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FUJITA-TYPE RESULTS FOR THE DEGENERATE PARABOLIC

EQUATIONS ON THE HEISENBERG GROUPS

AHMAD Z. FINO, MICHAEL RUZHANSKY, BERIKBOL T. TOREBEK∗

Abstract. In this paper, we consider the Cauchy problem for the degenerate
parabolic equations on the Heisenberg groups with power law non-linearities. We
obtain Fujita-type critical exponents, which depend on the homogeneous dimen-
sion of the Heisenberg groups. The analysis includes the case of porous medium
equations. Our proof approach is based on methods of nonlinear capacity estimates
specically adapted to the nature of the Heisenberg groups. We also use the Kaplan
eigenfunctions method in combination with the Hopf-type lemma on the Heisenberg
groups.
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1. Introduction

The main purpose of this paper is to study the following two types of degenerate
parabolic equations on the Heisenberg groups:

vt = ∆Hv
m + vσ, t > 0, η ∈ H

n,

and

ut = uq∆Hu+ up, t > 0, η ∈ H
n,
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where n ≥ 1, m ≥ 1, σ > 1, q ≥ 0, p > 1. The Heisenberg group is the Lie group
H

n = R
2n+1 equipped with the following law

η ◦ η′ = (x + x′, y + y′, τ + τ ′ + 2(x· y′ − x′· y)),

where η = (x, y, τ), η′ = (x′, y′, τ ′), and · is the scalar product in R
n. The homoge-

neous Heisenberg norm is dened by

|η|
H
=





n

i=1

(x2
i + y2i )

2

+ τ 2




1
4

=

(|x|2 + |y|2)2 + τ 2

 1
4 ,

where |· | is the Euclidean norm associated to R
n. The left-invariant vector elds that

span the Lie algebra are given by

Xi = ∂xi
− 2yi∂τ , Yi = ∂yi + 2xi∂τ .

The Heisenberg gradient is given by

∇H = (X1, . . . , Xn, Y1, . . . , Yn), (1.1)

and the sub-Laplacian is dened by

∆H =
n

i=1

(X2
i + Y 2

i ) = ∆x +∆y + 4(|x|2 + |y|2)∂2
τ + 4

n

i=1


xi∂

2
yiτ

− yi∂
2
xiτ


, (1.2)

where ∆x = ∇x·∇x and ∆y = ∇y·∇y stand for the Laplace operators on R
n. The

homogeneous dimension of Hn is Q = 2n+ 2.
We will obtain the results about nonexistence of global nontrivial solutions for

various values of exponents σ and p.

1.1. Historical background.

1.1.1. Results on R
n. In [8], Fujita studied the following semi-linear heat equation






ut(x, t) −∆u(x, t) = up(x, t), (x, t) ∈ R
n × (0,∞),

u(x, 0) = u0(x) ≥ 0, x ∈ R
n.

(1.3)

It was shown that, if 1 < p < 1 + 2
n
, then problem (1.3) admits no nontrivial

positive global solutions, while, if p > 1+ 2
n
, then problem (1.3) admits global positive

solutions for some suciently small initial data. Later, in [15] Hayakawa proved that,
if p = 1 + 2

n
, then problem (1.3) admits no nontrivial positive global solutions. The

number pF = 1 + 2
n
is called the Fujita critical exponent.

In [9], Galaktionov et al. considered the porous medium equation with power
nonlinearity





ut(x, t)−∆um(x, t) = up(x, t), (x, t) ∈ R
n × (0,∞), m > 1,

u(x, 0) = u0(x) ≥ 0, x ∈ R
n,

(1.4)

and established the following results:
(i) let m < p < m + 2

n
, then the solution of (1.4) does not exist globally in time;
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(ii) let p > m + 2
n
, then the problem (1.4) has a global solution for some suciently

small initial data.
In [19] the authors proved that, if p = m + 2

n
, then problem (1.4) has no positive

global solutions.
When m > 1, by using the transformation v(x, t) = aum(bx, t), a = mm/(p−1),

b = m(p−m)/2(p−1), the porous medium equation (1.4) can be transformed to the
degenerate parabolic equation

vt − vk∆v = vr, (x, t) ∈ R
n × (0,∞), (1.5)

where 0 < k = m−1
m

< 1 and r = m+p−1
m

> 1.
In [10], Galaktionov et al. obtained the following results for the equation (1.5):

(i) let 1 < r < k + 1 + 2
n(1−k)

, then the solution of (1.5) does not exist globally in

time;
(ii) let r > k + 1+ 2

n(1−k)
, then there are both global solutions and solutions blowing

up in nite time.
In [26] Winkler extended the results of [10] by taking the more general k ≥ 1 in

(1.5). In particulary, Winkler obtained the following results:
(i) For 1 ≤ r < k + 1 (resp. 1 ≤ r < 3

2
if k = 1), all positive solutions of (1.5) are

global but unbounded, provided that u0 decreases suciently fast in space;
(ii) For r = k + 1, all positive solutions of (1.5) blow up in nite time;
(iii) For r > k+1, there are both global and non-global positive solutions, depending
on the size of u0.

It follows from the above results that the equation (1.5) has two type of critical
exponents

rc =






k + 1 + 2
n(1−k)

for 0 < k < 1,

k + 1 for k ≥ 1.

1.1.2. Sub-elliptic extensions. In [28] Zhang considered the semilinear diusion equa-
tion on the Heisenberg groups:

ut −∆Hu = |u|p, t > 0, η ∈ H
n, (1.6)

and they proved that, if 1 < p < 1 + 2
Q
, Q = 2n + 2, then the problem (1.6)

admits no positive global solutions. Later, Pohozhaev and Véron [22] studied a more
general parabolic equation on H

n, and proved that there is no global solutions for
1 < p ≤ 1 + 2

Q
. In [12], Georgiev and Palmieri proved sharp lifespan estimates for

local in time solutions of problem (1.6).
In [20, 21] Pascucci obtained the Fujita-type results for the semilinear diusion

equation on Carnot groups. We also note that the nonexistence of global solutions
to the various semilinear parabolic equations on the Heisenberg group were studied
by many authors (see for example [2, 6, 14, 16, 27]).

Recently, the second author and Yessirkegenov [23] consider the following equation
on general unimodular Lie groups G,

ut −∆Gu = |u|p, in (0,∞)×G, (1.7)

and established the following results:
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Let G be a connected unimodular Lie group with polynomial volume growth of order
D and let 1 < p < ∞ :
(i) let 1 < p ≤ 1 + 2

D
, then (1.4) does not admit any nontrivial global solution;

(ii) let p > 1 + 2
D
, then (1.4) has a global solution for some small initial data.

Let G be a connected unimodular Lie group with exponential volume growth, then,
for any 1 < p < ∞ the equation (1.4) has a global solution for some positive initial
data.

Let G be a compact Lie group, then, for any 1 < p < ∞ the equation (1.4) does
not admit any nontrivial nonnegative solutions.

1.1.3. Motivation. From the above reasoning, it is easy to see that Fujita-type results
for semilinear parabolic equations on manifolds are fairly well studied. However,
such results have been little studied for strongly nonlinear parabolic equations. Here
we can note some papers devoted to the study of the Fujita-type results for the p-
Laplacian diusion equations and porous medium equations on Riemannian manifolds
[5, 13, 17, 18].

As far as we know, in the case of sub-Riemannian manifolds, there are only a couple
of papers [2, 16], where Fujita-type results for the p-Laplacian diusion equations on
Heisenberg groups are obtained. We also note that in [24] the blow-up results were
obtained for the porous medium equations on a bounded domain of the Carnot groups.

Motivated by this fact, in this paper we consider two types of strongly non-linear
parabolic equations on the Heisenberg groups. In particular, we determine the critical
exponents for which the considered equations are globally unsolvable.

2. Porous medium equation

In this section we consider the following porous medium equation





vt = ∆Hv
m + vσ, t > 0, η ∈ H

n,

v(0, η) = v0(η) ≥ 0, η ∈ H
n,

v(t, η) ≥ 0, t > 0, η ∈ H
n,

(2.1)

where v0 ∈ L1
loc(H

n), n ≥ 1, m ≥ 1, σ > 1.

Definition 2.1. (Weak solution of (2.1))
Let 0 ≤ v0 ∈ L1

loc(H
n) and T > 0. We say that v is a nonnegative weak solution of

(2.1) on [0, T )×H
n if

v ∈ Lσ
loc((0, T )×H

n) ∩ Lm
loc((0, T )×H

n) ∩ L∞
loc((0, T );L

1
loc(H

n)),

and


Hn

v(τ, η)ψ(τ, η) dη−



Hn

v(0, η)ψ(0, η) dη

=

 τ

0



Hn

vσψ(t, η) dη dt+

 τ

0



Hn

vm ∆Hψ(t, η) dη dt+

 τ

0



Hn

vψt(t, η) dη dt
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holds for all compactly supported ψ ∈ C1,2
t,x ([0, T )×H

n), and 0 ≤ τ < T . If T = ∞,
we call v a global in time weak solution to (2.1).

Theorem 2.2. Let m > 1, σ > 1 and let v0(η) ≥ 0, v0(η) ≡ 0, η ∈ H
n.

(i) Suppose that v0 ∈ L1(Hn). If

m < σ ≤ m+
2

Q
,

then problem (2.1) has no nonnegative global weak solutions.

(ii) Assume that v0 ∈ L1(Hn), and there exists a constant ε > 0 such that, for
every 0 < γ < Q, the initial datum veries the following assumption:

v0(η) ≥ ε(1 + |η|2
H
)−γ/2.

If

m < σ < m +
2

γ
,

then problem (2.1) has no nonnegative global weak solutions.

(iii) Assume that v0 ∈ L1(Hn) ∩ L∞(Hn). If σ = m, then problem (2.1) has no
nonnegative global weak solutions v ∈ L∞

loc((0,∞);L∞(Hn)).

Remark 2.3. When m = 1, the critical exponent σc = m + 2
Q

coincides with the

critical exponent obtained in [28] for the semilinear diusion equations on H
n.

Observe that in the case γ ≥ Q, we have

m +
2

γ
≤ m+

2

Q
.

Consequently, part (ii) of Theorem 2.2 follows immediately from the part (i).

Remark 2.4. Note that in Theorem 2.2 there are no results about the global existence
of a solution. We expect that, for σ > m + 2

Q
and for suciently small initial data

there should exist a global solution. Due to technical diculties, we left this question
open.

To prove Theorem 2.2, below we give a number of auxiliary results.

Lemma 2.5. Let u, v be twice dierentiable real valued functions dened on H
n.

Then

∆H(uv) = ∆H(u)v + 2∇H(u)∇H(v) + u∆H(v).

Proof. It is easy to see that

∆x(uv) = ∆x(u)v + 2∇x(u)∇x(v) + u∆x(v), (2.2)

∆y(uv) = ∆y(u)v + 2∇y(u)∇y(v) + u∆y(v), (2.3)

and

∂2
τ (uv) = ∂2

τ (u)v + 2∂τ (u)∂τ (v) + u∂2
τ (v). (2.4)
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Moreover,

n

i=1

xi∂
2
yiτ

(uv) = v

n

i=1

xi∂
2
yiτ

(u) + ∂τ (u)

n

i=1

xi∂yi(v)

+ ∂τ (v)

n

i=1

xi∂yi(u) + u

n

i=1

xi∂
2
yiτ

(v),

(2.5)

and
n

i=1

yi∂
2
xiτ

(uv) = v

n

i=1

yi∂
2
xiτ

(u) + ∂τ (u)

n

i=1

yi∂xi
(v)

+ ∂τ (v)

n

i=1

yi∂xi
(u) + u

n

i=1

yi∂
2
xiτ

(v).

(2.6)

Using (2.2)-(2.6) and the denition of ∆H, we obtain

∆H(uv) = ∆H(u)v + u∆H(v)

+ 2

∇x(u)∇x(v) +∇y(u)∇y(v) + 4(|x|2 + |y|2)∂τ (u)∂τ (v)

+ 2∂τ (v)

n

i=1

xi∂yi(u)− 2∂τ (v)

n

i=1

yi∂xi
(u)

+2∂τ (u)

n

i=1

xi∂yi(v)− 2∂τ (u)

n

i=1

yi∂xi
(v)



= ∆H(u)v + u∆H(v) + 2∇H(u)∇H(v),

proving the claim. 

Lemma 2.6. For ε > 0, A > 0, let

Θ(η) = e−ε[A+(|x|2+|y|2)2+τ2]
1
2

, η = (x, y, τ) ∈ H
n.

Then

−∆HΘ(η) ≤ 2ε(Q+ 2)Θ(η), for all η ∈ H
n.

Proof. Let ρ(x, y, τ) := A+ (|x|2 + |y|2)2 + τ 2. We have

∇xΘ(η) = −
ε

2
ρ−

1
2∇x(ρ)Θ(η),

and then

∆xΘ(η) =
ε

4
ρ−

3
2 |∇x(ρ)|

2Θ(η)−
ε

2
ρ−

1
2∆x(ρ)Θ(η) +

ε2

4
ρ−1|∇x(ρ)|

2Θ(η).

As ∆x(ρ) = (4n+ 8)|x|2 + 4n|y|2, we conclude that

∆xΘ(η) =
1

4


ερ−

3
2 + ε2ρ−1


|∇x(ρ)|

2Θ(η)

− ε

(2n+ 4)|x|2 + 2n|y|2


ρ−

1
2Θ(η).

(2.7)
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Similarly,

∆yΘ(η) =
1

4


ερ−

3
2 + ε2ρ−1


|∇y(ρ)|

2Θ(η)

− ε

2n|x|2 + (2n+ 4)|y|2


ρ−

1
2Θ(η).

(2.8)

On the other hand,

∂τΘ(η) = −
ε

2
ρ−

1
2∂τ (ρ)Θ(η),

and then

∂2
τΘ(η) =

ε

4
ρ−

3
2 (2τ)2Θ(η)−

ε

2
ρ−

1
2 2Θ(η) +

ε2

4
ρ−14Θ(η)

= τ 2

ερ−

3
2 + ε2ρ−1


Θ(η)− ερ−

1
2Θ(η). (2.9)

Next,

∂2
yiτ

Θ(η) = −ετ∂yj


ρ−

1
2Θ(η)



= −ετ


−
1

2
ρ−

3
2∂yj (ρ)Θ(η)−

ε

2
ρ−1∂yj (ρ)Θ(η)



=
τ

2


ερ−

3
2 + ε2ρ−1


∂yj (ρ)Θ(η)

= 2τ

ερ−

3
2 + ε2ρ−1


yi(|x|

2 + |y|2)Θ(η),

for all 1 ≤ i ≤ n, which implies that
n

i=1

xi∂
2
yiτ

Θ(η) = 2τ

ερ−

3
2 + ε2ρ−1


x· y(|x|2 + |y|2)Θ(η). (2.10)

Similarly,
n

i=1

yi∂
2
xiτ

Θ(η) = 2τ

ερ−

3
2 + ε2ρ−1


x· y(|x|2 + |y|2)Θ(η). (2.11)

Using (2.8)-(2.11) in (1.2), we arrive at

∆HΘ(η) =


|∇x(ρ)|

2 + |∇y(ρ)|
2

4
+ τ 2(|x|2 + |y|2)


ερ−

3
2 + ε2ρ−1


Θ(η)

− 4ε(n+ 2)(|x|2 + |y|2)ρ−
1
2Θ(η)

≥ −4ε(n + 2)(|x|2 + |y|2)ρ−
1
2Θ(η),

and nally, using the fact that (|x|2 + |y|2)2 ≤ ρ =⇒ (|x|2 + |y|2) ≤ ρ
1
2 , we get

∆HΘ(η) ≥ −4ε(n+ 2)Θ(η) = −2ε(Q+ 2)Θ(η),

completing the proof. 

Lemma 2.7. Let v0 ∈ L∞(Hn) and T > 0. Let ψ0 ∈ C1,2
t,x ([0, T )×H

n) be such that


Hn

{|ψ0(t, η)|+ |∂tψ0(t, η)|+ |∇Hψ0(t, η)|+ |∆Hψ0(t, η)|} dη < ∞, ∀t ∈ [0, T ). (2.12)
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If 0 ≤ v ∈ L∞
loc((0, T );L

∞(Hn)) is a weak solution of (2.1) on [0, T )×H
n then



Hn

v(τ, η)ψ0(τ, η) dη −



Hn

v(0, η)ψ0(0, η) dη

=

 τ

0



Hn

vσψ0(t, η) dη dt+

 τ

0



Hn

vm ∆Hψ0(t, η) dη dt+

 τ

0



Hn

v∂tψ0(t, η) dη dt

for all τ ∈ [0, T ).

Proof. Let 0 < T ≤ ∞. Suppose that 0 ≤ v ∈ L∞
loc((0, T );L

∞(Hn)) is a weak solution
of (2.1) on [0, T )×H

n, then we have


Hn

v(τ, η)ψ(τ, η) dη−



Hn

v(0, η)ψ(0, η) dη

=

 τ

0



Hn

vσψ(t, η) dη dt +

 τ

0



Hn

vm ∆Hψ(t, η) dη dt

+

 τ

0



Hn

vψt(t, η) dη dt,

for any compactly supported ψ ∈ C1,2
t,x ([0, T ) × H

n), and 0 ≤ τ < T . Let τ ∈ [0, T )
be a xed number, and let

ψ(t, η) := ϕR(η)ψ0(t, η) := ϕ1(x)ϕ1(y)ϕ2(τ)ψ0(t, η), t ∈ [0, T ), η ∈ H
n,

with

ϕ1(x) := Φ


|x|

R


, ϕ1(y) := Φ


|y|

R


, ϕ2(τ) := Φ


|τ |

R2


,

where R ≫ 1, and Φ is a smooth nonnegative non-increasing function such that

Φ(r) =






1 if 0 ≤ r ≤ 1/2,

ց if 1/2 ≤ r ≤ 1,

0 if r ≥ 1.

Then


B

v(τ, η)ϕR(η)ψ0(τ, η) dη −



B

v(0, η)ϕR(η)ψ0(0, η) dη

=

 τ

0



B

vσϕR(η)ψ0(t, η) dη dt+

 τ

0



B

vm ∆H(ϕR(η)ψ0(t, η)) dη dt

+

 τ

0



B

vϕR(η)∂tψ0(t, η) dη dt,

where

B = {η = (x, y, τ) ∈ H
n; |x|2, |y|2, |τ | ≤ R2},

and we also denote

C = {η = (x, y, τ) ∈ H
n;

R2

2
≤ |x|2, |y|2, |τ | ≤ R2}.



FUJITA-TYPE RESULTS FOR THE DEGENERATE PARABOLIC EQUATIONS 9

Using Lemma 2.5, we get



B

v(τ, η)ϕR(η)ψ0(τ, η) dη −



B

v(0, η)ϕR(η)ψ0(0, η) dη

=

 τ

0



B

vσϕR(η)ψ0(t, η) dη dt+

 τ

0



C

vm ψ0(t, η)∆HϕR(η) dη dt

+2

 τ

0



C

vm ∇H(ϕR(η))∇H(ψ0(t, η)) dη dt

+

 τ

0



B

vm ϕR(η)∆Hψ0(t, η) dη dt +

 τ

0



B

vϕR(η)∂tψ0(t, η) dη dt. (2.13)

On the other hand,

IR :=


 τ

0



C

vm ψ0(t, η)∆HϕR(η) dη dt

 ≤
 τ

0



C

vm |ψ0(t, η)| |∆HϕR(η)| dη dt.

Using (1.2), we have

|∆HϕR(η)| = |∆H (ϕ1(x)ϕ1(y)ϕ2(τ))|

≤ |∆xϕ1(x)|ϕ1(y)ϕ2(τ) + ϕ1(x) |∆yϕ1(y)|ϕ2(τ)

+ 4(|x|2 + |y|2)ϕ1(x)ϕ1(y)
∂2

τϕ2(τ)


+4
n

j=1

|xj |ϕ1(x)
∂yjϕ1(y)

 |∂τϕ2(τ)|

+4

n

j=1

|yj|ϕ1(y)
∂xj

ϕ1(x)
 |∂τϕ2(τ)| ,

on C. Substituting ϕ1 and ϕ2 we get

|∆HϕR(η)| ≤

∆x


Φ


|x|

R

Φ

|y|

R


Φ


|τ |

R2


+ Φ


|x|

R

 ∆y


Φ


|y|

R

Φ

|τ |

R2



+4(|x|2 + |y|2)Φ


|x|

R


Φ


|y|

R

 ∂
2
τ


Φ


|τ |

R2



+4

n

j=1

|xj|Φ


|x|

R

 ∂yj

Φ


|y|

R



∂τ

Φ


|τ |

R2



+4
n

j=1

|yj|Φ


|y|

R

 ∂xj


Φ


|x|

R


∂τ


Φ


|τ |

R2

 ,

on C. By letting

x =
x

R
, y =

y

R
, τ =

τ

R2
,
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we conclude that

|∆HϕR(η)| ≤ R−2 |∆x̃Φ (|x|)|Φ (|y|)Φ (|τ |) + Φ (|x|)R−2 |∆ỹΦ (|y|)|Φ (|τ |)
+ 4R2(|x|2 + |y|2)Φ (|x|)Φ (|y|)R−4

∂2
τ̃Φ (|τ |)



+4
n

j=1

R|xj |Φ (|x|)R−1
∂ỹjΦ (|y|)

R−2 |∂τ̃Φ (|τ |)|

+4

n

j=1

R|yj|Φ (|y|)R−1
∂x̃j

Φ (|x|)
R−2 |∂τ̃Φ (|τ |)| ,

on C. Note that, as Φ ≤ 1 and Φ ∈ C∞ on C, we can easily see that

|∆HϕR(η)| ≤ C R−2, for all η ∈ C,

and therefore

IR ≤ C R−2

 τ

0



C

vm |ψ0(t, η)| dη dt

≤ C R−2τ sup
t∈[0,τ ]

v(t, · )mL∞(Hn) sup
t∈[0,T )



Hn

|ψ0(t, η)| dη,

this implies, using (2.12), that

IR −→ 0, when R → +∞. (2.14)

Similarly,

JR : =

2
 τ

0



C

vm ∇H(ϕR(η))∇H(ψ0(t, η)) dη dt



≤ 2

 τ

0



C

vm |∇HϕR(η)| |∇Hψ0(t, η)| dη dt.

Using (1.1), we have

|∇HϕR(η)|
2 ≤ |∇xϕ1(x)|

2 ϕ2
1(y)ϕ

2
2(τ) + ϕ2

1(x) |∇yϕ1(y)|
2 ϕ2

2(τ)

+ 4

|x|2 + |y|2


ϕ2
1(x)ϕ

2
1(y) |∂τϕ2(τ)|

2 ,

on C. Substituting ϕ1 and ϕ2 we get

|∇HϕR(η)|
2 ≤

∇xΦ


|x|

R


2

Φ2


|y|

R


Φ2


|τ |

R2


+ Φ2


|x|

R

 ∇yΦ


|y|

R


2

Φ2


|τ |

R2



+4

|x|2 + |y|2


Φ2


|x|

R


Φ2


|y|

R

 ∂τΦ

|τ |

R2


2

,

on C. By letting

x =
x

R
, y =

y

R
, τ =

τ

R2
,

we conclude that

|∇HϕR(η)|
2 ≤ R−2 |∇x̃Φ (|x|)|2 Φ2 (|y|)Φ2 (|τ |) + Φ2 (|x|)R−2 |∇ỹΦ (|y|)|2 Φ2 (|τ |)

+ 4R2

|x|2 + |y|2


Φ2 (|x|)Φ2 (|y|)R−4 |∂τ̃Φ (|τ |)|2 ,
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on C. Note that, as Φ ≤ 1 and Φ ∈ C∞ on C, we can easily see that

|∇Hϕ(η)| ≤ C R−1, for all η ∈ C,

and therefore

JR ≤ C R−1

 τ

0



C

vm |∇Hψ0(t, η)| dη dt

≤ C R−1τ sup
t∈[0,τ ]

v(t, · )mL∞(Hn) sup
t∈[0,T )



Hn

|∇Hψ0(t, η)| dη,

this implies, using (2.12), that

JR −→ 0, when R → +∞. (2.15)

Finally, letting R −→ +∞ in (2.13) and using (2.12), (2.14),(2.15) together with
Lebesgue’s dominated convergence theorem we conclude the result. 

Proof of Theorem 2.2. (i) The proof is by contradiction. Suppose that v is a nonneg-
ative global weak solution of (2.1), then, for all T ≫ 1, we have



Hn

v(T, η)ψ(T, η) dη −



Hn

v(0, η)ψ(0, η) dη

=

 T

0



Hn

vσψ(t, η) dη dt +

 T

0



Hn

vm ∆Hψ(t, η) dη dt

+

 T

0



Hn

vψt(t, η) dη dt

for all compactly supported ψ ∈ C1,2
t,x ([0,∞)×H

n).
We choose

ψ(t, η) := ϕℓ(η)ϕℓ
3(t) := ϕℓ

1(x)ϕ
ℓ
1(y)ϕ

ℓ
2(τ)ϕ

ℓ
3(t),

with

ϕ1(x) := Φ


|x|

T α


, ϕ1(y) := Φ


|y|

T α


, ϕ2(τ) := Φ


|τ |

T 2α


, ϕ3(t) := Φ


t

T


,

where α = σ−m
2(σ−1)

> 0, ℓ ≫ 1, and Φ is a smooth nonnegative non-increasing function

such that

Φ(r) =





1 if 0 ≤ r ≤ 1/2,

ց if 1/2 ≤ r ≤ 1,

0 if r ≥ 1.

Then
 T

0



B

vσψ(t, η) dη dt+



B

v0(η)ϕ
ℓ(η) dη = −

 T

0



C

vm ϕℓ
3(t)∆Hϕ

ℓ(η) dη dt

−

 T

T
2



B

v ϕℓ(η)∂t(ϕ
ℓ
3(t)) dη dt

= I1 + I2, (2.16)
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where

B = {η = (x, y, τ) ∈ H
n; |x|2, |y|2, |τ | ≤ T 2α},

and

C = {η = (x, y, τ) ∈ H
n;

T α

2
≤ |x|, |y| ≤ T α,

T 2α

2
≤ |τ | ≤ T 2α}.

Let us start to estimate I1. As σ > m, using the following Young’s inequality

ab ≤
1

4
a

σ
m + C b

σ
σ−m ,

we have

I1 ≤

 T

0



C

vm ϕℓ
3(t)

∆Hϕ
ℓ(η)

 dη dt

=

 T

0



C

vm ψ
m
σ (t, η)ψ−m

σ (t, η)ϕℓ
3(t)

∆Hϕ
ℓ(η)

 dη dt

≤
1

4

 T

0



B

vσψ(t, η) dη dt

+ C

 T

0



C

ψ− m
σ−m (t, η)ϕ

ℓσ
σ−m

3 (t)
∆Hϕ

ℓ(η)
 σ
σ−m dη dt. (2.17)

To estimate I2, using the following Young’s inequality

ab ≤
1

4
aσ + C b

σ
σ−1 ,

and the fact that σ > 1, we have

I2 ≤

 T

0



B

v ϕℓ(η)
∂t(ϕℓ

3(t))
 dη dt

=

 T

0



C

v ψ
1
σ (t, η)ψ− 1

σ (t, η)ϕℓ(η)
∂t(ϕℓ

3(t))
 dη dt

≤
1

4

 T

0



B

vσψ(t, η) dη dt

+ C

 T

0



C

ψ− 1
σ−1 (t, η)ϕ

ℓσ
σ−1 (η)

∂tϕℓ
3(t)

 σ
σ−1 dη dt. (2.18)
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Inserting (2.17)-(2.18) into (2.16), we arrive at

1

2

 T

0



B

vσψ(t, η) dη dt +



B

v0(η)ϕ
ℓ(η) dη

≤ C

 T

0



C

ψ− m
σ−m (t, η)ϕ

ℓσ
σ−m

3 (t)
∆Hϕ

ℓ(η)
 σ
σ−m dη dt

+C

 T

0



C

ψ− 1
σ−1 (t, η)ϕ

ℓσ
σ−1 (η)

∂tϕℓ
3(t)

 σ
σ−1 dη dt

= C

 T

0



C

ϕℓ
3(t)ϕ

− ℓm
σ−m (η)

∆Hϕ
ℓ(η)

 σ
σ−m dη dt

+C

 T

0



C

ϕℓ(η)ϕ
− ℓ

σ−1

3 (t)
∂tϕℓ

3(t)
 σ
σ−1 dη dt

= J1 + J2. (2.19)

Let us estimate J2. As ∂tϕ
ℓ
3(t) = ℓϕℓ−1

3 (t)∂tϕ3(t), we have

J2 ≤ C



C

ϕℓ(η) dη

 T

0

ϕ
ℓ− σ

σ−1

3 (t) |∂tϕ3(t)|
σ

σ−1 dt

= C



C

ϕℓ(η) dη

 T

0

Φℓ− σ
σ−1


t

T

 ∂tΦ


t

T



σ
σ−1

dt.

Letting

x =
x

T α
, y =

y

T α
, τ =

τ

T 2α
, t = t

T
,

and using the fact that ϕ ≤ 1 and meas(C) = C T αQ, we get

J2 ≤ C T αQ− σ
σ−1

+1

 1

0

Φℓ− σ
σ−1 (t̃)

Φ′(t̃)
 σ
σ−1 dt ≤ C T αQ− σ

σ−1
+1. (2.20)

To estimate J1, using (1.2), we have

∆Hϕ
ℓ(η)

 =
∆H


ϕℓ
1(x)ϕ

ℓ
1(y)ϕ

ℓ
2(τ)



≤
∆xϕ

ℓ
1(x)

ϕℓ
1(y)ϕ

ℓ
2(τ)

+ϕℓ
1(x)

∆yϕ
ℓ
1(y)

ϕℓ
2(τ)

+ 4(|x|2 + |y|2)ϕℓ
1(x)ϕ

ℓ
1(y)

∂2
τϕ

ℓ
2(τ)



+4
n

j=1

|xj |ϕ
ℓ
1(x)

∂yjϕℓ
1(y)

 ∂τϕℓ
2(τ)



+4

n

j=1

|yj|ϕ
ℓ
1(y)

∂xj
ϕℓ
1(x)

 ∂τϕℓ
2(τ)

 ,



14 A. Z. FINO, M. RUZHANSKY, B. T. TOREBEK

on C. So
∆Hϕ

ℓ(η)
 ≤


ℓ(ℓ− 1)ϕℓ−2

1 (x)|∇xϕ1(x)|
2 + ℓϕℓ−1

1 (x)|∆xϕ1(x)|

ϕℓ
1(y)ϕ

ℓ
2(τ)

+ϕℓ
1(x)


ℓ(ℓ− 1)ϕℓ−2

1 (y)|∇yϕ1(y)|
2 + ℓϕℓ−1

1 (y)|∆yϕ1(y)|

ϕℓ
2(τ)

+ 4(|x|2 + |y|2)ϕℓ
1(x)ϕ

ℓ
1(y)


ℓ(ℓ− 1)ϕℓ−2

2 (τ)|∂τϕ2(τ)|
2 + ℓϕℓ−1

2 (τ)|∂2
τϕ2(τ)|



+4
n

j=1

|xj |ϕ
ℓ
1(x)


ℓϕℓ−1

1 (y)
∂yjϕ1(y)

 ℓϕℓ−1
2 (τ) |∂τϕ2(τ)|



+4

n

j=1

|yj|ϕ
ℓ
1(y)


ℓϕℓ−1

1 (x)
∂xj

ϕ1(x)
 ℓϕℓ−1

2 (τ) |∂τϕ2(τ)|

,

on C. Substituting ϕ1 and ϕ2 we get

∆Hϕ
ℓ(η)

 ≤

ℓ(ℓ− 1)Φℓ−2


|x|

Tα

 ∇xΦ


|x|

Tα


2

+ ℓΦℓ−1


|x|

Tα

 ∆xΦ


|x|

Tα




Φℓ


|y|

Tα


Φℓ


|τ |

T 2α



+ Φℓ


|x|

Tα


ℓ(ℓ − 1)Φℓ−2


|y|

Tα

 ∇yΦ


|y|

Tα


2

+ ℓΦℓ−1


|y|

Tα

 ∆yΦ


|y|

Tα




Φℓ


|τ |

T 2α



+ 4(|x|2 + |y|2)Φℓ


|x|

Tα


Φℓ


|y|

Tα


ℓ(ℓ− 1)Φℓ−2


|τ |

T 2α

 ∂τΦ


|τ |

T 2α


2

+ ℓΦℓ−1


|τ |

T 2α

 ∂
2
τΦ


|τ |

T 2α





+ 4

n

j=1

|xj |Φ
ℓ


|x|

Tα


ℓΦℓ−1


|y|

Tα

 ∂yjΦ

|y|

Tα


 

ℓΦℓ−1


|τ |

T 2α

 ∂τΦ


|τ |

T 2α




+ 4

n

j=1

|yj |Φ
ℓ


|y|

Tα


ℓΦℓ−1


|x|

Tα

 ∂xj
Φ


|x|

Tα


 

ℓΦℓ−1


|τ |

T 2α

 ∂τΦ


|τ |

T 2α



,

on C. By letting

x =
x

Tα
, y =

y

Tα
, τ =

τ

T 2α
.

we conclude that∆Hϕ
ℓ(η)

 ≤

ℓ(ℓ− 1)Φℓ−2(|x|)T−2α |∇x̃Φ(|x|)|2 + ℓΦℓ−1(|x|)T−2α |∆x̃Φ(|x|)|


Φℓ(|y|)Φℓ(|τ |)

+ Φℓ(|x|)

ℓ(ℓ− 1)Φℓ−2(|y|)T−2α

∇ỹΦ(|y|)
2 + ℓΦℓ−1(|y|)T−2α

∆ỹΦ(|y|)


Φℓ(|τ |)

+ 4T 2α(|x|2 + |y|2)Φℓ(|x|)Φℓ(|y|)

ℓ(ℓ − 1)Φℓ−2(|τ |)T−4α |∂τ̃Φ(|τ |)|2 + ℓΦℓ−1(|τ |)T−4α

∂2
τ̃Φ(|τ |)




+ 4
n

j=1

Tα|xj |Φℓ(|x|)

ℓΦℓ−1(|y|)T−α

∂ỹjΦ(|y|)

 

ℓΦℓ−1(|τ |)T−2α |∂τ̃Φ(|τ |)|


+ 4

n

j=1

Tα|yj |Φℓ(|y|)

ℓΦℓ−1(|x|)T−α

∂x̃j
Φ(|x|)


 

ℓΦℓ−1(|τ |)T−2α |∂τ̃Φ(|τ |)|

,

on C. Note that, as

Φ ≤ 1 ⇒ Φℓ ≤ Φℓ−1 ≤ Φℓ−2,

we can easily see that
∆Hϕ

ℓ(η)
 ≤ C T−2α


Φℓ(|x|)Φℓ(|y|)Φℓ(|τ |)

ℓ−2
, for all η ∈ C,
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and therefore, using the fact that ϕ3 ≤ 1, we conclude that

J1 = C

 T

0



C

ϕℓ
3(t)ϕ

− ℓm
σ−m (η)

∆Hϕ
ℓ(η)


σ

σ−m
dη dt

≤ C T
− 2ασ

σ−m

 T

0
ϕℓ
3(t) dt



C̃
[Φ(|x|)Φ(|y|)Φ(|τ |)]−

ℓm
σ−m


Φℓ(|x|)Φℓ(|y|)Φℓ(|τ |)

 σ(ℓ−2)
σ−m

TαQ dη

≤ C T
− 2ασ

σ−m
+1+αQ



C̃
[Φ(|x|)Φ(|y|)Φ(|τ |)]

σℓ(ℓ−2−m
σ )

σ−m dη

≤ C T
− 2ασ

σ−m
+1+αQ

, (2.21)

where we have used the fact that ℓ ≫ 1.
Combining (2.19)-(2.21) and taking into account that α = σ−m

2(σ−1) , we get

1

2

 T

0



B

vσψ(t, η) dη dt+



B

v0(η)ϕ
ℓ(η) dη ≤ C T

σ−m
2(σ−1)

Q− σ
σ−1

+1
. (2.22)

If σ < m+ 2
Q , we can easily see that σ−m

2(σ−1)Q− σ
σ−1 +1 < 0, and then, using the monotone

convergence theorem and the fact that ψ(t, η) → 1 as T → ∞, we conclude that

0 <



Hn

v0(η) dη ≤
1

2

 ∞

0



Hn

vσ(x, t) dη dt +



Hn

v0(η) dη ≤ 0;

contradiction.
For the critical case σ = m + 2

Q , we can see rst, using again (2.22) and letting T → ∞,

that

v ∈ Lσ((0,∞) ×H
n),

which implies that

lim
T→∞

 T

0



C

vσψ(t, η) dη dt = lim
T→∞

 T

0



B

vσψ(t, η) dη dt− lim
T→∞

 T

0



C0

vσψ(t, η) dη dt

=

 ∞

0



Hn

vσ(x, t) dη dt−

 ∞

0



Hn

vσ(x, t) dη dt

= 0, (2.23)

where

C0 = {η = (x, y, τ) ∈ H
n; |x|, |y| ≤

Tα

2
, |τ | ≤

T 2α

2
}, (2.24)

and

lim
T→∞

 T

T
2



B
vσψ(t, η) dη dt = lim

T→∞

 T

0



B
vσψ(t, η) dη dt− lim

T→∞

 T
2

0



B
vσψ(t, η) dη dt

=

 ∞

0



Hn

vσ(x, t) dη dt−

 ∞

0



Hn

vσ(x, t) dη dt

= 0. (2.25)
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On the other hand, we need to use Hölder’s inequality instead of Young’s one in the esti-
mations of I1 and I2, and to rene them. Indeed,

I1 ≤

 T

0



C
vm ϕℓ

3(t)
∆Hϕ

ℓ(η)
 dη dt

=

 T

0



C

vm ψ
m
σ (t, η)ψ−m

σ (t, η)ϕℓ
3(t)

∆Hϕ
ℓ(η)

 dη dt

≤

 T

0



C

vσψ(t, η) dη dt

 σ
m
 T

0



C

ψ
− m

σ−m (t, η)ϕ
ℓσ

σ−m

3 (t)
∆Hϕ

ℓ(η)


σ
σ−m

dη dt

σ−m
σ

=

 T

0



C
vσψ(t, η) dη dt

 σ
m

J
σ−m

σ
1 , (2.26)

and

I2 ≤

 T

T
2



B

v ϕℓ(η)
∂t(ϕℓ

3(t))
 dη dt

=

 T

T
2



C
v ψ

1
σ (t, η)ψ− 1

σ (t, η)ϕℓ(η)
∂t(ϕℓ

3(t))
 dη dt

≤

 T

T
2



B
vσψ(t, η) dη dt

 1
σ  T

0



C
ψ
− 1

σ−1 (t, η)ϕ
ℓσ

σ−1 (η)
∂tϕℓ

3(t)


σ
σ−1

dη dt

σ−1
σ

≤

 T

T
2



B
vσψ(t, η) dη dt

 1
σ

J
σ−1
σ

2 . (2.27)

Inserting (2.26)-(2.27) into (2.16), we arrive at



B
v0(η)ϕ

ℓ(η) dη ≤

 T

0



C
vσψ(t, η) dη dt

 σ
m

J
σ−m

σ

1 +

 T

T
2



B
vσψ(t, η) dη dt

 1
σ

J
σ−1
σ

2 .

By letting

x =
x

Tα
, y =

y

Tα
, τ =

τ

T 2α
, t = t

T
,

inside J1 and J2, using their estimates and that σ = m+ 2
Q , we obtain



B

v0(η)ϕ
ℓ(η) dη ≤ C

 T

0



C

vσψ(t, η) dη dt

 σ
m

+ C

 T

T
2



B

vσψ(t, η) dη dt

 1
σ

. (2.28)

Finally, using (2.23),(2.25), (2.28), the dominated convergence theorem, and the fact that
ψ(t, η) → 1 as T → ∞, we conclude that

0 <



Hn

v0(η) dη ≤ 0;

contradiction.
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(ii) As T > 1, we have


B
v0(η)ψ(0, η) dη =



B
v0(η)ϕ

ℓ(η) dη ≥



C0

v0(η)ϕ
ℓ(η) dη

=



C0

v0(η) dη ≥ ε



C0

(1 + |η|2
H
)−γ/2 dη

≥ εC



C0


T 2α

2
+

T 2α

2

−γ/2

dη

= εCT−γαmeas(C0)

= εCTα(Q−γ),

where C0 is dened in (2.24). Therefore by repeating the same calculation as in the sub-
critical case (i) with α = σ−m

2(σ−1) , we get

εCT
σ−m

2(σ−1)
(Q−γ)

+
1

2

 T

0



B
vσψ(t, η) dη dt ≤ C T

σ−m
2(σ−1)

Q− σ
σ−1

+1
,

which implies

εCT
σ−m

2(σ−1)
(Q−γ)

≤ C T
σ−m

2(σ−1)
Q− σ

σ−1
+1

,

that is

ε ≤ C T
σ−m

2(σ−1)
γ− σ

σ−1
+1

.

As σ < m + 2
γ ⇐⇒ σ−m

2(σ−1)γ − σ
σ−1 + 1 < 0, then, by passing to the limit, as T goes to ∞,

we get a contradiction.
(iii) Let m = σ. In this case, using Lemma 2.7, we may replace, in the test function,

ϕℓ(η) by Θ(η) where Θ is dened in Lemma 2.6 with ε = 1
4(2+Q) i.e.

−∆HΘ(η) ≤
1

2
Θ(η), for all η ∈ H

n.

Therefore, by repeating the same calculation as before, we have from (2.16)
 T

0



Hn

vσψ(t, η) dη dt+



Hn

v0(η)Θ(η) dη ≤

 T

0



Hn

vσ ϕℓ
3(t) (−∆H)Θ(η) dη dt

−

 T

T
2



Hn

vΘ(η)∂t(ϕ
ℓ
3(t)) dη dt

≤
1

2

 T

0



Hn

vσ ϕℓ
3(t)Θ(η) dη dt−

 T

T
2



Hn

vΘ(η)∂t(ϕ
ℓ
3(t)) dη dt,

which is equivalent to

1

2

 T

0



Hn

vσψ(t, η) dη dt +



Hn

v0(η)Θ(η) dη ≤ −

 T

T
2



Hn

vΘ(η)∂t(ϕ
ℓ
3(t)) dη dt = I2

where I2 is introduced above. Then, using (2.18), we get

1

2

 T

0



Hn

vσψ(t, η) dη dt +



Hn

v0(η)Θ(η) dη

≤
1

4

 T

0



Hn

vσψ(t, η) dη dt + C

 T

0



Hn

ψ
− 1

σ−1 (t, η)Θ
σ

σ−1 (η)
∂tϕℓ

3(t)


σ
σ−1

dη dt,
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i.e.

1

4

 T

0



Hn

vσψ(t, η) dη dt+



Hn

v0(η)Θ(η) dη ≤ C

 T

0



Hn

ψ− 1
σ−1 (t, η)Θ

σ
σ−1 (η)

∂tϕℓ
3(t)


σ

σ−1
dη dt,

and so


Hn

v0(η)Θ(η) dη ≤ C

 T

0



Hn

ψ
− 1

σ−1 (t, η)Θ
σ

σ−1 (η)
∂tϕℓ

3(t)


σ
σ−1

dη dt

= C

 T

0



Hn

Θ(η)ϕ
− ℓ

σ−1

3 (t)
∂tϕℓ

3(t)


σ
σ−1

dη dt.

As ∂tϕ
ℓ
3(t) = ℓϕℓ−1

3 (t)∂tϕ3(t), we obtain



Hn

v0(η)Θ(η) dη ≤ C



Hn

Θ(η) dη

 T

0

ϕ
ℓ− σ

σ−1

3 (t) |∂tϕ3(t)|
σ

σ−1 dt

≤ C

 T

0
Φℓ− σ

σ−1


t

T

 ∂tΦ


t

T



σ
σ−1

dt.

By taking t = t
T , we conclude that



Hn

v0(η)Θ(η) dη ≤ C T− σ
σ−1

+1
 1

0

Φℓ− σ
σ−1 (t̃)

Φ′(t̃)
 σ
σ−1 dt ≤ C T− σ

σ−1
+1. (2.29)

By letting T → ∞ we obtain a contradiction with v0(η) ≥ 0, v0(η) ≡ 0. This completes the
proof. 

Next, we shall prove the nonexistence of positive classical and weak solutions in
the case of large data by an energy-type method as performed e.g. in [7, 26].

Theorem 2.8. Let n ≥ 1, and 1 < m < σ. For each 0 < w ∈ C(Hn)∩L∞(Hn), there
is B > 0 such that if v0 = Bw then there are no positive global classical solutions of
(2.1). More precisely, there exists a T ∗ > 0 such that

sup
η∈Hn

v(t, η) −→ ∞, as t → T ∗.

Proof. Suppose, on the contrary, that v is a positive global classical solution of (2.1),
i.e. a positive classical solution of (2.1) on [0, T ] for all T > 0.

Let Ω ⊂ H
n be a Heisenberg ball with boundary ∂Ω, and let λ1 > 0 be the principal

eigenvalue of −∆H with Dirichlet condition and Λ > 0 its corresponding eigenfunction
such that


Ω
Λ(η) dη = 1 (The existence of such eigenvalue has been proved in [4]).

In order to get a contradiction, we are going to apply the energy method. We divide
our proof into three steps.
Step 1. Let

y(t) :=



Ω

v(t, η)Λ(η) dη, t ∈ [0, T ].

As v is a classical solution, we have

y ∈ C([0, T ]) ∩ C1((0, T ]).
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Using the Green’s formula for Heisenberg group (see [11, 25]) one can get

y′(t) =



Ω

vt(t, η)Λ(η) dη

=



Ω

∆Hv
m(t, η)Λ(η) dη +



Ω

vσ(t, η)Λ(η) dη

= −λ1



Ω

vm(t, η)Λ(η) dη −



∂Ω

vm(t, σ)∂νΛ(σ) dσ +



Ω

vσ(t, η)Λ(η) dη.

It follows from the Hopf type lemma on the Heisenberg group H
n (see [3, Lemma

2.1]), that ∂νΛ ≤ 0 on ∂Ω. Then we have

y′(t) ≥ −λ1



Ω

vm(t, η)Λ(η) dη +



Ω

vσ(t, η)Λ(η) dη. (2.30)

In order to apply the energy method, i.e. obtaining a dierential inequality for y(t),
we need to estimate the right-hand side of (2.30). Let v0 = Bw, where 0 < w ∈
C(Hn) ∩ L∞(Hn) and B ≫ 1 is a positive real number such that

B > (2λ1)
1

σ−m



Ω

w(η)Λ(η) dη

−1

.

This implies that y0 := y(0) > c3, with

c3 := (2λ1)
1

σ−m .

Step 2. We have y(t) ≥ c3, for all t ∈ (0, T ]. Indeed, let T0 = inf{0 < t ≤ T ; y(t) ≥
c3} ≤ T . Since y is continuous and y(0) > c3, we have T0 > 0. We claim T0 = T .
Otherwise, we have y(t) > c3 for all t ∈ (0, T0) such that y(T0) = c3, i.e. particularly,
y(t) ≥ c3 for all t ∈ [0, T0]. On the other hand, using m > 1 and applying the
following Hölder’s inequality for negative exponent (see [1, p. 27])


|fg| dµ ≥


|f |r1 dµ

 1
r1


|g|r2 dµ

 1
r2

, for all r1 < 0, 0 < r2 < 1,
1

r1
+

1

r2
= 1,

with r1 =
1

1−m
and r2 =

1
m
, we have



Ω

vm(t, η)Λ(η) dη =



Ω

vm(t, η)Λm(η)Λ1−m(η) dη

≥



Ω

v(t, η)Λ(η) dη

m 

Ω

Λ(η) dη

1−m

=



Ω

v(t, η)Λ(η) dη

m

= ym(t), (2.31)

for all t ∈ [0, T ], where we have used that



Ω

Λ(η) dη = 1. In addition, using again

Hölder’s inequality for negative exponent with r1 = m
m−σ

< 0 and r2 = m
σ

< 1, we
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have 

Ω

vσ(t, η)Λ(η) dη =



Ω

vσ(t, η)Λ
σ
m (η)Λ1− σ

m (η) dη

≥



Ω

vm(t, η)Λ(η) dη

 σ
m


Ω

Λ(η) dη

m−σ
m

=



Ω

vm(t, η)Λ(η) dη

 σ
m

which implies, using (2.31) and y(t) ≥ c3, that


Ω

vσ(t, η)Λ(η) dη =



Ω

vm(t, η)Λ(η) dη

 σ
m
−1 

Ω

vm(t, η)Λ(η) dη



≥ (ym(t))
σ
m
−1



Ω

vm(t, η)Λ(η) dη



= yσ−m(t)



Ω

vm(t, η)Λ(η) dη

≥ cσ−m
3



Ω

vm(t, η)Λ(η) dη

= 2λ1



Ω

vm(t, η)Λ(η) dη, (2.32)

for all t ∈ (0, T0]. Therefore, by (2.30) and (2.32), we arrive at

y′(t) ≥ −λ1



Ω

vm(t, η)Λ(η) dη + 2λ1



Ω

vm(t, η)Λ(η) dη

= λ1



Ω

vm(t, η)Λ(η) dη,

which implies, using (2.31), that

y′(t) ≥ λ1y
m(t) ≥ 0, for all t ∈ (0, T0],

and hence

c3 = y(T0) ≥ y(0) = y0 > c3;

contradiction.
Step 3. From Step 2, we have y(t) ≥ c3, for all t ∈ [0, T ]. This implies, using
(2.31)-(2.32), that

y′(t) ≥ λ1y
m(t), for all t ∈ (0, T ],

so

y(t) ≥

y1−m
0 − (m − 1)λ1 t

− 1
m−1 , for all t ∈ [0, T ].

Let

T ∗ =
1

ym−1
0 (m− 1)λ1

.

If T ∗ < T , we also get a contradiction because

sup
η∈Hn

v(t, η) ≥ y(t) ≥

y1−m
0 − (m− 1)λ1 t

− 1
m−1 −→ ∞, when t → T ∗.
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If T ≤ T ∗, we get a contradiction by choosing from the beginning T big enough,
namely T > T ∗.
This completes the proof. 

Theorem 2.9. Let n ≥ 1, and m > 0, σ > 1.
If m < σ, then for each 0 < w ∈ L1(Hn) ∩ BC(Hn), there is B > 0 such that
if v0 = Bw there are no positive global weak solutions v ∈ C([0,∞);L1(Hn)) ∩
L∞
loc((0,∞);L∞(Hn)) of (2.1).

If m = σ, then for each 0 < v0 ∈ L1(Hn) ∩BC(Hn) there are no positive global weak
solutions v ∈ C([0,∞);L1(Hn)) ∩ L∞

loc((0,∞);L∞(Hn)) of (2.1).
More precisely, there exists a T ∗ > 0 such that

sup
η∈Hn

v(t, η) −→ ∞, as t → T ∗.

Proof. Suppose, on the contrary, that v ∈ C([0,∞);L1(Hn)) ∩ L∞
loc((0,∞);L∞(Hn))

is a positive weak solution of (2.1) on [0,∞)×H
n.

The case m < σ: Let Θ1(η) := c∗Θ(η), η ∈ H
n, where Θ is dened in Lemma 2.6

with ε = 1, and c∗ > 0 is a constant such that

Hn Θ1(x) dη = 1, namely c∗ =

Hn Θ(η) dη
−1

. Then

∆HΘ1(η) ≥ −λΘ1(η), for all η ∈ H
n, (2.33)

where λ = 2(2+Q). In order to get a contradiction, we are going to apply the energy
method. We divide our proof into three steps.
Step 1. Let

J(t) :=



Hn

v(t, η)Θ1(η) dη, t ≥ 0.

As v is a weak solution, by Lemma 2.7 we may choose ψ(t, η) = Θ1(η) as a test
function. Therefore, using the continuity (in time) of v and (2.33), we have J ∈
C([0,∞)) and

J(τ) − J(0) =



Hn

v(t, η)Θ1(η) dη −



Hn

v0(η)Θ1(η) dη

=

 τ

0



Hn

vσΘ1(η) dη dt+

 τ

0



Hn

vm ∆HΘ1(η) dη dt

≥

 τ

0



Hn

(vσ − λvm)Θ1(η) dη dt

=

 τ

0



Hn

F (v)Θ1(η) dη dt,

for all τ ∈ [0,∞), where F (z) := zσ − λzm, z > 0.
Step 2. Let v0 = Bw, where 0 < w ∈ L1(Hn) ∩ BC(Hn) and B ≫ 1 is a positive
real number such that

B > λ
1

σ−m



Ω

w(η)Θ1(η) dη

−1

.

This is equivalent to J(0) > λ
1

σ−m . Therefore, by the continuity of J , there exists

0 < t0 ≪ 1 suciently small such that J(t) > λ
1

σ−m for all 0 ≤ t < t0. We claim that
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J(t) > λ
1

σ−m , for all t ≥ 0. Indeed, assume on the contrary that J(t) ≤ λ
1

σ−m , for
some t ≥ t0. Let τ0 be the smallest such value, this implies that

J(τ) > λ
1

σ−m , for all 0 ≤ τ < τ0, and J(τ0) = λ
1

σ−m ,

particularly J(τ) ≥ λ
1

σ−m for all 0 ≤ τ ≤ τ0. On the other hand, we can easily see

that F is convex on (0,∞) if m ≤ 1 and on ((λm(m−1)
σ(σ−1)

)
1

σ−m ,∞) if m > 1. Therefore

by using

J(τ) ≥ λ
1

σ−m > max


λm(m− 1)

σ(σ − 1)

 1
σ−m

; 0


, for all 0 ≤ τ ≤ τ0,

Jensen’s inequality and the fact that

H
Θ1(x) dη = 1, we get

J(τ) ≥ J(0) +

 τ

0

F (J(t)) dt =: G(τ), for all 0 ≤ τ ≤ τ0. (2.34)

Moreover, as F is positive on (λ
1

σ−m ,∞), we have
 τ0
0

F (J(t)) dt > 0, which implies

λ
1

σ−m = J(τ0) ≥ J(0) +

 τ

0

F (J(t)) dt > J(0) > λ
1

σ−m ;

contradiction.
Step 3. From Step 2, we have

J(t) > λ
1

σ−m > (
λm

σ
)

1
σ−m , for all t ≥ 0.

This implies, as F is increasing on ((λm
σ
)

1
σ−m ,∞) and using (2.34), that

F (J(τ)) ≥ F (G(τ)) > 0

and
F (G(τ)) ≥ F (J(0)) > 0,

i.e.

G′(τ) = F (J(τ)) ≥ F (G(τ))

= Gσ(τ) − λGm(τ)

= Gσ(τ)(1 − λGm−σ(τ)).

In addition, as G(τ) ≥ J(0), it follows that

1− λGm−σ(τ) > 1− λJm−σ(0) > 0,

and so
G′(τ)

Gσ(τ)
≥ 1− λJm−σ(0), for all τ ≥ 0.

Integrating both sides over (0, t), we arrive at

G(t) ≥
1

(J1−σ(0)− (σ − 1)(1− λJm−σ(0))t)σ−1 .

Let

T ∗ =
J1−σ(0)

(σ − 1)(1− λJm−σ(0))
,
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then

sup
η∈Hn

v(t, η) ≥ J(t) ≥ G(t)

≥
1

(J1−σ(0)− (σ − 1)(1− λJm−σ(0))t)σ−1 −→ ∞, when t → T ∗.

This completes the proof.
The case m = σ: Let Θ1(η) := c∗Θ(η), η ∈ H

n, where Θ is dened in Lemma 2.6
with ε = 1

4(2+Q)
, and c∗ > 0 is a constant such that


Hn Θ1(x) dη = 1, namely

c∗ =


Hn e
−|η|2

H dη
−1

. Then

∆HΘ1(η) ≥ −
1

2
Θ1(η), for all η ∈ H

n. (2.35)

In order to get a contradiction, we are going to apply the energy method. We divide
our proof into two steps.
Step 1. Let

J(t) :=



Hn

v(t, η)Θ1(η) dη, t ≥ 0.

As v is a weak solution, by Lemma 2.7 we may choose ψ(t, η) = Θ1(η) as a test
function. Therefore, using the continuity (in time) of v and (2.35), we have J ∈
C([0,∞)) and

J(τ) − J(0) =

 τ

0



Hn

vσΘ1(η) dη dt+

 τ

0



Hn

vσ ∆HΘ1(η) dη dt

≥
1

2

 τ

0



Hn

vσΘ1(η) dη dt, (2.36)

for all τ ∈ [0,∞). On the other hand, using σ > 1 and applying the following Hölder’s
inequality for negative exponent [1, p. 27]


|fg| dµ ≥


|f |r1 dµ

 1
r1


|g|r2 dµ

 1
r2

, for all r1 < 0, 0 < r2 < 1,
1

r1
+

1

r2
= 1,

with r1 =
1

1−σ
and r2 =

1
σ
, we have



Ω

vσ(t, η)Θ1(η) dη =



Ω

vσ(t, η)Θσ
1 (η)Θ

1−σ
1 (η) dη

≥



Ω

v(t, η)Θ1(η) dη

σ 

Ω

Θ1(η) dη

1−σ

=



Ω

v(t, η)Θ1(η) dη

σ

= Jσ(t), (2.37)

for all t ≥ 0, where we have used that



Ω

Θ1(η) dη = 1. Inserting (2.37) into (2.36)

we get

J(τ) ≥ J(0) +
1

2

 τ

0

Jσ(t) dt =: H(τ). (2.38)
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Step 2. Let 0 < v0 ∈ L1(Hn) ∩ BC(Hn), then J(0) > 0. This implies, using (2.38),
that Jσ(τ) ≥ Hσ(τ) and Hσ(τ) ≥ Jσ(0) > 0, so

H ′(τ) =
1

2
Jσ(τ) ≥

1

2
Hσ(τ),

i.e.
H ′(τ)

Hσ(τ)
≥

1

2
, for all τ ≥ 0.

Integrating both sides over (0, t), we arrive at

H(t) ≥
1


J1−σ(0)− (σ − 1) t

2

σ−1 .

Let

T ∗ =
2J1−σ(0)

σ − 1
,

then we have

sup
η∈Hn

v(t, η) ≥ J(t) ≥ H(t) ≥
1


J1−σ(0)− (σ − 1) t

2

σ−1 −→ ∞, when t → T ∗.

This completes the proof. 

3. Degenerate parabolic equation

In this section we consider the following degenerate parabolic equation



ut = uq ∆Hu+ up, t > 0, η ∈ H
n,

u(0, η) = u0(η) ≥ 0, η ∈ H
n,

u(t, η) ≥ 0, t > 0, η ∈ H
n,

(3.1)

where u0 ∈ L1
loc(H

n), n ≥ 1, q ≥ 0, p > 1.

3.1. Case of 0 ≤ q < 1. We rst consider the case 0 ≤ q < 1.

Definition 3.1. (Weak solution of (3.1))
Let u0 ∈ L1

loc(H
n) and T > 0. We say that u ≥ 0 is a weak solution of (3.1) on

[0, T )×H
n if

u ∈ Lp
loc((0, T )×H

n) ∩ L∞
loc((0, T );L

1
loc(H

n)), uq ∆Hu ∈ L1
loc((0, T )×H

n),

and 

Hn

u(τ, η)ϕ(τ, η) dη−



Hn

u(0, η)ϕ(0, η) dη

=

 τ

0



Hn

upϕ(t, η) dη dt+

 τ

0



Hn

uq ∆Huϕ(t, η) dη dt

+

 τ

0



Hn

uϕt(t, η) dη dt, (3.2)

holds for all compactly supported ϕ ∈ C1,0
t,x ([0, T )×H

n), and 0 ≤ τ < T . If T = ∞,
we call u a global in time weak solution to (3.1).
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We set

H2(Hn) = {u ∈ L2(Hn); ∇Hu ∈ L2(Hn), ∆Hu ∈ L2(Hn)}.

In order to get the nonexistence result of (3.1), we need the following

Lemma 3.2. (Weak solution of (3.1) ⇒ Weak solution of (2.1))
Let T > 0, 0 ≤ q < 1, p > 1, and 0 < u0 ∈ C(Hn) ∩ L1

loc(H
n). If u > 0 is a

positive weak solution of (3.1) on [0, T ) × H
n such that u ∈ C1,0

t,x ([0, T ) × H
n) and

u(t, · ) ∈ H2(Hn) for a.e. t ∈ [0, T ), then v(t, η) := au1−q(t, δb(η)) is a positive weak
solution of (2.1) on [0, T )×H

n, where

a = (1− q)
1−q
p−1 , b = (1− q)

p−1−q
2(p−1) ,

δb(η) = (bx, by, b2τ), for all η = (x, y, τ) ∈ H
n,

with

m =
1

1− q
≥ 1, and σ =

p − q

1− q
> 1.

Proof. Let T > 0. Suppose that u > 0 is a positive weak solution of (3.1) on
[0, T )×H

n such that u ∈ C1,0
t,x ([0, T )×H

n). Let ψ ∈ C1,2
t,x ([0, T )×H

n) be a compactly
supported test function. Let

ϕ(t, η) = u−q(t, η)ψ(t, δ 1
b
(η)),

then ϕ ∈ C1,0
t,x ([0, T )×H

n) and



Hn

u1−q(τ, η)ψ(τ, δ 1
b
(η)) dη −



Hn

u1−q(0, η)ψ(0, δ 1
b
(η)) dη

=

 τ

0



Hn

up−q(t, η)ψ(t, δ 1
b
(η)) dη dt

+

 τ

0



Hn

∆Hu(t, η)ψ(t, δ 1
b
(η)) dη dt

+

 τ

0



Hn

u(t, η)∂t(u
−q(t, η)ψ(t, δ 1

b
(η))) dη dt, (3.3)
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for all τ ∈ [0, T ). Using the integration by parts, we have

 τ

0



Hn

u(t, η)∂t(u
−q(t, η)ψ(t, δ 1

b
(η))) dη dt

= −q

 τ

0



Hn

u−q(t, η)ut(t, η)ψ(t, δ 1
b
(η)) dη dt+

 τ

0



Hn

u1−q(t, η)ψt(t, δ 1
b
(η)) dη dt

= −
q

1− q

 τ

0



Hn

∂t(u
1−q(t, η))ψ(t, δ 1

b
(η)) dη dt+

 τ

0



Hn

u1−q(t, η)ψt(t, δ 1
b
(η)) dη dt

=
q

1− q

 τ

0



Hn

u1−q(t, η)ψt(t, δ 1
b
(η)) dη dt+

 τ

0



Hn

u1−q(t, η)ψt(t, δ 1
b
(η)) dη dt

−
q

1− q



Hn

u1−q(τ, η)ψ(τ, δ 1
b
(η)) dη +

q

1− q



Hn

u1−q
0 (η)ψ(0, δ 1

b
(η)) dη

=
1

1− q

 τ

0



Hn

u1−q(t, η)ψt(t, δ 1
b
(η)) dη dt−

q

1− q



Hn

u1−q(τ, η)ψ(τ, δ 1
b
(η)) dη

+
q

1− q



Hn

u1−q
0 (η)ψ(0, δ 1

b
(η)) dη, (3.4)

and

 τ

0



Hn

∆Hu(t, η)ψ(t, δ 1
b
(η)) dη dt =

 τ

0



Hn

u(t, η)∆H


ψ(t, δ 1

b
(η))


dη dt, (3.5)

for all τ ∈ [0, T ). Inserting (3.4)-(3.5) into (3.3), we obtain

1

1− q



Hn

u1−q(τ, η)ψ(τ, δ 1
b
(η)) dη −

1

1− q



Hn

u1−q
0 (η)ψ(0, δ 1

b
(η)) dη

=

 τ

0



Hn

up−q(t, η)ψ(t, δ 1
b
(η)) dη dt+

 τ

0



Hn

u(t, η)∆H


ψ(t, δ 1

b
(η))


dη dt

+
1

1− q

 τ

0



Hn

u1−q(t, η)ψt(t, δ 1
b
(η)) dη dt,

for all τ ∈ [0, T ). Let η := δ 1
b
(η) i.e. η = δb(η), then

1

1− q



Hn

u1−q(τ, δb(η))ψ(τ, η) dη −
1

1− q



Hn

u1−q
0 (δb(η))ψ(0, η) dη

=

 τ

0



Hn

up−q(t, δb(η))ψ(t, η) dη dt+ b−2

 τ

0



Hn

u(t, δb(η))∆Hψ(t, η) dη dt

+
1

1− q

 τ

0



Hn

u1−q(t, δb(η))ψt(t, η) dη dt,
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for all τ ∈ [0, T ). Using the fact that dη = bQ dη, and dividing the two sides by bQ,
we get

1

1− q



Hn

u1−q(τ, δb(η))ψ(τ, η) dη −
1

1− q



Hn

u1−q
0 (δb(η))ψ(0, η) dη

=

 T

0



Hn

up−q(t, δb(η))ψ(t, η) dη dt+ b−2

 T

0



Hn

u(t, δb(η))∆Hψ(t, η) dη dt

+
1

1− q

 T

0



Hn

u1−q(t, δb(η))ψt(t, η) dη dt, (3.6)

for all τ ∈ [0, T ). As v(t, η) = au1−q(t, δb(η)), we can easily obtain

up−q(t, δb(η) = (1− q)−
p−q
p−1 vσ(t, η), 1

1− q
u1−q
0 (δb(η)) = (1− q)−

p−q
p−1 v0(η), (3.7)

and

b−2u(t, δb(η) = (1−q)−
p−q
p−1 vm(t, η), 1

1− q
u1−q(t, δb(η)) = (1−q)−

p−q
p−1 v(t, η). (3.8)

Putting (3.7)-(3.8) into (3.6), and dividing the two sides by (1− q)−
p−q
p−1 , we conclude

that 

Hn

v0(η)ψ(0, η) dη −


Hn

v0(η)ψ(0, η) dη

=

 T

0



Hn

vσ(t, η)ψ(t, η) dη dt+
 T

0



Hn

vm(t, η)∆Hψ(t, η) dη dt

+

 T

0



Hn

v(t, η)ψt(t, η) dη dt,

for all τ ∈ [0, T ), i.e. v is a weak solution of (2.1) on [0, T )×H
n. 

Set BC(Hn) = C(Hn) ∩ L∞(Hn). Using Lemma 3.2 and Theorems 2.2 and 2.9 we
conclude the following results.

Theorem 3.3. Let 0 < u0 ∈ BC(Hn) ∩ L1(Hn), n ≥ 1, 0 ≤ q < 1, p > 1. If

q + 1 ≤ p ≤ pc = q + 1 +
2(1− q)

Q
,

then there are no positive global weak solutions u ∈ C1,0
t,x ([0,∞) × H

n) of (3.1) such
that u(t, · ) ∈ H2(Hn) a.e. t ∈ [0,∞). Note that, in the case of q+1 < p we just need
u0 ∈ C(Hn) ∩ L1(Hn).

Remark 3.4. When q = 0, the critical exponent pc = 1+ 2
Q
coincides with the critical

exponent obtained in [28] for the semilinear diusion equations on H
n.

Theorem 3.5. Let 0 < u0 ∈ C(Hn) ∩ L1(Hn), n ≥ 1, 0 ≤ q < 1, p > 1. Assume
that there exists a constant ε1 > 0 such that, for every 0 < γ < (1− q)Q, the initial
datum veries the following assumption:

u0(η) ≥ ε1(1 + |δ 1
b
(η)|2

H
)−

γ
2(1−q) .
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If

q + 1 < p < q + 1 +
2(1− q)

γ
,

then there are no positive global weak solutions u ∈ C1,0
t,x ([0,∞) × H

n) of (3.1) such
that u(t, · ) ∈ H2(Hn) a.e. t ∈ [0,∞).

Theorem 3.6. Let n ≥ 1, 0 ≤ q < 1, and p > 1.

If q + 1 < p, then for each 0 < w ∈ L1(Hn) ∩ BC(Hn), there is B > 0 such that

if u0 = B w there are no positive global weak solutions u ∈ C([0,∞);L1(Hn)) ∩
C1,0

t,x ([0,∞)×H
n) of (3.1) such that u(t, · ) ∈ H2(Hn) a.e. t ∈ [0,∞).

If q+1 = p, then for each 0 < u0 ∈ L1(Hn)∩BC(Hn) there are no positive global weak
solutions u ∈ C([0,∞);L1(Hn))∩C1,0

t,x ([0,∞)×H
n) of (3.1) such that u(t, · ) ∈ H2(Hn)

a.e. t ∈ [0,∞).
More precisely, there exists a T ∗ > 0 such that

sup
η∈Hn

u(t, η) −→ ∞, as t → T ∗.

3.2. The case of q ≥ 1. In this subsection, we present the results for the case q ≥ 1
and 1 + q < p.

Theorem 3.7. Let n ≥ 1, q ≥ 1, p > 1. Suppose that q + 1 < p. For each
0 < w ∈ C(Hn) ∩ L∞(Hn), there is A > 0 such that if u0 = Aw then there are no
positive global classical solutions of (3.1).

Remark 3.8. In Theorem 3.7 there are no results for cases q + 1 = p and q + 1 > p.
Therefore, these questions are still open.

Proof of Theorem 3.7. Suppose, on the contrary, that u is a positive global classical
solution of (3.1), i.e. a positive classical solution of (3.1) on [0, T ] for all T > 0.
Let Ω ⊂ H

n be a Heisenberg unit ball, and let λ1 > 0 be the principal eigenvalue of
−∆H with Dirichlet condition and Λ > 0 its corresponding eigenfunction such that
Ω
Λ(η) dη = 1 (The existence of such eigenvalue has been proved by Chen and Luo

[4]). In order to get a contradiction, we are going to apply the energy method. We
divide our proof into two cases.

Case of q > 1.
Step 1. Let

y(t) :=
1

q − 1



Ω

u1−q(t, η)Λ(η) dη, t ∈ [0, T ].

As u is a classical solution, we have

y ∈ C([0, T ]) ∩ C1((0, T ]),
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and

y′(t) = −



Ω

ut

uq
(t, η)Θ(η) dη

= −



Ω

∆u(t, η)Λ(η) dη −



Ω

up−q(t, η)Λ(η) dη

= λ1



Ω

u(t, η)Λ(η) dη +



∂Ω

u(t, σ)∂νΛ(σ) dσ −



Ω

up−q(t, η)Λ(η) dη.

It follows from the Hopf lemma on the Heisenberg group H
n (see [3, Lemma 2.1]),

that ∂νΛ ≤ 0 on ∂Ω. Then we have

y′(t) ≤ λ1



Ω

u(t, η)Λ(η) dη−



Ω

up−q(t, η)Λ(η) dη. (3.9)

In order to apply the energy method, i.e. obtaining a dierential inequality for y(t),
we need to estimate the right-hand side of (3.9). Let u0 = Aw, where 0 < w ∈
C(Hn) ∩ L∞(Hn) and A ≫ 1 is a positive real number such that

A > (2λ1)
1

p−q−1



Ω

w1−q(η)Λ(η) dη

 1
q−1

.

This implies that y0 := y(0) < c0, with

c0 := (q − 1)−1 (2λ1)
− q−1

p−q−1 .

Step 2. We have y(t) ≤ c0, for all t ∈ (0, T ]. Indeed, let

T ∗ = inf{0 < t ≤ T ; y(t) ≤ c0} ≤ T.

Since y is continuous and y(0) < c0, we have T ∗ > 0. We claim that T ∗ = T .
Otherwise, we have y(t) < c0 for all t ∈ (0, T ∗) and y(T ∗) = c0, i.e. particularly,
y(t) ≤ c0 for all t ∈ [0, T ∗]. On the other hand, by Hölder’s inequality for negative
exponent


|fg| dµ ≥


|f |r1 dµ

 1
r1


|g|r2 dµ

 1
r2

, for all r1 < 0, 0 < r2 < 1,
1

r1
+

1

r2
= 1,

with r1 = 1− q and r2 =
q−1
q
, we have



Ω

u(t, η)Λ(η) dη =



Ω

u(t, η)Λ− 1
q−1 (η)Λ

q
q−1 (η) dη

≥



Ω

u1−q(t, η)Λ(η) dη

− 1
q−1



Ω

Λ(η) dη

 q
q−1

=



Ω

u1−q(t, η)Λ(η) dη

− 1
q−1

= (q − 1)−
1

q−1 y−
1

q−1 (t), (3.10)
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for all t ∈ [0, T ], where we have used that



Ω

Λ(η) dη = 1. In addition, using the

standard Hölder’s inequality, we have


Ω

u(t, η)Λ(η) dη =



Ω

u(t, η)Λ
1

p−q (η)Λ
p−q−1
p−q (η) dη

≤



Ω

up−q(t, η)Λ(η) dη

 1
p−q



Ω

Λ(η) dη

p−q−1
p−q

=



Ω

up−q(t, η)Λ(η) dη

 1
p−q

,

which implies, using (3.10) and y(t) ≤ c0, that


Ω

up−q(t, η)Λ(η) dη ≥



Ω

u(t, η)Λ(η) dη

p−q

=



Ω

u(t, η)Λ(η) dη

p−q−1

Ω

u(t, η)Λ(η) dη



≥ (q − 1)−
p−q−1
q−1 y−

p−q−1
q−1 (t)



Ω

u(t, η)Λ(η) dη



≥ (q − 1)−
p−q−1
q−1 c

− p−q−1
q−1

0



Ω

u(t, η)Λ(η) dη



= 2λ1



Ω

u(t, η)Λ(η) dη, (3.11)

for all t ∈ (0, T ∗]. Therefore, by (3.9) and (3.11), we arrive at

y′(t) ≤ λ1



Ω

u(t, η)Λ(η) dη− 2λ1



Ω

u(t, η)Λ(η) dη

= −λ1



Ω

u(t, η)Λ(η) dη,

which implies, using (3.10), that

y′(t) ≤ −λ1(q − 1)−
1

q−1 y−
1

q−1 (t) ≤ 0, for all t ∈ (0, T ∗],

and hence
c0 = y(T ∗) ≤ y(0) = y0 < c0;

contradiction.
Step 3. From Step 2, we have y(t) ≤ c0, for all t ∈ [0, T ]. This implies, using
(3.10)-(3.11), that

y′(t) ≤ −λ1(q − 1)−
1

q−1y−
1

q−1 (t), for all t ∈ (0, T ],

so

0 ≤ y(t) ≤

y

q
q−1

0 − c1 t
 q−1

q

, for all t ∈ [0, T ],

where c1 = λ1q(q − 1)−
q

q−1 , and particularly we have

T ≤ c−1
1 y

q
q−1

0 ≤ c−1
1 c

q
q−1

0 ,
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which implies a contradiction by choosing from the beginning T big enough, namely

T > c−1
1 c

q
q−1

0 . This completes the proof.

The case of q = 1.
Step 1. Let

y(t) := −



Ω

ln(u(t, η))Λ(η) dη, t ∈ [0, T ].

As u is a classical solution, we have

y ∈ C([0, T ]) ∩ C1((0, T ]),

and

y′(t) = −



Ω

ut

u
(t, η)Λ(η) dη

= −



Ω

∆Hu(t, η)Λ(η) dη −



Ω

up−1(t, η)Λ(η) dη

= λ1



Ω

u(t, η)Λ(η) dη +



∂Ω

u(t, σ)∂νΛ(σ) dσ

−



Ω

up−1(t, η)Λ(η) dη.

As ∂νΛ ≤ 0 on ∂Ω by the Hopf type lemma on the Heisenberg group H
n (see [3,

Lemma 2.1]), we arrive at

y′(t) ≤ λ1



Ω

u(t, η)Λ(η) dη −



Ω

up−1(t, η)Λ(η) dη. (3.12)

In order to apply the energy method, i.e. obtaining a dierential inequality in y(t),
we need to estimate the right-hand side of (3.12). Let u0 = Aw, where 0 < w ∈
C(Hn) ∩ L∞(Hn) and A ≫ 1 is a positive real number such that

A > (2λ1)
1

p−2 e−
∫
Ω
ln(w(η))Λ(η) dη.

This implies that y0 := y(0) < c2, with

c2 := −
1

p− 2
ln(2λ1).

Step 2. We have y(t) ≤ c2, for all t ∈ (0, T ]. Indeed, let T ∗ = inf{0 < t ≤ T ; y(t) ≤
c2} ≤ T . Since y is continuous and y(0) < c2, we have T

∗ > 0. We claim that T ∗ = T .
Otherwise, we have y(t) < c2 for all t ∈ (0, T ∗) such that y(T ∗) = c2, particularly
we have y(t) ≤ c2 for all t ∈ [0, T ∗]. On the other hand, by Jensen’s inequality with

Ω

Λ(η) dη = 1, we have



Ω

u(t, η)Λ(η) dη =



Ω

elnu(t,η)Λ(η) dη

≥ e
∫
Ω
ln(u(t,η))Λ(η) dη

= e−y(t), (3.13)
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for all t ∈ [0, T ]. In addition, using Hölder’s inequality, we have


Ω

u(t, η)Λ(η) dη =



Ω

u(t, η)Λ
1

p−1 (η)Λ
p−2
p−1 (η) dη

≤



Ω

up−1(t, η)Λ(η) dη

 1
p−1



Ω

Λ(η) dη

p−2
p−1

=



Ω

up−1(t, η)Λ(η) dη

 1
p−1

,

which implies, using (3.13) and y(t) ≤ c2, that


Ω

up−1(t, η)Λ(η) dη ≥



Ω

u(t, η)Λ(η) dη

p−1

=



Ω

u(t, η)Λ(η) dη

p−2 

Ω

u(t, η)Λ(η) dη



≥ e−(p−2)y(t)



Ω

u(t, η)Λ(η) dη



≥ e−(p−2)c2



Ω

u(t, η)Λ(η) dη



= 2λ1



Ω

u(t, η)Λ(η) dη, (3.14)

for all t ∈ (0, T ∗]. Therefore, by (3.12) and (3.14), we get

y′(t) ≤ λ1



Ω

u(t, η)Λ(η) dη− 2λ1



Ω

u(t, η)Λ(η) dη

= −λ1



Ω

u(t, η)Λ(η) dη,

and then, by using (3.13), we we arrive at

y′(t) ≤ −λ1 e
−y(t) ≤ 0, for all t ∈ (0, T ∗],

and hence

c2 = y(T ∗) ≤ y(0) = y0 < c2;

contradiction.
Step 3. From Step 2, we have y(t) ≤ c2, for all t ∈ [0, T ]. This implies, using
(3.13)-(3.14), that

y′(t) ≤ −λ1 e
−y(t), for all t ∈ (0, T ],

so

0 < ey(t) ≤ ey0 − λ1t for all t ∈ [0, T ],

and hence

T <
ey0

λ1

≤
ec2

λ1

,

which implies a contradiction by choosing from the beginning T big enough, namely
T ≥ ec2

λ1
. This completes the proof. 
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