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INTRODUCTION

Microbial assessments of wastewater are essential to
control the risks of infection by waterborne diseases [1].
Traditional microbial risk assessment of wastewater is
often based on quantification of a few fecal pathogens
(e.g., Escherichia coli and enterococci), which are often
unreliable and time‐consuming [2, 3].

Due to the high sensitivity (as low as 1–10 copies [cp]
per ml), qPCR‐based assays have been increasingly
employed for the routine surveillance of individual

pathogens in clinical and public health settings [4–8].
However, these assays are constrained by the require-
ment for a priori knowledge of the pathogens to be
targeted [9]. Meanwhile, only a few pathogens can be
detected simultaneously in a single test [10]. Thus, early
warning of pathogen emergence is limited by the vast
diversity and wide range of the pathogen, as well as
newly emerging yet‐to‐be‐recognized pathogens.

Recently, environmental metagenomics is becoming
an essential technique for pathogen surveillance [11].
Theoretically, this approach could detect all pathogens
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[12]. In recent years, wastewater surveillance by
metagenomics has documented the dynamics of the
relative abundance (RA) of bacterial pathogens in
municipal wastewater [13, 14], which is emerging as
an early‐warning tool for detecting viruses in the local
community [15]. Therefore, this approach represents a
promising direction for microbial risk assessment of
wastewater.

However, due to seasonal shifts in the total
bacterial load, RA estimates could misrepresent actual
concentrations [16]. These potential deviations may
result in the overestimation of microbial risk, as well
as the neglect of potential outbreaks. At present, three
approaches have been developed for absolute quanti-
fication. The first approach is relied on a qPCR assay
of a broad‐range 16S rRNA gene to estimate the total
bacterial load followed by 16S sequencing to obtain
RA data of the bacterial community [16]. Then, the
absolute abundance of individual bacterial species can
be inferred by multiplying RA data with total bacterial
DNA. However, as different organisms contain various
gene copy numbers, correcting for 16S rRNA gene
copy numbers remains an issue in microbiome surveys
[17]. Thus, multiplying RA data by estimates of total
bacterial DNA as measured by qPCR assay of a broad‐
range 16 S rRNA gene could not provide reliable conclu-
sions. The “spike‐in” of the known absolute abundance of
a bacterial species (such as E. coli) for calibration is the
second approach [18, 19]. However, as the DNA extraction
efficiency of different species varies substantially, initial
bacterial compositions would be distorted after the DNA
extraction [20]. For instance, Urban et al. suggested that
the RA value of Enterobacteriaceae is constantly over-
estimated [13]. Amos et al. also found that the variability of
different bioinformatics tools had a significant impact on
the estimations of RA [21]. Thus, the spiking method is
still inaccurate at the DNA level in reflecting the initial
bacterial compositions [22]. The third approach involves
the use of direct measurement of the total bacterial load by
flow cytometry [23]. Afterward, the absolute abundance of
individual pathogens was inferred by multiplying the RA
by the total bacterial load. However, this approach was still
inaccurate without an RA correction based on the DNA
recovery efficiency [24]. Thus, guaranteeing the accuracy
of both RA data and the total bacterial load are both
essential for approaching the “ground truth” of absolute
quantification.

In addition, the inability of the standard micro-
biome approach to assessing the risks of opportunistic
pathogens has been demonstrated [25]. Understand-
ing the virulence profiles of the targeted pathogen is
also essential for performing accurate microbial risk
assessment, as the infection dose varies remarkably

for different virulent types of the same species (etc.
O139 or O1 Vibrio cholerae strain vs non‐O1/O139 V.
cholerae strain) [26]. Thus, developing a workflow
realizing virulence profiling and absolute quantifica-
tion of bacterial pathogens simultaneously will
provide significant information for microbial risk
assessment.

To address these challenges, we first developed a new
workflow to infer individual bacterial concentrations in
three mock communities by combining metagenomic
sequencing with flow cytometry. We revealed that this
workflow can provide good estimates of the absolute
concentrations of particular bacterial pathogens in both
mock and municipal wastewater from a coastal city
(Supporting Information: Figure S1), with additional
values for obtaining metagenome‐assembled genomes
(MAGs) to assess the virulence, antibiotic resistance or
functionality of pathogens simultaneously.

RESULTS

The rational basis of the workflow

Relative to 16S rRNA amplicon sequencing, we identified
two advantages of metagenomic sequencing in our previous
study: higher resolution for taxonomy identification and
robustness in obtaining MAGs for virulence analysis [25]. In
this study, we further employed flow cytometry to quantify
the total bacterial load for three mock communities.
Subsequently, we obtained the RA values of bacterial
species via metagenomic sequencing and converted them
into absolute abundance (Figure 1A). Afterward, the
number of individual pathogens was inferred. Combined
with the virulence profile conferred from MAGs, we were
able to justify the microbial risk of certain pathogens in both
mock and real water samples.

Establishment of a method for RA
estimation

We first established three mock communities consisting of 2
(H1), 8 (H2), and 32 (H4) bacterial species to assess the best
bioinformatic tool for taxonomy profiling (Supporting
Information: Table S1) with total assembly sizes ranging
from 8.2 to 130Mb (Supporting Information: Table S2). The
RA of bacterial species calculated by MetaPhlan3 was proven
to be the most accurate bioinformatic tool for RA estimation
(Supporting Information: Figure S2). Afterward, we found
that RA was even closer to the actual RA when we
considered the variations in the DNA extraction efficiency of
individual bacterial species in the three mock communities
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FIGURE 1 (See caption on next page)
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(Figure 1B) with the lowest RMSE (Figure 1C). Thus, we
further evaluated the DNA extraction efficiency of 128
bacterial species from 72 families (Supporting Information:
Table S3), which represent the core microbiome in the
estuary of this region [25]. The DNA extraction efficiency
ranged from 9.6% to 70.8%, with a median value of 41.6%
(Supporting Information: Figure S3). The Gram‐negative
species also exhibited significantly higher efficiency for DNA
recovery (Supporting Information: Figure S3).

Absolute quantification and binning
of individual bacterial species in three
mock communities

The total bacterial load was determined using flow
cytometry. The values measured by flow cytometry were
consistent with the expected values, suggesting the reliability
of this approach (Supporting Information: Table S4). In
contrast, the use of the qPCR assay based on the universal
16S rRNA gene significantly overestimated the total bacterial
load (p<0.05). Next, we calculated inferred concentrations
by multiplying the total bacterial load by the corrected RA
for each species, as shown in equation 3. The results showed
that the inferred bacterial concentration closely tracked the
absolute concentration for most species. Linear regression
showed a significant correlation between the expected and
inferred concentrations (R2 = 0.974, p<0.01) (Figure 1D).
We defined inferred individual bacteria concentration
(IC) error as shown in equation 3. Overall, the mean IC
error was low. However, when we further examined the
source of IC error, we found that the majority of IC
errors tended to originate from bacterial species with
lower RA. The results showed that 94.5% of IC errors
were identified from the data which RA below 5%
(75.5% by an RA below 0.1%), suggesting that the
species with low abundance were major sources of IC
errors (Figure 1E). The variance in the relationship
with expected concentration tended to be inversely

proportional to species concentrations (Breusch‒Pagan
test; p= 0.01) (Figure 1F). Thus, this quantification
approach is not suitable for pathogens with RA below
0.1%. MAGs were also obtained in three mock
communities to assess the robustness of binning. The
N50 values of MAGs ranged from 2317 to 300,286 with
a mean value of 91,402, suggesting the good quality of
MAGs. In samples H1 and H2, all formulated species
were recovered, while in sample H4, 28 MAGs were
obtained out of 32 bacterial species. Only four species
with RA below 0.13% were not retrieved, indicating the
feasibility of binning of pathogen MAGs for microbial
risk assessment without cultivation.

Metagenomic surveillance of bacterial
pathogens in the real samples

To evaluate the performance of this newworkflow, we tested
nine real water samples. From May to September 2021, we
conducted semimonthly sampling in the urban wastewaters
in Dandong city followed by metagenomic sequencing.
Afterward, the RA of individual species was further
corrected by normalizing the impacts of DNA extraction
efficiency on the ground truth of RA. For those species with
unknown DNA extraction efficiency, a median value of 128
bacterial species was applied. We then measured the total
bacterial load by flow cytometry. RA estimates were
multiplied by the total bacterial load by Equation (3) to
obtain the absolute number of individual bacterial species.

Most species showed a consistent trend between RA and
IC. However, for some species, such as Acinetobacter
baumannii, Acinetobacter pitti, Aeromonas caviae, Vibrio
harveyi, Cronobacter sakazakii, and Shewanella algae, the
RA changes at some time points were discordant from the
IC changes, which often occur when bacterial loads shift
dramatically or when the RA is low (Supporting Informa-
tion: Figure S4). These observations suggested that RA alone
is not reliable for indicating the microbial risk level.

FIGURE 1 Absolute quantification of individual bacterial species in three mock communities. The workflow of absolute quantification of
broad‐range bacterial pathogens and subsequent microbial risk assessment for municipal wastewater (A); MAG, metagenome‐assembled
genomes; ARGs, antibiotic resistance genes; Relative abundance of three mock communities estimated by MetaPhlAn3 before and after the
correction (B); A, Acinetobacter johnsonii; B, Photobacterium ganghwense; C, Acinetobacter pittii; D, Aeromonas bestiarum; E, Aeromonas caviae;
F, Aeromonas caviae; G, Pseudomonas aestusnigri; H, Salmonella enterica; I, Bacillus stratosphericus; J, Bacillus stratosphericus; K, Bacillus cereus;
L, Shewanella chilikensis; M, Vibrio cholerae; N, Shewanella xiamenensis; O, Vibrio diabolicus; P, Klebsiella quasipneumoniae; Q, Yersinia
pseudotuberculosis; R, Citrobacter freundii; S, Enterococcus faecalis; T, Acinetobacter haemolyticus; U, Klebsiella quasipneumoniae; V, Vibrio
antiquarius; W, Shewanella algae; X, Acinetobacter junii; Y, Klebsiella pneumoniae; Z, Other; root mean squared errors (RMSE) of three mock
communities provided with three classification tools and correction with MetaPhlAn3 (C); Scatter plot of the absolute concentration versus the
relative abundance (D); Bar chart of incidence of IC error by relative abundance group (E); Boxplots displaying IC error (Equation 4), with zero
inferred concentrations removed, indicate low IC error rates overall (F).
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Interestingly, relative to the qPCR assay, IC consis-
tently overestimated the absolute concentration by an
order of magnitude, most of which were at low RA.
Thus, to check whether ICs are predictive of absolute
concentrations measured by qPCR, eight pathogens were
detected by qPCR for comparison. qPCR results of six
pathogens (A. baumannii, Bacillus cereus, Salmonella
enterica, Staphylococcus aureus, Vibrio parahaemolyticus,
and Vibrio cholerae) revealed that the values obtained
from qPCR agreed with the calculated values
(R2 = 0.1246–0.945, Supporting Information: Figure S5).

The results from flow cytometry showed that the total
bacterial load ranged from 7.42 to 9.32 log10 cells/L, with
a change of 1.9 log10 cells/L over 5 months (Figure 2A).
A total of 22 potential bacterial pathogens with over 1000
cells/L were abundantly detected in the urban waste-
water, with IC values between 2.9 and 6.3 log10 cells/L
(Figure 2B). The dynamics of inferred individual
abundance varied remarkably for each species, of which
species belonging to Vibrionaceae and Enterobacteria-
ceae rose to over 5.0 log10 cells/L in July and August.

We further obtained the isolates with high IC.
Overall, 21 pathogens were subsequently isolated in pure
culture (Figure 2B), of which A. baumannii, V.

parahaemolyticus, V. cholerae, S. aureus, K. pneumoniae,
E. coli, and E. cloacae were repeatedly isolated.

The resolution of MAGs for identification
of virulence and antibiotic resistance
genes (ARGs)

To test whether metagenomic sequencing with 6G data set
was enough for virulence and ARGs profiling, we then
binned the contigs obtained from metagenomic datasets.
A total of 196 MAGs were recovered. In terms of MAG
quality, the mean N50 value, mean completeness, and
mean contamination were 23,377, 65.5, and 2.65, respec-
tively (Supporting Information: Table S5). MAGs repre-
sented the 78 genera, including 22 pathogens. However,
relative to the cultivation, a few pathogen genomes were
recovered, such as Legionella pneumophila. In addition,
MAGs were only recovered with IC over 104 cells/L. For
instance, A. baumannii was also not recovered in May,
although isolates were obtained at that time point.

Moreover, we examined the MAGs for identifying
virulence genes and ARGs directly. MAGs and isolates of
14 pathogens obtained at the same time points were selected

(A) (B)

FIGURE 2 Dynamics of bacterial communities in the municipal wastewater from Dandong city. (A) Relative abundance of bacterial
communities at the genus level from May 2021 to September 2021; solid lines are absolute concentrations of total bacterial load measured by
flow cytometry. The bar line indicates the relative abundance of bacterial communities at the genus level; (B) Dynamics of bacterial
pathogens from May 2021 to Sept 2021; the size of the circle indicates bacterial abundance per ml, which was calculated using the total
bacterial load multiplied by the relative abundance of each individual species; Gray: bacterial species detected in the metagenomic data set;
Red: bacterial species obtained in pure culture. The letter M in the circles indicates the recovery of the MAGs at specific time points.
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for comparisons. Binning successfully retrieved all of the
key virulence genes and ARGs identified in the above
pathogen MAGs (Supporting Information: Table S6).

DISCUSSION

Metagenomic sequencing combined with
flow cytometry realized the quantification
of pathogens of waterborne diseases

In this study, we sought to develop a workflow to
evaluate the abundance and virulence profiles of
individual bacterial species simultaneously. However,
as bioinformatic tools and DNA extraction methods have
large impacts on the output of RA [27], in this study, we
first established three mock bacterial communities to
assess the impacts of DNA extraction and bioinformatic
tools on the RA of individual species. The results
suggested that the DNA extraction rate is highly variable
for different species, ranging from 9.5% to 73.3%. Next,
we identify key differences in classification rates and
consensus agreements using matched mock community
datasets through systematic benchmarking of three
different classification tools (MetaPhlAn3, Kraken,
and Diamond). Relative to Kraken and Diamond,
MetaPhlAn3 has a higher resolution at the species level.
After compensation by the DNA extraction rate, the
corrected RA from the MetaPhlAn3 outputs showed
better agreement with the actual value.

After obtaining the corrected RA, another issue is that
RA estimates of individual species often misrepresented
actual concentrations due to shifts in total bacterial load.
16S rRNA gene amplicon sequencing combined with flow
cytometry has been used as a rapid tool for identifying
potential microbial risks [28]. However, as the 16S rRNA
gene in bacteria is often found to have multiple copies,
previous studies also indicated that 16S rRNA sequencing
can only partially detect gut microbiota when compared to
shotgun metagenomic sequencing [29]. Thus, we sought to
assess the accuracy and boundary of the absolute
quantification approach in three mock communities,
which suggested that this approach offered a higher
resolution than profiling by the universal 16S rRNA gene.
Another advantage of our approach is that relative to
cultivation, the majority of pathogens with IC over 104

cells/L can be recovered by a new binning tool BASALT
developed in our previous study [30]. The limitation of this
approach is that as a number of contigs would be lost
during the binning, it is possibly hard to distinguish highly
similar species within the same genus. Nanopore‐based
metagenomic sequencing might overcome this limitation
[31]. However, analysis of MAGs from mock communities

showed 100% accuracy of taxonomy assignment, indicating
this probability is low.

Next, we applied this set of techniques for pathogen
surveillance on municipal wastewater from a coastal city.
Results of real samples also suggested that the inferred
individual bacterial counts showed good agreement with the
values obtained by qPCR for six selected pathogens.
Meanwhile, virulence genes and ARGs of most pathogen
MAGs were recovered. Virulence profiling of MAGs also
helps to confirm the virulent type of certain pathogens. For
instance, thanks to e identification of blaKPC‐2 and genes
encoding hemorrhagic E. coli pilus in the E. coli MAGs
recovered, accurate microbial risk assessment can be
accomplished. Based on the abundance and 50% infection
dose (ID50) of this virulent type [32], we can define that
there was a high risk of E. coli‐related infection in August.

CONCLUSION

In this study, we developed a workflow combining
metagenomic sequencing and flow cytometry and
evaluated its robustness for absolute quantification and
microbial risk assessment of specific pathogens in mock
and real samples. Results showed that this workflow
accurately estimated the absolute abundance of patho-
gens in mock communities and real samples. Genomic
information extracted from MAGs has further led to
microbial risk assessment of bacterial virulence and ARG
profiles and the identification of novel virulent strains in
challenging settings.

METHODS

Determination of DNA extraction
efficiency from 128 bacterial species

A total of 128 bacterial cultures were obtained from the
China General Microbiological Culture Collection Center
or previous studies [25]. These 128 species span 94
genera and 72 families (Supporting Information:
Table S2), which accounted for over 80% of the regional
core estuary bacterial communities locally [25]. The
media and cultivation conditions used for liquid cultures
were shown in Supporting Information: Table S2 as
described in a previous study [25]. Acridine orange direct
count was used to determine the cell count.

The bacterial species (500 ml) from sterilized syn-
thetic wastewater were filtered individually through the
mentioned GTTP membranes (Merck Millipore). Geno-
mic DNA extracted from the mixed cultures was
described previously by Boström et al. [33]. After
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measuring the total DNA concentrations by Quant‐iT
PicoGreen dsDNA Assay Kit (Invitrogen), genome copy
numbers were converted based on the genomes' known
molecular weight (described by Tourlousse et al.) [27].

The measurement of DNA extraction efficiency was
calculated by the following Equation (1):

DNA extraction efficiency(%)

= genome copy numbers/cell counts,
(1)

where cell counts are the abundance of specific species
before DNA extraction.

The corrected relative abundance (CRA) of individual
species was inferred by the following Equation (2):

⋯( )
i

i i
CRA( ) =

RA( )/DR( )

+ + +
,

n

n

RA(1)

DR(1)

RA(2)

DR(2)

RA( )

DR( )

(2)

where RA(i) is the relative abundance of species i, DR is
the determined DNA extraction rate for species i, CRA(i)
is the corrected relative abundance for species i and RA
(1) to RA (n) indicate the relative abundance of species 1
to species n.

The flow cytometry following the staining of cells was
used for cell counts through SYTO 9 green fluorescent
nucleic acid stain, which was performed by a CytoFLEX
(Beckman Coulter) flow cytometer equipped with a 488‐
nm laser [28]. After obtaining the total bacterial load by
flow cytometry, the inferred individual bacterial concen-
tration (IC) was calculated by the following equation:

∗IC(i) = total bacteria lload   CRA(i), (3)

where IC (i) is the inferred individual bacterial concen-
tration of species i. The data are presented on a log10
scale. To keep all values finite when working with a log10
scale, zero inferred concentrations were mapped to 0.

Preparation, metagenomic sequencing,
and binning of the bacterial mock
community

To assess the influences on the RA of a given pathogen
by the DNA extraction and bioinformatics tools in the
metagenomic data set, 2, 8, and 32 bacterial species were
selected from above 128 bacterial species to construct the
three mock communities (namely, H1, H2, and H4)
(Supporting Information: Table S1).

The media and cultivation conditions used for the
overnight cultures of the above species were shown in

Supporting Information: Table S1. The total cell counts of
species were measured individually by acridine orange
direct count [29]. After pooling 2, 8, and 32 strains
together, respectively, each 100 μl of monoculture was
transferred into a tube to finally make three mock
communities. Followed by the NovoSeq Nano DNA
Sample Preparation Guide, DNA samples were prepared
accordingly. Sequencing was performed by the platform
of an Illumina NovoSeq sequencer (Illumina Inc.) at
Novogenes (Tianjin).

Raw reads from Illumina metagenomic sequencing
were trimmed and filtered by FastX Toolkit to remove
the low quality (Q ≤ 20) and short reads (length ≤ 45).
The clean reads were then analyzed on the online
platform BMK Cloud (www.biocloud.net). Subsequently,
the high‐quality clean reads were assembled by SOAP-
Denovo v1.06 to obtain the scaftigs (minimum length
above 500 bp) [34]. Taxonomic profiling of three mock
communities was performed by MetaPhlAn3 (v3.0.13)
[35], Kraken2 (v 2.1.1) [36], and Diamond (v1.1) [37],
respectively (Details see supplementary text).

To obtain MAGs, filtered reads from both mock
community and wastewater samples were assembled
using SPAdes version 3.2 [38] specifying k‐mer size
values at 21, 33, 55, and 77, and finally reserved
assembled contigs at lengths of ≥1,000 bps. Contigs were
binned into MAGs (completeness ≥ 50% and contamina-
tion ≤ 10%.) and processed with BASALT [30].

Evaluation of the accuracy and boundary
of inferred concentrations

To assess the accuracy and boundary of inferred
concentrations, the error of IC (IC error) was defined
based on Equation (4) to assess the accuracy:

ICerror = log(EC) − log(IC), (4)

where EC is the expected concentration of individual
species, IC is the inferred concentration of individual
species. The data were converted to log10 values
for relative abundance and inferred as expected
concentrations.

Validation of absolute quantification
workflow for real samples

The municipal wastewater samples were collected from
May to September 2021 in Dandong city (Supporting
Information: Figure S1). On each sampling day, 3 L of
wastewater was collected at 9:00 a.m. and 3:00 p.m.
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before pooling together for DNA extraction. All samples
were placed in sterile containers immediately and
transported to the laboratory via ice package within 8 h.
The DNA of wastewater samples was extracted and
sequenced as described previously. To assess whether
there was any discordance between RA and IC, a qPCR
assay was performed for six species, including A.
baumannii, A. pitti, A. caviae, V. harveyi, C. sakazakii,
and S. algae, as described previously [25]. qPCR was also
conducted to quantify another five pathogenic species (B.
cereus, S. enterica, S. aureus, V. parahaemolyticus, and V.
cholerae) (DAAN Gene, Guangzhou, China) to check the
linear relationship between IC and expected abundance.

Isolation and whole genome sequencing
of bacterial pathogens from wastewater

The bacterial pathogens were then isolated from the
wastewater samples. In light of the National Food Safety
Standard of the People's Republic of China (GB4789),
Foodborne pathogens were isolated and characterized as
described previously [25]. After overnight bacterial
culturing on trypticase soy agar, genomic DNA was
extracted and sequenced on the Illumina HiSeq. 2500
platform at Beijing Novogene. Raw reads from the
chromosomes were de novo assembled by SPAdes
version 3.2 [38]. The virulence factors of MAGs and
isolated genomes were identified using the Virulence
Factors of Pathogenic Bacteria (VFDB) database [39].
ARGs were identified using ResFinder [40].

Statistical analysis

The data from qPCR and flow cytometry (mean ± stan-
dard deviation, n= 3) were compared with one‐way
analysis of variance, followed by Tukey's post‐hoc test in
R package (R 3.4.1) ggpubr and visualized using ggplot2
[41]. Additionally, Breusch‒Pagan test was performed to
confirm the heteroscedasticity of errors in linear regres-
sion. Differences among samples were recognized to be
statistically significant at p< 0.05.
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