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A B S T R A C T   

Diagnosing water conditions timely and accurately is crucial for seasonal irrigation scheduling in crop produc-
tion. The purpose of this study was to establish robust water deficit models of winter wheat in different growing 
seasons by combining unmanned aerial vehicle (UAV) multispectral and thermal images. In 2021 and 2022, a 
water deficit field experiment on winter wheat was carried out in Hebei Province, China. Five-band multispectral 
and thermal images were obtained with a UAV at six key growth stages of winter wheat. Fourteen vegetation 
indices (VIs) and two thermal indices (TIs) were calculated. Simultaneously, wheat stomatal conductance and 
soil water content were measured. On this basis, normalized stomatal conductance (NGS) and effective water 
content (EWC) were calculated. TIs had the highest correlation with NGS and EWC at early growth stages, 
whereas ratio vegetation index (RVI), modified simple ratio index (MSR) and normalized difference vegetation 
index (NDVI) were highly correlated at later stages. Partial least squares (PLS), support vector machine (SVM) 
and gradient boosting decision tree (GBDT) were used to predict NGS and EWC for each growth stage, with the 
data of 2021 as the training set and the data of 2022 as independent test set. In general, GBDT outperformed PLS 
and SVM, and NGS was better predicted than EWC. Including VIs and TIs effectively improved the estimation 
accuracy of the predictive models. The test set results of the NGS and EWC models built by GBDT achieved the 
best performance in flowering stage (coefficient of determination (R2) = 0.88, root mean square error (RMSE) =
0.08, normalized root mean square error (NRMSE) = 14.7%) and filling stage (R2 = 0.90, RMSE = 0.05, NRMSE 
= 15.9%), respectively. The models of the post-heading stage were better than those of the pre-heading stage for 
both NGS and EWC. This study provides a robust method for diagnosing water stress only using UAV remote 
sensing data.   

1. Introduction 

Wheat is the food crop with the largest planting area and the widest 
distribution in the world (Reynolds and Braun, 2022). Irrigation is vital 
for agricultural production as irrigated wheat yield increases by about 
34 % compared with rainfed yield on a global scale (Wang et al., 2021). 
However, irrigated agriculture accounts for about 70% of the freshwater 
withdrawals in the world (FAO, 2023), putting pressure on the global 
water cycle. Precision irrigation enables quantitative decision-making 
and variable inputs of irrigation amount by considering spatial and 

temporal variations in crop water demand (Abioye et al., 2020; Dacc-
ache et al., 2015). Thus, water use can be managed more efficiently 
through precision irrigation management. This requires accurate infor-
mation on the spatial variation of plant and soil water status and water 
requirement (Maes and Steppe, 2019), which can enable the formulation 
of plans for variable irrigation in large-scale production. 

Water stress reduces the transpiration and stomatal conductance, 
resulting in an increase in canopy temperature (Jackson et al., 1981; 
Kögler and Söffker, 2019; Buckley, 2019). This change can be observed 
reliably with thermal remote sensing, although corrections for weather 
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conditions and vegetation characteristics are needed to interpret the 
signal (Maes and Steppe, 2012; Maes et al., 2016). Measurements of 
canopy reflectance in the visual and near infrared are also commonly 
implemented for diagnosing crop water stress (Das et al., 2022; Traore 
et al., 2021; Zhou et al., 2021), but provide information only in an 
advanced stage of water stress, when the canopy structure (e.g., leaf 
angle distribution, reductions in leaf area) or leaf characteristics (e.g., 
reduction in chlorophyll, increase in photoprotective pigments as car-
otenes or anthocyanins) are affected (Han et al., 2020). Yang et al. 
(2020) pointed out that normalized difference red-edge index (NDRE) 
and red-edge chlorophyll index (RECI) can detect the water status of 
wheat under water stress and can be used to monitor crop efficiency 
under varying water dosages. Bhandari et al. (2021) found that excess 
green index (ExG), normalized difference vegetation index (NDVI) and 
NDRE were positively correlated with wheat yield at flowering stage and 
filling stage under water stress condition compared to that at early 
growth stages. 

Satellite remote sensing can be used to monitor crop water condi-
tions on a large scale (Bhattarai et al., 2017; Veysi et al., 2017). How-
ever, thermal data are not yet available at high spatial and spectral 
resolution, and multispectral reflectance data can be affected by clouds 
and offers limited spatial and temporal resolutions (Ezenne et al., 2019). 
Remote sensing with unmanned aerial vehicles (UAVs) provides the 
advantages of wide coverage, short measurement cycles, low cost, and 
flexible operation (Feng et al., 2021; Gago et al., 2015; Maes and Steppe, 
2019). Applying UAVs also permits simultaneous measurements with 
multiple sensors (Maes and Steppe, 2019). Combining data from 
different sensors taps into different sources of information (Zhang et al., 
2015) and can be useful in water stress research, particularly when 
focusing on water stress modelling. Moran et al. (1994) calculated the 
water deficit index (WDI) that combined thermal, multispectral, and 
meteorological data, which provided accurate estimation of alfalfa field 
evapotranspiration rates and relative field water deficit. Abuzar et al. 
(2009) built a modified trapezoid water stress model by combining UAV 
thermal and multispectral images that can be used both in wheat irri-
gated and rainfed situations. Cheng et al. (2022) showed that a soil 
water content model of corn that combined RGB, multispectral and 
thermal data resulted in higher accuracies than the single variable 
model. However, analyzing data obtained from different sensors is 
challenging. Few studies have used a combination of multispectral and 
thermal data from UAV platforms to assess stomatal conductance and 
soil water content in winter wheat. Another limitation of most previous 
studies is that the training and test datasets are not independent, 
resulting in an overly optimistic appraisal of the model performance. 
Therefore, it is necessary to investigate whether UAV remote sensing can 
improve the applicability of water stress models for different wheat 
growing seasons and stages, with separate training and test datasets. 

The goal of this study was to develop an accurate, comprehensive yet 
robust model to estimate water deficit (using normalized stomatal 
conductance and effective water content) at the different growth stages 
of winter wheat, based solely on UAV data. To ensure that the resulting 
models were more robust, they were trained and tested on datasets ac-
quired in different years. We investigated whether a combination of 
multispectral and thermal imagery improves the model robustness 
compared to multispectral data alone. For this purpose, we evaluated 
the performance of different machine learning methods (partial least 
squares (PLS), support vector machine (SVM) and gradient boosting 
decision tree (GBDT)). 

2. Materials and methods 

2.1. Study area and experimental treatments 

The experiment was conducted at the China Agricultural University 
Experimental Station in Zhuozhou (39.45◦N, 115.85◦E), Hebei Province, 
China. The study area climate is warm summer continental (Dwb under 

the Köppen classification) with a summer precipitation pattern. The 
annual precipitation is about 560 mm, and the annual mean temperature 
is about 11.6 ℃. 

The soil is mainly sandy (using the definition of the soil texture tri-
angle recommended by the USDA) (Shirazi and Boersma, 1984). The 
average field capacity (FC) and the wilting point (WP) in the 0–40 cm 
soil layer are 0.24 cm3 cm-3 and 0.05 cm3 cm-3, respectively. Before 
sowing, the soil was sampled to test physicochemical properties. The 
content of soil organic carbon, available phosphorus, nitrate nitrogen, 
and ammonia nitrogen were 20.2 g kg-1, 32.5 mg kg-1, 14.0 mg kg-1, and 
4.6 mg kg-1, respectively, acquired with ultraviolet-visible spectropho-
tometer. The content of exchangeable potassium was 55.0 mg kg-1, ob-
tained by atomic absorption spectroscopy. Table 1 shows the sowing 
parameters of winter wheat. In the second year, the wheat grains har-
vested in the first year were used as seeds. To ensure a sufficient number 
of initial seedlings, the sowing rate in 2022 exceeded that of 2021 by an 
additional 60 kg ha-1. 

To collect and diagnose the water deficit in winter wheat, an 
experiment was carried out from March to June in 2021 and 2022. The 
field was divided into 12 experimental zones, corresponding to 4 irri-
gation levels, namely HD (high deficit), MD (moderate deficit), SD 
(slight deficit), and LI (local irrigation). We chose the LI as a control 
irrigation level to find the differences among treatments resulting from 
irrigation levels based on local irrigation management. In the present 
study, the main root depth was within a range of 40 cm. Therefore, when 
the average soil water content (SWC) in 0–40 cm soil layer of LI treat-
ment dropped to around 65% FC, all zones were irrigated. The irrigation 
amount of LI treatment was equivalent to the average water depth that 
could supplement current SWC to 100% FC. In total, the irrigation 
amount of LI treatment in 2021 and 2022 were 270 mm and 235 mm 
respectively, which included 30 mm of overwintering water on 
November 16, 2020 and November 27, 2021. The irrigation rates for 
HD, MD, and SD treatments were set at 55%, 70%, and 85% of the 
irrigation rate applied in the LI treatment, respectively. In each experi-
mental zone, 3 sampling plots of 6 m × 6 m were selected, resulting in a 
total of 36 plots. The specific experimental layout is shown in Fig. 1.  
Fig. 2 shows the irrigation amount of the 4 treatments as well as the 
cumulative reference crop evapotranspiration (ET0, Penman-Monteith) 
and rainfall in the experiment. 

To achieve variable rate irrigation, the experimental field was irri-
gated by a three-span center-pivot irrigation system with a radius of 
140 m, which was equipped with solenoid valves, valve controllers, 
Beidou RTK receivers, and control software. The Beidou RTK receiver 
determined the position of the center pivot in the field for the real time 
identification of control zones. There were a total of 34 low-pressure 
sprinklers, and each sprinkler could be operated separately by turning 
the solenoid on or off. The designed application depths in specific con-
trol zones were obtained by changing the travel speed of the center pivot 
and the duty cycle of each solenoid valve (Hui et al., 2022) (Fig. 1). 

2.2. UAV image acquisition 

2.2.1. UAV remote sensing platform 
A DJI M300 Pro UAV (Shenzhen DJI Sciences and Technologies Ltd, 

Table 1 
Sowing parameters of winter wheat.   

2021 2022 

Cultivar Nongda 212 Nongda 212 
Sowing time 12/10/2020 10/10/2021 
Seed rate (kg ha-1) 270 330 
Row spacing (cm) 15 15 
Nitrogen fertilizer amount (kg ha-1) 254 254 
Phosphorus fertilizer amount (kg ha-1) 138 138 
Potassium fertilizer amount (kg ha-1) 81 81 
Organic fertilizer amount (kg ha-1) 22,500 -  
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Shenzhen, China) (maximum take-off weight of 9 kg, maximum payload 
2.7 kg, maximum flight time of 55 min without payload) was equipped 
with a 5-band multispectral camera (MicaSense Red Edge-MX multi-
spectral camera, AgEagle, Wichita, KS, USA) and a thermal infrared 
camera (DJI Zenmuse H20T). Flights were performed in clear sky and 
low wind speed conditions, between 11:00 and 13:00 local time. The DJI 
Pilot app was used for all flights planning, set at 75% forward and 75% 

side overlap in image acquisition for the thermal imagery. The flight 
height was 50 m and the flight speed was 2.1 m s-1. The flight time and 
flight conditions (see Section 2.3.3 for a description of the weather 
station) are listed in Table 2. 

Five ground control points (GCPs) were placed in the experimental 
area, and their exact location was retrieved with an RTK GNSS receiver 
(M600 mini, Compass Navigation, China). The adopted positioning 

Fig. 1. Location and treatments of the experiment in this study. HD, MD, SD and LI represent high deficit, moderate deficit, slight deficit and local irrigation, 
respectively. 

Fig. 2. Irrigation amounts of four irrigation treatments, cumulative ET0 and rainfall in 2021 and 2022. HD, MD, SD and LI represent high deficit, moderate deficit, 
slight deficit and local irrigation, respectively. ET0 represents reference crop evapotranspiration. The overwintering water amount of 30 mm was applied on 
November 16, 2020 and November 27, 2021, respectively. 
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Agricultural Water Management 291 (2024) 108616

4

protocol was Qianxun Find CM (Qianxun SI, China) with a horizontal 
accuracy of 2 cm and an elevation accuracy of 5 cm. 

2.2.2. Multispectral camera 
The RedEdge-MX multispectral camera is a global shutter sensor 

with 5 spectral bands, namely in the blue (465–485 nm), green 
(550–570 nm), red (663–673 nm), red edge (712–722 nm), and near- 
infrared (820–860 nm) spectrum. The focal length is 5.5 mm, resulting 
in a field of view of 47.2◦ and ground sampling distance of 3.5 cm at 
50 m flight height. During the flights, the camera was connected to the 
DLS-2 sensor, measuring GNSS position and downwelling light. The 
camera was set up to capture an image every 2 s. A standard grey panel 
(Calibrated Reflectance Panel (CRP), MicaSense) was photographed for 
radiometric correction before each flight. 

2.2.3. Thermal camera 
Simultaneously, the Zenmuse H20T collected thermal images. It is an 

integrated camera that contains 4 sensors for a radiometric thermal 
camera, a wide angle camera, a zoom camera and a laser rangefinder. 
The thermal imaging camera is a radiometric microbolometer camera 
with a single band sensitivity in the 8–14 µm spectral range, a temper-
ature range of − 40 to 150 ◦C, and a resolution of 640 × 512 pixels. Its 
lens has a focal length of 13.5 mm, resulting in a field of view of 40.6◦

and a ground sampling distance of 4.5 cm at 50 m flight height. Images 
were acquired every 2 s. 

The at-sensor radiance was converted into brightness temperature 
(Tbr, K) using the DJI Thermal SDK 1.2 software to perform the atmo-
spheric correction, with the locally measured air temperature (Ta), 
relative humidity, and flight height. The surface temperature (Ts, K) was 
then calculated as Eq. 1 (Maes et al., 2017; Maes and Steppe, 2012): 

Ts =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

T4
br − (1 − ε) × T4

bg

ε
4

√

(1)  

Tbg =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

0.7 × T4
a

4
√

(2)  

In which ε is the emissivity, estimated as 0.99. Tbg is the background 
temperature (K), calculated from air temperature (K) as Eq. 2. 

2.2.4. Data processing 
Pix4D Mapper (Pix4D 4.4, Pix4D S.A., Switzerland) was used to 

create orthomosaics with the coordinates of five GCPs as input for 
georeferencing. For the multispectral data, the software also converted 
the data to reflectance using the DLS2 and the grey reference panel 
measurement, which is a relatively reliable way for processing these 
data (Daniels et al., 2023). 

The multispectral and thermal orthomosaics were imported into 
QGIS 3.22 (QGIS Geographic Information System; Open Source Geo-
spatial Foundation Project), which was used for all further GIS pro-
cessing. Fourteen vegetation indices that are commonly used for crop 
growth monitoring were calculated from the multispectral orthomosaic 
(Table 3). From the thermal data, two thermal indices (TIs), including 

the difference between canopy temperature and air temperature (△T, 
℃) and crop water stress index (CWSI) were calculated as follows (Eqs. 3 
and 4): 

ΔT = Ts − Ta (3)  

CWSI =
Ts − Tpot

Tdry − Tpot
(4) 

With Tpot (℃) and Tdry (℃) corresponding to the surface temperature 
of a winter wheat plant transpiring at a maximal rate (Tpot) and not 
transpiring at all (Tdry). In this case, Tpot and Tdry were calculated 
directly per measurement day using the histogram method, as the 1st 
and 99th percentile the polygon records of that day (De Swaef et al., 
2021). The histogram method can be applied in this case, since the 
different irrigation treatments guarantee that at least some completely 
unstressed and some severely stressed plants are present on each mea-
surement day. 

The normalized difference vegetation index (NDVI) images were 
converted to binary images by the vegetation index threshold (OTSU) 
(Otsu, 1979) to distinguish vegetation from soil background. Then, the 
average value for each VI and TI of each sample plot was extracted using 

Table 2 
The flight time of the UAV and the corresponding meteorological parameters.   

2021  2022 

Growth stages Date Time Ta
[a] 

(℃) 
RH（%） RS 

(W m-2) 
WS 
(m s-1)  

Date Time Ta 

(℃) 
RH（%） RS 

(W m-2) 
WS 
(m s-1) 

Tillering(T1) 06/04/2021 12:05–12:30 19.8 42.8 391.9 0.8  08/04/2022 11:30–11:55 19.5 54.6 668.1 0.5 
Jointing（T2） 22/04/2021 12:25–12:50 16.1 72.1 686.9 1.2  15/04/2022 12:45–13:00 19.4 27.1 788.1 1.2 
Booting(T3) 30/04/2021 12:45–13:10 14.8 54.2 610.6 1.8  25/04/2022 13:00–13:25 26.0 65.7 649.4 0.3 
Heading(T4) 07/05/2021 12:10–12:35 25.7 24.1 818.1 1.0  04/05/2022 12:25–12:50 31.4 38.1 814.4 0.8 
Flowering(T5) 11/05/2021 12:35–13:00 25.6 52.3 751.9 1.3  11/05/2022 11:45–12:10 19.5 49.6 538.5 1.4 
Filling(T6) 27/05/2022 12:10–12:35 28.6 27.9 906.9 1.5  26/05/2022 11:45–12:10 32.6 13.5 800.4 1.5 

Note: [a]Ta, air temperature (℃); RH, relative humidity (%); RS, solar radiation (W m-2); WS, wind speed (m s-1). 

Table 3 
Equations for vegetation indices.  

Vegetation Indices Formula References 

Ratio vegetation index, RVI RVI = NIR/R[a] (Jordan et al., 
1969) 

Normalized difference 
vegetation index, NDVI 

NDVI = (NIR − R)/(NIR + R) (Rouse et al., 
1974) 

Normalized difference red- 
edge, NDRE 

NDRE = (NIR − RE)/(NIR +

RE)
(Fitzgerald et al., 
2010) 

Enhanced vegetation index, 
EVI 

EVI = 2.5× (NIR − R)/(NIR +

6R − 7.5B + 1)
(Liu and Huete, 
2019) 

Optimized soil adjusted 
vegetation index, OSAVI 

OSAVI = 1.16× (NIR −

R)/(NIR + R + 0.16)
(Rondeaux et al., 
1996) 

Difference vegetation index, 
DVI 

DVI = NIR − R (Broge and 
Mortensen, 2002) 

Green normalized 
difference vegetation 
index, GNDVI 

GNDVI = (NIR − G)/(NIR +

G)
(Gitelson et al., 
1995) 

Red-edge chlorophyll index, 
CIRE 

CIRE = NIR/RE − 1 (Gitelson et al., 
2005) 

Enhanced vegetation index, 
EVI2 

EVI2 = 2.5× (NIR −

R)/(NIR + 2.4R + 1)
(Jiang et al., 2008) 

Green optimal soil adjusted 
vegetation index, GOSAVI 

GOSAVI = 1.16× (NIR −

G)/(NIR + G + 0.16)
(Cao et al., 2015) 

Modified simple ratio index, 
MSR 

MSR = (NIR/R −

1)/
[
(NIR/R)0.5

+1
]

(Haboudane et al., 
2004) 

Soil adjusted vegetation 
index, SAVI 

SAVI = 1.5× (NIR −

R)/(NIR + R + 0.5)
(Huete, 1988) 

Structure insensitive 
pigment index, SIPI 

SIPI = (NIR − B)/(NIR − R) (Penuelas et al., 
1995) 

Red-edge vegetation index, 
RERVI 

RERVI = NIR/RE (Cao et al., 2013) 

Note: [a]NIR, RE, R, G and B are reflectance values of wheat in near-infrared, red- 
edge, red, green, and blue band from multispectral camera. 
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the zonal statistics function. 

2.3. Field data acquisition 

2.3.1. Stomatal conductance 
A leaf porometer (SC-1, METER, USA) was used to measure the 

stomatal conductance (GS) of three wheat flag leaves per plot from 
11:00–13:00 on the same day of the UAV flight. As recommended, the 
probe was regularly calibrated, and the sensor probe was kept hori-
zontally during all measurements. 

2.3.2. Soil water content 
A TDR device (Trime-T3, IMKO Ltd., Ettlingen, Germany) was used 

to monitor the soil water content (SWC) at depths of 0–20 cm and 
20–40 cm. 36 Trime tubes were buried at the center of each plot. The soil 
was extracted with a soil drill next to the trime tube to calibrate the TDR 
measurements. 

2.3.3. Meteorological parameters 
During the remote sensing image acquisition, a hand-held meteoro-

graph (4500 DT, Kestrel, USA) was used to measure the instantaneous 
meteorological data, including relative humidity, temperature, and 
wind speeds at 2 m height. Additionally, a weather station (HOBO U30, 
Onset Computer Co., MA, USA) was installed in the experimental area 
and hourly wind speed, precipitation, air temperature, relative humidity 
and solar radiation were collected. As shown in Table 1, air temperature, 
relative humidity and wind speed were obtained from a hand-held 
weather meteorograph, and solar radiation was obtained from the 
weather station. 

2.4. Model establishment and accuracy evaluation 

2.4.1. Calculation of water deficit indices 
To build the water regime training and testing models for wheat from 

separate datasets, the GS at each growth stage in the two-year experi-
ment was normalized as NGS (Eq. 5). 

NGSi =
GSi

GSmax
(5)  

Where GSmax is the maximum value of GS measured in each growing 
season (547.5 mmol m-2 s-1 in 2021 and 575.4 mmol m-2 s-1 in 2022). 

The effective soil water content (EWC) in the soil that can be utilized 
by crops was calculated as Eq. 6: 

EWCi =
SWCi − WP
FCi − WP

(6)  

Where FCi is the field capacity of 0–40 cm soil layer of each plot (ranging 
from 0.21 to 0.24 cm3 cm-3) and WP is the wilting point (WP=0.05 cm3 

cm-3). 

2.4.2. Machine learning modelling 
Due to the high collinearity between the vegetation indices, a Prin-

cipal Component Analysis (PCA) was performed to reduce the di-
mensions (Abdi and Williams, 2010). The PCA was performed on the VIs 
and TIs measured in two years at each growth stage to determine 
important variables and the relationship between VIs and TIs. The PCA 
axes with a cumulative contribution rate of principal component vari-
ance above 98% were used as inputs of the winter wheat water stress 
prediction models. 

Three different machine learning algorithms were evaluated. PLS 
(Partial Least Squares) is a multivariate statistical data analysis method 
that combines the advantages of principal component analysis, canoni-
cal correlation analysis, and linear regression analysis (Abdi, 2010). 
SVM (Support Vector Machines) is a supervised machine learning al-
gorithm that implements classification and regression by constructing a 

hyperplane or set of hyperplanes in a high-dimensional or 
infinite-dimensional space (Cortes et al., 1995). GBDT (Gradient Boos-
ted Decision Trees) is a commonly used ensemble learning algorithm. 
This algorithm trains multiple individual learners, and then combines 
them through certain strategies to form a strong learner, which has the 
characteristics of high fitting accuracy and strong interpretability 
(Friedman, 2002). In this study, the number of iterations of GBDT was 
chosen as 100, and the learning rate was 0.1. The maximum depth of the 
regression tree was 7, the minimum number of leaf nodes samples was 5, 
and the maximum number of features was 3. 

The Principal Components (PCs) calculated for each growth stage in 
2021 were used as input to build NGS and EWC prediction models. To 
verify the applicability of the model, the PCs in 2022 for each growth 
stage were used to test the performance of the models. In addition, a 
separate analysis was performed in which the data of all different 
growth stages were pooled. We also constructed a separate model for 
pre-heading (tillering, jointing and booting stage) and post-heading 
stage (heading, flowering and filling stage). Finally, to compare the 
impact of multispectral and thermal images on the prediction accuracy 
of winter wheat growth parameters, models using only multispectral 
vegetation indices (VIs) were included as input, or using both VIs and 
thermal-based indices (VIs + TIs) were included. 

2.4.3. Statistical analysis 
The coefficient of determination (R2), root mean square error 

(RMSE), and normalized root mean square error (NRMSE) from Eqs. 7–9 
were used to evaluate the reliability and accuracy of the models’ pre-
diction results. Statistically, the higher R2 and the smaller RMSE and 
NRMSE, the higher the accuracy of a prediction model. The simulation 
effect evaluation was divided into four levels according to the NRMSE: 
excellent (NRMSE ≤ 10%), good (10%＜NRMSE ≤ 20%), suitable (20% 
＜NRMSE ≤ 30%), and poor (NRMSE＞30%). A schematic illustrating 
the methodology is presented in Fig. 3. 

R2 = 1 −

∑n

i=1
(yi − ŷi )

2

∑n

i=1
(yi − yi)

2
(7)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
(
∑n

i=1
(yi − ŷi)

2
√

(8)  

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(yi − ŷi)

2
√

y
× 100% (9)  

Where yi is measured value of NGS or EWC, ŷi is predicted value of NGS 
or EWC, y is average measured value of NGS or EWC, n is number of 
samples. 

3. Results 

3.1. Statistics of NGS and EWC of wheat under different irrigation 
treatments 

Fig. 4(a) and (b) show the variation of NGS and EWC of wheat under 
the different irrigation deficit treatments. In the tillering stage, the dif-
ference in NGS and EWC between the different treatments was still 
limited (ranging from 0.28 to 0.37 in 2021 and from 0.27 to 0.41 in 2022 
for NGS, and from 0.36 to 0.42 in 2021 and from 0.34 to 0.41 in 2022 for 
EWC, respectively). With the growth of wheat, these differences be-
tween irrigation treatments gradually increased, peaking in the flow-
ering (NGS) and filling stages (EWC). The two-year experimental results 
have high synergy, which provided a favorable data set for the testing of 
the model. 

Linear regression models of each growth stage showed the close 
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correlation between NGS and EWC (Fig. 5). Under water stress condi-
tions, the transpiration rate of wheat decreased, so NGS decreased with 
the decrease of EWC. However, the regression models of the six growth 
stages were different. In the tillering and jointing stages, R2 varied 
slightly between 0.65 and 0.68. R2 increased significantly in booting and 
heading stages. For both years, the correlations were strongest at the 
flowering stage. 

3.2. Relationships between VIs, TIs and water stress levels 

The Pearson correlation coefficient matrix of on the one hand NGS 
and EWC and on the other hand the VIs and TIs at different growth 
stages is given in Fig. 6. All VIs except SIPI (structure insensitive pigment 
index) were positively correlated with NGS and EWC, whereas SIPI, △T, 
and CWSI were negatively correlated with these two variables. To 
clearly distinguish the correlation between the spectral variables and the 
canopy temperature indices with the two variables, the correlation co-
efficient r was taken as the absolute value(︱r︱) for analysis, and the 
following correlation coefficients were referred to︱r︱. 

In the tillering stage, △T and CWSI had the highest correlation with 

NGS, while RVI (ratio vegetation index), NDVI, and GOSAVI (green 
optimal soil adjusted vegetation index) also showed good correlations 
with NGS. △T and CWSI also performed best in jointing and booting 
stages, followed closely by MSR (modified simple ratio index), RVI and 
NDVI. Some differences between both years were found in the heading 
stage, where MSR, RVI and NDVI were highly correlated with NGS in 
2021, whereas △T and CWSI were most highly correlated with NGS in 
2022. At flowering and filling stages, RVI, CIRE (red-edge chlorophyll 
index), MSR and RERVI (red-edge vegetation index) correlated most 
closely with NGS. Overall, RVI had the highest correlation throughout 
the entire growing season, for both years, closely followed by CWSI. 

The correlations between EWC, and VIs and TIs were slightly lower 
than those of NGS. In tillering and jointing stages, △T and CWSI were 
most highly correlated with EWC. However, RVI, MSR and GNDVI 
(green normalized difference vegetation index) showed a higher corre-
lation with EWC than TIs in booting, heading and flowering stages. At 
filling stage, RVI and NDVI performed best in 2021and 2022, respec-
tively. In summary, the correlation between TIs and NGS and EWC was 
slightly better than that of the VIs in the early growth stages, but this was 
less obvious in the late growth stages. Still, overall, CWSI was the most 

Fig. 3. Flowchart showing the experimental methodology. VIs, vegetation indices; TIs, thermal indices; PCs, principal components; GS, stomatal conductance; SWC, 
soil water content; NGS, normalized stomatal conductance; EWC, effective water content; PLS, partial least squares; SVM, support vector machine; GBDT, gradient 
boosting decision tree; R2, coefficient of determination; RMSE, root mean square error; NRMSE, normalized root mean square error. 

Fig. 4. NGS (a) and EWC(b) under different irrigation treatments. NGS and EWC represent normalized stomatal conductance and effective water content, respec-
tively. HD, MD, SD and LI represent high deficit, moderate deficit, slight deficit and local irrigation, respectively. T1 to T6 represent the growth stage of tillering, 
jointing, booting, heading, flowering, and filling, respectively. 
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highly correlating variable throughout the entire season, and for both 
years. During the whole experimental period, VIs of RVI, MSR, and NDVI 
performed well with NGS and EWC. 

3.3. Principal Components of PCA with VIs and VIs+TIs 

Fig. 7 shows the cumulative contribution of the PCs in the PCA an-
alyses by VIs (a) and VIs+TIs (b). The cumulative contribution of the top 
4 PCA components reached over 98% for all PCA analyses. Therefore, we 
consider it appropriate to use 4 PCA components for VIs and VIs + TIs in 
this study to model NGS and EWC (Section 3.4 & 3.5). 

For the PCA on the VIs, 93.5% of the variation was explained by the 
first two components, in both pre-heading and post-heading stages. In 
the pre-heading stage, OSAVI (optimized soil adjusted vegetation 
index), GOSAVI, NDVI and NDRE (normalized difference red-edge) were 
strongly positively and SIPI strongly negatively correlated with PC1, 
with EVI (enhanced vegetation index) more correlated with PC2 
(Fig. 8a). In the post-heading stage (Fig. 8b), the overall correlation 
pattern between the individual VIs was very similar, although they were 
less strongly correlated to PC1. The two first PC of the PCA on the VIs 
+ TIs explained 85.7% and 87.6% of the variation in pre-heading and 
post-heading stages, respectively. In the pre-heading stage (Fig. 8c), 
nearly all VIs were very strongly correlated to PC1, and the two TIs to 
PC2. In the post-heading stage (Fig. 8d), the TIs were strongly correlated 
with several VIs (e.g., △T with SIPI, MSR and RVI; CWSI with GNDVI 
and NDRE). Consequently, both TIs were negatively correlated with PC1 
and the PCA of VIs + TIs closely resembled the PCA of the VIs in this 
stage (Figs. 8b and 8d). 

3.4. Models simulating NGS 

The 4 PCA axes from VIs and VIs + TIs were used as input variables 
to construct NGS prediction models with PLS, SVM, and GBDT. This 
section only shows the results of the test set; the results of the training set 
can be found in the Appendix (Table A.1). The accuracy of the NGS 
prediction models varied at different growth stages (Fig. 9). None of the 

models performed well at tillering stage, but the model accuracy grad-
ually increased for the jointing, booting, and heading stages. The pre-
diction accuracy peaked at the flowering stage (R2＞0.80) and decreased 
during the filling stage. Combining all data from the pre-heading stage 
into a single model clearly increased the model performance, although 
overall performance was still lower (R2 =0.65–0.75) than that of the 
post-heading stage (R2 =0.84–0.88). 

Compared to VIs, the combination of VIs and TIs consistently 
improved the prediction accuracy of NGS at all stages. R2 values 
improved from 0.74 to 0.79 at pre-heading stage and from 0.87 to 0.90 
at post-heading stage for the GBDT method. 

Among the three methods, PLS usually performed slightly worse, 
particularly in the early and later growth stages. For the individual 
growth stages, GBDT and SVM performed similarly. However, the GBDT 
model performed consistently best for the aggregate pre-heading and 
post-heading models. 

3.5. Models simulating EWC 

With the aim of assessing the spatial variability of soil water avail-
ability in the large-scale field, this study constructed EWC prediction 
models by combining SWC, FC, and WP for the soil layers from 0 to 
40 cm. The results of the training set can be found in Appendix 
(Table A.2), and the results of the independent test dataset are shown in  
Fig. 10. The results show large similarity with those of the NGS models: 
combining VIs and TIs consistently improved model performance, and 
the models of pre-heading and post-heading reached a good level (10% 
＜NRMSE ≤ 20%), with the post-heading model performing slightly 
better than the pre-heading model. The ensemble model in the pre- 
heading stage performed better than the individual stage models. PLS 
models had the lowest accuracy, and GBDT models overall had the 
highest accuracy. R2 was lower and RMSE and NRMSE were higher at 
the tillering and jointing stages. Different from the NGS models, the 
models achieved the best results in filling stage, with GBDT (R2 = 0.90, 
RMSE = 0.05, NRMSE = 15.9%) as the best model. 

Fig. 5. Correlation between EWC and NGS at different growth stages. NGS and EWC represent normalized stomatal conductance and effective water content, 
respectively. 
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4. Discussion 

The GS and SWC are important indicators for characterizing crop 
water stress. Large-scale monitoring of crop water status based on UAV 
remote sensing technology is greatly important for wheat management. 

In this study, prediction models of NGS and EWC were constructed using 
VIs and TIs calculated from UAV spectral and thermal remote sensing to 
evaluate water stress of winter wheat. 

As expected, △T and CWSI were indeed more highly correlated with 
NGS and EWC than the VIs in the early growth stages, when the growth 

Fig. 6. Absolute value of the Pearson correlation coefficient︱r︱of the vegetation indices (VIs) and thermal indices (TIs) with the normalized stomatal conductance 
(NGS) (a) and the effective soil water content (EWC) (b) at different growth stages. T1 to T6 represent the growth stage of tillering, jointing, booting, heading, 
flowering and filling, respectively. ’All’ represents all growth stages from T1 to T6. RVI, NDVI, NDRE, EVI, OSAVI, DVI, GNDVI,CIRE, EVI2, GOSAVI, MSR, SAVI, SIPI 
and RERVI represent ratio vegetation index, normalized difference vegetation index, normalized difference red-edge, enhanced vegetation index, optimized soil 
adjusted vegetation index, difference vegetation index, green normalized difference vegetation index, red-edge chlorophyll index, enhanced vegetation index, green 
optimal soil adjusted vegetation index, modified simple ratio index, soil adjusted vegetation index, structure insensitive pigment index and red-edge vegetation index, 
respectively. △T and CWSI represent the difference between canopy temperature and air temperature, and crop water stress index, respectively. 
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of the plants did not yet differ much between the treatments. Still, this 
study revealed that in the later growth stages, several VIs (e.g., RVI, 
RERVI and MSR) were even more closely correlated with NGS and EWC 
than the TIs. 

Following the lower correlation of VIs with NGS and EWC in the 

early stages, the performance of the models predicting the water stress 
variables was lower, particularly when only VIs were used as input 
(Figs. 9 and 10). This study confirmed that the prediction accuracy of 
combining VIs and TIs by PCA as input was higher than when relying 
only on multispectral data. This is consistent with findings by Cheng 

Fig. 7. Cumulative contribution rate of each component of principal component analysis for VIs (a) and VIs+TIs (b) by combining 2021 and 2022. T1 to T6 represent 
the growth stage of tillering, jointing, booting, heading, flowering and filling, respectively. Pre and post represent pre-heading stage and post-heading stage, 
respectively. 

Fig. 8. The two first principal component axes of the Principal Component Analysis (PCA) performed on the vegetation indices and thermal indices (△T and CWSI) 
at different growth stages by combining 2021 and 2022. PCA results of VIs at pre-heading stage (T1, T2 and T3 represent the growth stage of tillering, jointing, and 
booting, respectively.) (a) and post-heading stage (T4, T5 and T6 represent the growth stage of heading, flowering, and filling, respectively.) (b). PCA results of 
combining VIs and TIs at pre-heading stage (c) and post-heading stage (d). RVI, NDVI, NDRE, EVI, OSAVI, DVI, GNDVI,CIRE, EVI2, GOSAVI, MSR, SAVI, SIPI and 
RERVI represent ratio vegetation index, normalized difference vegetation index, normalized difference red-edge, enhanced vegetation index, optimized soil adjusted 
vegetation index, difference vegetation index, green normalized difference vegetation index, red-edge chlorophyll index, enhanced vegetation index, green optimal 
soil adjusted vegetation index, modified simple ratio index, soil adjusted vegetation index, structure insensitive pigment index and red-edge vegetation index, 
respectively. △T and CWSI represent the difference between canopy temperature and air temperature, and crop water stress index, respectively. 
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et al. (2022) who predicted the soil water content in corn. Our study 
confirmed that the combination of multispectral and canopy tempera-
ture image datasets for water stress monitoring at key growth stages 
improved the accuracy of predictive models. Another study indicated 
that WDI derived from multispectral and thermal sensors is a reliable 
factor in assessing the water status of winter wheat (Antoniuk et al., 
2023). Specifically, the WDI had a consistently high correlation with GS 
during the whole season (R2 ranged from 0.63 to 0.99). But their study 
lacked a truly independent test set, so the applicability of the model in 
different growth seasons still needs to be verified. 

In our study, the prediction accuracy of the NGS model first 
increased and then decreased with the growth of wheat, with optimal 
performance at flowering stage, in line with models predicting GS by 
Zhou et al. (2021), using solely multispectral remote sensing. However, 
the prediction accuracy of the EWC model showed a gradually 

increasing trend with the growth of wheat. This is probably because in 
the late stages of the growing season, SWC remained stable, whereas GS 
dropped during the filling stage (Figs. 6 and 7). This decrease during 
filling stage can be attributed to the weakening of leaf vitality (Xue et al., 
2006). Conversely, the accumulated drought stress widened the gap of 
SWC between different irrigation treatments at filling stage. The accu-
racy of the models predicting NGS was overall higher than those tar-
geting EWC. GS is a more direct indicator of plant water status and hence 
more closely related to VIs and TIs than SWC (Jones, 2004). 

Similar to the findings of Zia et al. (2012), the models showed better 
performance in the post-heading than in the pre-heading stage. An 
interesting observation was that the ensemble pre-heading model per-
formed better than the individual models in the tillering, jointing and 
booting stages, while the ensemble model accuracy of post-heading was 
not significantly improved. This may be due to the gradual growth of 

Fig. 9. Results of the independent test dataset (data of 2022) of NGS with VIs (a, c and e) and VIs+TIs (b, d and f). VIs and TIs represent vegetation indices and 
thermal indices, respectively. PLS, SVM and GBDT represent machine learning methods of partial least squares, support vector machine and gradient boosting 
decision tree, respectively. T1 to T6 represent the growth stage of tillering, jointing, booting, heading, flowering, and filling, respectively. Pre and Post represent pre- 
heading stage and post-heading stage, respectively. 
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wheat before heading, which increases the canopy coverage. The results 
indicate that in the early stages, the relationship between on the one 
hand NGS, EWC and on the other hand VIs and TIs remains relatively 
stable. Technically, a model incorporating more data (from different 
growth stages) is more robust. 

Overall, the GBDT model outperformed the PLS and SVM models 
with higher R2, lower RMSE and NRMSE in NGS and EWC estimation for 
most of the wheat growth stages. This is in line with recent research that 
also found high precisions for the GBDT algorithm (Du et al., 2022; Fan 
et al., 2018). GBDT is an ensemble algorithm based on decision trees. Its 
basic learner is serially generated, that is, each new learner generated is 
based on the previous modeling results. Therefore, it can be used as a 
good single regression model, providing very robust prediction, excel-
lent and stable model discrimination ability. The generated new learners 
are based on the previous modeling results (Obsie et al., 2020). In 

addition, each decision tree of GBDT only learns the prediction residual 
part of the observation data, which is less prone to over-fitting. The SVM 
can solve nonlinear problems by introducing kernel functions. Although 
it also shows high test set accuracy in some growth stages, the fitting 
accuracy was not as good as the GBDT method from the perspective of 
the entire growth seasons. PLS performed the worst, probably because it 
cannot handle the non-linear problem in water stress prediction well. 

These data were analyzed based on the four irrigation treatment 
levels, six growth stages, and two growing seasons. A completely inde-
pendent data set, collected in a separate year, was used as test dataset. 
The results showed that the both models reached a good level, indicating 
the stability of the ensemble approaches on new data. Zhou et al. (2021) 
built a GS prediction model of winter wheat with R2 greater than 0.80 by 
combining the multispectral vegetation indices and texture features. 
However, the study used the dataset of the flowering stage of a single 

Fig. 10. Results of the test set of EWC with VIs (a, c and e) and VIs+TIs (b, d and f). VIs and TIs represent vegetation indices and thermal indices, respectively. PLS, 
SVM and GBDT represent machine learning methods of partial least squares, support vector machine and gradient boosting decision tree, respectively. T1 to T6 
represent the growth stage of tillering, jointing, booting, heading, flowering, and filling, respectively. Pre and Post represent pre-heading stage and post-heading 
stage, respectively. 
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growing season for training and testing of the model. Similarly, Qin et al. 
(2022) and Cheng et al. (2022) built predictive models for wheat GS and 
maize SWC respectively, but no truly independent dataset was used in 
their research. Our model results can be used in other growth seasons or 
independent datasets to diagnose water stress in wheat. In addition, 
compared with the single growth stage, two independent models 
(pre-heading and post-heading stage) achieved acceptable test set re-
sults, which provided a reference for irrigation plans. These models can 
reliably estimate NGS and EWC without the need to define the growth 
stage in detail. Therefore, modelling NGS and EWC for wheat at these 
two growth periods is straightforward, without requiring models for 
each growth stage. In addition, this study accurately controlled the 
amount of irrigation in the two growing seasons, thereby expanding the 
range of NGS and EWC, and achieving good test set results. 

Despite the independent dataset gathered in a separate year, the 
current study was performed within a single field and with a single 
variety of wheat. Different varieties of wheat as well as differences in 
climate and soil characteristics could affect the relationship between 
VIs, TIs and stomatal control. Hence, future studies should focus on 
implementing the models that combine multiple sites and varieties to 
extend those outcomes. Nonetheless, the determination of crop surface 
canopy temperature for both severely stressed and unstressed plants was 
ascertained by analyzing the 1 % and 99 % quantiles of the thermal 
image’s histogram captured on the respective flying day. However, it 
should be acknowledged that this simplified methodology may not be 
universally applicable, particularly in cases where vegetated areas do 
not exhibit pronounced water deficiency. This limitation arises from the 
inherent inability to establish a baseline for CWSI. The OTSU was 
employed to segregate the vegetation from the soil background. How-
ever, a comprehensively comparative analysis of the impact of distinct 
methodologies on model accuracy was not compared in this study. 
Furthermore, sandy soil, such as presentin the experimental site, drains 
faster than loamy or clay soil. Consequently, the canopy temperature of 
sandy soil tends to exhibit higher temperatures under water stress 
conditions. In prospective investigations, the best method for dis-
tinguishing between soil and vegetation in sandy soils should be studied. 
This refinement will enable better application of histogram analysis to 
discriminate between non-transpiring and fully transpiring crops. 
Additionally, wheat water deficit diagnostic models were constructed 
based solely on UAV multispectral and thermal remote sensing. For 
precision irrigation, winter wheat water stress map (Fig. 11) still needs 
to be converted into a task map of irrigation requirements, for which it is 
also necessary to include climatic conditions or soil properties in the 
decision process. 

5. Conclusions 

A two-year winter wheat water deficit field experiment was con-
ducted. The stomatal conductance and soil water content during the 
critical growth stages of wheat were monitored, and the water stress of 
wheat was assessed based on UAV multispectral and thermal remote 
sensing. The results showed that temperature indices (TIs, △T and 
CWSI) had a higher correlation with normalized stomal conductance 
(NGS) and effective water content (EWC) in the early growth stage, 
while RVI, CIRE, MSR, GNDVI, and RERVI from vegetation indices (VIs) 
performed better in the late growth stage. In this study, data from 
different growing seasons were used to construct the training and testing 
sets of the model. The gradient boosting decision tree (GBDT) method 
exhibited higher performance compared to partial least squares (PLS) 
and support vector machine (SVM), and the NGS could be better pre-
dicted than EWC. Combining VIs and TIs effectively improved the pre-
diction accuracy of the NGS and EWC models. R2 increased from 0.83 to 
0.88 (NGS) and 0.77–0.81 (EWC) at the flowering stage by GBDT 
method. Overall, this study provides robust models to diagnose water 
deficit comprehensively and accurately in winter wheat using UAV 
remote sensing. 
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