a subscript c refers to the function prediction of

a deterministic surrogate for a constraint function. Although constraints can

also present noise, we only used a deterministic surrogate, given the nature of

the only constraint considered in this research (Chapter 5).

ŝ2(·) = Variance estimate of ŷ (·) or surrogate prediction uncertainty. Underscore

is replaced by s or o to indicate the function prediction of a stochastic or

deterministic surrogate that models an optimization objective. Alternatively,

a subscript c refers to the function prediction of a deterministic surrogate for a

constraint function. Although constraints can also present noise, we only used

a deterministic surrogate, given the nature of the only constraint considered

in this research (Chapter 5).

ϕ(·) = Standard normal density function

Φ(·) = Standard normal distribution function

l(·) = Density function estimated in the input space using the configurations associ-

ated to good function values

g(·) = Density function estimated in the input space using the configurations associ-

ated to bad function values

Zλλλ = Augmented Tchebycheff scalarization function using weights λλλ

R = If NOW is the current time, R is the number of past observations until NOW

L = If NOW is the current time, L is the number of future observations after

NOW

Abstract

M
achine Learning (ML) has become a critical tool in solving complex problems.

However, there are some challenges when applying ML to real-world problems,

including the need for large amounts of high-quality data, the potential for errors

in algorithms and data, the interpretability of model decisions, and the high computational

and storage costs of training and deploying models. Addressing these challenges requires

a multidisciplinary approach, as well as the need for ongoing research and development to

improve the accuracy, transparency, and efficiency of ML models.

ML is about learning a model that can predict or classify new data points. To do this, we

typically formulate the problem as an optimization problem, where we seek to find the op-

timal parameters of a model that minimizes a cost function. Additionally, the performance

of ML algorithms heavily relies on the choice of their hyperparameters. Hyperparameters in

ML are parameters that are set prior to the training process and they cannot be learned di-

rectly from the training data. Instead, they are set manually or with the help of optimization

methods. Increasing attention is being paid to performance uncertainties in evaluating ML

algorithms, as they provide information on the reliability and robustness of the predictions.

Overall, a computationally efficient and robust hyperparameter optimization (HPO) method

is key because training and evaluating these algorithms can be expensive.

Similar challenges are present in industrial applications where the optimization of process

parameters is characterized as being multi-objective, constrained, and uncertain. Tradi-

tional evolutionary approaches, such as genetic algorithms, are unsuitable for solving these

problems, as they require a prohibitive number of experiments for evaluation. Bayesian

optimization-based algorithms are preferred for such expensive problems but, as is the case

for HPO, few methods consider multiple noisy objectives and several constraints simultane-

ously.

Although power forecasting of windmill time series in online learning settings seems to

be far from the aforementioned optimization challenges, they both share in common the

need to use the available data as efficiently as possible. In our opinion, the amount of

data generated by windmill farms make online learning the most viable strategy to follow,

requiring retraining the model each time a new batch of data is available. However, updating

the model with new information can be expensive when using traditional Recurrent Neural

Networks (RNNs).

This thesis aims to develop efficient algorithms to overcome common challenges such

as time constraints, data sparsity, and uncertainty in Forecasting and Optimization prob-

lems. This suggests that the proposed algorithms need to work smartly with the (uncertain)

information they have and provide better optimums/forecasting results than existing ap-

xix

xx ABSTRACT

proaches. In this thesis, the term uncertainty refers to the phenomena of observing different

performance/function values when the same input configuration (hyperparameters, process

configuration, etc) is evaluated. In turn, the quality of being efficient is directly related to

the smart choice of candidates to evaluate next in the optimization process and the short

training/testing times of ML models in forecasting tasks.

In order to accomplish our research goal, this thesis explores the power of Bayesian Op-

timization and Recurrent Neural Networks to solve expensive and complex problems. A

multi-objective HPO algorithm is proposed to handle the uncertainty in performance evalu-

ations of ML algorithms. The approach combines the Multi-objective Tree Parzen Estimators

(MOTPE) sampling strategy with a Gaussian Process Regression (GPR) trained with het-

erogeneous noise. In this way, the algorithm should suggest new points that are likely to be

non-dominated, and that are expected to cause the maximum improvement in the scalar-

ized objective function. The proposed algorithm has shown better hypervolume compared

to stand-alone multi-objective MOTPE and GPR HPO methods, which are translated into

accurate ML algorithms.

Additionally, we implemented a modification to the TPE algorithm for single-objective

HPO to account for performance variability without the need for any other models. In con-

trast to the original TPE, our method considers the uncertainty surrounding the performance

evaluations and incorporates weights into the kernel density estimators used to generate the

density functions. This enables us to assign a probability to each hyperparameter configu-

ration, indicating that they may be both “good” and “bad” at the same time. Therefore,

the splitting procedure used by the noiseless TPE is no longer needed. The aforementioned

probabilities of being “good” and “bad” use the performance distributions observed in a

cross-validation protocol and reflect the influence of each point on the density function esti-

mate used to suggest a new input configuration. This modification proved effective in finding

better hyperparameter configurations in terms of classification error of the ML algorithm.

Although BO-based algorithms are preferred to solve expensive problems such as HPO and

adhesive bonding processes, few methods consider the optimization of more than one (noisy)

objective and several constraints at the same time. In this research, we successfully applied

GPR to emulate the objective and constraint functions in the optimization of an adhesive

bonding process with a limited amount of experimental data. The suggested BO framework

succeeded in detecting optimal process settings in a highly efficient way (i.e., requiring a few

physical experiments). The difference with respect to evolutionary algorithms is that the

experimental design in our approach is guided throughout the search: the Bayesian-based

algorithms select infill points based on an (explainable) acquisition function, which is related

to the expected merit of the new infill point for optimization. The BO model ensures that

the search focuses on infill points that have a high probability of being feasible. Moreover,

the GP model used to approximate the objective(s) accounts for the output (heterogenous)

noise, whereas the evolutionary algorithms rely simply on the (uncertain) sample means as

performance approximations.

Lastly, we designed a pipeline based on the Long Short-term Cognitive Network (LSTCN)

to address the problem of data volatility and short processing times in the power forecasting

of windmills. The Short-term Cognitive Network blocks that compose an LSTCN process a

temporal chunk of data with a fast and deterministic learning rule that makes the algorithm

suitable for online learning tasks. The network showed the lowest forecasting errors and

training/testing times compared to other state-of-the-art recurrent models.

Samenvatting

M
achinaal Leren (ML) is essentieel geworden voor het oplossen van complexe

problemen. Er zijn echter een aantal uitdagingen bij de toepassing van ML

op echte problemen, zoals de noodzaak voor grote hoeveelheden gegevens van

hoge kwaliteit, mogelijke inconsistenties in algoritmen en fouten in het verwerken van de

gegevens, alsook een gebrek aan de interpreteerbaarheid van voorspellingen, en de hoge

reken- en opslagkosten voor het trainen en inzetten van grote ML modellen. Het aanpakken

van deze uitdagingen vereist een multidisciplinaire aanpak met verder onderzoek om de

nauwkeurigheid, transparantie en efficiëntie van ML-modellen te verbeteren.

Bij ML gaat het om het leren van een model op basis van een data set. Dit ML model kan

voorspellingen doen voor nieuwe data (bv. regressie of classificatiemodellen). Het leren van

zulk een ML model is een optimalisatieprobleem, waarbij we zoeken naar de optimale pa-

rameters dat een of meerdere kostenfuncties minimaliseert. De prestaties van ML-algoritmen

zijn immers sterk afhankelijk van de keuze van hun hyperparameters. Hyperparameters in

ML zijn parameters die voorafgaand aan het trainingsproces worden ingesteld en die niet

rechtstreeks (= exact en analytisch) uit de trainingsgegevens kunnen worden geleerd. In

plaats daarvan worden ze vaak handmatig of met behulp van optimalisatiemethoden in-

gesteld. Bijkomend wordt bij de evaluatie van ML-algoritmen steeds meer aandacht besteed

aan de onzekerheidskwantificatie, omdat dit informatie verschaft over de betrouwbaarheid

en robuustheid van de voorspellingen. In het algemeen is een computationeel efficiënte en

robuuste methode voor hyperparameter optimalisatie (HPO) essentieel, omdat het trainen

en evalueren van deze algoritmen anders (te) duur kan zijn.

Vergelijkbare uitdagingen doen zich bijvoorbeeld voor in industriële toepassingen waar

de optimalisatie van procesparameters gekenmerkt wordt door meerdere kostenfuncties, of

objectieven, met beperkingen en onzekerheid (of ruis) in de objectieven. Traditionele evo-

lutionaire benaderingen, zoals genetische algoritmen, zijn ongeschikt om deze problemen op

te lossen, omdat zij heel veel experimenten vereisen. Op Bayesiaanse optimalisatie (BO)

gebaseerde algoritmen genieten de voorkeur voor dergelijke dure problemen, maar, zoals het

geval is voor HPO, zijn er maar weinig methoden die geschikt zijn voor de optimalisatie van

meerdere onzekere objectieven met bijhorende beperkingen.

Hoewel het voorspellen van het vermogen van windmolens in online leeromgevingen ver

af lijkt te staan van de bovengenoemde optimalisatie-uitdaging, hebben ze beide gemeen dat

de beschikbare gegevens zo efficiënt mogelijk moeten worden gebruikt. Naar mijn mening

is met de hoeveelheid gegevens die windmolenparken genereren, het online leren de meest

haalbare strategie, waarbij het model opnieuw moet worden getraind telkens wanneer een

nieuwe reeks gegevens beschikbaar komt. Het bijwerken van het model met nieuwe informatie

xxi

xxii ABSTRACT

kan echter duur zijn bij het gebruik van traditionele Recurrente Neurale Netwerken (RNNs).

Dit proefschrift beoogt effiruiciënte algoritmen te ontwikkelen om gemeenschappelijke

uitdagingen zoals tijdsbeperkingen, weinig data, en onzekerheid in voorspellings- en opti-

malisatieproblemen te overwinnen. Dit betekent dat de voorgestelde algoritmen slim moeten

werken met de (onzekere) informatie die ze hebben en betere voorspellingen moeten oplev-

eren dan bestaande benaderingen. In dit proefschrift verwijst de term onzekerheid naar de

verschillende prestatie-/functiewaarden die worden waargenomen wanneer dezelfde input-

configuratie (hyperparameters, procesconfiguratie, enz.) wordt geëvalueerd. De efficiëntie

van de algoritmen is rechtstreeks gerelateerd aan de slimme keuze van nieuwe data punten

(kandidaten) om vervolgens te evalueren in het optimalisatieproces, en de korte trainings-

/testtijden van ML-modellen bij voorspellingstaken.

Om mijn onderzoeksdoel te bereiken, verkent dit proefschrift de kracht van Bayesi-

aanse optimalisatie en RNNs om dure en complexe problemen op te lossen. Een multi-

objectief HPO-algoritme wordt voorgesteld om de onzekerheid in prestatie-evaluaties van

ML-algoritmen te hanteren. De aanpak combineert Tree Parzen Estimators (TPE) met een

Gaussian Process Regression (GPR) getraind met heterogene ruis. Op die manier moet

het algoritme nieuwe punten voorstellen die waarschijnlijk niet gedomineerd worden, en die

naar verwachting een maximale verbetering van de doelfunctie brengen. Het voorgestelde

algoritme leidt tot een betere hypervolume score dan de multi-objectieve TPE- en GPR

HPO-methoden uit de literatuur, wat zich vertaalt in nauwkeurige ML-algoritmen.

Bovendien heb ik een wijziging aangebracht in het TPE-algoritme voor single-objective

HPO, om rekening te houden met prestatievariabiliteit zonder hiertoe GPR (of andere metho-

den) te combineren. In tegenstelling tot het oorspronkelijke TPE algoritme houdt onze meth-

ode rekening met de onzekerheid rond de prestatie-evaluaties, gemeten via cross-validatie,

en neemt het gewichten in aanmerking om waarschijnlijkheidsfuncties te genereren waaruit

op sequentiële wijze nieuwe invoerconfiguraties worden gegenereerd. Dankzij deze wijzig-

ing bleek het algoritme in staat hyperparameterconfiguraties te vinden met lagere classifi-

catiefout.

Hoewel op BO gebaseerde algoritmen de voorkeur genieten om computationeel veeleisende

problemen (zoals HPO en simulatie-optimalisatie) op te lossen, zijn er maar weinig metho-

den die de optimalisatie van meer dan één onzekere doelstelling in combinatie met meerdere

simultane beperkingen in aanmerking nemen. In dit onderzoek hebben wij met succes GPR

toegepast om de objectieven en beperkingen te emuleren bij de optimalisatie van een reëel li-

jmverbindingsproces, op basis van een beperkte hoeveelheid experimentele gegevens. Het

voorgestelde BO-kader slaagde erin de optimale procesinstellingen op een zeer efficiënte

manier (d.w.z. met een klein aantal bijkomende experimenten) te detecteren. Het ver-

schil met evolutionaire algoritmen is dat het experimentele ontwerp bij het gebruik van BO

algoritmen wordt aangestuurd op basis van een (interpreteerbare) acquisitiefunctie, die gere-

lateerd is aan de kansverdelingen voor de outputs (objectieven en constraints) in de nog niet

geëvalueerde datapunten. Het BO algoritme richt zich op datapunten waar een zo groot

mogelijke verbetering in doelfunctie wordt verwacht en waar de beperkingen met grote zek-

erheid voldaan zijn, hierbij rekening houdend met (heterogene) ruis (dit in tegenstelling tot

evolutionaire algoritmen, die eenvoudigweg vertrouwen op onzekere steekproefgemiddelden

als benadering).

Tenslotte ontwierp ik een methode gebaseerd op het Long Short-term Cognitive Network

(LSTCN) om het probleem van gegevensvolatiliteit en korte verwerkingstijden in de vermo-

xxiii

gensvoorspelling van windmolens aan te pakken. De Short-term Cognitive Network (STCN)

blokken waaruit een LSTCN is opgebouwd, verwerken een tijdelijke brok gegevens met een

snelle en deterministische leerregel die het algoritme geschikt maakt voor online leertaken.

Het netwerk vertoonde de laagste voorspellingsfouten in vergelijking met andere state-of-

the-art recurrente modellen. Bovendien was de LSTCN-aanpak aanzienlijk sneller dan deze

alternatieve modellen.

CHAPTER 1

A NECESSARY INTRODUCTION

N
owadays, Artificial Intelligence (AI) is omnipresent in everyday life. Current

technological advances allow us to analyze huge amounts of data to generate knowl-

edge that is used in many different ways, e.g. for automatic user recommendations

[24], image recognition [121, 4], and supporting healthcare-related tasks [77]. In general, AI

can be seen as a computer technology capable of carrying out functions that traditionally

required human intelligence [45]. Although learning is a key element in many areas of AI, the

very concept of learning is mainly studied in the Machine Learning (ML) subfield. According

to [112], “a computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P if its performance at tasks in T, as measured by P,

improves with experience E”. This general definition shares similarities with an optimization

process where the algorithm uses some knowledge about the search space (the experience

E; e.g., an initial set of observations, gradients, etc) to minimize or maximize an objective

function (the task T) while paying attention to some quality metric (performance measure

P; e.g., hypervolume, expected improvement, candidates’ diversity, etc).

The terms input and output are present both in ML and optimization algorithms. For

ML researchers an input is usually known as a set of features and the output as the label(s)

of each problem instance (at least for supervised learning). Then, the learning algorithm is

responsible for finding the relationship between the input and output. On the other hand,

the optimization field adopts the term decision variables to refer to the input space where

the optimization is performed, and objectives or function values to describe the output or

response once a configuration is evaluated. Here, the goal of the optimization algorithm is

not to find the relationship between input and output but to discover the input location

where the optimal output can be observed.

Optimization algorithms may benefit from ML approaches, as these allow optimization

algorithms to emulate complex input-output relationships from the observed data, inform-

ing them about potentially interesting areas in the search space. Conversely, optimization

algorithms are needed in the ML field, for instance during model training or hyperparameter

optimization (HPO). Optimization problems in many critical applications typically involve

solving models with a large number of decision variables, and where the decisions are af-

fected by uncertainty. The same challenge is present in modern ML models, where Deep

Learning algorithms usually demand lots of (often uncertain) data and long training times.

This motivates the scientific community to develop (or modify) algorithms to cover a wide

range of challenging tasks from real-world problems.

* 1 *

1. A NECESSARY INTRODUCTION

1.1 Motivation and challenges

Time and cost constraints, data sparsity, and uncertainty are three common challenges to

consider when applying ML and optimization algorithms to real-world problems. The former

is relevant, for instance, during the training or inference of the ML model, the evaluation

of the optimization objective(s), and even during the optimization’s search process. Data

sparsity is a natural consequence of these constraints (and/or other limitations, such as expert

availability), and necessitates the development of efficient algorithms, that can make the most

of the available data. Data uncertainty can manifest itself in different ways and have different

causes, but broadly speaking, three main sources of uncertainty can be recognized [81, 15, 26]:

(1) imprecise information or knowledge, (2) incomplete information, and (3) concepts or

words that are inherently inaccurate. These sources have been widely studied in the subfield

of Soft Computing in Artificial Intelligence [3]. Uncertainty can be present both at the input

side (input uncertainty) and the output side (output uncertainty). In this dissertation, we

focus on the latter, i.e., we consider uncertainty in the function evaluations of objective(s)

and constraints (e.g., due to measurement errors, transmission errors, randomness, etc.).

Consequently, different function values may be observed for repeated evaluations of the

same input configuration.

ML algorithms and their parameters must be intelligently configured to make the most

of the data. Those parameters that need to be specified before training the algorithm are

usually referred to as hyperparameters: they influence the learning process but are not

optimized as part of the training algorithm. Hyperparameter optimization (HPO) evidences

the aforementioned challenges. Training an ML algorithm with a single hyperparameter

configuration can take hours for many real-world problems. Consequently, we may start

the optimization with a reduced number of hyperparameter configurations and use them as

smartly as possible to find the “optimal” configuration. As with many optimization problems,

the uncertainty in HPO is usually given by the performance (the objective) variability that is

observed when a new configuration is tested. Despite the advances in optimization algorithms

that account for uncertain objectives [132], the application of such algorithms in HPO has

been less studied [143, 115].

Bayesian approaches have emerged as a powerful alternative to deal with expensive op-

timization problems and uncertainty modeling. Bayesian Optimization (BO) applications

range from hyperparameter tuning of deep learning models [46, 16], to design optimization

in engineering, and stochastic optimization in operational research (see [53] for a compre-

hensive review). Several BO methods have been proposed to solve complex decision-making

problems involving one or multiple expensive and noisy objectives [134]. However, only a few

methods have considered the constrained case [62, 58, 56], and even fewer have considered

noisy objectives and/or constraints [48, 132].

Data sparsity and the need for short training times are challenges that are also present in

settings such as online learning. In this case, the ML algorithm must adapt the knowledge

acquired from previous training steps when new information enters the system. Power pre-

diction of windmills is an example of online learning, as new data are constantly generated.

Wind-based power generation has some peculiar characteristics, which need to be consid-

ered when designing new forecasting solutions. Firstly, it can be heavily affected by weather

variability. Weather events are unavoidable, but their impact can be minimized when an-

ticipated in advance. Secondly, wind turbines are dynamic systems that behave differently

* 2 *

1.2. Scope and research goals

over time (i.e., due to wear of turbine components, maintenance, etc). These characteristics

make traditional ML methods (e.g., Recurrent Neural Networks or autoregressive models)

inadequate to properly model these systems’ dynamics. This means that new approaches

are needed to improve the prediction of wind generation [103].

1.2 Scope and research goals

The goal of this research is to develop efficient optimization and forecasting algorithms, ca-

pable of working with scarce data which may be volatile (in case of forecasting) or uncertain

(in case of optimization). In this thesis, the term uncertainty refers to the phenomena of

observing different performance/function values when the same input configuration (hyper-

parameters, process configuration, etc) is evaluated. The efficiency is quantified by means of

the training/testing times of the models in the forecasting tasks and by means of the number

of required experiments/observations in the optimization tasks. This general objective can

be split up into several research goals that frame the different challenges overcome by this

research:

1. To develop single- and multi-objective optimization algorithms for problems where the

objectives are expensive to evaluate, and are affected by noise;

2. To extend recurrent neural systems for forecasting tasks in online learning settings,

where data might be volatile;

3. To evaluate the optimization or forecasting capabilities of the proposed algorithms

using different study cases (hyperparameter optimization, adhesive bonding process

optimization, and power forecasting in windmills) and algorithm configurations;

4. To compare the optimization or forecasting capabilities of the proposed algorithms

with state-of-the-art methods.

1.3 Main contributions and thesis organization

This thesis comprises four main contributions: (1) the combination of GPR-based metamod-

eling and the sampling strategy of MOTPE in multi-objective HPO, (2) the modification

of TPE to handle performance variability in single-objective HPO, (3) the (noisy and con-

strained) optimization of a novel adhesive bonding process, and (4) an LSTCN-based pipeline

for power forecasting of windmills. Chapter 2 is devoted to the theory associated with the

algorithms presented in this research. It describes the fundamentals of Bayesian optimiza-

tion as a popular technique for solving expensive optimization problems, summarizes the

most relevant concepts of multi-objective optimization, and shows how performance vari-

ability may be considered in ML algorithms. Then, each chapter details the aforementioned

research contributions as follows:

1. Most HPO approaches take a deterministic perspective using the mean value of the

performance observed in subsets of data, obtained from the cross-validation protocol.

However, depending on the chosen split, the outcome may differ: a single HP con-

figuration may thus yield different performance in different splits, for the same HP

* 3 *

1. A NECESSARY INTRODUCTION

configuration (i.e., the performance is noisy). Chapter 3 presents a novel algorithm

to solve the multi-objective hyperparameter optimization problem of ML algorithms.

This chapter discusses the main strengths of GPR-based optimization and MOTPE,

and how they can be combined to account for performance variability while aiming to

discover non-dominated hyperparameter configurations in multi-objective HPO. The

combination of these methods is studied in the HPO of three ML algorithms in 12

different classification problems.

2. The use of GPR in HPO procedures has limitations, as HPO problems typically have a

mixed search space. Tree Parzen Estimator (TPE) algorithm can accommodate nonreal

variables very well and has been used in conjunction with low-fidelity methods to

achieve state-of-the-art performance on several hyperparameter optimization problems

[46]. However, TPE assumes that the performance metric corresponding to a given

HPO configuration (e.g., accuracy) is deterministic. Chapter 4 analyzes the concepts

of “probability of being good” and “probability of being bad” for the TPE algorithm for

single-objective HPO. These concepts are the foundation of the adjustments proposed

later to account for the performance variability of the hyperparameter configurations.

We show that the resulting algorithm is capable of detecting better hyperparameter

configurations (lower classification errors).

3. Several Bayesian Multi-objective Optimization (BMO) methods have been proposed

to solve complex decision problems where the objectives are expensive to evaluate.

Yet, few of these have considered noisy objectives and/or constraints. Chapter 5 illus-

trates the power of Bayesian Optimization approaches for optimizing a real-life adhesive

bonding process. The chapter details the formulation of an acquisition function that

combines the expected improvement over the objectives and the constraint feasibility,

the use of a GPR that explicitly accounts for the heterogenous noise that is present in

the outcomes of the real experiments, and a full Bayesian Multi-objective Optimization

algorithm. The relevance of the presented approach is specifically analyzed for settings

where the analyst can only afford a very limited number of observations (as is the case

with costly physical experiments in a lab). The algorithms presented in this research

illustrated the effectiveness of BMO to obtain better process configurations than state-

of-the-art Evolutionary Multi-objective algorithms (EMOAs) and surrogate-assisted

EMOAs. Additionally, HV-based optimization proved to be superior to the analyzed

scalarization approach.

4. The LSTCN model has proven its forecasting capabilities, intrinsic interpretability, and

short training/testing time for general problems [118, 117]. However, little is known

about this model in online learning settings, where data might be available for a short

time. Chapter 6 presents the application of Long Short-term Cognitive Networks

(LSTCN) for online learning settings. In the LSTCN-based pipeline presented here,

each iteration processes a data chunk using a Short-term Cognitive Network (STCN)

block that operates with the knowledge transferred from the previous block. The nu-

merical simulations presented in this chapter are focused on showing the improvement

in terms of forecasting error and training/testing times compared to state-of-the-art

recurrent neural networks.

* 4 *

1.3. Main contributions and thesis organization

This manuscript ends by summarizing the main conclusions of this research and possible

topics in need of further investigation.

* 5 *

first part

THEORETICAL CONTRIBUTIONS

CHAPTER 2

TALE OF METHODS AND COINS
Optimization algorithms and performance variability modeling

F
or a long time, tossing coins have been the classical example to represent the chance

of occurrence of an event. This definition of probability is in the foundations of several

areas of study such as statistics, science, machine learning, game theory, and others.

That simple 50% chance of having “heads” or “tails” also shows us that many real actions

are uncertain and we must assume them as such. This chapter outlines the terminology

and notation used throughout this investigation, where the probability concept is always

present. Section 2.1 presents the main characteristics of two Bayesian optimization methods

for single-objective optimization: Gaussian Process Regression-based optimization and Tree

Parzen Estimators. Then, Section 2.2 overviews the theory on multi-objective optimization

to give way to the analysis of some multi-objective optimization algorithms in Section 2.3.

The methods discussed in these sections were the starting point of this research. Lastly,

Section 2.4 analyses how we can account for performance variability in the validation of

Machine Learning algorithms.

2.1 Bayesian optimization in a nutshell

Let fm : X → Rm be a mapping between an input search space X of dimension d and

m true functions. Depending on the value of m, we may have a single-objective (m = 1),

multi-objective (1 < m ≤ 3) or many-objective (m > 3) optimization problem. This research

is focused on solving problems falling in the first two categories and where fm is expensive

to evaluate. For simplicity’s sake, we will use y
(i)
j to refer to the j-th true function value of

the i-th input configuration. Consequently, y(i) refers to the vector of the true m functions’

values for the i-th input configuration. Assume now that we would like to find the optimal

configuration that minimizes the set of m functions:

min [y1, . . . , ym]

s.t. Gi ≤ 0, i = 1, 2, . . . , p,

Hj = 0, j = 1, 2, . . . , q

(2.1)

where the functions G and H define p inequality and q equality constraints, respectively.

In addition, the function values can only be observed through a simulation model or

real experimentation, and their outcomes are affected by noise. Thus, we only have access

to noisy observations ỹ
(i)
j = y

(i)
j + ε

(i)
j , where ỹ

(i)
j represents the vector of observed goal

* 9 *

2. OPTIMIZATION ALGORITHMS AND PERFORMANCE VARIABILITY
MODELING

values in the j-th simulation replication at configuration i. We assume that the noise is

heterogeneous, thus depending on the configuration i, y is then usually estimated as the

mean value of r simulation replications: y(i) =
∑ri

j=1 ỹ
(i)
j

ri
.

Bayesian optimization (BO) is an iterative procedure with two key components: a proba-

bilistic surrogate model and an acquisition function to determine a point in the search space

that is worth evaluating next. The evaluation of the acquisition function is cheaper than the

true function, which allows us to evaluate more input configurations than the amount we can

evaluate with the expensive function. Then, traditional search methods, such as evolution-

ary algorithms [111] or gradient-based methods [119] can be used to solve the optimization

of this acquisition function. BO approaches are most relevant for problems where the target

function is expensive to evaluate. The search using this acquisition function should focus on

new points located in promising regions or where the surrogate uncertainty is high. Conse-

quently, the sampling behavior automatically trades off exploration and exploitation of the

configuration search space.

Although many acquisition functions exist [135], the Expected Improvement (EI) [78] is

the best-known criterion in BO [51, 60, 158]. The EI of a point x(∗) is given by

EI(x∗) = [ymin − ŷ(x∗)] Φ

(
ymin − ŷ(x∗)

ŝ(x∗)

)
+ ŝ(x∗)ϕ

(
ymin − ŷ(x∗)

ŝ(x∗)

)
(2.2)

where ϕ and Φ are the standard normal density and standard normal distribution function,

ymin is the best-observed value so far, ŷ is the surrogate prediction, and ŝ is the mean squared

error (MSE) of the prediction.

Figure 2.1 shows the typical steps in BO for single-objective optimization. The algo-

rithm starts with an initial design of points that can be obtained through random sampling

or space-filling strategies (e.g., Latin hypercube sampling). In each iteration, a surrogate

model is trained using the observed points, for which the true function values were obtained.

Then, the acquisition function uses the predictive distribution of the probabilistic model to

determine the usefulness of different candidate points, without having to evaluate them with

the (expensive) true function. The optimal infill point obtained in this inner optimization is

evaluated with the expensive true function and added to the set of observed configurations.

This sampling/update process is repeated until the computational budget is depleted. Figure

2.2 shows one iteration in a BO algorithm assuming that EI is used as an infill criterion.

As for the surrogate model, Gaussian Process Regression [152] is often used as it provides

both a prediction and an uncertainty estimate. In theory, we may use any Machine Learning

model to model the true function, provided that it yields both estimators (function value

and uncertainty) and does not require a lot of data to train (given the limited budget of

expensive function evaluations). Recently, new methods have been proposed to find optimal

configurations without modeling the target function. Tree Parzen Estimators (TPE) [16]

is an optimization method proposed originally for hyperparameter optimization (HPO) of

Machine Learning algorithms. Unlike GPR, TPE does not estimate the function value of a

new configuration. Instead, it models the probability of sampling a “better” configuration

than the one you have in an initial design. This research focuses on these two models and

the following sections outline their main characteristics.

* 10 *

2.1. Bayesian optimization in a nutshell

Figure 2.1: Typical steps in BO for single-objective optimization

150

100

50

0

50

100

150

200

250

Ou
tc

om
e

True function
Surrogate prediction
Surrogate uncertainty
Training points

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Input

EI

(a)

150

100

50

0

50

100

150

200

250

Ou
tc

om
e

True function
Surrogate prediction
Surrogate uncertainty
Training points

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Input

EI

(b)

Figure 2.2: Selection of infill points in Bayesian optimization. At a given iteration, the solution
that maximizes the acquisition function is shown as a vertical dotted line in (a). After sampling that
point, the surrogate is updated including the new information (red point on (b))

2.1.1 Gaussian Process Regression: deterministic versus noisy

observations

Gaussian Process Regression (GPR) or kriging [78, 152, 51] is a supervised learning tech-

nique. GPR is not only able to predict the outcomes at new configurations but can also

approximate the uncertainty around these predictions.

More formally, the prediction of the target function at a new configuration x(∗) is ob-

tained through the conditional probability P (y(∗) | x(∗),X,Y) that represents how likely the

response y(∗) is, given that we observed the target function at n input locations (contained in

matrix Xn×d), yielding function values contained in matrix Yn×1. The initial set of points

should have good space-filling properties (e.g., Latin hypercube sampling or quasi-random

sequences). In GPR, the key assumption is that the unknown response function follows a

Gaussian process, such that

* 11 *

2. OPTIMIZATION ALGORITHMS AND PERFORMANCE VARIABILITY
MODELING

y(x) = m(x) +M(x) (2.3)

where m(x) represents the mean of the process, and M(x) is a realization of a Gaussian

random field with mean zero (also referred to as the extrinsic uncertainty [6]). Popular

choices for m(x) are known linear or nonlinear functions combinations of x; an unknown

constant β0; or m(x) = 0. M(x) can be seen as a function, randomly sampled from a

space of functions that, by assumption, exhibit spatial correlation according to a covariance

function k(·, ·) (also referred to as kernel):

Cov(y(i),y(j)) = k(x(i),x(j)) (2.4)

Often, this covariance function is assumed to be stationary, meaning that its outcome only

depends on the distance between the input locations. There exist multiple kernel functions in

the literature [152], both the squared exponential or Gaussian kernel and the Mátern kernel

are widely used in the literature.

The ordinary GPR prediction at an arbitrary unobserved location x(∗) is then given by:

ŷo(x
(∗)) = β0 + k∗[Kn]

−1(Y− 1nβ0) (2.5)

where 1n is a n × 1 vector of ones. The mean squared error on the prediction (MSE, also

referred to as kriging variance) is given by [78]:

ŝ2o(x
(∗)) = k∗∗ − k∗K

−1
n kT

∗ (2.6)

where

Kn =
[
k(x(i),x(j))

]
n×n

, i, j ∈ {1, . . . , n} (2.7)

k∗ =
[
k(x(∗),x(i))

]
1×n

, i ∈ {1, . . . , n} (2.8)

k∗∗ = k(x(∗),x(∗)) (2.9)

Note that the extrinsic uncertainty in Equation (2.3) is imposed on the problem by as-

sumption, to aid the construction of the predictive model. It does not account for the

intrinsic uncertainty (i.e., the noise on the outcomes, which stems from the experiments).

In our problem setting, replications of the same input location x(∗) may yield a different

output y
(∗)
r at each replication r and the magnitude of the noise changes from location to

location. In the literature, the model in Equation (2.3) is often applied to the mean of these

replications [51, 32, 95]. In that way, though, the analyst is neglecting the stochastic nature

of the experiment, which may lead to overconfident predictions [66, 69]. To avoid this, some

GPR models have been proposed to consider the heteroscedastic nature of the noise in the

problems [116, 89, 5, 18, 60]. For instance, Ankenman et. al. [6] provides a GPR model

(referred to as stochastic kriging) that takes into account the heterogeneous (also referred to

as heteroscedastic) noise observed in the data, and models the response values in the r-th

replication at design point x(i) as:

yr(x
(∗)) = m(x(∗)) +M(x(∗)) + εr(x

(∗)) (2.10)

* 12 *

2.1. Bayesian optimization in a nutshell

where m and M are defined as in Equation (2.3), and εr(x
(∗)) is the intrinsic uncertainty

observed in replication r.

The stochastic GPR prediction at an unobserved location x(∗) is then given by [6]:

ŷs(x
(∗)) = β0 + k∗[Kn +Σε]

−1(Y− 1nβ0) (2.11)

with 1n as a n × 1 vector of ones, k∗∗ and Kn defined as in Equation (2.9) and Equation

(2.7) respectively, and

Σε = diag

 1
ri−1

∑ri
j

[
ỹ
(i)
j − y(i)

]2
ri


n×n

, i ∈ {1, . . . , n} (2.12)

The diagonal matrix Σε contains the sample variance (noise) on the mean outcome of

each observed configuration x(i) sampled with ri replications.

As pointed out previously, the GPR prediction error can be used to quantify the uncer-

tainty of the prediction. For a GPR with noisy observations, it is computed as

ŝ2(x∗) = k∗∗ − k∗[Kn +Σε]
−1kT

∗ (2.13)

Note that, if we remove the intrinsic noise added in Equation (2.11) and Equation (2.13),

we obtain the prediction and the uncertainty estimate of the GPR with deterministic obser-

vations. For the sake of clarity, we will use ŷs and ŝ2s to refer to the predictors obtained with

a GPR with noisy observations, and ŷo and ŝ2o for the predictors obtained with a GPR with

deterministic observations.

2.1.2 Tree Parzen Estimators

Whereas GPR models the probability distribution P (y | x,X,Y), Tree Parzen Estimators

(TPE) tries to model the probability P (x | X,Y) of sampling a point given the set of

observed responses [16]. TPE defines these probabilities using two densities:

p(x | y) =

{
l(x) if y(x) < y∗, x ∈ X

g(x) o.w
(2.14)

where l(x) is the density estimated using the points x(i) for which y(i) < y∗, and g(x) is the

density estimated using the remaining points. The value y∗ is a user-defined quantile γ of

the observed y values, so that P (y(x) < y∗) = γ. Here, we can see l as the density of the

configurations that may have the best response.

Figure 2.3 shows a toy example of TPE using densities l(x) and g(x) to suggest the next

configuration to evaluate with the true function. Given the set of observed responses, we

compute y∗ as the percentile value for the γ quantile (dash red line). Then, all the points

with an observed response lower than y∗ will be considered as “good points”, and the rest

as “bad points” (Figure 2.3a). After this splitting procedure, the densities l(x) and g(x) are

estimated using the set of “good” and “bad” points respectively, and use them to suggest

the next point to evaluate (Figure 2.3b).

Algorithm 2.1 outlines the steps of TPE optimization. After the splitting process, the

density of the configurations is estimated per dimension for both sets, and a number of

* 13 *

2. OPTIMIZATION ALGORITHMS AND PERFORMANCE VARIABILITY
MODELING

3 4 5 6 7
Configurations

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Ob
je

ct
iv

e
va

lu
e

True function
Bad points

Good points
y *

(a)

0.0

0.1

0.2

0.3

PD
F

Density l(x)
Density g(x)

Good points
Sample

Bad points

3 4 5 6 7
Configurations

l(x)
g(x)

(b)

Figure 2.3: Acquisition function evaluation for (a) f(x) = sin(x) + sin(10
3
x) (black line) in the

range [2.7, 7.5]. The density estimation of the configurations in the good (orange) and bad (blue) set
are used to suggest the next point to evaluate with the real function. The candidate set (gray dots)
is sampled from density l(x)

samples are drawn from l(x) (Equation 2.16). TPE employs a different EI formulation to

suggest the next point to evaluate. Based on the densities l(x) and g(x), the EI in TPE is

defined as

EIy∗(x) =

∫ y∗

−∞
(y∗ − y)p(y | x)dy ∝

(
γ + (1− γ)

g(x)

l(x)

)−1

(2.15)

This EI definition shows that we would like points x with a high probability under l(x)

and a low probability under g(x) to maximize improvement. This EI formulation allows the

model to balance exploration versus exploitation. Given that l(x) is an estimated distribution

and not a single value, the configurations drawn are likely close but not necessarily at the

maximum of the expected improvement. Moreover, because the densities were estimated

from some observed points, the selected configuration may not actually yield an improvement

when evaluated and the densities will have to be updated.

Kernel Density Estimation (KDE) [140] is used to estimate a probability density func-

tion of a random variable. Let X =
[
x(1), x(2), . . . , x(n)

]
be independent and identically

distributed samples drawn from some univariate distribution with an unknown density l at

any given point x. We are interested in estimating the shape of this function l. Its kernel

density estimator is

l(x) =
1

nh

n∑
i=1

k

(
x− x(i)

h

)
(2.16)

where k is the kernel (a non-negative function) and h > 0 is a smoothing parameter known as

bandwidth. The bandwidth here controls the quality of the model. A large bandwidth leads to

a very smooth (i.e. high error in the density estimation) density distribution (orange line in

Figure 2.4). On the other hand, a small bandwidth leads to an unsmooth (i.e. overfitting the

* 14 *

2.2. Overview of multi-objective optimization concepts

Algorithm 2.1 Tree Parzen Estimators for (noiseless) single-objective optimization

Require: D = {(Xn×d,Yn×1)}: initial design, N : number of iterations, n: number of
configurations in the initial design, γ: quantile parameter, c: number of candidates per
iteration

1: for i← 1, . . . , N do
2: T1×d ← {}
3: for j ← 1, . . . , d do

4: Dl ←
{(

X
(k)
j ,Y(k)

)
| y(k) < y∗ ∧ p(y < y∗) = γ

}
5: Dg ← Dj \Dl

6: lj(x)← KDE(Dl) ▷ KDE of good configurations
7: gj(x)← KDE(Dg) ▷ KDE of bad configurations

8: C1×c ←
{
x(k) ∼ lj(x) | k = 1, . . . , c

}
▷ Sample candidates in dimension j

9: x∗ ← argmaxx∈C EIy∗(lj(x), gj(x), x) ▷ Acquisition function maximization
10: T← T ∪ x∗

11: end for
12: Y∗ ← SIMULATE(T) ▷ Expensive evaluation of T
13: D ← D ∪ {(T, Y∗)}
14: end for
15: return the best-observed configuration contained in D

estimated density to the training points) density distribution (dark blue in Figure 2.4). One

can either set manually this parameter or use Scott’s and Silvermann’s estimation methods

[137].

4 2 0 2 4 6 8
x

0.0

0.1

0.2

0.3

0.4

PD
F

N=100 points
True distribution
Bandwidth = '0.2'
Bandwidth = '0.5'
Bandwidth = '1'

Figure 2.4: Influence of the bandwidth parameter in KDE

2.2 Overview of multi-objective optimization concepts

It is often required to consider the trade-off between two or more objectives (m > 1) in

practical applications; such as the error-based performance measures and training time in

Hyperparameter optimization of Machine Learning algorithms [83, 130, 114], ensemble error

and diversity measures of classifier ensembles [23], break strength and production cost of

* 15 *

2. OPTIMIZATION ALGORITHMS AND PERFORMANCE VARIABILITY
MODELING

adhesive bonding process [79], and others. The goal in multi-objective optimization is to

obtain a set of Pareto-optimal solutions, i.e., those configurations for which none of the

objective values can be improved without negatively affecting any other [107]. More formally,

for x(1) and x(2) two vectors in X :

• x(1) ⪯ x(2) means x(1) weakly dominates x(2) (or y(1) ⪯ y(2)) iff y
(1)
j ≤ y

(2)
j , ∀j ∈

{1, . . . ,m}, and ∃j ∈ {1, . . . ,m} such that y
(1)
j < y

(2)
j

• x(1) ≺ x(2) (or y(1) ≺ y(2)) means x(1) strictly dominates x(2) iff y
(1)
j < y

(2)
j ,∀j ∈

{1, . . . ,m}

For a set of vectors Yn×m representing the evaluation of m objectives of n observations,

the non-domination rank of a vector y ∈ Y (denoted rank(y) ∈ N) is defined as follows:

• rank(y) = 1 iff ∄y′ ∈ Y : y′ ≺ y

• ∀k > 1 : rank(y) = k iff ∄y′ ∈ Y : y′ ≺ y ∧ y′ /∈
⋃

i<k {y
′ ∈ Y | rank(y′) = i}

Additionally, we denote Yrank(k) the set {y ∈ Y | rank(y) = k}. Vector y ∈ Y is

non-dominated iff rank(y) = 1. Figure 2.5 shows the first three non-domination ranks in a

set of points of a multi-objective problem with two objectives.

1.2 1.4 1.6 1.8 2.0
Obj 1

1.0

1.2

1.4

1.6

1.8

2.0

Ob
j 2

Rank 1
Rank 2
Rank 3

Figure 2.5: Example of non-domination ranks in an optimization problem of two objectives. Points
not connected by a line are dominated by the points included in the first three ranks.

Classically, multi-objective optimization problems are often solved using scalarization

techniques where the multi-objective optimization problem is transformed into a single-

objective problem by the aggregation (or reformulation as constraints) of the objectives [108].

However, we should be cautious when using such techniques and analyze if the optimization

results in Pareto points and if we can obtain all Pareto points on the Pareto front by changing

the parameters of the scalarization [42].

A simple scalarization technique is the minimization of the weighted sum of objective

functions. Then, the multi-objective optimization problem is reformulated to:

* 16 *

2.2. Overview of multi-objective optimization concepts

min

m∑
i=1

wiyi (2.17)

where w ∈ R+m
is a vector of weights. The solution of a linear scalarization problem is

on the Pareto front, no matter which weights in R+m
are chosen. However, if the Pareto

front is non-convex, then, in general, there can be points on the Pareto front which are not

found. In practice, a linear scalarization will tend to give only extreme solutions in concave

fronts; that is, solutions that are optimal in one of the objectives. Figure 2.6 shows two

multi-objective optimization problems with different types of Pareto fronts. Each red point

represents the solution obtained by minimizing a linear scalarization problem, for different

weight choices. In the case of the non-convex Pareto front (Figure 2.6b), even equal weights

cannot lead to a solution in the middle part of the Pareto front.

(a) (b)

Figure 2.6: Linear scalarization function with different weights for (a) ZDT1 function with convex
Pareto front, and (b) ZDT2 function with concave Pareto front

As an alternative to this scalarization, the augmented Chebychev scalarization function

guarantees that all the points on the Pareto front can be obtained by minimizing the resulting

scalarization problem. The augmented Chebychev scalarization function is defined as

min max
i={1,...,m}

wiyi + ρ

m∑
i=1

wiyi (2.18)

where w ∈ R+m
is a vector of weights, and ρ is a small positive value (e.g., ρ = 0.05). By

changing the weights, all points of the Pareto front can, in principle, occur as minimizers of

the scalarization problem. Such points are potentially found in convex parts of Pareto fronts

(Figure 2.7a) as well as in concave parts (Figure 2.7b). Note that the right-hand side of

Equation 2.18 avoids the suggestion of weakly dominated points as minimizers of the scalar-

ization problem, which for other functions, such as the (original) Chebychev scalarization,

cannot be guaranteed. Other scalarization functions can be reviewed in [30].

In the context of multi-objective optimization problems, a performance indicator (or just

indicator) is defined as a scalar measure of the quality of a Pareto front approximation. It

can be obtained simply by looking at the Pareto front approximation or how much better

* 17 *

2. OPTIMIZATION ALGORITHMS AND PERFORMANCE VARIABILITY
MODELING

(a) (b)

Figure 2.7: Augmented Chebychev scalarization function with different weights for (a) ZDT1
function with convex Pareto front, and (b) ZDT2 function with concave Pareto front

one Pareto front approximation is relative to another Pareto front approximation. The

hypervolume indicator or s-metric [7] is an example of the former and IGD2+ of the latter.

The hypervolume is defined as follow for an approximation set A ⊂ Rm:

H(A) = V ol({y ∈ Rm : y ⪯ r ∧ ∃a ∈ A : a ⪯ y}) (2.19)

where, r is a reference point. Practically speaking, the hypervolume is the area (or volume

if m ≥ 3) of the objective space that is dominated by the front obtained, w.r.t. a reference

point. The optimal points move to the Pareto front, and the more they distribute along the

Pareto front, the more space gets dominated, the higher the hypervolume is and the better

the Pareto front obtained. Figure 2.8 show an example of the hypervolume computed for a

minimization problem of two objectives.

0.0 0.2 0.4 0.6 0.8 1.0
Obj 1

0.0

0.2

0.4

0.6

0.8

1.0

Ob
j 2

r

HI(A)

y(1)
y(2)

y(3)
y(4)

y(5)

Figure 2.8: Illustration of a 2-D hypervolume surface for A = {y(1),y(2),y(3),y(4),y(5)} and
r = [1, 1]

* 18 *

2.2. Overview of multi-objective optimization concepts

The basic idea of distance-based quality indicators is to measure the distance of the Pareto

front to the solution set under consideration. As such, a reference set that well represents the

Pareto front is required. A solution set that is close to every member of the reference set can

have a good evaluation value. This idea can be materialized by averaging (or summing up)

the distances of the reference set’s members to their closest solution in the solution set, or

finding the maximum value from these distances. The Inverted Generational Distance plus

(IGD+) [71, 96] is a representative example, which considers the average Euclidean distance

between each point of the reference and solution set. The IGD+ indicator can be formulated

as:

IGD+(A,Z) =
1

|Z|

|Z|∑
j=1

min
ai∈A

d(ai, zj) (2.20)

a ∈ A ⊂ Rm, z ∈ Z ⊂ Rm, A is the Pareto front approximation and Z is the reference Pareto

front. The distance d(a, z) is defined for minimization problems as:

d(a, z) =

√√√√ m∑
k=1

(max {ak − zk, 0})2 (2.21)

When the solution a is dominated by the reference point z, this is exactly the same as

the Euclidean distance since ak ≥ zk for all k. In Equation (2.21), when the solution a is

not inferior to the reference point z with respect to the k -th objective (i.e., when ak ≤ zk for

minimization problems), the k -th objective has no effect on the distance calculation. Figure

2.9 illustrates the distance calculation in the IGD+ indicator for a minimization problem

with six reference points and three solutions given.

0.0 0.2 0.4 0.6 0.8 1.0
Obj 1

0.0

0.2

0.4

0.6

0.8

1.0

Ob
j 2

A

Z

Figure 2.9: Illustration of the IGD+ indicator for a minimization problem of two objectives. The
blue line is the reference Pareto front and the black line represents the approximated Pareto front.

* 19 *

2. OPTIMIZATION ALGORITHMS AND PERFORMANCE VARIABILITY
MODELING

2.3 Multi-objective optimization algorithms for expensive and/or

noisy problems

The optimizers of the individual objectives are not usually of particular interest to the

decision-maker, since these only reflect the extremes of the so-called Pareto front (i.e., the

evaluation of the Pareto set in the objective space). The reader is referred to [105] for a

comprehensive survey on deterministic multi-objective methods for engineering problems. In

such methods, it is assumed that the objective (and, potentially, constraint) functions can be

observed without noise (e.g., through a deterministic simulator, or noise-free experiments).

However, we are interested in those problems where the objectives and/or constraints are

noisy. The literature on stochastic multi-objective optimization algorithms is scarce, and

consists mainly of evolutionary and Bayesian multi-objective optimization algorithms [32,

134, 115], with few results in constrained settings. This section details three metamodels-

based multi-objective optimization algorithms adopted in our research (ParEGO, Multi-

EGO, MOTPE).

ParEGO [82] is one of the algorithms that use a scalarization technique and exhibit

a promising performance for multi-objective optimization problems where evaluations are

expensive. ParEGO uses the augmented Chebychev scalarization function [82], which is

often considered to solve general multi-objective optimization problems [59, 108, 72] given

the properties described in the previous section.

ParEGO was originally proposed for noiseless multi-objective problems. However, Algo-

rithm 2.2 presents a version of ParEGO (used in the exploratory phase of SK-MOCBA [59])

for noisy objectives, with the GPR proposed for noisy observations [6]. Zλ (Line 3) is the

result of applying the scalarization function to the objectives. The size of this matrix is n×r

due to the stochastic nature of the experiment (hence, the r replications). The surrogate

in this version of ParEGO is trained using the current set of configurations in X and the

sample mean and variance of the scalarized objectives (Lines 4-5).

Instead of using a scalarization function, several algorithms exploit the advantages of

an infill criterion for each of the objectives in the search of infill points [134]. Therefore,

a surrogate model has to be trained for each objective individually. Multi-EGO [76] is an

example of this strategy. The EIs for each of the objectives are directly used as fitness

values in the multi-objective optimization. Then, a Genetic Algorithm (GA) maximizes the

EIs of each objective function to find the non-dominated solutions according to the EI’s

values. Once performed enough iterations of the GA using the metamodels, we perform the

expensive evaluation of the points in the Pareto front, and then the metamodels are updated

with the new information.

Alternatively, the EI can be reformulated as a multi-objective infill criterion using hyper-

volume as a quality indicator. The Expected Hypervolume Improvement (EHVI) criterion

uses the hypervolume indicator to measure the improvement we may expect from a new

point [44, 33]. The hypervolume improvement of a point y ∈ Rm is defined as the increment

of the hypervolume indicator after y is added to the current approximation of P as

I(y,P) = H(P ∪ {y})−H(P), (2.22)

where H(.) is the hypervolume calculation function. Then, the EHVI is defined as the

integration of the hypervolume improvement function over the non-dominated area [43]

* 20 *

2.3. Multi-objective optimization algorithms for expensive and/or noisy problems

Algorithm 2.2 ParEGO algorithm for noisy multi-objective optimization. Stochastic GPR
is the surrogate model and EI is the acquisition function. The same number of simulation
replications is assumed for each configuration

Require: {(Xn×d,Yn×m×r)}: initial design, N : number of iterations, n: number of con-
figurations in the initial design, r: number of simulation replications

1: for i← 1, . . . , N do
2: λ1×m = [λ1, . . . , λm] ,

∑m
i+1 λi = 1 ▷ Random weight vector

3: [Zλ]n×1×r =
[
Z

(i)
λ

]
, i = {1, . . . , n} ▷ Augmented Chebychev scalarization

4: Yn×1 ←
[∑r

k=1 Zλ
(j)
k

r

]
n×1

, j = {1, , . . . , n+ i− 1}

5: Vn×1 ←

[
1

r−1

∑r
k=1

[
Zλ

(j)
k −y(j)

]2
r

]
n×1

, j ∈ {1, . . . , n+ i− 1}

6: GP ← GP FIT(X, Y, V) ▷ Surrogate training
7: ymin ← miny∈Y y
8: x∗ ← argmaxx∈X EI(GP, ymin, x) ▷ Acquisition function maximization
9: Y∗

1×r ← SIMULATE(x∗, r) ▷ Expensive evaluation of x∗

10: X← X ∪ x∗

11: Y ← Y ∪Y∗

12: end for
return the set of non-dominated solutions

EHV I(y) =

∫
y∈A

I(y,P)

m∏
i=1

1

ŝoi
ϕ

(
yi − ŷoi

ŝoi

)
dyi (2.23)

where A stands for the non-dominated area and ϕ(·) is the standard normal density distri-

bution function. The terms ŷoi and ŝoi refer to the objective and uncertainty estimators

of the ordinary GPR models respectively. Previous studies have already used EHVI, often

assuming noiseless objectives [33, 36, 100], or with homogeneous noise at best [37, 83].

We can also use the strategy followed by TPE to model the probability of sampling an

input location given the evaluation of a set of points. However, we need to adapt the splitting

procedure introduced in Section 2.1.2 to work with more than one objective. Ozaki et. al.

[120] proposed to use the dominance rank of the objectives to split the observations into the

“good” and “bad” sets. As far as we know, TPE for multi-objective problems (MOTPE) is

the only implementation of TPE to solve multi-objective optimization problems.

MOTPE defines P (x | X,Y) using the following two probability density functions:

p(x|y) =

{
l(x) if y ≺ P ∪ y ⪯ P

g(x) o.w
(2.24)

where P is a set of objective vectors such that p(y ≺ P∪y ⪯ P) = γ, l(x) is the probability

density function estimated by using the observations {x(i)} such that y(i) ≺ P (strictly

dominates P) or y(i) ⪯ P (weakly dominates P), and g(x) is the probability density function

estimated by using the remaining observations.

The observations are split by MOTPE for a specific γ in a greedy manner, as described in

Algorithm 2.3. The splitting procedure in MOTPE, for noiseless multi-objective optimiza-

tion, comprises two steps. The first step (lines 3-6) greedily appends better non-domination

* 21 *

2. OPTIMIZATION ALGORITHMS AND PERFORMANCE VARIABILITY
MODELING

ranked observations to the largest extent possible to Sl. The second step (line 7) appends

the set obtained as a result of the hypervolume sub-selection problem (HSSP) [9] to Sl. The

subroutine SOLVE HSSP(S, s) (line 7 Algorithm 2.3) returns the result of HSSP for a set S

and the size of subset s. Take, for instance, the example in 2.5 and suppose that MOTPE

added all the points with Yrank(1) to Sl but it still needs to select a subset of points y′ with

Y′
rank(2) to have that |Sl| = γ |S|. HSSP will choose those points from the second Pareto

front that maximizes the hypervolume indicator given a reference point.

Algorithm 2.3 MOTPE splitting procedure (SPLIT OBSERVATIONS method) for noise-
less multi-objective problems

Require: S = {(Xn×d,Yn×m)}: observations, γ: splitting parameter
1: Sl ← {} ▷ Observations for l(x)
2: i← 1
3: while |Sl|+ |Srank(i)| ≤ γ|S| do
4: Sl ← Sl ∪ Srank(i)

5: i← i+ 1
6: end while
7: Sl ← Sl ∪ SOLVE HSSP(Srank(i), ⌊γ|S|⌋ − |Sl|)
8: Sg ← S \ Sl ▷ Observations for g(x)

return Sl, Sg

MOTPE, as TPE, is originally intended to work with deterministic outcomes; i.e., the

same input configuration will always yield the same outcome. The matrix Yn×m thus repre-

sents the deterministic values of the performance measures, evaluated for all input locations

in S (no replications are required). MOTPE starts by splitting the set S using the non-

domination rank of the configurations (line 4 Algorithm 2.4) and then, it constructs the

probability density functions l(x) and g(x) in an identical manner to the original TPE algo-

rithm.

Algorithm 2.4 Tree Parzen Estimator for (noiseless) multi-objective optimization

Require: S = {(Xn×d,Yn×m)}: observations, N : number of iterations, c: number of
candidates per iteration, γ: splitting parameter

1: for i← 1, . . . , N do
2: T1×d ← {}
3: for j ← 1, . . . , d do
4: Sl, Sg ← SPLIT OBSERVATIONS({(Xj ,Y)}, γ)
5: lj(x)← KDE(Sl) ▷ KDE of good configurations
6: gj(x)← KDE(Sg) ▷ KDE of bad configurations

7: C1×c ← {x(k) ∼ lj(x) | k = 1, . . . , c} ▷ Sample candidates in dimension j
8: x∗ ← argmaxx∈C EHVIγ(lj(x), gj(x), x) ▷ Acquisition function maximization
9: T← T ∪ x∗

10: end for
11: Y∗ ← SIMULATE(T) ▷ Expensive evaluation of T
12: S ← S ∪ {(T,Y∗)}
13: end for

return the set of non-dominated solutions in S

The acquisition function used to select the “best” sampled point (line 8 Algorithm 2.4)

is the γ− Expected Hypervolume Indicator (EHV Iγ), which is equivalent to the Expected

* 22 *

2.4. Performance variability in the validation of Machine Learning algorithms

Improvement in TPE [120]. Using Equation (2.22), an generalizing Equation (2.23), the

EHV Iγ(x) is computed as follows:

EHV Iγ(x) =

∫
y∈A

(H(P ∪ {y})−H(P)) p(y | x) dy (2.25)

where P is the current Pareto front approximation and A stands for the non-dominated

area (including weakly non-dominated points). Then, applying Bayes’s theorem in Equation

(2.25) we obtain

EHV Iγ(x) =

∫
y∈A

(H(P ∪ {y})−H(P))
p(x | y)p(y)

p(x)
dy, (2.26)

and based on Equation (2.24), the numerator of EHV Iγ(x) is

EHV Iγ(x) =

∫
y∈A

(H(P ∪ {y})−H(P)) p(x | y)p(y dy

= l(x)

∫
y∈A

(H(P ∪ {y})−H(P)) p(y) dy︸ ︷︷ ︸
Cγ(constant w.r.t. x)

= Cγ l(x)

(2.27)

By construction, γ = p(y ≺ P∪y ⪯ P) and p(x) =
∫
p(x | y)p(y) dy = γl(x)+(1−γ)g(x).

Therefore, we obtain the following:

EHV Iγ(x) =
Cγ l(x)

p(x)

=
Cγ l(x)

γl(x) + (1− γ)g(x)

=
Cγ

γ + (1− γ) g(x)
l(x)

∝
(
γ + (1− γ)

g(x)

l(x)

)−1

(2.28)

As in TPE for single-objective optimization, MOTPE should favor points x with a high

probability under l(x) and a low probability under g(x) to maximize the improvement in the

current Pareto front.

2.4 Performance variability in the validation of Machine Learning

algorithms

The stochastic nature of many real problems implies that decisions are often to be made based

on noisy observations (and/or, possibly, uncertain domain knowledge). This is no different

for ML models and AI-based decision-making. Therefore, it is important to represent the

uncertainty in any AI-based system in a trustworthy manner. Uncertainty is understood as

doubt or ambiguity and it can be observed both in the data or the performance evaluation

of the ML model.

* 23 *

2. OPTIMIZATION ALGORITHMS AND PERFORMANCE VARIABILITY
MODELING

The irreducible uncertainty in data that yields uncertain predictions is known as aleatoric

uncertainty (or data uncertainty) [1]. This type of uncertainty is not a model property, but

an inherent property of the data distribution. Hence, it is irreducible. On the other hand,

epistemic uncertainty (or model uncertainty) occurs due to inadequate knowledge acquired

by the model. You may have lots of data to train your ML model, but an accurate prediction

will be compromised if the information quality is poor.

Figure 2.10: Summary of the uncertainty quantification techniques for ML and DL analyzed by
Abdar et. al. [1] and Gawlikowski et. al. [57]. The categories analyzed by the latter (circles) were
discussed only for DL algorithms.

The ML process life cycle involves data collection and filtering, model tuning, and model

exploitation with operational data; and the uncertainty may propagate across the complete

cycle. Uncertainty quantification (UQ) plays a role in each of these steps and, in general,

decisions made without UQ are usually not trustworthy [8, 61]. All sources of uncertainty

discussed before may occur during the first step and the UQ method should be focused on

evaluating the completeness and accuracy of the training/testing data. Similarly, uncer-

tainty corresponding to the model’s performance (a combination of aleatoric and epistemic

uncertainty) should be analyzed when designing/tuning ML algorithms. Lastly, once the

model is deployed, a systematic analysis of the predictions in terms of UQ increases the

overall confidence in the model and makes data-centric tools and methods practically useful.

Abdar et. al. [1] presents a detailed literature review of uncertainty quantification tech-

niques for ML and DL algorithms. The authors advocate two main categories: Bayesian

and Ensemble-based methods, and a general group of other methods that do not fall under

the first two categories. Curiously, some GP-based techniques were not considered by the

authors as Bayesian UQ methods, even when these find their essence in the fundamentals of

Bayesian optimization. A more detailed categorization of UQ is proposed by Gawlikowski

et. al. [57] in a pre-print focused only on Deep Neural Networks. Figure 2.10 summarizes

the categorization provided by these two surveys. Unfortunately, it is not clear from these

articles how these UQ methods can be used to evaluate algorithm performance. More specif-

* 24 *

2.4. Performance variability in the validation of Machine Learning algorithms

ically, if we know how (un)certain the prediction is, how can this information be considered

in the overall performance evaluation of the algorithm?

Even in sensitive tasks such as hyperparameter optimization [50], automatic model se-

lection [104], and Neural Architecture Search (NAS) [41, 129], performance uncertainty (or

performance variability) has been usually neglected by relying completely on the mean per-

formance observed; e.g., in ensemble methods, or in cross-validation protocols. The latter

has been widely used in the ML community because it is a suitable alternative for model

selection in the absence of prior knowledge [136]. When evaluating different models, part of

the available data is held out as a test set and the rest is dedicated to training the model. The

cross-validation protocol splits the training set into k smaller sets. For each of the k “folds”,

the model is trained using the other k−1 folds, and the resulting model is then validated on

the left-out fold. The performance measure reported by k -fold cross-validation is then the

average of the performance observations across the different splits. Figure 2.11 shows the

typical cross-validation and testing of ML models and an example of 5-fold cross-validation.

(a) (b)

Figure 2.11: Evaluating estimator performance. (a) Typical cross-validation and testing of an
ML model. (b) Example of a 5-fold cross-validation protocol. The training set is split into k folds
(here: k = 5). The ML algorithm is trained and validated on each fold for a given HP configuration,
yielding k estimates of algorithm performance. Traditionally, the average performance across splits
is then used as an estimator for the overall algorithm performance, given an HP configuration.

While it is known that cross-validation provides an estimate of the expected prediction

error, it is also known that its variance may be very large [21]. This may complicate model

comparisons, and cause erratic behavior in the expected prediction error [14, 12]. There-

fore, tasks such as hyperparameter optimization should consider the variance of the perfor-

mance estimate(s) when looking for the best hyperparameter combination. Although many

authors recognize the aforementioned problem, the literature on HPO accounting for the

performance variability of ML algorithms (both in single-objective HPO [39, 63, 110] and in

multi-objective HPO [83, 66]) remains scarce [115]. These papers have mainly explored the

impact of different noise handling strategies on the results of existing algorithms, while it

may be more beneficial to account for the noise by adjusting the metamodels (if any) used,

and/or the algorithmic approach.

Lastly, we would like to emphasize that our use of the term ”variance” in the follow-

ing chapters should not be confused with the traditional use of this term in ML, as in the

well-known “bias-variance” tradeoff. In the latter, the bias is the error made in the learning

algorithm from erroneous assumptions, while the variance results from sensitivity to small

fluctuations in the training set. High bias can cause an algorithm to miss the relevant rela-

tions between features and target outputs (underfitting). High variance, by contrast, may

* 25 *

2. OPTIMIZATION ALGORITHMS AND PERFORMANCE VARIABILITY
MODELING

result from an algorithm modeling the random noise in the training data (overfitting). Low-

ering a model’s bias (e.g., by reducing the error on the training data) may lead to overfitting,

which increases the model’s variance (i.e., it doesn’t generalize well to new data). On the

other hand, an ML algorithm that is too simplistic or that ignores existing relationships

in the training data (resulting in underfitting and high bias) may generalize better to new

data (low variance). How much “learning” and “forgetfulness” the algorithm should perform

during training evidence the aforementioned bias-variance trade-off.

Cross-validation (CV) is a common technique in ML when training and validating ML

models using a single dataset. In k-fold CV, the data is split into k parts, and each part is

sequentially left out t be used as a validation set for the ML model that results from training

on the k− 1 other parts. The average error thus obtained on the entire dataset (the average

of the k error estimates resulting from the CV) is then considered as the estimate of the true

error of the ML model that we would obtain if we used the training algorithm on the entire

dataset. As observed by Kohavi [85] in one of the early studies related to the bias-variance

trade-off, a higher value of k leads to more folds, reducing bias but increasing variance and

computational cost. Conversely, a lower value of k increases bias but reduces variance and

computational cost. In this dissertation, the term variance refers to the concept known from

the probability and statistics field as a measure of dispersion in a random variable.

The performance of an ML algorithm is typically measured by means of a single numeric

value, usually obtained as a sample mean of different performance values (obtained from

a cross-validation protocol, or a bootstrap ensembling model), or obtained by training and

evaluating the ML algorithm only once using a single data set (typically in Deep Learning

settings). Consider, for instance, the performance distribution obtained when a k-fold cross-

validation protocol is applied to evaluate an ML algorithm. Just using the sample mean of the

performances evaluated on the k different splits neglects the uncertainty in this performance;

as shown later, this may lead to worse HPO solutions, or short-sighted conclusions about

the difference in performance between alternative algorithms. The sample variance of the

observed performances can be considered as an indicator of this uncertainty.

* 26 *

CHAPTER 3

WHEN ONE BECOMES TWO
Multi-objective hyperparameter optimization with performance variability

T
he optimization of two or more objectives is often required in practical problems.

This is the case, for instance, in hyperparameter optimization (HPO) of Machine

Learning (ML) algorithms. Additionally, as training and evaluating an ML algo-

rithm is usually expensive (e.g., because of training time, memory consumption, etc), the

HPO method needs to be computationally efficient to be useful in practice. Most of the ex-

isting approaches to multi-objective HPO use evolutionary strategies and metamodel-based

optimization [115], but neglecting that performance measures are, in fact, noisy. This chap-

ter presents results on multi-objective HPO with noisy performance evaluations of the ML

algorithm, using a combination of Tree Parzen Estimators (TPE) and Gaussian Process

Regression (GPR) with heterogeneous noise.1 Section 3.1 introduces the hyperparameter

optimization of ML algorithms as a multi-objective problem and Section 3.2 presents the

proposed optimization algorithm. Section 3.3 describes the experimental setting designed to

evaluate the proposed algorithm, and Section 3.4 shows the improvement in the hypervolume

obtained when compared with HPO using stand-alone multi-objective TPE and GPR-based

optimization.

3.1 Multi-objective hyperparameter optimization

In mathematics and computer science, an algorithm is a finite sequence of well-defined in-

structions that, when fed with a set of initial inputs, eventually produces an output. Figure

3.1 shows that in HPO, the optimization algorithm forms an “outer” shell of optimization

instructions; the “inner” optimization refers to the training of the target ML algorithm (e.g.,

Neural Networks (NN), Support Vector Machine (SVM), etc). This inner optimization trains

the target algorithm to perform the task it should perform (e.g., house prices prediction).

In turn, the HPO algorithm takes the hyperparameters of the target ML algorithm as input

and produces a number of performance measures as output (e.g., Root Mean Square error

(RMSE), training time, etc). The aim of the HPO algorithm is to optimize the set of hyper-

parameters, in view of obtaining the best possible outcomes for the performance measures

considered.

1The content of this chapter has been included in the publications “Multi-objective Hyperparame-
ter Optimization with Performance Uncertainty”. In: Proceedings of the Optimization and Learning
Conference (2022) [114] and “A survey on multi-objective hyperparameter optimization for Machine
Learning”. In: Artificial Intelligence Reviews [115].

* 27 *

3. MULTI-OBJECTIVE HYPERPARAMETER OPTIMIZATION WITH
PERFORMANCE VARIABILITY

Figure 3.1: Example of the interplay between the HPO algorithm and the target ML algorithm (in
this case, an ANN for predicting house prices)

Consider a target ML algorithm A with d hyperparameters, such that the i-th hyper-

parameter has a domain denoted by Xi. The overall hyperparameter configuration space is

denoted as X = X1 × X2 × ...× Xd. A vector of hyperparameters is denoted by x ∈ X , and
an algorithm A with its hyperparameters set to x is denoted by Ax. Generally, the available

data are split into a training set, a validation set, and a test set. The learning process of

the algorithm takes place on the training set (Dtrain) and is validated on the validation set

(Dvalid). Lastly, the ML algorithm with the best HP configuration is evaluated using the

test set. We can then formalize the single-objective HPO problem as [50]:

min
x∈X

V (L | Ax,Dtrain,Dvalid)

where V (L | Ax,Dtrain,Dvalid) is a validation protocol that uses a loss function L to estimate

the performance of a model Ax trained on Dtrain and validated on Dvalid. Popular choices

for the validation protocol V (·) are the holdout and cross-validation process (see [19] for an

overview of validation protocols).

The previous definition can be readily extended to multi-objective optimization (see [96]).

Consider a multi-objective HPO problem with d hyperparameters and a set L containing

m performance measures (objective functions). This generalizes the concept of the “loss

function” in the single-objective formulation, to include error-based measures and other

metrics such as algorithm complexity, training time, memory consumption, etc. The multi-

objective HPO problem can then be formalized as follows (assuming that all performance

measures should be minimized):

min
x∈X

V (L | Ax,Dtrain,Dvalid)

Trade-offs exist, for instance, between the performance of a model and its training time

(increasing the accuracy of a model often requires larger amounts of data and, hence, a

higher training time [128]), or between different error-based measures (e.g., between confu-

sion matrix-based measures [145] of a binary classification problem [65]). Considering these

trade-offs is often crucial: e.g., in medical diagnostics [146], the simultaneous consideration

of objectives such as sensitivity and specificity is essential to determine if the ML model can

be used in practice. As in any multi-objective problem, the goal in multi-objective HPO is

* 28 *

3.2. Using TPE sampling strategy with GPR metamodeling

to obtain the Pareto-optimal solutions, i.e., those solutions for which none of the objectives

can be improved without negatively affecting any other objective.

Most multi-objective HPO approaches take a deterministic perspective using the mean

value of the performance observed in subsets of data (cross-validation protocol) [115]. How-

ever, depending on the chosen sets, the outcome may differ: a single HP configuration may

thus yield different results for each performance objective, implying that the objectives are

noisy. Apart from the work of [83] and [66], little has been done on noisy multi-objective

HPO. The former uses the re-interpolation (RI) method by Forrester et. al. [52] to not use

any replicates of the performance measures. Here, m GPR models for noisy observations are

created for all m objective functions using the current observed points and nugget estimation

(the noise). Then, the current design is re-interpolated to induce m ordinary GPR models

trained with the responses predicted before. As usual, the new ordinary GPR models are

finally used to optimize the EI infill criterion.

On the other hand, Horn et. al. [66] analyze several strategies to account for noisy

objectives where each point may be re-evaluated a different number of times. To achieve

this, the authors focus on two strategies: re-evaluate only promising settings (according

to the dominance relation and the number of prior re-evaluations), while inferior settings

are evaluated only once; and a combination of sometimes performing no replications at all

(mostly at the beginning of the optimization) and k re-evaluations of Pareto optimal points

(at the end of the optimization). In contrast to these studies, the algorithm presented in this

chapter always performs k replications of the performance measures and uses the stochastic

GPR proposed by [6] to handle the noise.

We conjecture that an HPO approach for noisy performance will outperform alternative

approaches that assume the relationships to be deterministic. Specifically, we propose to

combine MOTPE and GPR metamodeling to handle the existing uncertainty in the per-

formance evaluation of a hyperparameter configuration. In addition, the MOTPE sampling

strategy ensures that the suggested candidate set has hyperparameter configurations that are

unlikely to be dominated. Then, selecting the next configuration to be evaluated from this

set, reinforces the assumption that the new hyperparameter configuration maximizes the per-

formance measure (throughout the acquisition function optimization) and is not dominated

by any other configuration (thus, increasing the hypervolume measured with the Pareto

front).

3.2 Using TPE sampling strategy with GPR metamodeling

We propose to combine the sampling strategy of MOTPE with GPR-based optimization.

The algorithm (Algorithm 3.1) starts with an initial set of hyperparameter configurations

obtained with random sampling. Then, the performance of the ML algorithm is evaluated

using a fixed number of replications. In this case, this value is given by the number of

folds of a cross-validation protocol (see Chapter 2), allowing to account for the performance

variability of the initial and subsequent configurations. We then perform two tasks in parallel.

On the one hand, we use the augmented Chebychev scalarization function [82] (with a random

combination of weights) to transform the multiple objectives into a single objective problem

(lines 2-5). Then, we train a (single) stochastic GPR metamodel on these scalarized objective

values (line 6).

* 29 *

3. MULTI-OBJECTIVE HYPERPARAMETER OPTIMIZATION WITH
PERFORMANCE VARIABILITY

At the same time, we perform the splitting process used by [120] (Algorithm 2.3) to divide

the hyperparameter configurations based on the observed mean performance, and conform

the sets of observations with a “good” and “bad” performance. To that end, our approach

uses the same greedy selection followed by MOTPE, and controlled by the parameter γ 2.

Thus, this splitting strategy considers HP configurations with better non-domination rank

to fall into the “good” set. Subsequently, the algorithm estimates the densities l(x) and g(x)

for each separate input dimension (Lines 12-13).

Algorithm 3.1 GPR metamodeling and TPE sampling for noisy multi-objective HPO.
Stochastic GPR is the surrogate model and MEI is the acquisition function. The same
number of simulation replications is assumed for each configuration

Require: {(Xn×d,Yn×1×r)}: initial design, N : number of iterations, n: number of con-
figurations in the initial design, r: number of simulation replications, c: number of
candidates per iteration, γ: splitting parameter

1: for i← 1, . . . , N do
2: λ1×m = [λ1, . . . , λm] ,

∑m
i+1 λi = 1 ▷ Random weight vector

3: [Zλ]n×1×r =
[
Z

(i)
λ

]
, i = {1, . . . , n} ▷ Augmented Chebychev scalarization

4: Yn×1 ←
[∑r

k=1 Zλ
(j)
k

r

]
n×1

, j = {1, , . . . , n+ i− 1}

5: Vn×1 ←

[
1

r−1

∑r
k=1

[
Zλ

(j)
k −y(j)

]2
r

]
n×1

, j ∈ {1, . . . , n+ i− 1}

6: GP ← GP FIT(X, Y, V) ▷ Surrogate training
7: xmin ← argminy∈Y y

8: Ẑmin ← GP PREDICT(xmin)
9: Tc×d ← {}

10: for j ← 1, . . . , d do
11: Sl, Sg ← SPLIT OBSERVATIONS({(Xj ,Y)}, γ)
12: lj(x)← KDE(Sl) ▷ KDE of good configurations
13: gj(x)← KDE(Sg) ▷ KDE of bad configurations

14: C1×c ← {x(k) ∼ lj(x) | k = 1, . . . , c} ▷ Sample candidates in dimension j

15: Tj ← SORT

({
log

lj(C
(k))

gj(C
(k))
| k = 1, . . . , c

})
16: end for

17: Q←
[
T (k) |

∑d
j=1 T

(k)
j > 0

]
β×d

, k = {1, . . . , c} , β ≤ c ▷ Removing AS ≤ 0

18: x∗ ← argmaxq∈Q MEI(GP, Ẑmin, q) ▷ Acquisition function maximization
19: Y∗

1×r ← SIMULATE(x∗, r) ▷ Expensive evaluation of x∗

20: X← X ∪ x∗

21: Y ← Y ∪Y∗

22: end for
return the set of non-dominated solutions

Using the densities l(x), we randomly sample a candidate set of c elements for each input

dimension (Line 14). These individual samples are sorted according to their log-likelihood

ratio log l(x)
g(x)

, such that the higher this score, the larger the probability that the input value is

sampled under l(x) (and/or the lower the probability under g(x)). Both MOTPE and TPE

2Notice that both in [120] and in our algorithm, the parameter γ represents a percentage of the known
observations that may be considered as “good”.

* 30 *

3.2. Using TPE sampling strategy with GPR metamodeling

select the single value with the highest score [16, 120] for each dimension. We propose to

select the best hyperparameter configuration using the aggregation of the scores obtained for

each dimension; this way the decision is made considering every dimension at the same time

and not individually. The aggregated score is computed as AS(t) =
∑d

i=1 log
l(ti)
g(ti)

, t ∈ T

for each configuration. Then, the algorithm suggests the configuration that maximizes the

Modified Expected Improvement (MEI) [126] in the set Q of the configurations with a positive

aggregated score. Note that a negative score here indicates that the sample/configuration is

not under the density l(x) for some input dimensions.

Figure 3.2 shows an example of this selection process for 1000 configurations of five

dimensions. While MOTPE and TPE select the rightmost configuration in Figure 3.2a,

we use the aggregation of the scores to sort the configurations and another infill criterion

to suggest the candidate evaluate next (Figure 3.2b). The Modified Expected Improvement

(MEI) [126] is used instead of the infill criterion used in TPE and MOTPE, for having shown

promising results in the optimization of problems affected by heterogeneous noise [74, 133].

The MEI maximization on the set Q is formulated as follows:

argmax
q∈Q

[
Ẑmin − Ẑq

]
Φ

(
Ẑmin − Ẑq

ŝq

)
+ ŝqϕ

(
Ẑmin − Ẑq

ŝq

)
, Q = {t |AS(t) > 0, t ∈ T}

(3.1)

where Ẑmin is the stochastic GPR prediction at xmin (i.e. the hyperparameter configuration

with the lowest sample mean among the already observed configurations), ϕ(·) and Φ(·) are
the standard normal density and standard normal distribution function respectively, the Ẑq

is the stochastic GPR prediction at configuration q,q ∈ Q, and ŝq is the ordinary GPR

standard deviation for that configuration [158].

0 500 1000
Samples

3

2

1

0

1

Lo
g-

lik
eh

oo
d

ra
tio

Dimension 1
Dimension 2
Dimension 3
Dimension 4
Dimension 5

(a)

0 500 1000
Samples

15

10

5

0

5

Ag
gr

eg
at

ed
 sc

or
e

Select the point with
the largest MEI

(b)

Figure 3.2: Infill point selection with aggregated scores (a) The log-likelihood ratio of l(x) and g(x)
obtained for each dimension i of a set of 1000 samples obtained from density l(x). (b) Aggregated
score to consider all the dimensions at the moment of infill criterion maximization. Then, the MEI
helps to decide which of those points with a positive aggregated score to evaluate next.

The search using MEI focuses on new points located in promising regions (i.e., with

low predicted responses; recall that we assume that the scalarized objective needs to be

* 31 *

3. MULTI-OBJECTIVE HYPERPARAMETER OPTIMIZATION WITH
PERFORMANCE VARIABILITY

minimized), or in regions with high metamodel uncertainty (i.e., where little is known yet

about the objective function). Consequently, the sampling behavior automatically trades off

exploration and exploitation of the configuration search space.

Once a new hyperparameter configuration has been selected as an infill point, the ML al-

gorithm is trained using this configuration hyperparameters, yielding (again) noisy estimates

of the performance measures (Line 19). Following our infill strategy, we choose the configu-

ration for which we expect the larger improvement in the scalarized objective function (the

one that maximizes the MEI), among the configurations that are likely to be non-dominated

(given the candidate sampling inherited from MOTPE). The new hyperparameter config-

uration is going to be considered in the next iteration to update both GPR and MOTPE

models, and a new combination of weights is employed to scalarize the objectives to explore

different areas in the Pareto front. The optimization continues until a stopping criterion

is met, such as the number of iterations, or until the budget for the number of function

evaluations is exhausted.

3.3 Numerical simulations

We evaluate the performance of the proposed algorithm for solving multi-objective op-

timization problems (GP MOTPE), comparing the results with those that would be ob-

tained by ParEGO [82] (with MEI as acquisition function instead of EI) and MOTPE in-

dividually. First, we analyze the performance on three well-known bi-objective problems

(ZDT1, WFG4, and DTLZ7 with input dimension d = 5; see [68]), to which we add ar-

tificial heterogeneous noise (as in [59]). More specifically, we obtain noisy observations

ỹ
(r,i)
j = y

(i)
j + ε(i), j = {1, . . . ,m}, with ε(i) ∼ N (0, τ

(i)
j). The standard deviation of

the noise (τj) varies for each objective between 0.01 × Ωj and 0.5 × Ωj , where Ωj is the

range of objective j. In between these limits, τj decreases linearly with the objective value:

τj = aj(yj + bj), ∀j ∈ {1, . . . ,m}, where a and b are the linear coefficients obtained from the

noise range [75].

Table 3.1: Details of the ML datasets

Dataset ID Inst. (Feat.)

Balance-scale 997 625 (4)

Optdigits 980 5620 (64)

Stock 841 950 (9)

Pollen 871 6848 (5)

Sylvine 41146 5124 (20)

Wind 847 6574 (14)

Dataset ID Inst. (Feat.)

Delta ailerons 803 7129 (5)

Heart-statlog 53 270 (13)

Chscase vine2 814 468 (2)

Ilpd 41945 583 (10)

Bodyfat 778 252 (14)

Strikes 770 625 (6)

In a second experiment, we test our proposal on 12 OpenML datasets, shown in Table 3.1.

We optimize five hyperparameters for a simple (one hidden layer) Multi-Layer Perceptron

(MLP), two for a support vector machine (SVM), and five for a Decision Tree (DT) (Table

3.2). In each experiment, the goal is to find the HPO configurations that minimize classifi-

cation error while simultaneously maximizing recall. We opt to consider these two metrics

because they show an evident trade-off. Indeed, if True Positive instances are classified as

False Negative this will increase the error while reducing the recall. On the other hand,

* 32 *

3.3. Numerical simulations

if the False Negatives are reduced the classification error will be reduced while the recall

is increased. Hence, the conflicting objectives. Other pairs of conflicting objectives could

have been chosen, such as precision versus recall (the two components of the well-known

F1-score, which is a popular quality measure for classification problems with unbalanced

datasets) [40, 149] or classification error versus training time [130, 66] (for expensive-to-train

problems). In all experiments, we used 20% of the initial dataset as the test set and the

rest for HPO. We evaluate each hyperparameter configuration by applying stratified k-fold

cross-validation (k = 10).

Table 3.2: Configuration space of the ML algorithms

HP Description Type Range

Multilayer Perceptron (MLP)

max iter Iterations to optimize weights Int. [1, 1000]

neurons Number of neurons in the hidden layer Int. [5, 1000]

lr init Initial learning rate (10lr init) Int. [1, 6]

b1 First exponential decay rate Real [10−7, 1]

b2 Second exponential decay rate Real [10−7, 1]

Support Vector Machine (SVM)

C Regularization parameter Real [0.1, 2]

kernel Kernel type to be used in the algorithm Cat. [linear, poly, rbf,

sigmoid]

Decision Tree (DT)

max depth Maximum depth of the tree. If 0, then None is used Int. [0, 20]

mss Minimum number of samples required to split an in-

ternal node

Real [0, 0.99]

msl Minimum number of samples required to be at a leaf

node

Int. [1, 10]

max f Features in the best split Cat. [auto, sqrt, log2]

criterion Measure the quality of a split Cat. [gini, entropy]

We used a fixed, small number of iterations (100) as a stopping criterion in all algorithms.

This keeps optimization time low and resembles real-world optimization settings where lim-

ited resources (e.g., time, memory) may exist. The optimization of the acquisition function

in Bayesian optimization tends to be non-trivial, as the function is often non-linear, non-

convex, and multimodal [153]. In this work, we use the Particle Swarm Optimization (PSO)

metaheuristic to find the infill point that maximizes MEI (i.e., the fitness function of this

inner optimization) in ParEGO. Our choice is motivated by the good performance and low

computational time observed in other studies with high-dimensional search space [156]. On

the other hand, the infill point that maximizes the acquisition function for the other two

algorithms (MEI for GP MOTPE and EHV Iγ for MOTPE) is selected from a candidate

set obtained from density l(x). This is motivated by the MOTPE’s assumption (and sub-

sequently for GP MOTPE) that the current best solution can be improved by sampling a

point that follows the distribution in the input space of the best-observed points. There-

fore, no metaheuristic or similar algorithm is required for this inner optimization. Table 3.3

summarizes the rest of the parameters used in the experiments.

* 33 *

3. MULTI-OBJECTIVE HYPERPARAMETER OPTIMIZATION WITH
PERFORMANCE VARIABILITY

Table 3.3: Summary of the parameters for the experiments

Setting Problem ParEGO MOTPE GP MOTPE

Initial design Test functions Latin Hypercube sampling: 11d − 1

HPO Random sampling: 11d − 1

Replications Test functions 50

HPO 10 (cross-validation folds)

Acquisition function MEI EHVIγ MEI

Acquisition function optimization PSO* Maximization on a candidate set

Number of candidates to sample - c = 1000

Splitting parameter - γ = 0.3

Kernel Gaussian - Gaussian

* PSO algorithm (Pyswarm library): swarm size = 300, max iterations = 1800, cognitive parameter=0.5,

social parameter=0.3, and inertia=0.9

3.4 Results

Figure 3.3a, 3.3c, and 3.3e show the Pareto front found by each algorithm at the end of one

of the macro-replications. Although the algorithms obtain a very good approximation of

the true Pareto front, it seems that GP MOTPE is the most successful in finding a set of

well-distributed solutions on the Pareto front.

Figure 3.3b, 3.3f, and 3.3d show the evolution of the hypervolume indicator during the

optimization of the test functions. The combined algorithm GP MOTPE yields a large

improvement over both ParEGO and MOTPE algorithms for the ZDT1 and DTLZ7 func-

tions, reaching a superior hypervolume already after a small number of iterations. It was

also observed that for ZDT1 and DTLZ7, the standard deviation (around the mean of 13

macro-replications) on the final hypervolume obtained by ParEGO (ZDT1: 0.0203, DTLZ7:

0.1294) and GP MOTPE (ZDT1: 0.0082, DTLZ7: 0.0715) is small, which indicates that

a Pareto front of similar quality is obtained regardless of the initial design. MOTPE, by

contrast, shows higher variability in the hypervolume results at the end of the optimization

of those functions (ZDT1: 0.1141, DTLZ7: 0.6154). For the concave Pareto front of WFG4,

MOTPE provides the best results, while GP MOTPE still outperforms ParEGO.

ParEGO uses a scalarization function to transform the MOO problem and in each iteration

of the algorithm, different weights are selected for the scalarization. Although all points of

the true Pareto front can (in principle) be found by changing the weights of the Augmented

Chebychev scalarization function [42], it seems that the reduced budget of evaluations yielded

the poor results of ParEGO in WFG4. Furthermore, the small gain in hypervolume may

also be the result of the internal optimization algorithm getting stuck on local optima. To

sum up, just considering the sampling mechanism of MOTPE to suggest the next point to

evaluate may alleviate the aforementioned issues.

The second experimentation, conducted for HPO in the 12 OpenML datasets, did

not highlight significant differences between the hypervolume obtained with GP MOTPE,

ParEGO, and MOTPE (Wilcoxon signed-rank test with Bonferroni correction; GP MOTPE

versus ParEGO: p value = 0.479 > 0.05, GP MOTPE versus MOTPE: p value = 0.987 >

0.05, and ParEGO versus MOTPE: p value = 0.295 > 0.05). However, GP MOTPE had

the lowest average rank in the validation set, indicating that on average, the Pareto front

obtained with our algorithm tends to be better than those found by ParEGO and MOTPE

individually, yielding a larger hypervolume. Table 3.4 shows the average rank of the opti-

mization algorithms according to the hypervolume indicator.

* 34 *

3.4. Results

0.0 0.2 0.4 0.6 0.8 1.0
f1

0.0

0.2

0.4

0.6

0.8

1.0
f2

True PF
ParEGO
MOTPE
GP_MOTPE

(a) ZDT1

50 75 100 125 150
Total of experiments

7.5

8.0

8.5

9.0

9.5

Hy
pe

rv
ol

um
e

in
di

ca
to

r

ParEGO
MOTPE

GP_MOTPE

(b) ZDT1 ref = [1, 10]

0 1 2 3
f1

0

1

2

3

4

5

f2

True PF
ParEGO
MOTPE
GP_MOTPE

(c) WFG4

50 75 100 125 150
Total of experiments

6.5

7.0

7.5

Hy
pe

rv
ol

um
e

in
di

ca
to

r
ParEGO
MOTPE

GP_MOTPE

(d) WFG4 ref = [3, 5]

0.0 0.2 0.4 0.6 0.8 1.0
f1

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

f2

True PF
ParEGO
MOTPE
GP_MOTPE

(e) DTLZ7

50 75 100 125 150
Total of experiments

16

18

Hy
pe

rv
ol

um
e

in
di

ca
to

r

ParEGO
MOTPE

GP_MOTPE

(f) DTLZ7 ref = [1, 23]

Figure 3.3: Optimization results of test analytical functions. (Left column) Observed Pareto
front (PF) obtained at the end of a single macro-replication. The function value uncertainty of
each solution is shown by a shaded ellipse and reflects the mean ± 1std/

√
50 of the simulation

replications. (Right column) Hypervolume evolution during the optimization of the analytical test
functions. Shaded area represents mean± 1std/

√
13 of 13 macro-replications. Sub-captions contain

the reference point used to compute the hypervolume indicator.

* 35 *

3. MULTI-OBJECTIVE HYPERPARAMETER OPTIMIZATION WITH
PERFORMANCE VARIABILITY

Table 3.4: Average rank (given by the mean hypervolume of 13 macro-replications) of each algo-
rithm. The lower the better.

Validation set

ParEGO 2.125
MOTPE 1.9861
GP MOTPE 1.8889

Once the Pareto-optimal set of HP configurations has been obtained on the validation

set, the ML algorithm (trained with those configurations) is evaluated on the test set. The

difference between the hypervolume values obtained from the validation and test set can be

used as a measure of reliability: in general, one would prefer HP configurations that generate

a similar hypervolume in the test set. Figure 3.4 shows that the difference between both

hypervolume values is lower when GP MOTPE is used, for all ML algorithms and datasets.

In general, MOTPE and GP MOTPE tended to obtain solutions with lower hypervolume

differences (higher rank) than the results obtained with ParEGO. The Wilcoxon signed-rank

test with Bonferroni correction (as recommended by [13] when comparing ranks of multiple

algorithms) detected significant differences between the results obtained with ParEGO and

GP MOTPE (p value = 0.023 < 0.05), yet no significant difference between GP MOTPE

and MOTPE (p value = 0.94 > 0.05) and between MOTPE and ParEGO (p value =

0.065 > 0.05). The results evidence once more the superiority of our proposed approach

over ParEGO; there is no clear statistical evidence, though, that it is performing better than

MOTPE. Appendix A.1 details the hypervolume differences and the individual ranks per

each dataset and ML algorithm.

Figure 3.4: Comparison of the optimization algorithms according to the difference between the
hypervolume computed using the HP evaluation in the validation set and then evaluated with the
test set. The order relationship was determined by analyzing the difference between the hypervolume
computed using the validation set and the hypervolume computed using the test set. The lower the
rank the better.

It is somehow surprising that the combined GP MOTPE algorithm does not always obtain

an improvement over the individual MOTPE and ParEGO algorithms. By combining both

approaches, we ensure that we select configurations that (1) have a high probability to be

non-dominated (according to the candidate selection strategy), and (2) have the highest

MEI value for the scalarized objective. In the ParEGO algorithm, (1) is neglected, which

increases the probability of sampling a non-Pareto optimal point, especially at the start of

the algorithm. In the original MOTPE algorithm, (2) is neglected, which may cause the

algorithm to focus too much on exploitation, which increases the probability of ending up in

* 36 *

3.5. Concluding note

a local optimum.

3.5 Concluding note

A new algorithm (GP MOTPE) was proposed for multi-objective HPO of ML algorithms.

This algorithm combines the predictor information (both predictor and predictor uncer-

tainty) obtained from a GPR model with heterogenous noise, and the sampling strategy

performed by Multi-objective Tree Parzen Estimators (MOTPE). In this way, the algorithm

should select new points that are likely to be non-dominated and expected to cause the

maximum improvement in the scalarized objective function.

The performed experiments report that our approach performed relatively well for the

analytical test functions of the study. It appears to outperform the pure GP algorithm in

all analytical instances. Yet, it does not always outperform the original MOTPE algorithm.

In the HPO experiments, GP MOTPE shows the best average rank w.r.t. the hypervolume

computed on the validation set. In addition, it showed good reliability properties (small

changes in hypervolume when the ML algorithm is evaluated on the test set). Since our

approach outperforms the pure GP-based optimization algorithm (which used PSO to max-

imize the infill criterion), it is useful in its own right, as the optimization of infill criteria is

known to be challenging. As shown, a candidate set can be generated using MOTPE, and

the point to be evaluated next suggested from this set (from these first results) appears to

yield superior results when combined with GP-based metamodeling and another acquisition

function.

Note that GP MOTPE uses the current information w.r.t. the observed hyperparameter

configurations to propose a candidate set of next points to evaluate, by sampling candidate

solutions per dimension (using univariate kernel density estimation) and randomly combining

the resulting input coordinates into input vectors. The choice for the next combination to

evaluate is then made by exhaustively evaluating the acquisition function on this finite set,

and selecting the best. This sampling approach is the same as in the original MOTPE

algorithm. Algorithms such as ParEGO, on the other hand, usually apply a metaheuristic

to optimize the acquisition function over the search space. Metaheuristics have their own

complexity, though, which influences the overall execution time of the optimization. They

also require the choice of additional parameters, that should ideally be tuned, and even re-

tuned during the BO iterations. In our experiments, we did not tune the PSO implemented

in ParEGO, and the results indicate that the resulting quality of the solutions is not superior

to the ones found by the finite sampling approach in GP MOTPE. We also expect that the

use of multivariate kernel density estimation may still further improve the effectiveness of

the results obtained by GP MOTPE.

* 37 *

CHAPTER 4

GOOD AND BAD
Tree Parzen Estimators with performance variability

T
ree-structured Parzen estimators (TPE) have demonstrated their ability to find

hyperparameter configurations with efficient evaluation budgets. However, as it is

common in HPO procedures, TPE ignores that the algorithm’s expected perfor-

mance, for any given HPO configuration, varies according to a number of factors: different

datasets to train, the stochastic nature of the learning algorithm, etc. Thus, this perfor-

mance is noisy. The previous chapter demonstrated that accounting for the performance

variability can suggest better HP configurations in a multi-objective optimization setting.

However, accounting for this variability was done by modeling the objective with a GPR for

noisy observations, which naturally handles the heteroscedastic noise. However, is it possible

to handle noisy objectives directly in TPE and leave out the computational load introduced

by GPR? Building on the TPE algorithm proposed by [16] for single-objective HPO, Section

4.1 proposes a strategy to account for this performance variability. Section 4.2 describes the

experimental study used to evaluate our approach and Section 4.3 discusses the key findings

of such experimentation.

4.1 Adjusted TPE for stochastic objectives

Traditional HPO algorithms start from observations1 Γ = {Xn×d,Yn×r} ={
(x(1), y(1)), . . . , (x(n), y(n))

}
where x(i) is a hyperparameter configuration of dimension d

and y(i) is the mean expected performance of the algorithm (having evaluated r times the

performance), observed after the ML algorithm has been trained/validated using hyperpa-

rameter configuration i.

As mentioned in Chapter 2, TPE neglects the fact that the y(i) values are noisy. Indeed,

they typically result from a k-fold cross-validation protocol, yielding a random sample of k

performance values per HP configuration considered. The overall performance of the ML

algorithm, trained with the given HP configuration, is then commonly reported as the mean

performance across the different splits. Figure 4.1 shows an example of HP selection using

a cross-validation protocol with k = 5.

Notice that the resulting sample mean y(i) is also a random variable of unknown

distribution. Then, the set Γ can be reformulated as Γ = {(x(1), PDF (y(1))), . . . ,

(x(n), PDF (y(n)))}, where the performance observed for each configuration x(i) follows a

1This chapter is dedicated to single-objective HPO. So, the columns of matrix Y refers to the replica-
tions of only one objective.

* 39 *

4. TREE PARZEN ESTIMATORS WITH PERFORMANCE VARIABILITY

Figure 4.1: Illustration of a 5-fold cross-validation protocol for selecting the best HP configuration
(with the lower error) from a candidate set (obtained, for instance, with Grid search). For cross-
validation purposes, the training set is split into k folds (here: k = 5 folds or split). The chosen ML
algorithm is trained and validated on each split for a given HP configuration, yielding k estimates
of algorithm performance. Traditionally, the average performance across splits is then used as an
estimator for the overall algorithm performance, given this HP configuration.

continuous distribution given by the probability density function (PDF) of the observed per-

formance. The value y∗ continues to be calculated as the quantile γ of the observed y

performances. Figure 4.2 shows the uncertain evaluation of a toy function (simulating an

unknown performance function in HPO). Here, the performance should not be reduced to a

single value (i.e., the mean value) since a point can be considered as good and bad at the

same time. For instance, we observed that point C in Figure 2.3 was considered as good

point but after analyzing its PDF (Figure 4.2), point C is also a bad point to some extent.

The same can be observed for point A.

Taking into account this variability on the performance implies that a given configuration

x(i) can no longer be classified with certainty as part of Xl versus Xg (line 2 of Algorithm

2.1). Instead, each configuration has a probability of yielding a “good” versus a “bad”

performance outcome. More formally, the cumulative distribution function (CDF) of the

performance distribution yields the probability of being “good” for an HP configuration i as

CDF (x(i)) = Pr[y(i) < y∗]. Likewise, the survival function yields the probability of being

“bad” for an HP configuration i as Sr(x(i)) = Pr[y(i) > y∗] or 1− Pr[y(i) < y∗]. Figure 4.3

shows the performance distribution of four points (A, B, C y D in Figure 4.2). The original

splitting procedure of TPE will only select points B and C to belong to Xl, according to

their mean performance (less than y∗). However, point A is also likely of being “good”,

suggesting that they should be considered in some way during l(x) estimation. Similarly,

point C was not considered in Xg, but we can see that the performance distribution suggests

that this point may result in a bad performance. Indeed, the CDF of these points (Figure

4.3b) establishes that points A and C are slightly good and bad respectively.

To handle noisy objectives with TPE, we consider that all observed data points are

* 40 *

4.1. Adjusted TPE for stochastic objectives

3 4 5 6 7
x

2

1

0

1
y

Probability of being "good"

A

B
C

D

f(x) Bad points Good points y *

Figure 4.2: Noisy function evaluation for f(x) = sin(x)+sin(10
3
x) (black line) in the range [2.7, 7.5].

The objective value of any configuration x(i) is described by a probability density function. The colors
of each point correspond to the division observed in Figure 2.3 for good and bad points. However, each
point could be considered bad and good to some extent when their response is noisy. The probability
of being good is given in this case by the cumulative density function CDF (x(i)) = Pr[y(i) < y∗].

3 2 1 0 1
y

0.0

0.5

1.0

1.5

2.0

PD
F

point A
point B
point C
point D
y *

(a)

3 2 1 0 1
y

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

point A
point B
point C
point D
y *

(b)

Figure 4.3: Example of probability and cumulative density function for the noisy performance of
four points (Highlighted in Figure 4.2). Here, the higher the CDF value the higher the probability
that the performance observed for a point will be good.

relevant for estimating l(x) and g(x), and their probabilities of being “good” and “bad”

indicate their influence on estimating such density functions. Hence, the kernel density

estimators are weighted with the respective probabilities. Equations 4.1 and 4.2 formalize

the resulting weighted kernel density estimation.

l(x) =
1

nh

n∑
i=1

wl
ik

(
x− x(i)

h

)
,

n∑
i=1

wl
i = 1, (4.1)

g(x) =
1

nh

n∑
i=1

wg
i k

(
x− x(i)

h

)
,

n∑
i=1

wg
i = 1, (4.2)

* 41 *

4. TREE PARZEN ESTIMATORS WITH PERFORMANCE VARIABILITY

where the weights wl
i =

CDFi(y
∗)∑n

j=1 CDFj(y∗) and wl
i =

Sri(y
∗)∑n

j=1 Srj(y∗) correspond to the normalization

of the aforementioned probabilities of n configurations, and h is the bandwidth of the kernel

k(·). The value of h was set to the greater of the distances to the left and right neighbor, but

clipped to remain in a reasonable range [16]. Figure 4.4 shows the weighted KDE obtained for

the TPE example shown in Figure 2.3. Here, the weights obtained with Equation (4.1) and

Equation (4.2) determine the influence of each point on l(x) and g(x) estimation respectively.

Therefore, the subset selection performed by Algorithm 2.1 (Line 4) is no longer needed in

our proposal since all the points are considered now. Algorithm 4.1 details the adjusted TPE

algorithm to accommodate the performance variability of HP configurations.

0.0

0.1

0.2

0.3

PD
F

Density l(x)
Density g(x)

Good points
Sample

Bad points

3 4 5 6 7
Configurations

l(x)
g(x)

(a)

0.0

0.1

0.2

0.3

PD
F

Density l(x)
Good points

Sample
Density g(x)

Bad points

3 4 5 6 7
Configurations

l(x)
g(x)

(b)

Figure 4.4: (Weighted) Kernel Density Estimation (KDE) in TPE. (a) The original TPE uses a
subset of the observed points to perform KDE in the input space (see Figure 2.3). (b) Weighted
KDE uses the probability of being “good” and “bad” as weights to estimate the influence of each
point on l(x) and g(x) estimation.

4.2 Experimental settings

We focus on the optimization of five hyperparameters (Table 4.2) of a recurrent neural

network with one hidden layer. Table 4.1 shows the details of the OpenML datasets used to

test the proposed algorithm.

Table 4.1: OpenML datasets used in the experimentation

Dataset OpenML ID Features Instances

Balance-scale 997 4 625
Optdigits 980 64 5620
Stock 841 9 950
Heart-statlog 53 13 270
Ilpd 41945 10 583

Table 4.3 summarizes the parameters used in the experiments. We are unaware of any

guidelines regarding the size of the initial design for HPO. Following Jones et al. [78], we

* 42 *

4.2. Experimental settings

Algorithm 4.1 Tree Parzen Estimators for noisy single-objective optimization

Require: D = {(Xn×d,Yn×1×r)}: initial design, N : number of iterations, n: number of
configurations in the initial design, γ: quantile parameter, c: number of candidates per
iteration, r: number of simulation replications

1: for i← 1, . . . , N do
2: T1×d ← {}
3: for j ← 1, . . . , d do

4: W l =
[

CDFt(y
∗)∑n

k=1 CDFk(y
∗)

]
n×1

, t = {1, . . . , n} ∧ p(y < y∗) = γ

5: W g =
[

Srt(y
∗)∑n

k=1 Srk(y
∗)

]
n×1

, t = {1, . . . , n} ∧ p(y < y∗) = γ

6: lj(x)← KDE(Dj ,W
l) ▷ Weighted KDE with probability of being “good”

7: gj(x)← KDE(Dj ,W
g) ▷ Weighted KDE with probability of being “bad”

8: C1×c ←
{
x(k) ∼ lj(x) | k = 1, . . . , c

}
▷ Sample candidates in dimension j

9: x∗ ← argmaxx∈C EIy∗(lj(x), gj(x), x) ▷ Acquisition function maximization
10: T← T ∪ x∗

11: end for
12: Y∗ ← SIMULATE(T) ▷ Expensive evaluation of T
13: D ← D ∪ {(T, Y∗)}
14: end forreturn the best-observed configuration contained in D

set the number of initial design points to n0 = 11d − 1, with d the dimension of the search

space, as is common in GPR-based optimization. We use a random sampling method (using

the python package ConfigSpace [99]) since Latin Hypercube sampling does not work well

with non-real values [106, 148]. We use a limited number of iterations as a stopping criterion

in our experiments. This resembles real-world optimization settings where limited resources

(e.g., time) may exist.

Table 4.2: Setup of hyperparameters in the HPO experiments

HP Description Type Domain

max iter
Maximum number of
iterations to optimize the
weights

Int. [1, 1000]

neurons
Number of neurons in the
hidden layer

Int. [5, 1000]

lr init Initial learning rate (10lr init) Real [1, 6]

b1
Exponential decay rate for
estimates of first moment
vector in adam solver (10b1)

Real [0, 7]

b2

Exponential decay rate for
estimates of second
moment vector in adam
solver (10b2)

Real [0, 7]

act
Activation function for
the hidden layer

Cat. relu

solver
The solver for weight
optimization

Cat. adam

layer Number of hidden layers Int. 1

We opt for stratified cross-validation as validation protocol, to ensure that relative class

* 43 *

4. TREE PARZEN ESTIMATORS WITH PERFORMANCE VARIABILITY

frequencies are approximately preserved in each train and validation split. In our experi-

ments, we consider 20% of the initial dataset as a test set and use the remainder for HPO

(through a cross-validation protocol as observed in Figure 4.1). The goal is to find the hy-

perparameter configuration that minimizes the mean classification error in the validation set

of each of the classification problems.

Table 4.3: Summary of the parameters for TPE and the proposed modification

Parameter Setting

Design space size 11d− 1
Replications (folds in the validation protocol) 5
Iterations 50

Candidates to sample per iteration
[25, 50, 75, 100, 200, 300, 400,
500, 1000, 1500, 2000]

TPE (γ) [0.1, 0.2, 0.3]

4.3 Results

Figure 4.5 shows an analysis of the influence of the parameter γ and the number of candidates

when TPE considers the noise of the observations. The parameters were varied in the

discrete set γ = {0.1, 0.2, 0.3} and c = {25, 50, 75, 100, 200, 300, 400, 500, 1000, 1500, 2000}.
The mean classification error reached at the end of optimization in 10 macro-replications

was used for comparison purposes. Recall that small values of γ will force the algorithm

to focus on sampling new configurations from a probability distribution obtained for the

best-observed input configurations. The results did not show a clear best setting for all the

datasets. However, it seems that γ = 0.1 was consistently amongst the settings with the

lowest classification error. As for the number of candidates, the results were heterogeneous.

It was obvious for Dataset 53 that sampling more than 300 candidates does not help with

the optimization if γ = 0.1. The opposite is observed in Dataset 980 where increasing the

number of candidates and γ parameter shows the best results.

We relied on hierarchical/agglomerative clustering to select the best settings for TPE

with noisy settings, instead of selecting them visually. The data-driven decision avoids

specifying a threshold value to select the best single setting and gives us a global analysis

of the behavior of the other parameter configurations. The clustering is made based on

the Euclidian distance between the mean classification error of the settings at the end of

10 macro-replications. We generated 3 clusters; Cluster 1 with the settings with the lowest

classification error (the best), Cluster 3 with setting with the largest classification error (the

worst), and Cluster 2 with “medium” performances (the settings were not the worst but they

were not the best either). Figure 4.6 shows a frequency analysis of the settings included in

Cluster 1 and Appendix B shows the resulting dendrograms of the clustering algorithm.

As we can see, [γ = 0.1, c = 75] was the most frequent combination with the lowest

classification error in the HPO performed for each dataset. Dataset 980 was the only case

where this combination of parameters was not in Cluster 1, which makes sense since for this

dataset the best results (of TPE with noisy observations) were observed for γ = 0.3 and

sampling more than 300 candidates (Figure 4.5e).

* 44 *

4.3. Results

25 50 75 10
0

20
0

30
0

40
0

50
0

10
00

15
00

20
00

Number of candidates

0.270

0.275

0.280

Cl
as

sif
ica

tio
n

er
ro

r = 0.1 = 0.2 = 0.3

(a) Dataset 41945

25 50 75 10
0

20
0

30
0

40
0

50
0

10
00

15
00

20
00

Number of candidates

0.225

0.250

0.275

Cl
as

sif
ica

tio
n

er
ro

r = 0.1 = 0.2 = 0.3

(b) Dataset 53

25 50 75 10
0

20
0

30
0

40
0

50
0

10
00

15
00

20
00

Number of candidates

0.25

0.30

Cl
as

sif
ica

tio
n

er
ro

r = 0.1 = 0.2 = 0.3

(c) Dataset 841

25 50 75 10
0

20
0

30
0

40
0

50
0

10
00

15
00

20
00

Number of candidates

0.0125

0.0150

Cl
as

sif
ica

tio
n

er
ro

r = 0.1 = 0.2 = 0.3

(d) Dataset 997

25 50 75 10
0

20
0

30
0

40
0

50
0

10
00

15
00

20
00

Number of candidates

0.0055

0.0060

Cl
as

sif
ica

tio
n

er
ro

r = 0.1 = 0.2 = 0.3

(e) Dataset 980

Figure 4.5: Sensitivity analysis of the parameters γ and number of candidates when TPE considers
the noise of the observations. The mean classification error reached at the end of optimization in 10
macro-replications was used for comparison purposes. Likewise, shaded area represents mean± 1std√

10
of 10 macro-replications

25 50 75 100 200 300 400 500 1000 1500 2000
Number of candidates

0.3

0.2

0.1

Frequency
1
2
3
4

Figure 4.6: Frequency analysis of the parameters γ and number of candidates with the lowest
classification error at the end of the optimization. Empty intersections represent settings that were
never the best.

Figure 4.7 shows the evolution of the mean classification error based on 10 macro-

replications and using parameters [γ = 0.1, c = 75] both for TPE with deterministic and

* 45 *

4. TREE PARZEN ESTIMATORS WITH PERFORMANCE VARIABILITY

noisy observations. Additionally, we included the results of the lowest classification error

found by a random search (as a baseline) using the same budget described in Section 4.2.

60 70 80 90 100
Total of experiments

0.272

0.274

0.276

0.278

0.280

0.282

C
la

ss
ifi

ca
tio

n
er

ro
r

TPE modification
TPE original
Random search

(a) Dataset 41945

60 70 80 90 100
Total of experiments

0.22

0.24

0.26

0.28

0.30

0.32

C
la

ss
ifi

ca
tio

n
er

ro
r

TPE modification
TPE original
Random search

(b) Dataset 53

60 70 80 90 100
Total of experiments

0.225

0.250

0.275

0.300

0.325

0.350

C
la

ss
ifi

ca
tio

n
er

ro
r

TPE modification
TPE original
Random search

(c) Dataset 841

60 70 80 90 100
Total of experiments

0.012

0.014

0.016

0.018

0.020

0.022

C
la

ss
ifi

ca
tio

n
er

ro
r

TPE modification
TPE original
Random search

(d) Dataset 997

60 70 80 90 100
Total of experiments

0.0056

0.0058

0.0060

0.0062

0.0064

0.0066

0.0068

C
la

ss
ifi

ca
tio

n
er

ro
r

TPE modification
TPE original
Random search

(e) Dataset 980

Figure 4.7: Evolution of the mean classification error based on 10 macro-replications and using
parameters [γ = 0.1, c = 75]. Shadowed area corresponds to the mean± std√

10
of 10 macro-replications.

The proposed modification to TPE is able to find hyperparameter configurations that

* 46 *

4.4. Concluding note

yield lower classification errors in the datasets analyzed. Note how our proposal behaved

similarly to the original TPE during most iterations in Dataset 980. Just before the budget

was exhausted, TPE for noisy observations was able to suggest a better configuration than

had been found until about iteration 82. Indeed, if we analyze the last 20 iterations of the

optimization in Dataset 980, we can see that at some point both algorithms cannot find any

hyperparameter configuration with an improvement in the classification error. This may be

because the algorithm reached a local minimum, and suggesting configurations in the region

where the best configurations were observed is not enough to escape it. However, because our

proposal uses the information on all the points (in terms of how good they are) to estimate

the densities in the input space, we have a small chance of going beyond that area where the

best points were observed. For example, that may be the reason for our algorithm to find a

better hyperparameter setting at iteration 90.

These results are corroborated by analyzing the confidence interval (CI) generated by the

differences between the classification error of the configurations suggested by the algorithms

at the end of the optimization (Figure 4.8). This type of CI will always agree with the

2-sample t-test. In addition to providing a simple visual assessment, the confidence inter-

val of the difference presents crucial information that a p-value does not provide, such as

which algorithm consistently suggested a better configuration. When looking at the CIs

of the pairwise differences per macro-replication between both algorithms on each dataset,

we can see that the proposed modification to TPE was consistently better than the origi-

nal TPE (without considering the performance variability of the ML algorithm evaluation).

Furthermore, the Wilcoxon signed-rank test with Bonferroni correction showed significant

differences between the results of both algorithms (p value = 0.0029 < 5%).

4.4 Concluding note

The experimentation confirmed that considering a hyperparameter evaluation’s performance

uncertainty yields better ML algorithm configuration. Contrary to the original algorithm,

we take into account the probability of a point being simultaneously “good” and “bad”,

and use these as weights for the kernel density estimators that form the density functions in

the input space. In general, we perform equally well as (or better than) the original TPE

at the end of the optimization and during the optimization (which is interesting when the

evaluation budget is even more limited).

* 47 *

4. TREE PARZEN ESTIMATORS WITH PERFORMANCE VARIABILITY

A - B 0-0.0032

-0.0031-0.0034

95% CIs Difference of means for A: TPE modification, B: TPE original

(a) Dataset 41945

A - B 0-0.0156

-0.0151-0.0162

(b) Dataset 53

A - B 0-0.0493

-0.0486-0.0501

(c) Dataset 841

A - B 0-0.0012

-0.0011-0.0013

(d) Dataset 997

A - B 0-0.0002

-0.0002-0.0002

(e) Dataset 980

Figure 4.8: Comparison of the algorithms according to the confidence interval generated by the
difference between the classification errors observed at the end of the optimization process. ci :
mean±t9,0.95

std√
9
, where tn,α is the Student T value with n degrees of freedom and α the significance

level. The proposed TPE modification is always betters than the original TPE, as the CIs are
completely negative.

* 48 *

second part

APPLICATIONS

CHAPTER 5

A GLUE TO BIND THEM ALL
Bayesian multi-objective optimization of process design parameters in constrained settings with

noise: an engineering design application

A
dhesive joints are increasingly used in industry for a wide variety of applications

because of their favorable characteristics such as high strength-to-weight ratio, de-

sign flexibility, limited stress concentrations, planar force transfer, good damage

tolerance, and fatigue resistance. Finding the optimal process parameters for an adhesive

bonding process is challenging: the optimization is inherently multi-objective (aiming to

maximize break strength while minimizing cost), constrained (the process should not result

in any visual damage to the materials, and stress tests should not result in failures that

are adhesion-related), and uncertain (measuring the same process parameters several times

lead to different break strength). Real-life physical experiments in the lab are expensive to

perform. Traditional evolutionary approaches (such as genetic algorithms) are then ill-suited

to solve the problem, due to the prohibitive amount of experiments required for evaluation.

Although Bayesian optimization-based algorithms are preferred to solve such expensive prob-

lems, few methods consider the optimization of more than one (noisy) objective and several

constraints at the same time. This chapter shows the application of specific machine learning

techniques (Gaussian Process Regression) to emulate the objective and constraint functions

based on a limited amount of experimental data.1 Section 5.1 describes the bonding process

problem under study. Section 5.2 details the proposed algorithms. Section 5.3 discusses the

design of experiments and Section 5.4 analyzes the main results of the experimentation.

5.1 Adhesive bonding process: problem setting

The bonding process we focus on joins two PolyPhenylene Sulfide (PPS) substrates using

Araldite 2011 adhesive. Figure 5.1 shows the general procedure of the adhesive bonding

process. The optimization focuses on the Plasma treatment step. The plasma treatment

chemically modifies the top surface layer of the PPS substrate so that the surface energy

increases, which impacts the adhesion strength (i.e., the strength of the connection between

the adhesive and the substrate). In this process, six parameters play a role: (1) whether the

1The content of this chapter has been included in the publications “Optimization of Plasma-Assisted
Surface Treatment for Adhesive Bonding via Artificial Intelligence”. In: Proceedings of the Inter-
national Conference on Industrial Applications of Adhesives (2022) [79], “Expensive multi-objective
optimization of adhesive bonding process in constrained settings”. In: Proceedings of the Optimization
and Learning Conference (2023) [Accepted for publication], and “Bayesian multi-objective optimization
of process design parameters in constrained settings with noise: an engineering design application”
[Submitted].

* 51 *

5. BAYESIAN MULTI-OBJECTIVE OPTIMIZATION OF PROCESS DESIGN
PARAMETERS IN CONSTRAINED SETTINGS WITH NOISE: AN ENGINEERING
DESIGN APPLICATION

surface is pre-processed or not (cleaning to remove dust and grease, which may prevent a

good connection between the adhesive and the substrate), (2) the power setting of the plasma

torch, (3) the speed at which the plasma torch moves across the samples, (4) the distance

between the plasma torch nozzle and the sample, (5) the number of passes of the plasma

torch over the sample, and (6) the time between the plasma treatment and the application

of the glue (as the plasma effect reverses over time). The adhesion strength is very sensitive

to the configuration of these parameters.

Figure 5.1: Schematic overview of the adhesive bonding process

Using lab experiments, stress tests can be performed to check the outcomes of samples

that have been treated with any particular plasma parameter configuration: the lap shear

strength of the sample (MPa), the failure mode (adhesive, cohesive, or substrate failure),

the production cost of the sample (in euros), and the potential occurrence of visual damage

(the substrates may burn when heated above their maximum allowable temperature during

plasma treatment). Such physical experiments are expensive, as they require the whole

process in Figure 5.1 to be performed, involving a human operator. Figure 5.2 shows different

failure modes and an example of visual damage.

(a) Initial substrate (b) Adhesion failure (c) Substrate failure (d) Burned sample

Figure 5.2: Illustration of failure modes that may result from the stress test applied to a sample.
The adhesive is applied on the substrates (a) and the failure mode can be either adhesion failure (b),
substrate failure (c) or cohesive failure (not shown). In addition, visual damage might be observed
after the experiment; e.g., burned sample (d)

The goal of the optimization is to set the plasma process parameters in such a way that

(1) the tensile strength (TS) is maximized, (2) the production cost (PC) is minimized, and

(3) adhesive failures and visual damage are avoided. As objectives (1) and (2) are in conflict,

this is amulti-objective optimization problem. The goal is to find a set of solutions that reveal

the essential trade-offs between these objectives (i.e., those solutions for which no objective

* 52 *

5.2. Constrained Bayesian multi-objective optimization: proposed algorithms

can be improved without negatively affecting the performance of any other objective) while

meeting the constraints (3). Equation 5.1 formally defines this optimization problem as

min [−TS(x), PC(x)]

s.t. 0.5− Pf(x) ≤ 0
(5.1)

where the notation Pf(x) refers to the probability that a process configuration x is feasible

(estimated as the fraction of replications in which the configuration resulted in a feasible

outcome). As the performance evaluation is expensive, the optimization algorithm should

be able to detect (nearly) Pareto-optimal solutions within a small number of experiments

required; collecting large amounts of experimental data is simply financially infeasible. In

the following section, we discuss how the use of Bayesian optimization to allows us to develop

such a data-efficient optimization approach.

5.2 Constrained Bayesian multi-objective optimization: proposed

algorithms

Each BO algorithm thus has two key elements: the type of metamodel used, and the type

of acquisition function. Several acquisition functions exist (see [53] and [134] for single and

multi-objective surveys respectively). Allegedly, the expected improvement (EI) remains one

of the most commonly used ones in practice [78], and GP regressors are standard metamodels

in the BO literature [152]. In this work, we propose two different algorithms for constrained

multi-objective optimization using EI: cMEI-SK, and cEHVI-SK.

cMEI-SK uses the augmented Chebychev scalarization function to transform the problem

into a single-objective optimization problem (Algorithm 5.1). As discussed previously, the

algorithm starts with an initial set of points designed by a Latin hypercube sample, and

a fixed number r of simulation replications is used to account for the uncertainty in the

objectives Y and constraint C. Z
(i)
λ corresponds to the scalarization function formalized in

Equation (2.18). An independent ML model is trained (Line 7) to predict the probability

that a parameter configuration is feasible (meaning that it will not entail visual damage or

adhesive failure). Then, the metamodels’ information is exploited to search for new process

configurations.

The second algorithm we propose trains a metamodel for each objective and constraint

(cEHVI-SK in Algorithm 5.2). So no scalarization function is required. In total, we train

three metamodels for the adhesive optimization problem: a (stochastic) GPR to approximate

the break strength objective, a (deterministic) GPR to estimate the production cost, and a

(deterministic) GPR to estimate the probability of feasibility (as in Algorithm 5.1). Notice

that in both algorithms, there is a preliminary step (Line 8 of Algorithm 5.1 and Line 7

of Algorithm 5.2) in which we select the better feasible observation(s) to evaluate with the

metamodel and use this evaluation in the maximization of the acquisition function.

We shall notice that both MEI and EHVI are acquisition functions well-known in the

BO literature. However, their application has mostly been reported in deterministic un-

constrained settings [158]. A few extensions have been proposed in the literature to handle

constraints [48], and to handle observational noise [132, 37]. Given that in our problem set-

ting the feasibility of a process configuration is evaluated with physical tests, where both the

* 53 *

5. BAYESIAN MULTI-OBJECTIVE OPTIMIZATION OF PROCESS DESIGN
PARAMETERS IN CONSTRAINED SETTINGS WITH NOISE: AN ENGINEERING
DESIGN APPLICATION

objectives and constraints not only are noisy but also of different nature (see Section 5.1),

such methods cannot be used out-of-the-box. Further details on the proposed algorithms

(and thus our main contributions) are given in sections 5.2.1, 5.2.2, and 5.2.3. As noted

in Chapter 2, we explicitly differentiate two types of GPR models: ordinary kriging (OK)

[78, 80] and stochastic kriging (SK) [6]. While any GPR model can accommodate noisy

evaluations [152], OK metamodels are limited to homogeneous noise. The seminal work of

Ankenman, Nelson, and Staum [6] extended OK metamodels to handle heterogeneous noise

(referred to as SK metamodels). Subsequently, the algorithms presented here exploit the

information extracted from both types of metamodels.

Algorithm 5.1 cMEI-SK algorithm for noisy (constrained) multi-objective optimization.
GPR is the surrogate model approximating objectives (stochastic GPR) and constraints
(deterministic GPR). The same number of simulation replications is assumed for each con-
figuration

Require: {(Xn×d,Yn×m×r,Cn×1)}: initial design, N : number of iterations, n: number of
configurations in the initial design, r: number of simulation replications

1: for i← 1, . . . , N do
2: λ1×m = [λ1, . . . , λm] ,

∑m
i+1 λi = 1 ▷ Random weight vector

3: [Zλ]n×1×r =
[
Z

(i)
λ

]
, i = {1, . . . , n} ▷ Chebychev scalarization

4: Yn×1 ←
[∑r

k=1 Zλ
(j)
k

r

]
n×1

, j = {1, . . . , n+ i− 1}

5: Vn×1 ←

[
1

r−1

∑r
k=1

[
Zλ

(j)
k −y

(j)
l

]2
r

]
n×1

, j ∈ {1, . . . , n+ i− 1}

6: sGP ← STOCHASTIC GP FIT(X, Y, V) ▷ Metamodel training of the objectives
7: dGP ← DETERMINISTIC GP FIT(X, C) ▷ Metamodel training of the constraint
8: xmin ← argminy∈Y|y is feasible y

9: ŷmin ← sGP (xmin)
10: x∗ ← argmaxx∈X cMEI-SK(sGP, dGP, ŷmin, x) ▷ Acquisition function

maximization
11: Y∗

1×r, C
∗ ← SIMULATE(x∗, r) ▷ Expensive evaluation of x∗

12: X← X ∪ x∗

13: Y ← Y ∪Y∗

14: C← C ∪ C∗

15: end for
return the set of non-dominated feasible solutions

5.2.1 Probability of feasibility

The probability of feasibility (PoF) has been well-studied in the BO literature when the

constraints are deterministic [51, 33, 158]. In our problem setting, the constraint feasibility

is checked physically (meaning that it will not entail visual damage or adhesive failure),

which results in a classification problem with two classes: YES for feasible outcomes and NO

for infeasible outcomes. Thus, for each process configuration evaluated, we have a discrete

target variable c ∈ {0, 1}, where 1 denotes YES and 0 denotes NO. We are interested in the

probability p(c = 1 | X). That is, the probability of a process configuration being truly

feasible is conditioned on the data collected so far.

* 54 *

5.2. Constrained Bayesian multi-objective optimization: proposed algorithms

To do this, we can train a classification model in Line 7 of Algorithm 5.1 (and Line

6 of Algorithm 5.2). Training a binary classifier here is actually not very helpful, since

the noise on the constraints will affect the performance for the same input configuration

(i.e., replicating the same process configuration may yield different outcomes for constraint

violation). For instance, if the same input is replicated 5 times, yielding 2 YES and 3 NO, it

is unlikely that training the classifier with e.g., the mode of the outcomes will yield accurate

predictions. Therefore, we opt for training a regression model on the proportion of successful

outcomes instead: in the example above we would use 0.4 as the expected prediction since

2 out of 5 replications were successful. Thus, for a given process configuration x(∗), we take

the proportion of successful outcomes of the binary target c as

c̄(∗) =

∑r(∗)

j=1 cj

r(∗)
(5.2)

where r is the number of replications. We then approximate the probability of feasibility

(PoF) of the unobserved locations by fitting an ordinary kriging model (Equation 2.5) on

the target c̄ (denoted ŷc(x)). That is, given the observed targets c̄ ∈ C at points X, the

predicted distribution of an unobserved target c(∗) at point x(∗) is given by

PoF(x(∗)) ≃ ŷc(x
(∗)) = p(c(∗) = 1 | x(∗),X,C) (5.3)

Algorithm 5.2 cEHVI-SK algorithm for noisy (constrained) multi-objective optimization.
GPR is the surrogate model approximating break strength (stochastic GPR), production
cost (deterministic GPR), and feasibility constraint (deterministic GPR). The same number
of simulation replications is assumed for each configuration

Require: {(Xn×d,Yn×m×r,Cn×1)}: initial design, N : number of iterations, n: number of
configurations in the initial design, r: number of simulation replications

1: for i← 1, . . . , N do

2: Yn×m ←
[∑r

k=1 Y
(k,j)
l

r

]
n×m

, j = {1, . . . , n+ i− 1}, l = {1, . . . ,m}

3: Vn×m ←

[
1

r−1

∑r
k=1

[
Y

(k,j)
l −y

(j)
l

]2
r

]
n×m

, j ∈ {1, . . . , n+ i− 1}, l = {1, . . . ,m}

4: sGP ← STOCHASTIC GP FIT(X, Y1, V1) ▷ Metamodel training for objective
break strength

5: dGP1← ORDINARY GP FIT(X, Y2) ▷ Metamodel training for objective
production cost

6: dGP2← ORDINARY GP FIT(X, C) ▷ Metamodel training of the constraint
7: XPF ←

{
x∗ | y∗ is feasible ∧ rank(y∗) = 1, y∗ ∈ Y

}
8: ŶPF ← [sGP (XPF) dGP1(XPF)]n×2

9: x∗ ← argmaxx∈X cEHVI-SK(sGP, dGP1, dGP2, ŶPF , x) ▷ Acquisition function
maximization

10: Y∗
2×r, C

∗ ← SIMULATE(x∗, r) ▷ Expensive evaluation of x∗

11: X← X ∪ x∗

12: Y ← Y ∪Y∗

13: C← C ∪ C∗

14: end for
return the set of non-dominated feasible solutions

* 55 *

5. BAYESIAN MULTI-OBJECTIVE OPTIMIZATION OF PROCESS DESIGN
PARAMETERS IN CONSTRAINED SETTINGS WITH NOISE: AN ENGINEERING
DESIGN APPLICATION

5.2.2 cMEI-SK acquisition function

When a scalarization function is used, then only one metamodel is trained on the scalarized

objective at each BO iteration. In this work, we use the augmented Chebychev scalarization

function (Equation 2.18), which is popular in general multi-objective optimization problems

due to the theoretical guarantees it provides [107, 82].

We then fit a (stochastic) GPR metamodel on Zλλλ(x), explicitly accounting for the intrinsic

noise on the scalarized objective (see Equation 2.11). The metamodel information is then

used in an acquisition function to guide the search for novel configurations (Line 10 in

Algorithm 5.1). Here we use a modification of the EI presented in Chapter 2 and used in

Chapter 3, referred to as MEI [126, 132], to compute the EI also accounting for the output

heterogeneous noise (Line 10). For any arbitrary configuration x, MEI is given by

MEI-SK(x) = [ŷs(xmin)− ŷs(x)] Φ

(
ŷs(xmin)− ŷs(x)

ŝo(x)

)
+ ŝoϕ

(
ŷs(xmin)− ŷs(x)

ŝo(x)

)
(5.4)

where ŷs(xmin) is the SK prediction for the scalarized function (Zλλλ) at xmin (i.e., the point

having the lowest sample mean for the scalarized objective among all feasible points already

sampled), and ϕ(·) and Φ(·) are the standard normal density and standard normal distri-

bution function, respectively [126, 132]. Then, the corresponding constrained MEI (denoted

cMEI-SK) is given by

cMEI-SK(x) = ŷc(x)×MEI(x) (5.5)

Note that at each BO iteration, a new weight vector λλλ is selected from a set of weights

distributed uniformly, allowing the algorithm to sample points across the entire Pareto front

[82].

5.2.3 cEHVI-SK acquisition function

When scalarization is not used, an independent (stochastic) GPR metamodel is trained for

each of the m objectives. The Expected Hypervolume Improvement (EHVI) is a popular

acquisition function in unconstrained and deterministic settings [100, 158]. As noticed in

Chapter 2, the hypervolume is the size of the space dominated by a Pareto front P given

a reference point [160]. Therefore, the hypervolume improvement of an objective vector

y ∈ Rm is defined as the increment of the hypervolume indicator after y is added to the

current approximation of the Pareto front (see Equation 2.22).

For noisy problems, we adjusted the EHVI presented in Equation (5.6) to use the stochas-

tic GPR prediction instead:

EHVI-SK(x) =

∫
y(x)∈A

I(y(x),P)

m∏
i=1

1

ŝsi(x)
ϕ

(
yi(x)− ŷsi(x)

ŝsi(x)

)
dyi(x) (5.6)

where A stands for the non-dominated area and ϕ(·) is the standard normal density dis-

tribution function. The terms ŷsi(x) and ŝsi(x) represent the objective and uncertainty

estimators of the stochastic GP model respectively. Finally, for a novel input configuration

x, the corresponding constrained EHVI (denoted cEHVI-SK) is given by (Line 9 of Algorithm

5.2)

* 56 *

5.3. Design of experiments

cEHVI-SK(x) = ŷc(x)× EHVI-SK(x) (5.7)

5.3 Design of experiments

To test the proposed optimization approach, we benchmark its performance against five

state-of-the-art constrained EMOAs: C-NSGA-II [22], C-MOEA/D [73], C-TAEA [92], C-

MOPSO [54], an adaptation of C-NSGA-II to use the OK metamodel prediction to generate

new populations (OK-C-NSGA-II) [124], and a modification to the surrogate-assisted evolu-

tionary algorithm K-RVEA (referred as C-K-RVEA in this paper)[31]. The latter uses GP

surrogates to approximate the objective functions, and it was modified to handle infeasible

configurations with a penalization factor given by PoF (see Equation 5.1). To evaluate the

impact of stochastic GPR models, we also implemented our proposed approaches using ordi-

nary GPR models; these are denoted with an ‘OK’ in the algorithm name. Furthermore, the

optimization of the acquisition function in Bayesian optimization tends to be non-trivial, as

the function is often non-linear, non-convex, and multimodal [153]. Here we use a Particle

Swarm Optimization (PSO) algorithm to find the infill point that maximizes the proposed

acquisition functions (i.e., the fitness function of this inner optimization). Our choice is

motivated by the good performance and low computational time observed in other studies

with high-dimensional search space [156]. With PSO, the position of the particle represents

the values of each variable to optimize.

Since the physical experiments are very expensive, a Matlab process simulator was pro-

vided by the Joining & Materials Lab2. This simulator predicts the lap shear strength of

the sample (MPa), failure mode (adhesive, substrate, or cohesive failure), sample production

cost (in euros), and visual quality outcome (OK or not OK) based on the process parameters

discussed above, in a matter of seconds. However, this simulator is not meant to be a digital

twin of the true process, but rather a tool for the relative comparison of the performance of

the five algorithms, under different conditions, at almost zero cost. Table 5.1 shows the range

of each process parameter considered in the optimization problem, and Table 5.2 summarizes

the parameters of the optimization algorithms.

Table 5.1: Range of the process settings (input variables) considered in the optimization.

ID Variable Min Max

v1 Pre-processing Yes or No
v2 Power setting (W) 300 500
v3 Torch speed (mm/s) 5 250
v4 Distance between the torch and the sample

(cm)
0.2 2

v5 Number of passes 1 50
v6 Time between plasma treatment and glue

application (min)
1 120

The simulator allows the analyst to experiment with different levels of noise. In real

life, multiple factors cause noise to occur. One of these is the so-called contact angle3: this

2https://www.flandersmake.be
3Other noise factors could not be controlled in the simulator, so they are not further discussed.

* 57 *

5. BAYESIAN MULTI-OBJECTIVE OPTIMIZATION OF PROCESS DESIGN
PARAMETERS IN CONSTRAINED SETTINGS WITH NOISE: AN ENGINEERING
DESIGN APPLICATION

typical measure reflects the extent to which the adhesive can maintain good contact with the

material. This is important to achieve a strong adhesive bond. The contact angle depends

on the type of material but also on impurities or contaminants such as wax, oil, plasticizers,

etc. present on the material surface. Even though all samples in our setting are made of the

same material, variations in the degree of these contaminants occur across samples, implying

variations in contact angle. These result in noisy measurements of the final break strength

of the bonded joints. A realistic value for the standard deviation of the contact angle is

γ = 30% of the mean, which is what we use in our experiments.

Table 5.2: Summary of the parameters of the optimization algorithms

Setting BO
algorithms

Evolutionary
algorithms

Size of initial design/popu-
lation

LHS: N = 20

Crossover probability - 0.5 (C-MOEA/D); 0.9 o.w

Mutation probability - 0.1

Reference directions - 19 (C-TAEA); 3 (C-
MOEA/D)

Inertia weight - 0.4 (C-MOPSO)

C1 factor - 2 (C-MOPSO)

C2 factor - 2 (C-MOPSO)

Max velocity (%) - 5 (C-MOPSO)

Reference vectors - 151 (C-K-RVEA)

Replications r = 5

Iterations 40 2

Acquisition function cMEI-SK/cEHVI-SK -

Acquisition function opti-
mization

PSO* -

Kernel (for all GPR models) Gaussian -

* PSO configuration: swarm size = 50, max iterations=1800, max stall
iterations = 10, tolerance = 1e−6

Given the experimental setting in Table 5.2, each algorithm evaluates exactly 60 process

configurations in an expensive way, with 5 replications per configuration (i.e., 300 expensive

evaluations in total). The BO algorithms start with an initial design of 20 process configura-

tions (note that this is smaller than the usual choice of k = 11d− 1); exactly one infill point

is added in the following 40 iterations. The EMOAs, by contrast, use an initial population

of 20 process configurations (the same initial set used by BO algorithms) and in each of

the 2 successive generations, a novel population is generated. As common in the literature,

the fitness of the configuration outcomes is evaluated based on their sample means over the

5 replications (note that, by doing so, these algorithms implicitly ignore the fact that this

sample mean is in itself uncertain). Our approach takes into account both the sample mean

and the sample variance though, as explained in Section 5.2. While a total budget of 300

evaluations may seem high, it allows us to also study the progress the algorithms would have

obtained at lower budgets, as illustrated below.

Furthermore, Zhan and Xing [158] present a different formulation for constrained EI

by using the definition of EI and the Probability of Feasibility (PoF) [141] to model the

* 58 *

5.4. Results

constraints. However, we observed in our experiments that the formulation given in Equation

(5.5) got, on average, superior results compared to the results obtained with the formulation

suggested in [158]. Appendix C.1 details these results.

We evaluate the quality of the resulting fronts using the hypervolume (HV) and IGD+

indicators [7, 94, 71], applied to the sample means. We also include performance analysis of

the proposed methods using the empirical attainment function [102]. As the front obtained

by the algorithms may depend on the initial design, we performed 50 macro-replications,

each one starting with a different initial design.

5.4 Results

To gain some insight into the objective space to be explored by the algorithms under idealized

conditions (i.e., if the contact angle could be perfectly controlled), Figure 5.3 shows the

mean responses of the simulator on a set of 60 000 process configurations (with γ = 0%).

These configurations were determined through Halton sampling, and each configuration was

replicated five times. Interestingly, the feasible solutions seem to be clustered in areas

with high break strength. Moreover, the use of pre-processing seems to merely lead to a

cost increase, while the resulting gains in break strength are scarce and only minor. The

Pareto optimal (feasible) points estimated by means of these Halton results, under these

idealized conditions (γ = 0%), serve as the benchmark Pareto front to judge the quality of

the competing optimization algorithms.

Figure 5.3: Sample mean of break strength versus production cost, estimated by the simulator for
60 000 random process configurations (γ = 0%).

Figure 5.4 shows an exploratory analysis of the Pareto fronts obtained by each BO algo-

rithm in the different macro-replications. The analysis is performed using the concept of the

empirical attainment function (EAF, [102]). For each point, the EAF gives an estimate of

the probability that this point is dominated (attained) by the Pareto front put forward by

the given algorithm. Connecting points with the same given EAF value yields an attainment

surface that separates the objective space into two regions: those objective vectors that are

* 59 *

5. BAYESIAN MULTI-OBJECTIVE OPTIMIZATION OF PROCESS DESIGN
PARAMETERS IN CONSTRAINED SETTINGS WITH NOISE: AN ENGINEERING
DESIGN APPLICATION

attained by the resulting Pareto fronts with (at least) that probability, and those that are

not. The attainment surfaces allow us to summarize the location of the objective vectors

obtained by a stochastic algorithm. The median attainment surface, for instance, consists

of the objective vectors that are attained by half of the runs (representing a probability of

50%). Similarly, the worst-case results of an algorithm are reflected in the worst attainment

surface, whereas the best results are given by the best attainment surface. The shaded areas

in the right-hand side of Figure 5.4 show the objective areas where the proposed cMEI-SK

approach reaches better attainment surfaces minimizing the objective cost. On the other

hand, using cEHVI-SK means a better attainment surface minimizing the objective break

strength.

1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2
Production cost (in euros)

−
7.

5
−

7
−

6.
5

−
6

B
re

ak
 s

tr
en

gt
h

cMEI−SK

1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2
Production cost (in euros)

−
7.

5
−

7
−

6.
5

−
6

B
re

ak
 s

tr
en

gt
h

cEHVI−SK

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

Figure 5.4: Visualization of the differences between the EAFs using different acquisition functions
in the BO methods. The Y-axis is inverted to allow for the minimization of both objectives. Each
plot shows the median surface (dashed line), along with the best and worst surfaces (full lines).
The areas where a better attainment surface is obtained are indicated by a shaded area (the colors
indicate the improvement in the probabilities).

Figure 5.5 shows the final best Pareto front obtained by the proposed approaches over

50 macro-replications (along with the median and worst fronts), for γ = 30%. The best

Pareto front obtained by cEHVI-SK is very close to the ideal Pareto front estimated by

means of the Halton set exploration. It also leads to a faster increase in HV, in terms of

the number of expensive evaluations performed, than all other algorithms. This is evident

from Figure 5.6, which shows the evolution of the average hypervolume and IGD+ obtained

(across macro-replications) during the optimization process (again, for γ = 30%). This

superior performance is also evident from Table 5.3, which shows the results for the average

HV, along with those of the average IGD+ (the latter uses the ideal front obtained in the

Halton experiment of Figure 5.3 as the true front). These results highlight that BO methods

are able to obtain better quality results for the Pareto front than evolutionary algorithms

(including surrogate-assisted ones), particularly at very limited budgets. Appendix C.2 shows

that statistical differences (Wilcoxon test, α = 5%), both for HV and IGD+, were mainly

* 60 *

5.4. Results

focused amongst C-MOPSO, C-MOEA/D, and C-TAEA; and metamodel-based optimization

algorithms (including C-K-RVEA).

1.75 1.85 1.95 2.05 2.15
Production cost (in euros)

−
7.

4
−

7.
2

−
7

−
6.

8
−

6.
6

−
6.

4
B

re
ak

 s
tr

en
gt

h

Best
Median
Worst
Halton set PF

(a) cEHV I − SK

1.75 1.85 1.95 2.05 2.15
Production cost (in euros)

−
7.

4
−

7.
2

−
7

−
6.

8
−

6.
6

−
6.

4
B

re
ak

 s
tr

en
gt

h

Best
Median
Worst
Halton set PF

(b) cMEI − SK

Figure 5.5: Best, median, and worst Pareto front obtained by the BO methods. The Y-axis is
inverted to allow minimization of both objectives

20 30 40 50 60
Total of experiments

0.08

0.10

0.12

0.14

0.16

0.18

0.20

IG
D+

cEHVI-SK
cEHVI-OK
cMEI-SK

cMEI-OK
C-MOPSO
C-NSGA-II

OK-C-NSGA-II
C-TAEA

C-MOEA/D
C-K-RVEA

20 30 40 50 60
Total of experiments

3.75

3.80

3.85

3.90

3.95

4.00

Hy
pe

rv
ol

um
e

in
di

ca
to

r

Figure 5.6: Evolution of the IGD+ metric (Left) and hypervolume indicator (Right) of the Pareto-
optimal solutions throughout the search, for γ = 30% (average of 50 macro-replications). The Pareto
front obtained from the Halton set is considered to compute the IGD+ metric and the reference point
with production cost=3, break strength=4 is used to compute the hypervolume indicator

Overall, ignoring the input-dependent noise associated with the objective break strength

(thus using the mean value of the replications) negatively influences the performance of op-

timization algorithms. As shown in Figure 5.6, the curves of the deterministic BO methods

(i.e., the proposed algorithms using OK metamodels) are inferior to the one when input

dependency is taken into account. Yet, they remain superior to the evolutionary algo-

rithms, which reinforces the advantages of the exploration/exploitation performed by the

optimization of the acquisition function and thus obtaining the best possible trade-off be-

tween expected performance and model error. Additionally, we note that surrogate-assisted

* 61 *

5. BAYESIAN MULTI-OBJECTIVE OPTIMIZATION OF PROCESS DESIGN
PARAMETERS IN CONSTRAINED SETTINGS WITH NOISE: AN ENGINEERING
DESIGN APPLICATION

evolutionary algorithms (such as C-K-RVEA) can indeed benefit from the approximation

of the objectives and obtain better configurations than standard EMOAs. However, this

performance remains inferior to BO approaches when data efficiency is needed on top of

effective black-box optimization.

Finally, by looking closer at the solutions (in input space) suggested by cEHVI-SK (the

one with the highest HV value), we found that ±63% of the solutions skip pre-processing,

meaning that the production costs are reduced. Thus in Figure 5.7 we show the distribution

of the remaining input variables. Overall, the algorithm suggests that the power should be

between 480 W and 500 W, the speed should move at a speed between 127.5 mm/s and 152

mm/s, the distance between the torch and the sample should be in the range of 0.2cm and

0.38 cm, between 11 and 16 passes should be performed, and a time difference between 1

and 13 minutes should be considered before the glue application.

Table 5.3: Average IGD+ and HV of the fronts obtained over 50 macro-replications, for γ = 30%

IGD+ HV

cEHVI-SK 0.0719 4.0184
cEHVI-OK 0.0739 4.0235
cMEI-SK 0.0737 4.0174
cMEI-OK 0.0782 4.0116
C-K-RVEA 0.0785 4.0062
C-NSGA-II 0.092 3.9839
OK-C-NSGA-II 0.0937 3.979
C-MOPSO 0.1049 3.9579
C-TAEA 0.1199 3.9237
C-MOEA/D 0.1306 3.893

0.00 0.25 0.50 0.75 1.00
0

50

100

Pre-processing

300 350 400 450 500
0

20

40

Power

0 100 200
0

10

20

30
Torch speed

0.5 1.0 1.5 2.0
0

10

20

30
Torch distance

0 20 40
0

10

20

30

40

Passes

0 50 100
0

10

20

30
Time

Figure 5.7: Distribution of the Pareto-optimal input values obtained by MO-GP cEI (EHVI),
across 50 macro-replications.

* 62 *

5.5. Concluding note

5.5 Concluding note

This chapter presented two constrained Bayesian optimization algorithms to solve a bi-

objective problem related to the adhesive bonding process of materials (maximizing break

strength while minimizing production costs). As the real experiments carried out physi-

cally in a lab are costly, the budget for evaluations is very limited. The proposed Bayesian

approach is shown to clearly outperform state-of-the-art evolutionary algorithms, which are

commonly used in engineering design when solving general multi-objective, constrained prob-

lems. The difference lies in the way the experimental design is guided throughout the search:

the Bayesian approach selects infill points based on an (explainable) acquisition function,

which is related to the expected merit of the new infill point for optimization. The BO model

ensures that the search focuses on infill points that have a high probability of being feasi-

ble. Moreover, the GP model used to approximate the objective(s) accounts for the output

(heterogenous) noise, whereas the evolutionary algorithms rely simply on the (uncertain)

sample means as performance approximations. Moreover, the search in EMOAs (as it is

generally with metaheuristic approaches) is guided by hard-to-tune evolutionary operators.

The success of evolutionary processes is largely dependent on the availability of a sufficient

experimentation budget, which is not always the case in practice.

Our research highlights the superiority of BO methods, particularly using an EHVI-

based infill criterion, over traditional EMOAs. We are convinced that the use of Bayesian

approaches holds great promise in solving noisy and expensive engineering problems, in

terms of both search efficiency (i.e., finding solutions within a limited budget) and search

effectiveness (i.e., yielding high-quality solutions).

* 63 *

CHAPTER 6

WINTER IS COMING
Online learning of windmill time series using Long Short-term Cognitive Networks

F
orecasting windmill time series is often the basis of other processes such as

anomaly detection, health monitoring, or maintenance scheduling. In our opinion,

the amount of data generated by windmill farms make online learning the most vi-

able strategy to follow. Such settings require retraining the model each time new data is

available. However, updating the model with new information is often very expensive when

using traditional Recurrent Neural Networks (RNNs). This chapter presents the application

of Long Short-term Cognitive Networks (LSTCNs) to forecast windmill time series in online

settings.1 Section 6.2 analyzes the main components of the proposed LSTCN-based power

forecasting model. LSTCN consists of chained Short-term Cognitive Network blocks, each

processing a temporal data chunk. The learning algorithm of these blocks is based on a

fast, deterministic learning rule that makes LSTCNs suitable for online learning tasks. The

numerical simulations presented in Section 6.3 using a case study involving four windmills

showed that our approach reported the lowest forecasting errors with respect to a simple

RNN, a Long Short-term Memory, a Gated Recurrent Unit, and a Hidden Markov Model.

What is perhaps more important is that the LSTCN approach is significantly faster than

these state-of-the-art models.

6.1 Forecasting models with recurrent neural networks

Neural networks are a family of biology-inspired computational models that have found ap-

plications in many fields. An example of engineering applications of neural models is the

support of wind turbine operation and maintenance. In this area, neural models dedicated

to the analysis of temporal data have proven to be quite useful. This is motivated by the fact

that typical data describing the operation of a wind turbine are collected by sensors forming

a supervisory control and data acquisition (SCADA) system [38, 151]. Such data come in the

form of long sequences of numerical values [144], thus making Recurrent Neural Networks

(RNNs) the right choice for processing such data. However, traditional neural networks (in-

cluding RNN) face additional challenges in time series forecasting; such as expert knowledge

requirements and handcrafted features, no full modeling of long-term dependencies hidden in

time-domain signals, lack of interpretability, long training times, and/or gradient vanishing

1The content of this chapter has been included in the publication “Online learning of windmill time
series using Long Short-term Cognitive Networks”. In: Expert Systems with Applications [113].

* 65 *

6. ONLINE LEARNING OF WINDMILL TIME SERIES USING LONG SHORT-TERM
COGNITIVE NETWORKS

problems. This section briefly revises the literature on the applications of RNNs on data

analysis in the area of wind turbine operation and maintenance support.

RNNs differ from other neural networks in the way the input data is propagated. In

standard neural networks, the input data is processed in a feed-forward manner, meaning

the signal is transmitted unidirectionally. In RNN models, the signal goes through neurons

that can have backward connections from further layers to earlier layers [27]. Depending on

a particular neural model architecture, we can restrict the layers with feedback connections

to only selected ones. The overall idea is to allow the network to “revisit” nodes, which

mimics the natural phenomenon of memory [86]. RNNs turned out to be useful for accurate

time series prediction tasks [142], including wind turbine time series prediction [34].

Currently, the most popular variant of RNN in the field of wind turbine data processing is

the Long Short-Term Memory (LSTM) model [64, 109]. In this model, the inner operations

are defined by neural gates called cell, input gate, output gate, and forget gate. The cell acts

as the memory, while the other components determine the way the signal propagates through

the neural architecture [159]. The introduction of these specialized units helped prevent (to

some extent) the gradient problems associated with training RNN models [138].

Existing neural network approaches to wind turbine data forecasting do not pay enough

attention to the issue of model complexity and efficiency. In most studies, authors reduce

the available set of input variables rather than optimizing the neural architecture used. For

example, Bo et. al. [49] used the LSTM model with hand-picked three SCADA input

variables, while Riganti-Fulginei, Sun, and Sun [131] used eleven SCADA variables. Qian

et. al. [123] also used LSTM to predict wind turbine data. In their study, the initial set of

input variables consisted of 121 series, but this was later reduced to only three variables and

then to two variables using the Mahalanobis distance method. The issue of pre-processing

and feature selection was also raised by Wang et. al. [150], suggesting Principal Component

Analysis to reduce the dimensionality of the data.

LSTM has been found to work well even when the time series variables are of incompatible

types; by applying data-fusion strategies and capturing long-term dependencies through the

recursive behavior and gate mechanism of this network. It is worth citing the study of Lei,

Liu, and Jiang [91], who used LSTM to predict two qualitatively different types of time series

simultaneously: (i) vibration measurements that have a high sampling rate and (ii) slow

varying measurements (e.g., bearing temperature). It should be noted that existing studies

bring additional techniques that enhance the capabilities of the standard LSTM model. For

example, Cao et. al. [25] propose segmenting the data and using segment-related features

instead of raw signals. Ling et. al. [154] also do not use raw signals. Instead, they use

Convolutional Neural Networks (CNNs) to extract the dynamic features of the data, which

is then fed to LSTM. A similar approach, combining CNN with LSTM, was presented in

[155]. Another interesting technique was introduced by Chen et. al. [28], who combined

LSTM with an auto-encoder (AE) neural network so that their model can detect and reject

anomalies while achieving better results for non-anomalous data.

While most of the recently published studies employ LSTM to predict multivariate wind

turbine time series, there are also several approaches focusing on other RNN variants. For

example, there are several papers on the use of Elman neural networks in forecasting mul-

tivariate wind turbine data [97, 98, 88]. Likewise, we should mention the work of López et.

al. [101], which involved Echo State Network and LSTM. Finally, it is worth mentioning the

work of Kong et. al. [87], in which the task of processing data from wind turbines is imple-

* 66 *

6.2. Long Short-term Cognitive Network

mented using CNNs and Gated Recurrent Unit (GRU) [29]. The latter neural architecture

is a variant of RNN, which can be seen as a simplification of the LSTM architecture.

There are other models equipped with reasoning mechanisms similar to the one used

by neural networks. In particular, the concept of “neuron” can also be found in Hidden

Markov Models (HMMs) [127]. Such neurons are implemented as states, and the set of

states essentially plays a role analogous to that of hidden neurons in a standard neural

network. HMMs have also found applications in wind power forecasting. The studies of

Bhaumik et. al. [17] and Qu et. al. [125] should be mentioned in this context. Both

research teams highlight decent predictions and robustness to noise in the data.

Recently, Nápoles et. al. [117] introduced a recurrent neural system termed Long Short-

term Cognitive Network (LSTCN) that seems suitable for online learning settings where data

might be volatile. Moreover, the cognitive component of such a recurrent neural network

allows for interpretability and it is given by two facts. Firstly, neural concepts and weights

have a well-defined meaning for the problem domain being modeled. This means that the

resulting model can easily be interpreted with little effort. For example, in [117] the authors

discussed a measure to compute the relevance of each variable in multivariate time series

without the need for any post-hoc method. Additionally, the Short-term Cognitive Network

(STCN) composing an LSTCN enables inserting domain knowledge into the network by

modifying a prior knowledge matrix, which is not altered during the learning process [118].

Despite the advantages of the LSTCN model when it comes to its forecasting capabilities,

intrinsic interpretability, and short training time, it has not yet been applied to a real-world

problem, as far as we know. In addition, we have little knowledge of the performance of

this brand-new model in online learning settings operating with volatile data that might

be available for a short time. Such a lack of knowledge and the challenges related to the

wind prediction described above have motivated us to study the LSTCNs’ performance on

a real-world problem concerning the power forecasting of four windmills.

6.2 Long Short-term Cognitive Network

This section elaborates on the task of forecasting power generation in windmills using the

LSTCN model. By doing that, we propose an LSTCN-based pipeline to tackle the related

online learning problem where each data chunk is processed only once. In this pipeline,

every time a new data chunk is available, a pre-processing step is applied to transform it

into the structure needed to train the network. Then, a new Short-term Cognitive Network

(STCN) block [118] will use the knowledge transferred from the previous block to learn from

the incoming data. This means the model can be retrained without compromising what the

network learned from previous data chunks. Given the transfer of knowledge implemented

from previous blocks to the new ones, future inference steps are performed using only the

last STCN block. The LSTCN-based pipeline is detailed below. First, we describe the data

transformation needed to apply this model and the architecture and neural reasoning of

LSTCN. Later, we discuss how the parameter learning is performed to forecast multivariate

time series.

* 67 *

6. ONLINE LEARNING OF WINDMILL TIME SERIES USING LONG SHORT-TERM
COGNITIVE NETWORKS

6.2.1 Data preparation for online learning simulations

Let x ∈ R be a variable observed over a discrete time scale within a period t ∈ {1, 2, . . . , T}
where T ∈ N is the number of observations. Hence, a univariate time series can be defined

as a sequence of observations {x(t)}Tt=1 = {x(1), x(2), . . . , x(T)}. Similarly, we can define

a multivariate time series as a sequence {X(t)}Tt=1 = {X(1),X(2), . . . ,X(T)} of vectors of d

variables, such that X(t) = [x
(t)
1 , x

(t)
2 , . . . , x

(t)
d]. A model F is used to forecast the next L < T

steps ahead. In this paper, we assume that the model F is built as a sequence of neural

blocks with local learning capabilities, each able to capture the trends in the current time

patch (i.e., a chunk of the time series) being processed. The following sub-sections will detail

the network architecture and the parameter learning algorithm.

Let us assume that X ∈ Rd×T is a dataset comprising a multivariate time series

(Figure 6.1a). Firstly, we need to transform X into a set of Q tuples with the form

(X(t−R),X(t+L)), t − R > 0, t + L ≤ T where R represents how many past steps we will

use to forecast the following L steps ahead (see Figure 6.1b). This step is common in time

series forecasting algorithms since prepares the data so that the network can learn from the

past to forecast the future. We assume that R = L for the sake of simplicity. Secondly,

each component in the tuple is flattened such that we obtain a Q × (d(R + L)) matrix.

Although this is an accommodation implemented to facilitate the learning process, this does

not imply a loss of information, and similar accommodations are used together with LSTM

networks as well. Finally, we create the set P = {P (1), . . . , P (k), . . . , P (K)} from the set

of flattened tuples such that P (k) = (P
(k)
1 , P

(k)
2) is the k-th time patch involving two data

pieces P
(k)
1 , P

(k)
2 ∈ RC×N , where N = dR and C denotes the number of instances in that

time patch.

Figure 6.1 shows an example of such a pre-processing method. First, the times series is

split into chunks of equal length as defined by the L and R parameters. Second, we use

the resulting chunks to create a set of input-output pairs. Finally, we flatten these pairs to

obtain the tuples with the inputs to the network and the corresponding expected outputs.

It should be highlighted that the forecasting model will have access to a time patch in each

iteration, as it usually happens in an online scenario. If the neural model is fed with several

time steps, then it will be able to forecast multiple-step ahead of all variables describing the

time series.

6.2.2 Network architecture and neural reasoning

In the online learning setting, we consider a time series (regardless of the number of observed

variables) as a sequence of time patches of a certain length. Such a sequence refers to the

set P = {P (1), . . . , P (k), . . . , P (K)} obtained with the data preparation steps discussed in the

previous subsection. Hence, the proposed network architecture consists of an LSTCN model

able to process the sequence of time patches.

An LSTCN model can be defined as a collection of STCN blocks, each processing a

specific time patch and transferring knowledge to the following STCN block in the form of

weight matrices. Figure 6.2 shows the recurrent pipeline of an LSTCN involving three STCN

blocks to model a multivariate time series decomposed into three time patches. It should be

highlighted that learning happens inside each STCN block to prevent the information flow

from vanishing as the network processes more time patches. Moreover, weights estimated in

* 68 *

6.2. Long Short-term Cognitive Network

24 25 41 43 39 29 40 48 19 25 45 38 47 30 34
22 18 14 50 26 38 23 39 45 19 44 31 36 30 12
2 14 40 36 26 46 28 19 19 10 39 18 10 25 56

28 4 21 3 26 14 49 26 17 48 35 12 49 21 34

split 1 split 2 split 3 split 4 split 5

(a) Original multivariate time series

24 25 41 43 39 29 43 39 29 40 48 19 40 48 19 25 45 38 25 45 38 47 30 34
22 18 14 50 26 38 50 26 38 23 39 45 23 39 45 19 44 31 19 44 31 36 30 12
2 14 40 36 26 46 36 26 46 28 19 19 28 19 19 10 39 18 10 39 18 10 25 56
28 4 21 3 26 14 3 26 14 49 26 17 49 26 17 48 35 12 48 35 12 49 21 34

input output input output input output input output

(b) Rolling window

24 25 41 22 18 14 2 14 40 28 4 21 43 39 29 50 26 38 36 26 46 3 26 14
43 39 29 50 26 38 36 26 46 3 26 14 40 48 19 23 39 45 28 19 19 49 26 17
40 48 19 23 39 45 28 19 19 49 26 17 25 45 38 19 44 31 10 39 18 48 35 12
25 45 38 19 44 31 10 39 18 48 35 12 47 30 34 36 30 12 10 25 56 49 21 34

𝑃
(1
)

𝑃
(2
)

input output

(c) Flattening

Figure 6.1: Data pre-processing using R = L = 3. (a) The original multivariate time series
X ∈ Rd×T , with rows as variables and columns as timestamps. (b) Selection of sub-sequences of
the time series according to parameters R and L. (c) Each sub-sequence is flattened to obtain the
temporal instances. In this example, the flattened dataset is divided into two temporal parches.

the current STCN block are transferred to the following STCN block to perform the next

reasoning process (see Figure 6.3). These weights will no longer be modified in subsequent

learning processes, which allows for preserving the knowledge we have learned up to the

current time patch. In our opinion, that makes our approach suitable for online learning

settings.

෠𝑃2
(2)

𝑊1
(1)
, 𝐵1

(1)
𝑊1

(2)
, 𝐵1

(2)

𝑊2
(1)
, 𝐵2

(1)
𝑊2

(2)
, 𝐵2

(2)

STCN STCN

𝑃1
(0) 𝑃1

(1) 𝑃1
(2)

𝑊1
(0)
, 𝐵1

(0)

𝑊2
(0)
, 𝐵2

(0)

STCN

෠𝑃2
(0) ෠𝑃2

(1)

Ψ Ψ

Figure 6.2: LSTCN architecture of three STCN blocks. The weights learned in the current block
(last one) are transferred to the following STCN block as a prior knowledge matrix.

The reasoning within an STCN block involves two gates: the input gate and the output

gate. The input gate operates the prior knowledge matrix W
(k)
1 ∈ RN×N with the input

data P
(k)
1 ∈ RC×N and the prior bias matrix B

(k)
1 ∈ R1×N denoting the bias weights. Both

matrices W
(k)
1 and B

(k)
1 are transferred from the previous block and remain locked during

the learning phase to be performed in that STCN block. Note that matrices W
(k)
1 and B

(k)
1

resemble somehow the existing memory cell in LSTM networks to “remember” what has

happened up to the time step t, in our case, time patch k. The result of the input gate

* 69 *

6. ONLINE LEARNING OF WINDMILL TIME SERIES USING LONG SHORT-TERM
COGNITIVE NETWORKS

is a temporal state H(k) ∈ RC×N that represents the outcome that the block would have

produced given P
(k)
1 if the block would not have been adjusted to the block’s expected output

P
(k)
2 . Such an adaptation is done in the output gate where the temporal state is operated

with the matrices W
(k)
2 ∈ RN×N and B

(k)
2 ∈ R1×N , which contain learnable weights. Figure

6.3 depicts the reasoning process within the k-th block.

෠𝑃2
(𝑘)

Output gate
𝑊2

(𝑘)

Transfer function

Matrix multiplication

𝑃1
(𝑘)

𝑊1
(𝑘)

Input gate𝐵1
(𝑘)

𝐵2
(𝑘)

Matrix-vector addition

Figure 6.3: Reasoning within an STCN block. Firstly, the current time patch is mixed with the

prior knowledge matrices W
(k)
1 and B

(k)
1 . This operation produces a temporal state matrix H(k).

Secondly, we operate the H(k) matrix with the matrices W
(k)
2 and B

(k)
2 . The result of such an

operation will be an approximation of the expected output P
(k)
2

Equations (6.1) and (6.2) show the short-term reasoning process of this model in the k-th

iteration,

P̂2
(k)

= f
(
H(k)W

(k)
2 ⊕B

(k)
2

)
(6.1)

and

H(k) = f
(
P

(k)
1 W

(k)
1 ⊕B

(k)
1

)
(6.2)

where f(x) = 1
1+e−x , whereas P̂2

(k)
is an approximation of the expected block’s output. In

these equations, the ⊕ operator performs a matrix-vector addition by operating each row

of a given matrix with a vector, provided that both the matrix and the vector have the

same number of columns. Notice that we assumed that values to be forecast are in the [0, 1]

interval.

As mentioned, the LSTCN model consists of a sequential collection of STCN blocks.

In this neural system, the knowledge from one block is passed to the next one using an

aggregation procedure (see Figure 6.2). This aggregation operates on the knowledge learned

in the previous block (that is to say, the W
(k−1)
2 matrix). In this paper, we use the following

non-linear operator in all our simulations:

W
(k)
1 = Ψ(W

(k−1)
2), k − 1 ≥ 0 (6.3)

and

B
(k)
1 = Ψ(B

(k−1)
2), k − 1 ≥ 0 (6.4)

such that Ψ(x) = tanh(x). However, we can design operators combining the knowledge in

both W
(k−1)
1 and W

(k−1)
2 .

There is an important detail to be discussed. Once we have processed the available

sequence (i.e., performed K short-term reasoning steps with their corresponding learning

* 70 *

6.2. Long Short-term Cognitive Network

processes), the whole LSTCN model will narrow down to the last STCN block. Therefore,

that block will be used to forecast new data chunks as they arrive and a new learning process

will follow, as needed in online learning settings.

6.2.3 Parameter learning

Training the LSTCN in Figure 6.2 means training each STCN block with its corresponding

time patch. The learning process within a block is partially independent of other blocks

as it only uses the prior weights matrices that are transferred from the previous block. As

mentioned, these prior knowledge matrices are used to compute the temporal state and are

not modified during the block’s learning process.

The learning task within an STCN block can be summarized as follows. Given a temporal

state H(k) resulting from the input gate and the block’s expected output P
(k)
2 , we need to

compute the matrices W
(k)
2 ∈ RN×N and B

(k)
2 ∈ R1×N .

Mathematically speaking, the learning is performed by solving a system of linear equa-

tions that adapt the temporal state to the expected output. Equation (6.5) displays the

deterministic learning rule solving this regression problem,[
W

(k)
2

B
(k)
2

]
=

[(
Φ(k)

)⊤
Φ(k) + λΩ(k)

]−1 (
Φ(k)

)⊤
f−
(
P

(k)
2

)
(6.5)

where Φ(k) = (H(k)|A) such that AC×1 is a column vector filled with ones, Ω(k) denotes the

diagonal matrix of (Φ(k))⊤Φ(k), while λ ≥ 0 denotes the ridge regularization penalty. This

learning rule assumes that the neuron’s activation values inner layer are standardized. When

the final weights are returned, they are adjusted back into their original scale.

It shall be noted that we need to specify W
(0)
1 and B

(0)
1 in the first STCN block. We

can use a transfer learning approach from a previous learning process or it can be provided

by domain experts. Since this information is not available, we fit a single STCN block

without an intermediate state (i.e., H(0) = P
(0)
1) on a smoothed representation of the whole

(available) time series. The smoothed time series is obtained using the moving average

method for a given window size w. This resembles somehow Exponential Smoothing-based

forecasting methods [55] but without having to specify any additional parameter to control

the influence of the observations at prior time steps in the forecasting. Instead, the learning

rule of the STCN block can learn such influence. As referred by the Nápoles et. al., the

training performed on each STCN block is similar to the one performed in Extreme Learning

Machine (ELM) [67], which is a special case of a two-layer multilayer perceptron. However,

LSTCN uses prior knowledge to initialize matrices W
(0)
1 and B

(0)
1 instead of the random

initialization used in ELM. Additionally, the hidden layer used in ELM can be of an arbitrary

width while an STCN block uses the number of steps ahead to be predicted and the number

of features in the multivariate time series.

Figure 6.4 portrays the workflow of the iterative learning process of an LSTCN model.

An incoming chunk of data triggers a new training process using the knowledge learned

in previous iterations and stored on the last STCN block. After the data pre-processing

explained in Figure 6.1 is applied to the new data and a new STCN block is trained, the

prior knowledge matrices are updated using an aggregation operator and stored to perform

reasoning.

* 71 *

6. ONLINE LEARNING OF WINDMILL TIME SERIES USING LONG SHORT-TERM
COGNITIVE NETWORKS

start Data pre-processing
Specification of prior

knowledge about
the problem

batch
available?

Train an STCN
using the stored
prior knowledge

Update prior
knowledge after

aggregation
End

Return STCN block

Online flow of
input data

Yes

No

Figure 6.4: The LSTCN model can be seen as a sequential collection of STCN blocks that perform
iterative learning. When a new chunk of data is available, a new STCN block is trained and the
prior knowledge is updated using an aggregation procedure.

6.3 Numerical simulations

This section explores the performance (forecasting error and training time) of the proposed

LSTCN-based online forecasting model for windmill time series.

6.3.1 Description of windmill datasets

To conduct our experiments, we adopted four public datasets from the ENGIE web page2.

Each dataset corresponds to a windmill where measurements were recorded every 10 minutes

from 2013 to 2017. The time series of each windmill contains 264,671 timestamps. Eight

variables concerning the windmill and environmental conditions were selected: generated

power, rotor temperature, rotor bearing temperature, gearbox inlet temperature, generator

stator temperature, wind speed, outdoor temperature, and nacelle temperature.

As for the pre-processing steps, we removed duplicated timestamps, imputed missing

timestamps and values, and applied a min-max normalization. Moreover, the data prepa-

ration procedure described in Figure 6.1 was applied to each dataset. Table 6.1 displays a

descriptive summary of all datasets after normalization where the minimum, median, and

maximum of the absolute Pearson’s correlation values among the variables are denoted as

min, med, and max, respectively.

Table 6.1: Descriptive statistics for the windmill datasets

Dataset min med max

1 0.0708 0.2799 0.9456

2 0.0888 0.3032 0.8848

3 0.0687 0.3014 0.9497

4 0.0835 0.3148 0.9441

We split each dataset using a hold-out approach (80% for training and 20% for testing

purposes). As for the performance metric, we use the mean absolute error (MAE) in all

2https://opendata-renewables.engie.com/explore/index

* 72 *

6.3. Numerical simulations

simulations reported in this section. In addition, we report the training and test times of

each forecasting model. The training time (in seconds) of each algorithm was computed by

adding the time needed to train the algorithm in each time patch. Finally, we arbitrarily fix

the size of time patches to 1024 (batch size for other RNN).

6.3.2 Baseline models

We contrast the LSTCNs’ performance against five different models used to handle online

learning settings. Four recurrent models were considered in the comparison following a

network-based approach where the output is to be fed back to the input. The other baseline

model was Vector Exponential Smoothing (VES) [139], which builds directly upon the Ex-

ponential Smoothing for univariate time series but considers now the relation amongst each

variable.

The RNN, LSTM, and GRU networks were implemented using Keras v2.4.3, while HMM

was implemented using the hmmlearn library3. The training of these models was adapted to

online learning scenarios. In practice, this means that RNN, GRU, and LSTM were retrained

on each time patch using the prior knowledge structures learned in previous learning steps.

The transition probability matrix is passed from one patch to another and updated based

on the new information in the HMM-based model. As for the fifth forecasting model, the

implementation provided for VES on the package Legion4 was used. In this case, the model

does not use any information from previous batches and is trained only with the (temporally)

available data.

In the LSTCN model, we used L = {6, 48, 72} such that R = L (hereinafter we will

only refer to L) and w = 10. Notice that given the sampling interval of the data, six steps

represent one hour while 72 steps represent half a day. We did not perform hyperparameter

tuning since the online learning setting demands fast re-training of these recurrent models

when a new data chunk arrives. It would not be feasible to fine-tune the hyperparameters in

each iteration since such a process is computationally demanding. Instead, we retained the

default hyperparameters reported on the corresponding Keras layers. We used four hidden

states and Gaussian emissions to generate the predictions in the HMM-based model. These

parameter values were arbitrarily selected without further experimentation.

Regardless of our choice, we recognize that HPO is as essential in online learning as in

traditional ML problems. However, there is very little consensus when it comes to how to

perform hyperparameter tuning in the online setting [10]. As an alternative to keeping the

default hyperparameter values, one can (1) perform a sensitivity analysis on some datasets

[90] and pick the hyperparameters that work well to use in the online setting, (2) periodically

perform an offline HPO with logged data [2] and adjust the online learner with the new

hyperparameter configuration if the performance improved with the new HP configuration,

(3) perform an initial training of a candidate set of hyperparameter configurations and select

the model with lower errors to make predictions [20], (4) transfer information from previous

HPO steps to adjust the hyperparameters of the model when new data is available [157],

or (5) collect meta-data that describe prior learning tasks and previously learned models

(hyperparameter settings, pipeline compositions and/or network architectures, the resulting

3https://github.com/hmmlearn/hmmlearn
4https://cran.r-project.org/package=legion

* 73 *

6. ONLINE LEARNING OF WINDMILL TIME SERIES USING LONG SHORT-TERM
COGNITIVE NETWORKS

model evaluations, the learned model parameters, as well as measurable properties of the

task itself) [70].

The last two approaches have the advantage of somehow considering past optimization

steps to guide the model optimization with new data. For instance, the optimization algo-

rithm can start the optimization with previous optimal hyperparameter configurations as

warm-up or use the last metamodel (in BO-based optimization) to estimate the performance

of the ML algorithm with new data. Since this metamodel was built only on the previous

dataset, the online optimization algorithm will progressively adjust the response surface to

the new dataset by incorporating the recent performance evaluations [11]. At the same

time, the outdated performance of hyperparameter configurations, evaluated on the former

dataset(s), can still be considered to some extent when updating the new metamodel, or

they can be progressively forgotten (the ML algorithm has better performance with other

(possibly new) hyperparameters configurations).

Alternatively, characterizations (meta-features) of the dataset at hand [147] can be used

to define a dataset similarity measure (based on, for instance, the Euclidean distance between

the metafeature vectors of two datasets), so that we can transfer information from the most

similar dataset to the new one. Moreover, together with prior evaluations (on previous

datasets), we can train a meta-learner (in an ensemble fashion) to predict the performance

of hyperparameter configurations (already observed or new ones) on a new dataset.

In theory, any of the model-based HPO methods presented in Chapter 3 and Chapter 4 (or

in the existing literature) can be used in online learning scenarios, using transfer learning or

meta-learning approaches. Yet, the computational effort for HPO can be avoided altogether

by opting for parameterless forecasting models, such as LSTCN.

6.3.3 Results and discussion

Figure 6.5 shows an analysis of the influence of w and L on the model’s behavior. The pa-

rameters were varied in the discrete set w = {1, 6, 10, 20, 48, 72, 144} and L = {6, 48, 72, 144},
and the MAE computed on the test set was used for comparative purposes. The results did

not show a large difference when changing w while keeping L fixed. However, the reduc-

tion in model performance was more evident when L increases, which is usual in time series

forecasting models.

As mentioned, the knowledge used by the first STCN is extracted from a smoothed

representation of the time series data we have. Nevertheless, we can start with a zero-filled

matrix if such knowledge is not available. Figure 6.6 shows the MAE of the predictions in

the training set of the four windmills in both settings. Starting from scratch (no knowledge

about the data), the LSTCN’s predictions have a large MAE in the first time patch. As new

data is received, the network updates its knowledge and reduces the prediction error. In

this simulation, we used five time patches such that each STCN block is fitted on the newly

received data. The LSTCN model using general knowledge of the time series (assumed as a

warm-up) generates small errors from the first time patch.

Figure 6.7 shows the distribution of weights in the W1 and W2 matrices obtained in the

first five STCN blocks trained whether or not the initial prior knowledge is used (for the first

windmill). In other words, we visualize the distributions of prior knowledge weights and the

weights learned in each STCN block. If the LSTCN is trained using initial prior knowledge

(W1 in STCN of the first row, the first column of Figure 6.7), the network is able to adapt

* 74 *

6.3. Numerical simulations

1 6 10 20 48 72 144 200
W

6
48

72
14

4
L

0.058 0.049 0.044 0.046 0.051 0.047 0.055 0.05

0.077 0.081 0.075 0.079 0.075 0.078 0.078 0.078

0.099 0.095 0.092 0.095 0.093 0.095 0.096 0.1

0.25 0.28 0.26 0.28 0.28 0.3 0.49 0.49

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
AE

(a) WT1

1 6 10 20 48 72 144 200
W

6
48

72
14

4
L

0.024 0.024 0.024 0.023 0.024 0.043 0.026 0.025

0.045 0.045 0.041 0.042 0.041 0.047 0.044 0.046

0.051 0.049 0.048 0.049 0.051 0.049 0.049 0.052

0.43 0.099 0.1 0.087 0.13 0.1 0.082 0.088
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
AE

(b) WT2

1 6 10 20 48 72 144 200
W

6
48

72
14

4
L

0.05 0.054 0.063 0.053 0.051 0.051 0.055 0.059

0.074 0.073 0.075 0.075 0.073 0.075 0.074 0.072

0.098 0.09 0.092 0.092 0.092 0.092 0.1 0.095

0.24 0.27 0.28 0.28 0.29 0.33 0.49 0.29 0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
AE

(c) WT3

1 6 10 20 48 72 144 200
W

6
48

72
14

4
L

0.054 0.053 0.054 0.063 0.047 0.051 0.048 0.05

0.07 0.071 0.074 0.073 0.071 0.074 0.071 0.074

0.099 0.089 0.092 0.093 0.09 0.092 0.097 0.096

0.24 0.26 0.27 0.28 0.3 0.3 0.43 0.51 0.1

0.2

0.3

0.4

0.5

M
AE

(d) WT4

Figure 6.5: MAE values obtained by the LSTCN-based model when changing the w and L param-
eters. As expected, expanding the prediction horizon (that is to say, increasing the number of steps
ahead to be predicted) leads to performance degradation of predictions. However, the model does
not seem to be especially sensitive to the w parameter, except for larger L values where the error
increases as the w gets larger.

to the new data made available. Therefore, the MAE of the first block should be lower

compared to when no initial prior knowledge is used, since in this case the learning process

has started from previous experience. On the other hand, the first STCN block will learn

only from the data available at that moment if no prior knowledge is considered (first row,

second column of Figure 6.7). As a consequence, the MAE of this first block is expected

to be larger and only after some additional STCN blocks have been processed, the error

should behave similarly to the ones obtained when the initial prior knowledge is considered

(Figure 6.6a). Appendix D supports this finding by showing how the weights of the first

fourth blocks changes in both scenarios.

Tables 6.2, 6.3 and 6.4 show the results for L = 6, L = 48 and L = 72, respectively. More

explicitly, we report the average training and test errors, and the average training and test

times (in seconds). The LSTCN model obtained the lowest MAE value when L = 48 and

L = 72 (the lowest average test error for each windmill is highlighted in boldface). As we

can see, VES had the lowest MAE value when L = 6, followed by LSTCN in second place.

This is not surprising since statistical forecasting models such as VES get good forecasting

results when the horizon is short. Although the forecasting error generally increases with the

forecast horizon in the case of LSTCN, it is still relatively stable compared with the steep

increase observed in VES when the horizon goes up to 48 and 72. Overall, these results allow

us to conclude that our approach is able to produce better forecasting results when compared

with well-established forecasting algorithms, and LSTCN performance is not compromised

* 75 *

6. ONLINE LEARNING OF WINDMILL TIME SERIES USING LONG SHORT-TERM
COGNITIVE NETWORKS

0 5 10 15 20 25 30
Time patch

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

M
AE

without initial prior knowledge
with initial prior knowledge

(a) WT1

0 5 10 15 20 25 30
Time patch

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

M
AE

without initial prior knowledge
with initial prior knowledge

(b) WT2

0 5 10 15 20 25 30
Time patch

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

M
AE

without initial prior knowledge
with initial prior knowledge

(c) WT3

0 5 10 15 20 25 30
Time patch

0.02

0.04

0.06

0.08

0.10

M
AE

without initial prior knowledge
with initial prior knowledge

(d) WT4

Figure 6.6: MAE values obtained by the LSTCN-based model on the four windmill datasets with
and without using initial prior knowledge. It can be noticed that the model needs to process more
time patches to reduce the error when the model is initialized with a random weight matrix. If this
knowledge is not available, the network will still produce good results provided it performs enough
iterations.

too heavily when forecasting over a long horizon. It should be noted, however, that such

a conclusion is attached to the fact that no hyper-parameter tuning was performed in our

simulations.

Another clear advantage of LSTCN over these state-of-the-art algorithms is the reduced

training and test times. Re-training the model quickly when a new piece of data arrives while

retaining the knowledge we have learned so far is a key challenge in online learning settings.

Recurrent neural models such as RNN, LSTM, and GRU use a backpropagation-based learn-

ing algorithm to compute the weights regulating the network behavior. The algorithm needs

to iterate multiple times over the data with limited vectorization possibilities.

Overall, there is a trade-off between accuracy and training time when it comes to batch

size in backpropagation-based learning. The smaller the batch size in the backpropagation

learning, the more accurate the predictions are expected to be. However, smaller batch sizes

make the training process slower. Another issue with gradient-based optimization methods

is that they usually operate in a stochastic fashion, thus making them quite sensitive to the

initial conditions. Notice that HMM also requires several iterations to build the probability

transition matrix.

* 76 *

6.3. Numerical simulations

2 1 0 1 2
Weight values

0.0

0.2

0.4

0.6
D

en
si

ty
W1
W2

2 1 0 1 2
Weight values

0.0

0.1

0.2

Block 1

W1
W2

2 1 0 1 2
Weight values

0.0

0.2

0.4

D
en

si
ty

W1
W2

2 1 0 1 2
Weight values

0.0

0.1

0.2

0.3

Block 2

W1
W2

2 1 0 1 2
Weight values

0.0

0.2

0.4

0.6

D
en

si
ty

W1
W2

2 1 0 1 2
Weight values

0.0

0.5

1.0

Block 3

W1
W2

2 1 0 1 2
Weight values

0.0

0.2

0.4

D
en

si
ty

W1
W2

2 1 0 1 2
Weight values

0.0

0.1

0.2

0.3

Block 4

W1
W2

2 1 0 1 2
Weight values

0.0

0.2

0.4

0.6

D
en

si
ty

W1
W2

2 1 0 1 2
Weight values

0.00

0.25

0.50

0.75

Block 5

W1
W2

Figure 6.7: Distribution of weights for the first five STCN blocks trained in WT1 (Left) with initial
prior knowledge and (Right) without initial prior knowledge. The first row corresponds to the first
STCN block.

0 200 400 600 800 1000
time

0.0

0.2

0.4

0.6

0.8

Original data
Test predictions

(a) L = 6

0 200 400 600 800 1000
time

0.0

0.2

0.4

0.6

0.8

Original data
Test predictions

(b) L = 48

0 200 400 600 800 1000
time

0.0

0.2

0.4

0.6

0.8

1.0 Original data
Test predictions

(c) L = 72

Figure 6.8: Moving average power predictions (w = 24) for the first windmill with (a) L = 6, (b)
L = 48 and (c) L = 72.

* 77 *

6. ONLINE LEARNING OF WINDMILL TIME SERIES USING LONG SHORT-TERM
COGNITIVE NETWORKS

Table 6.2: Results for the windmill case study for L = 6 (1 hour). The test time of VES is
considered as part of the training time (library implementation)

Model
Training

error

Training

time

Test

error

Test

time

WT1

LSTCN 0.0672 0.0091 0.0715 0.0255

RNN 0.1087 0.6477 0.1321 1.3503

LSTM 0.1036 1.7681 0.1258 2.6994

GRU 0.1193 1.7162 0.1396 2.4513

VES 0.0178 0.3702 0.0460 -

HMM 0.0567 241.17 0.1267 91.08

WT2

LSTCN 0.0592 0.0091 0.0647 0.0261

RNN 0.1086 0.6516 0.1209 1.3048

LSTM 0.1035 1.7075 0.1147 2.5682

GRU 0.1243 1.7718 0.1384 2.3741

VES 0.0080 0.3913 0.019 -

HMM 0.0381 333.61 0.0941 107.54

WT3

LSTCN 0.0474 0.0103 0.0564 0.0370

RNN 0.1221 0.6418 0.1532 1.3171

LSTM 0.1107 1.6932 0.1455 2.6672

GRU 0.1219 1.6821 0.1499 2.3471

VES 0.0177 0.3648 0.0440 -

HMM 0.0683 318.11 0.1768 118.31

WT4

LSTCN 0.0602 0.0112 0.0666 0.0398

RNN 0.1069 0.6609 0.1398 1.3507

LSTM 0.0979 1.1241 0.1275 1.4140

GRU 0.1162 1.6661 0.1405 2.3841

VES 0.0172 0.3584 0.0426 -

HMM 0.0534 367.05 0.1445 164.15

0 200 400 600 800 1000
time

0.0

0.2

0.4

0.6

0.8

Original data
Test predictions

(a) L = 6

0 200 400 600 800 1000
time

0.0

0.2

0.4

0.6

0.8

1.0 Original data
Test predictions

(b) L = 48

0 200 400 600 800 1000
time

0.0

0.2

0.4

0.6

0.8

1.0 Original data
Test predictions

(c) L = 72

Figure 6.9: Moving average power predictions (w = 24) for the second windmill with (a) L = 6,
(b) L = 48 and (c) L = 72.

To alleviate the problem caused by larger prediction horizons, we could increase the batch

size (the number of instances in a time patch) in our model (or decrease the batch size of

other recurrent models used for comparison purposes). In that way, we will have more data

in each training process, which will likely lead to models with improved predictive power.

Alternatively, we could adopt an incremental learning approach to reuse data concerning

previous time patches as defined by a given window parameter. However, we should be

aware that many online learning problems operate on volatile data that is just available for

a short period.

* 78 *

6.4. Concluding note

Table 6.3: Results for the windmill case study for L = 48 (8 hours). The test time of VES is
considered as part of the training time (library implementation)

Model
Training

error

Training

time

Test

error

Test

time

WT1

LSTCN 0.0701 0.1958 0.0721 0.0408

RNN 0.5963 17.7336 0.5966 4.5753

LSTM 0.1248 229.1311 0.1290 30.7941

GRU 0.1641 155.0201 0.1689 13.7719

VES 0.0142 0.454681 0.0873 -

HMM 0.0794 1432.65 0.0978 431.02

WT2

LSTCN 0.0594 0.7503 0.0600 0.0753

RNN 0.5340 27.3444 0.5357 5.7755

LSTM 0.1424 225.2245 0.1444 31.2621

GRU 0.2317 137.3365 0.2324 15.9500

VES 0.0076 0.4783 0.0612 -

HMM 0.0388 1586.91 0.0821 441.19

WT3

LSTCN 0.0474 0.2333 0.0482 0.0470

RNN 0.4991 20.1501 0.5048 5.8768

LSTM 0.1332 236.3217 0.1401 31.8122

GRU 0.1887 136.6582 0.1933 16.3957

VES 0.0141 0.4444 0.09261822 -

HMM 0.0761 1462.68 0.1582 413.93

WT4

LSTCN 0.0600 0.2463 0.0623 0.0490

RNN 0.3407 37.1072 0.3425 5.8727

LSTM 0.1254 214.9554 0.1318 19.9095

GRU 0.1634 138.3381 0.1688 16.1307

VES 0.0135 0.4437 0.0862 -

HMM 0.0799 1971.42 0.1239 531.94

0 200 400 600 800 1000
time

0.0

0.2

0.4

0.6

0.8

Original data
Test predictions

(a) L = 6

0 200 400 600 800 1000
time

0.0

0.2

0.4

0.6

0.8

1.0 Original data
Test predictions

(b) L = 48

0 200 400 600 800 1000
time

0.0

0.2

0.4

0.6

0.8

1.0 Original data
Test predictions

(c) L = 72

Figure 6.10: Moving average power predictions (w = 24) for the third windmill with (a) L = 6,
(b) L = 48 and (c) L = 72.

6.4 Concluding note

In this chapter, we investigated the performance of Long Short-term Cognitive Networks to

forecast windmill time series in online setting scenarios. This brand-new recurrent model

system consists of a sequence of Short-term Cognitive Network blocks. Each of these blocks

is trained with the available data at that moment in time such that the learned knowledge

is propagated to the next blocks. Therefore, the network is able to adjust its knowledge

to new information, which makes this model suitable for online settings since we retain the

* 79 *

6. ONLINE LEARNING OF WINDMILL TIME SERIES USING LONG SHORT-TERM
COGNITIVE NETWORKS

Table 6.4: Results for the windmill case study for L = 72 (12 hours). The test time of VES is
considered as part of the training time (library implementation)

Model
Training

error

Training

time

Test

error

Test

time

WT1

LSTCN 0.0706 0.3770 0.0726 0.0430

RNN 0.5187 45.8973 0.5219 9.5791

LSTM 0.1376 714.2750 0.1418 53.8956

GRU 0.1891 892.9639 0.1927 31.4892

VES 0.0143 0.5042 0.1095 -

HMM 0.0861 2967.08 0.1236 549.49

WT2

LSTCN 0.0597 1.0251 0.0604 0.0605

RNN 0.6490 60.2035 0.6553 8.9644

LSTM 0.1320 726.8744 0.1345 53.2367

GRU 0.2304 806.9376 0.2316 38.6462

VES 0.0078 0.5484 0.0722 -

HMM 0.0488 2642.24 0.0718 622.14

WT3

LSTCN 0.0476 0.5155 0.0494 0.0545

RNN 0.5524 47.0321 0.5618 9.4718

LSTM 0.1441 768.9152 0.1518 54.4804

GRU 0.1846 787.8666 0.1909 36.3055

VES 0.0143 0.5106 0.1084 -

HMM 0.0811 2916.17 0.1281 631.11

WT4

LSTCN 0.0605 0.5040 0.0618 0.0535

RNN 0.5313 45.3868 0.5378 10.0499

LSTM 0.1358 690.0783 0.1404 37.7908

GRU 0.1813 809.8271 0.1895 31.4764

VES 0.0136 0.4908 0.1014 -

HMM 0.0887 2365.61 0.1112 589.81

0 200 400 600 800 1000
time

0.0

0.2

0.4

0.6

0.8

1.0
Original data
Test predictions

(a) L = 6

0 200 400 600 800 1000
time

0.0

0.2

0.4

0.6

0.8

1.0 Original data
Test predictions

(b) L = 48

0 200 400 600 800 1000
time

0.0

0.2

0.4

0.6

0.8

1.0 Original data
Test predictions

(c) L = 72

Figure 6.11: Moving average power predictions (w = 24) for the fourth windmill with (a) L = 6,
(b) L = 48 and (c) L = 72.

knowledge learned from previous learning processes.

The experiments conducted using four windmill datasets reported that our approach

outperforms other state-of-the-art recurrent neural networks in terms of MAE. In addition,

the proposed LSTCN-based model is significantly faster than these recurrent models when

it comes to both training and test times. Such a feature is of paramount relevance when

designing forecasting models operating in online learning modes. Regrettably, the overall

performance of all forecasting models deteriorated when increasing the number of steps

ahead to be predicted. While this result is not surprising, further efforts are needed to build

* 80 *

6.4. Concluding note

forecasting models with better scalability properties as defined by the prediction horizon.

It is worth mentioning that the proposed architecture for online time series forecasting is

not restricted to windmill data. Instead, the architecture can be applied to any univariate

or multivariate time series provided that the proper pre-processing steps are conducted.

* 81 *

CHAPTER 7

THE BEGINNING OF THE END
Concluding remarks

W
hen we apply Machine Learning and optimization algorithms to solve real-world

problems, we often encounter three challenges: time constraints, data sparsity,

and uncertainty. Time constraints refer to the limited amount of time we have

to train our Machine learning models, evaluate our optimization objectives, or complete

the entire optimization process. Data sparsity is another challenge that can arise due to

various factors, such as limited resources or the high cost of collecting data. This can make

it difficult to obtain sufficient data to train our models or guide the optimization of our

objectives. In such situations, it is important to have efficient algorithms to maximize the

utility of the available data. Finally, the presence of uncertainty in the problem at hand can

further complicate the use of Machine Learning and optimization algorithms. To overcome

these challenges, researchers and practitioners need to develop innovative techniques and

methods to handle these issues effectively. This chapter outlines the key results of this thesis

and future research directions to be accomplished in the near future.

7.1 Conclusions

In this research, we have presented novel methods in the context of hyperparameter and

process bonding optimization, and time series forecasting. Bayesian optimization is a widely

used technique in scenarios where the evaluation of objectives is costly, which is why it is

the foundation of the proposed optimization methods. In the context of multi-objective

optimization, Bayesian optimization can be extended to handle multiple objectives by con-

structing a model that can capture the trade-offs between them.

The first optimization algorithm presented in this thesis (GP MOTPE) combines the pre-

dictor information (both predictor and predictor variance) obtained from a Gaussian Process

Regression (GPR) model with heterogenous noise, and the sampling strategy performed by

Multi-objective Tree Parzen Estimators (MOTPE). In this way, the algorithm should se-

lect new points that are likely to be non-dominated, and that are expected to cause the

maximum improvement in the scalarized objective function. The experiments reported that

this approach performed relatively well for analytical test functions, especially compared

to ParEGO (using a GPR for noisy observations). In the HPO experiments, GP MOTPE

showed the best average rank w.r.t. the hypervolume computed on the validation set and

showed promising reliability properties (small changes in hypervolume when the ML algo-

rithm is evaluated on the test set). The observation that it outperforms the pure GPR-based

* 83 *

7. CONCLUDING REMARKS

algorithm (which used a metaheuristic to maximize the infill criterion) is useful in its own

right, as the optimization of infill criteria is known to be challenging.

Although the superiority of GP MOTPE was demonstrated in terms of the increase in

hypervolume, the inclusion of GPR to handle the uncertainty of the hyperparameter evalua-

tion adds additional computational complexity to the HPO procedure and makes it difficult

to handle mixed search space. Since TPE-based algorithms do not suffer from this issue,

a more elegant alternative should directly handle noisy objective functions. As a result,

we introduced a TPE modification for single-objective optimization to account for the per-

formance variability of hyperparameter evaluations. The proposed modification uses the

probability of being “bad” and “good” of the observed points to estimate the probability

distribution of each hyperparameter in the input space. Therefore, the splitting procedure

used by the noiseless TPE is no longer needed. The aforementioned probability of being

“good” and “bad” uses the performance distributions observed in a cross-validation protocol

and reflect the influence of each point on the density function estimate used to suggest a new

input configuration. Experiments have shown that this modification is effective in terms of

classification errors. Likewise, the result also showed that using small values for γ report

better hyperparameter configurations; and although the size of the candidate set to sample

from l(x) was not an obvious choice, values smaller than 1000 candidates were preferred.

In addition to expensive and uncertain objectives, the optimization problem may also

have several constraints. Two constrained BO algorithms were also introduced in this thesis

to solve a bi-objective problem related to the adhesive bonding process of materials (max-

imizing break strength while minimizing production costs). The proposed approaches are

shown to clearly outperform state-of-the-art evolutionary algorithms, which are commonly

used in engineering design when solving general multi-objective, constrained problems. The

difference lies in how the experimental design is guided throughout the search: the Bayesian

approach selects infill points based on an acquisition function, which is related to the ex-

pected merit of the new infill point for optimization. The BO model ensures that the search

focuses on infill points that have a high probability of being feasible. Moreover, the GPR

model used to approximate the objective(s) accounts for the output (heterogenous) noise,

whereas the evolutionary algorithms rely simply on the (uncertain) sample means as perfor-

mance approximations. The success of evolutionary processes is largely dependent on the

availability of a sufficient experimentation budget, which is not always the case in practice.

Online learning requires algorithms with short training times. While the available data

may be enough to train the algorithm, it is not always accessible. As a result, the Machine

Learning algorithm must have the ability to assimilate new information entering the system

by adapting the acquired knowledge from previous training steps. We have shown that Long

Short-term Cognitive Networks are suitable for such scenarios. In this sense, the experiments

conducted using four windmill datasets reported that our approach outperforms other state-

of-the-art recurrent neural networks in terms of forecasting errors. In addition, the proposed

LSTCN-based model is significantly faster than these recurrent models when it comes to both

training and test times. Such a feature is of paramount relevance when designing forecasting

models operating in online learning modes.

Before concluding, it is worth mentioning that all the algorithms proposed in this thesis

are not restricted to the use cases analyzed. The proposed architecture of the LSTCN can be

applied to any univariate or multivariate time series provided that the proper pre-processing

steps are conducted. Similarly, the optimization algorithms presented for single and multi-

* 84 *

7.2. Recommendations for future research

objective optimization can be easily generalized to any other optimization problem where the

objectives are expensive to evaluate and are affected by noise. In this case, an appropriate

experimental design must be established to account for uncertainty and metamodel selection.

7.2 Recommendations for future research

As the field of multi-objective HPO is gaining speed, it presents diverse opportunities for

further studies. Recent research has shown potential benefits in studying cheaply available

(yet lower fidelity) information, obtained for instance by evaluating only a fraction of the

training data or a small number of iterations. Low fidelity methods such as bandit-based

approaches [93] have, to the best of our knowledge, not yet been applied in multi-objective

HPO. Also, early stopping criteria [35] could be considered to ensure more intelligent use of

the available computational budget. This has already been applied in single-objective opti-

mization [84, 122], by considering the algorithm’s learning curve: the training procedure for a

given hyperparameter configuration is then stopped when adding further resources (training

instance, iterations, training time, etc) is predicted to be futile. However, these techniques

should also be adapted to accommodate the performance variability of the hyperparameter

evaluation if they are included in the algorithms presented in this research. Nevertheless,

the synergy of multi-fidelity and BO techniques is worth studying in further studies.

Evolutionary algorithms (EA) are undoubtedly widely used to solve optimization prob-

lems. This is quite striking, as such approaches require the (noiseless) evaluation of many

points, and in many cases, such evaluation is expensive to perform. As we have shown in

this research, BO-based techniques are better suitable for optimization problems where a

limited evaluation budget exists and the objectives are affected by noise. However, further

research on metamodel-assisted EA appears promising here. One would expect that such

algorithms combine the best of two worlds, providing low computational cost (as the meta-

model provides inexpensive function evaluations) along with a heuristic sampling of new

points.

A typical characteristic of hyperparameter optimization is the mixed input space, with a

combination of discrete, categorical, numerical, and potentially even conditional variables.

Given that such mixed input spaces are non-obvious for algorithms using GPR (such as

GP MOTPE), we studied an adaptation of the original TPE algorithm (which naturally ac-

counts for such complex search spaces) to handle noisy objectives. However, further research

for GP MOTPE could focus on the inclusion of specific techniques to (1) adapt the kernels

of the GPR-based algorithms such that they can account for such mixed input spaces or (2)

adjust the input space such that traditional kernels can be used. On the other hand, the pro-

posed noisy TPE algorithm may also benefit from a multivariate kernel density estimation

to better handle interaction effects in the input space [47].

As for the proposed forecasting workflow in an online learning setting, it was observed

that the overall performance of all forecasting models deteriorated when increasing the num-

ber of steps ahead to be predicted. While this result is not surprising, further efforts are

needed to build forecasting models with better scalability properties defined by the predic-

tion horizon. We assumed that all variables studied in this research influence each other,

which is not always accurate in practice. Therefore, it would be worth investigating the

performance of LSTCN in problems where knowledge about this relationship is available.

* 85 *

7. CONCLUDING REMARKS

This can be particularly interesting if simpler models are required and where, in addition to

the temporal relationship, a spatial relationship is inherent in the problem (e.g., for mobility

data forecasting).

* 86 *

APPENDICES

APPENDIX A

Additional materials from Chapter 3

A.1 Comparison of Hypervolume values computed in validation

and test set

Table A.1: Comparison of the optimization algorithms according to the difference between the

hypervolume computed using the HP evaluation in the validation set and then evaluated with the

test set. The order relationship was determined by analyzing the difference between the hypervolume

computed using the validation set and the hypervolume computed using the test set. The lower the

rank the better.

Dataset

ID

ML

algorithm

Absolute differences in HV Ranks

ParEGO MOTPE GP MOTPE ParEGO MOTPE GP MOTPE

997 MLP 0.0415 0.0403 0.0273 3 2 1

841 MLP 0.2402 0.1055 0.1022 3 2 1

53 MLP 0.5755 0.7563 0.6928 1 3 2

814 MLP 0.0160 0.0055 0.0257 2 1 3

770 MLP 0.5268 0.2053 0.3606 3 1 2

778 MLP 0.6022 0.6949 0.2575 2 3 1

41945 MLP 0.2951 0.3501 0.3138 1 3 2

980 MLP 0.0476 0.0162 0.0309 3 1 2

871 MLP 0.6007 0.2550 0.2209 3 2 1

41146 MLP 0.3833 0.2318 0.4306 2 1 3

847 MLP 0.1700 0.1856 0.2338 1 2 3

803 MLP 0.1318 0.1421 0.1170 2 3 1

997 DT 0.0756 0.0420 0.0457 3 1 2

841 DT 0.0584 0.0729 0.0338 2 3 1

53 DT 0.2116 0.1116 0.1621 3 1 2

814 DT 0.0426 0.0233 0.0352 3 1 2

770 DT 0.1173 0.0167 0.0168 3 1 2

778 DT 0.2637 0.2640 0.2610 2 3 1

41945 DT 0.0993 0.0181 0.0340 3 1 2

980 DT 0.0670 0.0371 0.0244 3 2 1

871 DT 0.0995 0.0243 0.0389 3 1 2

41146 DT 0.0226 0.0189 0.0187 3 2 1

847 DT 0.0084 0.0206 0.0096 1 3 2

803 DT 0.0054 0.0054 0.0039 2 3 1

Continued on next page

* 89 *

A. Additional materials from Chapter 3

Dataset

ID

ML

algorithm

Absolute differences in HV Ranks

ParEGO MOTPE GP MOTPE ParEGO MOTPE GP MOTPE

997 SVM 0.0020 0.0000 0.0000 3 1 1

841 SVM 0.0219 0.0222 0.0217 2 3 1

53 SVM 0.1064 0.1029 0.0986 3 2 1

814 SVM 0.0075 0.0071 0.0085 2 1 3

770 SVM 0.0629 0.1463 0.0593 2 3 1

778 SVM 0.1181 0.0592 0.1181 2 1 2

41945 SVM 0.0700 0.0351 0.0859 2 1 3

980 SVM 0.0155 0.0155 0.0155 1 1 1

871 SVM 0.0196 0.0107 0.0337 2 1 3

41146 SVM 0.0243 0.0312 0.0206 2 3 1

847 SVM 0.0187 0.0283 0.0199 1 3 2

803 SVM 0.0103 0.0094 0.0120 2 1 3

Mean rank 2.25 1.86 1.75

* 90 *

APPENDIX B

Additional materials from Chapter 4

B.1 Agglomerative clustering of the settings considered in the

sensitivity analysis performed in Chapter 4

The hierarchical/agglomerative clustering was generated using the clustering module

scipy.cluster.hierarchy.linkage of the library sckit-learn. The clustering is made based on

the Euclidian distance between the mean classification error of the settings at the end of

10 macro-replications. We obtained 3 clusters; Cluster 1 with the settings with the lowest

classification error (the best), Cluster 3 with setting with the largest classification error (the

worst), and Cluster 2 with “medium” performances (the settings were not the worst but

they were not the best either).

* 91 *

B. Additional materials from Chapter 4

(a) Dataset 41945 (b) Dataset 53

(c) Dataset 841 (d) Dataset 997

* 92 *

B.1. Agglomerative clustering of the settings considered in the sensitivity analysis
performed in Chapter 4

(e) Dataset 980

Figure B.1: Clustering of the settings considered in the sensitivity analysis of the TPE parameters
with noisy observations. Dash red box highlights the settings included in Cluster 1.

* 93 *

APPENDIX C

Additional materials from Chapter 5

C.1 Constrained Expected Improvement (CEI)

The Constrained Expected Improvement (CEI, [158]) uses one OK metamodel to approxi-

mate the expensive objective and one metamodel to approximate each expensive constraint

independently. Then, for a constrained optimization problem with c constraints

min y(x),x ∈ R

s.t. gi(x) ≤ 0, i = 1, 2, . . . , c
(C.1)

the objective value of point x can be treated as a Gaussian random variable N (ŷ(x), ŝ(x))

and the i-th constraint value of x can be also treated as a Gaussian random variable

N (ĝi(x), êi(x)) , i = 1, 2, . . . , c. For this, ŷ and ŝ are the GP prediction and standard error

of the objective function respectively, and ĝi and êi are the GP prediction and standard

error of the i-th constraint function respectively.

Then, from Equation 5.1 we can transform the constraint and

g(x) = 0.5− Pf(x) ≤ 0 = Pf(x) ≥ 0.5 =
Pf(x)− ĝ(x)

ê(x)
≥ 0.5− ĝ(x)

ê(x)
(C.2)

PoF (x) = Prob

(
Pf(x)− ĝ(x)

ê(x)
≥ 0.5− ĝ(x)

ê(x)

)
= 1− Prob

(
Pf(x)− ĝ(x)

ê(x)
≤ 0.5− ĝ(x)

ê(x)

)
≡ 1− Φ

(
0.5− ĝ(x)

ê(x)

) (C.3)

In case the GP standing for the objective and constraint function are mutually indepen-

dent, the CEI can be obtained by combining the EI (to be consistent with our work we used

MEI instead and the predictors defined in Equation 2.11 and Equation 2.13) and PoF as

CMEI-SK(x) = MEI(x)× PoF (x)

=
[(

f̂SK(xmin)− f̂SK(x)
)
Φ(D) + ŝOK(x)ϕ (D)

]
×
[
1− Φ

(
0.5− ĝ(x)

ê(x)

)]
(C.4)

* 95 *

C. Additional materials from Chapter 5

and

D =
f̂SK(xmin)− f̂SK(x)

ŝOK(x)
(C.5)

Note that this equation is different from our proposed Equation 5.5 in the derivation of

the PoF. Figure C.1 shows that our proposed cMEI-SK got on average better Pareto fronts

(higher hypervolume values) than that of CEI. This suggests that considering the uncertainty

predicted by the GP may lead the optimization to points that do not cause an increase in

the hypervolume. This was more evident when the improvement was measured with MEI

(and fitting only one GP to the scalarized objectives).

20 30 40 50 60
Total of experiments

3.75

3.80

3.85

3.90

3.95

4.00

Hy
pe

rv
ol

um
e

in
di

ca
to

r

cEHVI-SK
CEHVI-SK
cMEI-SK
CMEI-SK

Figure C.1: Evolution of the mean hypervolume throughout the optimization (of 50 macro-
replications). The reference point [production cost=3, break strength=4] is used to compute this
metric

C.2 Wilcoxon test results

* 96 *

C.2. Wilcoxon test results

C-
M

OP
SO

C-
TA

EA
C-

NS
GA

-II
C-

M
OE

A/
D

cM
EI

-S
K

cM
EI

-O
K

cE
HV

I-S
K

cE
HV

I-O
K

C-
K-

RV
EA

OK
-C

-N
SG

A-
II

C-MOPSO
C-TAEA

C-NSGA-II
C-MOEA/D

cMEI-SK
cMEI-OK

cEHVI-SK
cEHVI-OK
C-K-RVEA

OK-C-NSGA-II 0.00

0.01

0.02

0.03

0.04

0.05

W
ilc

ox
on

 (S
ig

. d
if

p_
va

lu
e<

0.
05

)
(a) HV

C-
M

OP
SO

C-
TA

EA
C-

NS
GA

-II
C-

M
OE

A/
D

cM
EI

-S
K

cM
EI

-O
K

cE
HV

I-S
K

cE
HV

I-O
K

C-
K-

RV
EA

OK
-C

-N
SG

A-
II

C-MOPSO
C-TAEA

C-NSGA-II
C-MOEA/D

cMEI-SK
cMEI-OK

cEHVI-SK
cEHVI-OK
C-K-RVEA

OK-C-NSGA-II 0.00

0.01

0.02

0.03

0.04

0.05
W

ilc
ox

on
 (S

ig
. d

if
p_

va
lu

e<
0.

05
)

(b) IGD+

Figure C.2: Wilcoxon test results for significant differences between algorithms, using (a) Hyper-
volume and (b) IGD+ indicators. Pink color indicate no significant differences (p value ≥ 5%)

* 97 *

APPENDIX D

Additional materials from Chapter 6

Figure D.1 shows the overall behavior of weights connecting the inner neurons with the

outer ones in the first three STCN blocks when initial prior knowledge is used (first column)

and when the network starts training from scratch (second column). In this simulation, we

apply the tanh function to the average of the W1 and W2 matrices for the sake of simplicity,

thus resulting in an average layer. Here, inner and outer neurons refer to the leftmost and

rightmost neurons, respectively. Observe that weights in the networks, when initial prior

knowledge is not considered (second columns), are slowly changing towards a similar pattern

to the one observed when initial prior knowledge is used (first column).

0 10 20 30 40
Outer neurons

0

10

20

30

40

In
ne

r n
eu

ro
ns

0 10 20 30 40
Outer neurons

0

10

20

30

40

In
ne

r n
eu

ro
ns

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) STCN block 1

Figure D.1: Behavior of weights connecting the inner neurons with the outer ones in the first
STCN block after applying the tanh function to the average of the W1 and W2. The first column
and second column correspond to the network using initial prior knowledge and starting learning
from scratch respectively.

* 99 *

D. Additional materials from Chapter 6

0 10 20 30 40
Outer neurons

0

10

20

30

40

In
ne

r n
eu

ro
ns

0 10 20 30 40
Outer neurons

0

10

20

30

40

In
ne

r n
eu

ro
ns

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) STCN block 2

0 10 20 30 40
Outer neurons

0

10

20

30

40

In
ne

r n
eu

ro
ns

0 10 20 30 40
Outer neurons

0

10

20

30

40

In
ne

r n
eu

ro
ns

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) STCN block 3

0 10 20 30 40
Outer neurons

0

10

20

30

40

In
ne

r n
eu

ro
ns

0 10 20 30 40
Outer neurons

0

10

20

30

40

In
ne

r n
eu

ro
ns

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) STCN block 4

Figure D.1: Behavior of weights connecting the inner neurons with the outer ones in the second,
third, and fourth STCN block after applying the tanh function to the average of the W1 and W2.
The first column and second column correspond to the network using initial prior knowledge and
starting learning from scratch respectively. (cont.)

* 100 *

Bibliography

[1] Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M.,

Fieguth, P., Cao, X., Khosravi, A., Acharya, U.R., et al.: A review of uncertainty

quantification in deep learning: Techniques, applications and challenges. Information

Fusion 76, 243–297 (2021)

[2] Aharon, M., Kagian, A., Somekh, O.: Adaptive online hyper-parameters tuning for

ad event-prediction models. In: Proceedings of the 26th International Conference on

World Wide Web Companion. pp. 672–679 (2017)

[3] ogly Aliev, R.A., Aliev, R.R.: Soft computing and its applications. World Scientific

(2001)

[4] Andreopoulos, A., Tsotsos, J.K.: 50 years of object recognition: Directions forward.

Computer vision and image understanding 117(8), 827–891 (2013), https://doi.org/

10.1016/j.cviu.2013.04.005

[5] Ankenman, B., Nelson, B.L., Staum, J.: Stochastic kriging for simulation metamod-

eling. In: 2008 Winter Simulation Conference. pp. 362–370. IEEE (2008), https:

//doi.org/10.1109/WSC.2008.4736089

[6] Ankenman, B., Nelson, B.L., Staum, J.: Stochastic kriging for simulation metamod-

eling. Operations Research 58(2), 371–382 (2010), https://doi.org/10.1109/WSC.

2008.4736089

[7] Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective op-

timization: Theoretical foundations and practical implications. Theoretical Computer

Science 425, 75–103 (2012), https://doi.org/10.1016/j.tcs.2011.03.012

[8] Ayhan, M.S., Berens, P.: Test-time data augmentation for estimation of heteroscedas-

tic aleatoric uncertainty in deep neural networks. In: Medical Imaging with Deep

Learning (2018)

[9] Bader, J., Zitzler, E.: Hype: An algorithm for fast hypervolume-based many-objective

optimization. Evolutionary computation 19(1), 45–76 (2011)

[10] Barbaro, B.: Tuning hyperparameters for online learning. Ph.D. thesis, Case Western

Reserve University (2018)

[11] Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter tuning.

In: International conference on machine learning. pp. 199–207. PMLR (2013)

* 101 *

Bibliography

[12] Bates, S., Hastie, T., Tibshirani, R.: Cross-validation: what does it estimate and how

well does it do it? Journal of the American Statistical Association (just-accepted),

1–22 (2023)

[13] Benavoli, A., Corani, G., Mangili, F.: Should we really use post-hoc tests based on

mean-ranks? The Journal of Machine Learning Research 17(1), 152–161 (2016)

[14] Bengio, Y., Grandvalet, Y.: Bias in estimating the variance of k-fold cross-validation.

Statistical modeling and analysis for complex data problems pp. 75–95 (2005)

[15] Berenji, H.R.: Treatment of uncertainty in artificial intelligence (1988)

[16] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter

optimization. In: 25th annual conference on neural information processing systems

(NIPS 2011). vol. 24. Neural Information Processing Systems Foundation (2011)

[17] Bhaumik, D., Crommelin, D., Kapodistria, S., Zwart, B.: Hidden markov models for

wind farm power output. IEEE Transactions on Sustainable Energy 10(2), 533–539

(2019)

[18] Binois, M., Gramacy, R.B.: hetgp: Heteroskedastic gaussian process modeling and

sequential design in r (2021)

[19] Bischl, B., Mersmann, O., Trautmann, H., Weihs, C.: Resampling methods for meta-

model validation with recommendations for evolutionary computation. Evolutionary

Computation 20(2), 249–275 (2012), https://doi.org/10.1162/EVCO_a_00069

[20] Blum, A.: On-line algorithms in machine learning. Online algorithms: the state of the

art pp. 306–325 (2005)

[21] Breiman, L.: Heuristics of instability and stabilization in model selection. The annals

of statistics 24(6), 2350–2383 (1996)

[22] Brownlee, A.E., Wright, J.A.: Constrained, mixed-integer and multi-objective optimi-

sation of building designs by nsga-ii with fitness approximation. Applied Soft Comput-

ing 33, 114–126 (2015), https://doi.org/10.1016/j.asoc.2015.04.010

[23] Cabrera-Hernández, L., Hernández, A.M., Gómez, M.M., Meneses, A.: Diversity-based

selection of learning algorithms: a bagging approach. Investigación Operacional 42(4),

495–510 (2021)

[24] Cai, X., Hu, Z., Zhao, P., Zhang, W., Chen, J.: A hybrid recommendation system

with many-objective evolutionary algorithm. Expert Systems with Applications 159,

113648 (2020), https://doi.org/10.1016/j.eswa.2020.113648

[25] Cao, L., Zhang, J., Wang, J., Qian, Z.: Intelligent fault diagnosis of wind turbine

gearbox based on long short-term memory networks. In: 2019 IEEE 28th International

Symposium on Industrial Electronics (ISIE). pp. 890–895 (2019)

[26] Celikyilmaz, A., Turksen, I.B.: Modeling uncertainty with fuzzy logic. Studies in fuzzi-

ness and soft computing 240, 149–215 (2009)

* 102 *

Bibliography

[27] Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks

for multivariate time series with missing values. Scientific Reports 8(1), 6085 (2018)

[28] Chen, H., Liu, H., Chu, X., Liu, Q., Xue, D.: Anomaly detection and critical SCADA

parameters identification for wind turbines based on LSTM-AE neural network. Re-

newable Energy 172, 829–840 (2021)

[29] Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,

Bengio, Y.: Learning phrase representations using RNN encoder–decoder for statistical

machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP). pp. 1724–1734 (2014)

[30] Chugh, T.: Scalarizing functions in bayesian multiobjective optimization. In: 2020

IEEE Congress on Evolutionary Computation (CEC). pp. 1–8. IEEE (2020)

[31] Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., Sindhya, K.: A surrogate-assisted

reference vector guided evolutionary algorithm for computationally expensive many-

objective optimization. IEEE Transactions on Evolutionary Computation 22(1), 129–

142 (2016)

[32] Chugh, T., Sindhya, K., Hakanen, J., Miettinen, K.: A survey on handling computa-

tionally expensive multiobjective optimization problems with evolutionary algorithms.

Soft Computing pp. 1–30 (2017), https://doi.org/10.1007/s00500-017-2965-0

[33] Couckuyt, I., Deschrijver, D., Dhaene, T.: Fast calculation of multiobjective prob-

ability of improvement and expected improvement criteria for pareto optimization.

Journal of Global Optimization 60(3), 575–594 (2014), https://doi.org/10.1007/

s10898-013-0118-2

[34] Cui, Y., Bangalore, P., Bertling Tjernberg, L.: A fault detection framework using

recurrent neural networks for condition monitoring of wind turbines. Wind Energy

24(11), 1249–1262 (2021)

[35] Dai, Z., Yu, H., Low, B.K.H., Jaillet, P.: Bayesian optimization meets bayesian optimal

stopping. In: International Conference on Machine Learning. pp. 1496–1506. PMLR

(2019), \url{http://proceedings.mlr.press/v97/dai19a.html}

[36] Daulton, S., Balandat, M., Bakshy, E.: Differentiable expected hypervolume improve-

ment for parallel multi-objective bayesian optimization. Advances in Neural Informa-

tion Processing Systems 33, 9851–9864 (2020)

[37] Daulton, S., Balandat, M., Bakshy, E.: Parallel bayesian optimization of multiple noisy

objectives with expected hypervolume improvement. Advances in Neural Information

Processing Systems 34, 2187–2200 (2021)

[38] Du, M., Yi, J., Mazidi, P., Cheng, L., Guo, J.: A parameter selection method for wind

turbine health management through SCADA data. Energies 10(2) (2017)

[39] Dumont, V., Garner, C., Trivedi, A., Jones, C., Ganapati, V., Mueller, J., Perciano,

T., Kiran, M., Day, M.: Hyppo: A surrogate-based multi-level parallelism tool for

hyperparameter optimization. In: 2021 IEEE/ACM Workshop on Machine Learning

in High Performance Computing Environments (MLHPC). pp. 81–93. IEEE (2021)

* 103 *

Bibliography

[40] Ekbal, A., Saha, S.: Joint model for feature selection and parameter optimization

coupled with classifier ensemble in chemical mention recognition. Knowledge-Based

Systems 85, 37–51 (2015), https://doi.org/10.1016/j.knosys.2015.04.015

[41] Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey. The Journal

of Machine Learning Research 20(1), 1997–2017 (2019)

[42] Emmerich, M.T., Deutz, A.H.: A tutorial on multiobjective optimization: fundamen-

tals and evolutionary methods. Natural computing 17(3), 585–609 (2018)

[43] Emmerich, M.T., Deutz, A.H., Klinkenberg, J.W.: Hypervolume-based expected im-

provement: Monotonicity properties and exact computation. In: 2011 IEEE Congress

of Evolutionary Computation (CEC). pp. 2147–2154. IEEE (2011), https://doi.org/

10.1109/CEC.2011.5949880

[44] Emmerich, M.T., Giannakoglou, K.C., Naujoks, B.: Single-and multiobjective evolu-

tionary optimization assisted by gaussian random field metamodels. IEEE Transactions

on Evolutionary Computation 10(4), 421–439 (2006)

[45] Ertel, W.: Introduction to artificial intelligence. Springer (2018)

[46] Falkner, S., Klein, A., Hutter, F.: Combining hyperband and bayesian optimization.

In: NIPS 2017 Bayesian Optimization Workshop (Dec 2017) (2017)

[47] Falkner, S., Klein, A., Hutter, F.: Bohb: Robust and efficient hyperparameter opti-

mization at scale. In: International Conference on Machine Learning. pp. 1437–1446.

PMLR (2018), \url{http://proceedings.mlr.press/v80/falkner18a.html}

[48] Feliot, P., Bect, J., Vazquez, E.: A bayesian approach to constrained single-and multi-

objective optimization. Journal of Global Optimization 67(1-2), 97–133 (2017), https:

//doi.org/10.1007/s10898-016-0427-3

[49] Feng, B., Zhang, D., Si, Y., Tian, X., Qian, P.: A condition monitoring method of wind

turbines based on long short-term memory neural network. In: 2019 25th International

Conference on Automation and Computing (ICAC). pp. 1–4 (2019)

[50] Feurer, M., Hutter, F.: Hyperparameter optimization. In: Automated machine learn-

ing: methods, systems, challenges, pp. 3–33. Springer, Cham (2019)

[51] Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling

(A Practical Guide). John Wiley and Sons, West Sussex, UK, 1st edn. (2008)

[52] Forrester, A.I., Keane, A.J., Bressloff, N.W.: Design and analysis of” noisy” computer

experiments. AIAA journal 44(10), 2331–2339 (2006), https://doi.org/10.2514/1.

20068

[53] Frazier, P.I.: Bayesian optimization. In: Recent advances in optimization and modeling

of contemporary problems, pp. 255–278. Informs (2018)

[54] Gao, Y.l., Qu, M.: Constrained multi-objective particle swarm optimization algorithm.

In: International Conference on Intelligent Computing. pp. 47–55. Springer (2012)

* 104 *

Bibliography

[55] Gardner Jr, E.S.: Exponential smoothing: The state of the art. Journal of forecasting

4(1), 1–28 (1985)

[56] Garrido, E.C., Hernández, D.: Predictive entropy search for multi-objective bayesian

optimization with constraints. Neurocomputing 361, 50–68 (2019), https://doi.org/

10.1016/j.neucom.2019.06.025

[57] Gawlikowski, J., Tassi, C.R.N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A.,

Triebel, R., Jung, P., Roscher, R., et al.: A survey of uncertainty in deep neural

networks. arXiv preprint arXiv:2107.03342 (2021)

[58] Gelbart, M.A., Adams, R.P., Hoffman, M.W., Ghahramani, Z., et al.: A general frame-

work for constrained bayesian optimization using information-based search. Journal of

Machine Learning Research 17(160), 1–53 (2016)

[59] Gonzalez, S.R., Jalali, H., Van Nieuwenhuyse, I.: A multiobjective stochastic sim-

ulation optimization algorithm. European Journal of Operational Research 284(1),

212–226 (2020), https://doi.org/10.1016/j.ejor.2019.12.014

[60] Gramacy, R.B.: Surrogates: Gaussian process modeling, design, and optimization for

the applied sciences. Chapman and Hall/CRC (2020)

[61] Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural

networks. In: International conference on machine learning. pp. 1321–1330. PMLR

(2017)

[62] Hernández-Lobato, J.M., Gelbart, M., Hoffman, M., Adams, R., Ghahramani, Z.:

Predictive entropy search for bayesian optimization with unknown constraints. In:

International conference on machine learning. pp. 1699–1707. PMLR (2015)

[63] Hertel, L., Baldi, P., Gillen, D.L.: Reproducible hyperparameter optimization. Journal

of Computational and Graphical Statistics 31(1), 84–99 (2022)

[64] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8),

1735–1780 (1997)

[65] Horn, D., Bischl, B.: Multi-objective parameter configuration of machine learning algo-

rithms using model-based optimization. In: 2016 IEEE Symposium Series on Compu-

tational Intelligence (SSCI). pp. 1–8. IEEE (2016), https://doi.org/10.1109/SSCI.

2016.7850221

[66] Horn, D., Dagge, M., Sun, X., Bischl, B.: First investigations on noisy model-based

multi-objective optimization. In: International Conference on Evolutionary Multi-

Criterion Optimization. pp. 298–313. Springer (2017), https://doi.org/10.1007/

978-3-319-54157-0_21

[67] Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applica-

tions. Neurocomputing 70(1-3), 489–501 (2006)

[68] Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test

problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary

Computation 10(5), 477–506 (2006)

* 105 *

Bibliography

[69] Hunter, S.R., Applegate, E.A., Arora, V., Chong, B., Cooper, K., Rincón-Guevara, O.,

Vivas-Valencia, C.: An introduction to multiobjective simulation optimization. ACM

Trans. Model. Comput. Simul. 29(1), 7:1–7:36 (Jan 2019), http://doi.acm.org/10.

1145/3299872

[70] Hutter, F., Kotthoff, L., Vanschoren, J.: Automated machine learning: methods, sys-

tems, challenges. Springer Nature (2019)

[71] Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in

generational distance and inverted generational distance. In: International conference

on evolutionary multi-criterion optimization. pp. 110–125. Springer (2015), https:

//doi.org/10.1007/978-3-319-15892-1_8

[72] Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Simultaneous use of different

scalarizing functions in moea/d. In: Proceedings of the 12th annual conference on

Genetic and evolutionary computation. pp. 519–526 (2010)

[73] Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using

reference-point based nondominated sorting approach, part ii: Handling constraints

and extending to an adaptive approach. IEEE Transactions on evolutionary computa-

tion 18(4), 602–622 (2013)

[74] Jalali, H., Van Nieuwenhuyse, I., Picheny, V.: Comparison of kriging-based algorithms

for simulation optimization with heterogeneous noise. European Journal of Operational

Research 261(1), 279–301 (2017)

[75] Jalali, H., Van Nieuwenhuyse, I., Picheny, V.: Comparison of kriging-based algorithms

for simulation optimization with heterogeneous noise. European Journal of Operational

Research 261(1), 279–301 (2017), https://doi.org/10.1016/j.ejor.2017.01.035

[76] Jeong, S., Obayashi, S.: Efficient global optimization (ego) for multi-objective problem

and data mining. In: 2005 IEEE congress on evolutionary computation. vol. 3, pp.

2138–2145. IEEE (2005)

[77] Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H.,

Wang, Y.: Artificial intelligence in healthcare: past, present and future. Stroke and vas-

cular neurology 2(4), 230–243 (2017), https://doi.org/10.1136/svn-2017-000101

[78] Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive

black-box functions. Journal of Global optimization 13(4), 455–492 (1998), https:

//doi.org/10.1023/A:1008306431147

[79] Jordens, J., Van Doninck, B., Satrio, N.R., Morales-Hernández, A., Couckuyt, I.,

Van Nieuwenhuyse, I., Witters, M.: Optimization of plasma-assisted surface treatment

for adhesive bonding via artificial intelligence. In: 2nd International Conference on

Industrial Applications of Adhesives 2022: Selected Contributions of IAA 2022. pp.

47–64. Springer (2022)

[80] Kleijnen, J.P.: Design and analysis of simulation experiments. Springer (2018)

[81] Klir, G., Wierman, M.: Uncertainty-based information: elements of generalized infor-

mation theory, vol. 15. Springer Science & Business Media (1999)

* 106 *

Bibliography

[82] Knowles, J.: Parego: A hybrid algorithm with on-line landscape approximation for

expensive multiobjective optimization problems. IEEE Transactions on Evolutionary

Computation 10(1), 50–66 (2006), https://doi.org/10.1109/TEVC.2005.851274

[83] Koch, P., Wagner, T., Emmerich, M.T., Bäck, T., Konen, W.: Efficient multi-criteria

optimization on noisy machine learning problems. Applied Soft Computing 29, 357–370

(2015), https://doi.org/10.1016/j.asoc.2015.01.005

[84] Kohavi, R., John, G.H.: Automatic parameter selection by minimizing estimated error.

In: Machine Learning Proceedings 1995, pp. 304–312. Elsevier (1995), https://doi.

org/10.1016/B978-1-55860-377-6.50045-1

[85] Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation

and model selection. In: Ijcai. vol. 14, pp. 1137–1145. Montreal, Canada (1995)

[86] Kong, W., Dong, Z.Y., Jia, Y., Hill, D.J., Xu, Y., Zhang, Y.: Short-term residential

load forecasting based on LSTM recurrent neural network. IEEE Transactions on Smart

Grid 10(1), 841–851 (2019)

[87] Kong, Z., Tang, B., Deng, L., Liu, W., Han, Y.: Condition monitoring of wind turbines

based on spatio-temporal fusion of SCADA data by convolutional neural networks and

gated recurrent units. Renewable Energy 146, 760–768 (2020)

[88] Kramti, S.E., Ben Ali, J., Saidi, L., Sayadi, M., Bechhoefer, E.: Direct wind turbine

drivetrain prognosis approach using elman neural network. In: 2018 5th International

Conference on Control, Decision and Information Technologies (CoDIT). pp. 859–864

(2018)

[89] Lázaro-Gredilla, M., Titsias, M.K.: Variational heteroscedastic gaussian process re-

gression. In: ICML. pp. 841–848 (2011)

[90] Le, T., Nguyen, T., Nguyen, V., Phung, D.: Dual space gradient descent for online

learning. Advances in Neural Information Processing Systems 29 (2016)

[91] Lei, J., Liu, C., Jiang, D.: Fault diagnosis of wind turbine based on long short-term

memory networks. Renewable Energy 133, 422–432 (2019)

[92] Li, K., Chen, R., Fu, G., Yao, X.: Two-archive evolutionary algorithm for constrained

multiobjective optimization. IEEE Transactions on Evolutionary Computation 23(2),

303–315 (2018)

[93] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A

novel bandit-based approach to hyperparameter optimization. The Journal of Ma-

chine Learning Research 18(1), 6765–6816 (2017), \url{https://jmlr.org/papers/

v18/16-558.html}

[94] Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation: A

survey. ACM Computing Surveys 52(2), 26 (2019)

[95] Li, M., Li, G., Azarm, S.: A kriging metamodel assisted multi-objective genetic al-

gorithm for design optimization. Journal of Mechanical Design 130(3) (2008), https:

//doi.org/10.1115/1.2829879

* 107 *

Bibliography

[96] Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation: A

survey. ACM Computing Surveys (CSUR) 52(2), 1–38 (2019), https://doi.org/10.

1145/3300148

[97] Lin, C.H.: Recurrent modified elman neural network control of PM synchronous gen-

erator system using wind turbine emulator of pm synchronous servo motor drive. In-

ternational Journal of Electrical Power & Energy Systems 52, 143–160 (2013)

[98] Lin, C.H.: Wind turbine driving a PM synchronous generator using novel recurrent

Chebyshev neural network control with the ideal learning rate. Energies 9(6) (2016)

[99] Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Marben, J., Müller, P.,

Hutter, F.: Boah: A tool suite for multi-fidelity bayesian optimization & analysis of

hyperparameters. arXiv:1908.06756 [cs.LG] (2019)

[100] Loka, N., Couckuyt, I., Garbuglia, F., Spina, D., Van Nieuwenhuyse, I., Dhaene, T.:

Bi-objective bayesian optimization of engineering problems with cheap and expensive

cost functions. Engineering with Computers pp. 1–11 (2022)

[101] López, E., Valle, C., Allende-Cid, H., Allende, H.: Comparison of recurrent neural

networks for wind power forecasting. In: Pattern Recognition. pp. 25–34 (2020)

[102] López-Ibánez, M., Paquete, L., Stützle, T.: Exploratory analysis of stochastic local

search algorithms in biobjective optimization. In: Experimental methods for the anal-

ysis of optimization algorithms, pp. 209–222. Springer (2010), https://doi.org/10.

1007/978-3-642-02538-9_9

[103] Losing, V., Hammer, B., Wersing, H.: Incremental on-line learning: A review and

comparison of state of the art algorithms. Neurocomputing 275, 1261–1274 (2018)

[104] Luo, G.: A review of automatic selection methods for machine learning algorithms

and hyper-parameter values. Network Modeling Analysis in Health Informatics and

Bioinformatics 5(1), 18 (2016), https://doi.org/10.1007/s13721-016-0125-6

[105] Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engi-

neering. Structural and Multidisciplinary Optimization 26(6), 369–395 (2004), https:

//doi.org/10.1007/s00158-003-0368-6

[106] Meckesheimer, M., Barton, R.R., Simpson, T., Limayem, F., Yannou, B.: Metamodel-

ing of combined discrete/continuous responses. AIAA journal 39(10), 1950–1959 (2001)

[107] Miettinen, K.: Nonlinear multiobjective optimization, vol. 12. Springer Science & Busi-

ness Media (1999)

[108] Miettinen, K., Mäkelä, M.M.: On scalarizing functions in multiobjective optimization.

OR spectrum 24(2), 193–213 (2002), https://doi.org/10.1007/s00291-001-0092-9

[109] Mishra, S., Bordin, C., Taharaguchi, K., Palu, I.: Comparison of deep learning models

for multivariate prediction of time series wind power generation and temperature.

Energy Reports 6, 273–286 (2020)

[110] Mishra, V.K., Rajagopalan, A.: A novel extreme value theory based approach to

hyperparameter optimization. Procedia Computer Science 218, 2411–2419 (2023)

* 108 *

Bibliography

[111] Mitchell, M.: An introduction to genetic algorithms. MIT press (1998)

[112] Mitchell, T.M., et al.: Machine learning. Burr Ridge, IL: McGraw Hill 45(37), 870–877

(1997)

[113] Morales-Hernández, A., Nápoles, G., Jastrzebska, A., Salgueiro, Y., Vanhoof, K.: On-

line learning of windmill time series using long short-term cognitive networks. Expert

Systems with Applications 205, 117721 (2022)

[114] Morales-Hernández, A., Van Nieuwenhuyse, I., Nápoles, G.: Multi-objective hyperpa-

rameter optimization with performance uncertainty. In: Optimization and Learning:

5th International Conference, OLA 2022, Syracuse, Sicilia, Italy, July 18–20, 2022,

Proceedings. pp. 37–46. Springer (2022)

[115] Morales-Hernández, A., Van Nieuwenhuyse, I., Rojas Gonzalez, S.: A survey on multi-

objective hyperparameter optimization algorithms for machine learning. Artificial In-

telligence Review pp. 1–51 (2022)

[116] Muñoz-González, L., Lázaro-Gredilla, M., Figueiras-Vidal, A.R.: Heteroscedastic

gaussian process regression using expectation propagation. In: 2011 IEEE Interna-

tional Workshop on Machine Learning for Signal Processing. pp. 1–6. IEEE (2011)

[117] Nápoles, G., Grau, I., Jastrzebska, A., Salgueiro, Y.: Long short-term cognitive net-

works. Neural Computing and Applications 34(19), 16959–16971 (2022)

[118] Nápoles, G., Vanhoenshoven, F., Vanhoof, K.: Short-term cognitive networks, flexible

reasoning and nonsynaptic learning. Neural Networks 115, 72–81 (2019)

[119] Netrapalli, P.: Stochastic gradient descent and its variants in machine learning. Journal

of the Indian Institute of Science 99(2), 201–213 (2019)

[120] Ozaki, Y., Tanigaki, Y., Watanabe, S., Onishi, M.: Multiobjective tree-structured

parzen estimator for computationally expensive optimization problems. In: Proceed-

ings of the 2020 Genetic and Evolutionary Computation Conference. pp. 533–541

(2020), https://doi.org/10.1145/3377930.3389817

[121] Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Mar-

ques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In:

2005 IEEE computer society conference on computer vision and pattern recognition

(CVPR’05). vol. 1, pp. 947–954. IEEE (2005), https://doi.org/10.1109/CVPR.2005.

268

[122] Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In: Proceedings of

the fifth ACM SIGKDD international conference on Knowledge discovery and data

mining. pp. 23–32 (1999), https://doi.org/10.1145/312129.312188

[123] Qian, P., Tian, X., Kanfoud, J., Lee, J.L.Y., Gan, T.H.: A novel condition monitoring

method of wind turbines based on long short-term memory neural network. Energies

12(18) (2019)

[124] Qin, S., Sun, C., Jin, Y., Zhang, G.: Bayesian approaches to surrogate-assisted evolu-

tionary multi-objective optimization: A comparative study. In: 2019 IEEE Symposium

Series on Computational Intelligence (SSCI). pp. 2074–2080 (2019)

* 109 *

Bibliography

[125] Qu, K., Si, G., Sun, X., Lian, W., Huang, Y., Li, P.: Time series simulation for

multiple wind farms based on hmms and regular vine copulas. Journal of Renewable

and Sustainable Energy 13(2), 023311 (2021)

[126] Quan, N., Yin, J., Ng, S.H., Lee, L.H.: Simulation optimization via kriging: a se-

quential search using expected improvement with computing budget constraints. Iie

Transactions 45(7), 763–780 (2013)

[127] Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech

recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

[128] Rajagopal, A., Joshi, G.P., Ramachandran, A., Subhalakshmi, R., Khari, M., Jha,

S., Shankar, K., You, J.: A deep learning model based on multi-objective particle

swarm optimization for scene classification in unmanned aerial vehicles. IEEE Access

8, 135383–135393 (2020), https://doi.org/10.1109/ACCESS.2020.3011502

[129] Ren, P., Xiao, Y., Chang, X., Huang, P.Y., Li, Z., Chen, X., Wang, X.: A comprehen-

sive survey of neural architecture search: Challenges and solutions. ACM Computing

Surveys (CSUR) 54(4), 1–34 (2021)

[130] Richter, J., Kotthaus, H., Bischl, B., Marwedel, P., Rahnenführer, J., Lang, M.: Faster

model-based optimization through resource-aware scheduling strategies. In: Interna-

tional Conference on Learning and Intelligent Optimization. pp. 267–273. Springer

(2016), https://doi.org/10.1007/978-3-319-50349-3_22

[131] Riganti-Fulginei, F., Sun, Z., Sun, H.: Health status assessment for wind turbine

with recurrent neural networks. Mathematical Problems in Engineering 2018, 6972481

(2018)

[132] Rojas Gonzalez, S., Jalali, H., Nieuwenhuyse, I.V.: A multiobjective stochastic sim-

ulation optimization algorithm. European Journal of Operational Research 284(1),

212–226 (2020), https://doi.org/10.1016/j.ejor.2019.12.014

[133] Rojas Gonzalez, S., Jalali, H., Van Nieuwenhuyse, I.: A multiobjective stochastic

simulation optimization algorithm. European Journal of Operational Research 284(1),

212–226 (2020), https://doi.org/10.1016/j.ejor.2019.12.014

[134] Rojas-Gonzalez, S., van Nieuwenhuyse, I.: A survey on kriging-based infill algorithms

for multiobjective simulation optimization. Computers and Operations Research 116,

104869 (2020), https://doi.org/10.1016/j.cor.2019.104869

[135] Rojas-Gonzalez, S., Van Nieuwenhuyse, I.: A survey on kriging-based infill algorithms

for multiobjective simulation optimization. Computers & Operations Research 116,

104869 (2020), https://doi.org/10.1016/j.cor.2019.104869

[136] Schaffer, C.: Selecting a classification method by cross-validation. Machine learning

13, 135–143 (1993)

[137] Scott, D.W.: Multivariate density estimation: theory, practice, and visualization. John

Wiley & Sons (2015)

* 110 *

Bibliography

[138] Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-term

memory (LSTM) network. Physica D: Nonlinear Phenomena 404, 132306 (2020)

[139] de Silva, A.: Vector Exponential Smoothing, pp. 287–300. Springer Berlin Heidelberg,

Berlin, Heidelberg (2008), https://doi.org/10.1007/978-3-540-71918-2_17

[140] Silverman, B.W.: Density estimation for statistics and data analysis. Routledge (1998)

[141] Sobester, A., Forrester, A., Keane, A.: Engineering design via surrogate modelling: a

practical guide. John Wiley & Sons (2008)

[142] Strobelt, H., Gehrmann, S., Pfister, H., Rush, A.M.: Lstmvis: A tool for visual anal-

ysis of hidden state dynamics in recurrent neural networks. IEEE Transactions on

Visualization and Computer Graphics 24(1), 667–676 (2018)

[143] Talbi, E.G.: Automated design of deep neural networks: A survey and unified tax-

onomy. ACM Computing Surveys (CSUR) 54(2), 1–37 (2021), https://doi.org/10.

1145/3439730

[144] Tautz-Weinert, J., Watson, S.J.: Using scada data for wind turbine condition

monitoring–a review. IET Renewable Power Generation 11(4), 382–394 (2017)

[145] Tharwat, A.: Classification assessment methods. Applied Computing and Informatics

(2020), https://doi.org/10.1016/j.aci.2018.08.003

[146] de Toro, F., Ros, E., Mota, S., Ortega, J.: Multi-objective optimization evolutionary

algorithms applied to paroxysmal atrial fibrillation diagnosis based on the k-nearest

neighbours classifier. In: Ibero-American Conference on Artificial Intelligence. pp. 313–

318. Springer (2002), https://doi.org/10.1007/3-540-36131-6_32

[147] Vanschoren, J.: Meta-learning. In: Automated machine learning: methods, systems,

challenges, pp. 35–61. Springer, Cham (2019)

[148] Viana, F.A.: Things you wanted to know about the latin hypercube design and were

afraid to ask. In: 10th World Congress on Structural and Multidisciplinary Optimiza-

tion. vol. 19. sn (2013)

[149] Villmann, T., Kaden, M., Lange, M., Stürmer, P., Hermann, W.: Precision-recall-

optimization in learning vector quantization classifiers for improved medical classifi-

cation systems. In: 2014 IEEE Symposium on Computational Intelligence and Data

Mining (CIDM). pp. 71–77. IEEE (2014)

[150] Wang, Y., Xie, D., Wang, X., Zhang, Y.: Prediction of wind turbine-grid interaction

based on a principal component analysis-long short term memory model. Energies

11(11) (2018)

[151] Weerakody, P.B., Wong, K.W., Wang, G., Ela, W.: A review of irregular time series

data handling with gated recurrent neural networks. Neurocomputing 441, 161–178

(2021)

[152] Williams, C.K., Rasmussen, C.E.: Gaussian processes for machine learning, vol. 2.

MIT press Cambridge, MA (2006)

* 111 *

Bibliography

[153] Wilson, J., Hutter, F., Deisenroth, M.: Maximizing acquisition functions for bayesian

optimization. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-

Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems.

vol. 31. Curran Associates, Inc. (2018), https://proceedings.neurips.cc/paper/

2018/file/498f2c21688f6451d9f5fd09d53edda7-Paper.pdf

[154] Xiang, L., Wang, P., Yang, X., Hu, A., Su, H.: Fault detection of wind turbine based on

SCADA data analysis using CNN and LSTM with attention mechanism. Measurement

175, 109094 (2021)

[155] Xue, X., Xie, Y., Zhao, J., Qiang, B., Mi, L., Tang, C., Li, L.: Attention mechanism-

based CNN-LSTM model for wind turbine fault prediction using SSN ontology anno-

tation. Wireless Communications and Mobile Computing 2021, 6627588 (2021)

[156] Yarat, S., Senan, S., Orman, Z.: A Comparative Study on PSO with Other Meta-

heuristic Methods, pp. 49–72. Springer International Publishing, Cham (2021)

[157] Yogatama, D., Mann, G.: Efficient transfer learning method for automatic hyperpa-

rameter tuning. In: Artificial intelligence and statistics. pp. 1077–1085. PMLR (2014)

[158] Zhan, D., Xing, H.: Expected improvement for expensive optimization: a review.

Journal of Global Optimization 78(3), 507–544 (2020), https://doi.org/10.1007/

s10898-020-00923-x

[159] Zhang, X.M., Han, Q.L., Ge, X., Ding, D.: An overview of recent developments in

lyapunov-krasovskii functionals and stability criteria for recurrent neural networks with

time-varying delays. Neurocomputing 313, 392–401 (2018)

[160] Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a

comparative case study. In: Parallel Problem Solving from Nature—PPSN V: 5th Inter-

national Conference Amsterdam, The Netherlands September 27–30, 1998 Proceedings

5. pp. 292–301. Springer (1998)

* 112 *

Publications

• Morales-Hernández, A., Van Nieuwenhuyse, I., Rojas, S., Jordens, J., Witters, M.,

Van Doninck, B. (2023). Expensive multi-objective optimization of adhesive bonding

process in constrained settings. In: Optimization and Learning. OLA 2023. Commu-

nications in Computer and Information Science, (accepted for publication).

• Morales-Hernández, A., Rojas, S., Van Nieuwenhuyse, I., Couckuyt, I., Jordens,

J., Witters, M., Van Doninck, B. (2023). Bayesian multi-objective optimization of

process design parameters in constrained settings with noise: an engineering design

application. (submitted).

• Morales-Hernández, A., Van Nieuwenhuyse, I., Rojas, S. (2022). A survey on multi-

objective hyperparameter optimization for Machine Learning. Artificial Intelligence

review, https://doi.org/10.1007/s10462-022-10359-2

• Morales-Hernández, A., Nápoles G., Jastrzebska A., Salgueiro Y., Vanhoof K.

(2022) Online learning of windmill time series using Long Short-term Cognitive Net-

works. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2022.

117721

• Jastrzebska A, Morales-Hernández A., Nápoles G., Salgueiro Y, Vanhoof K. (2022)

Measuring wind turbine health using fuzzy-concept-based drifting models. Renewable

Energy. 190, 730–740, https://doi.org/10.1016/j.renene.2022.03.116.

• Jordens, J., Van Doninck, B., Satrio, N. R., Morales-Hernández A., Couckuyt,

I., Van Nieuwenhuyse, I., Witters, M. (2023). Optimization of Plasma-Assisted

Surface Treatment for Adhesive Bonding via Artificial Intelligence. In 2nd Inter-

national Conference on Industrial Applications of Adhesives pp. 47-64. https:

//doi.org/10.1007/978-3-031-11150-1_4

• Morales-Hernández, A., Van Nieuwenhuyse, I., Nápoles, G. (2022). Multi-objective

Hyperparameter Optimization with Performance Uncertainty. In: Optimization and

Learning. OLA 2022. Communications in Computer and Information Science, vol

1684. https://doi.org/10.1007/978-3-031-22039-5_4

* 113 *

