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Abstract

Inference for the conditional association between an exposure and a time-to-event

endpoint, given covariates, is routinely based on partial likelihood estimators for

hazard ratios indexing Cox proportional hazards models. This approach is flexible and

makes testing straightforward, but is nonetheless not entirely satisfactory. First, there

is no good understanding of what it infers when the model is misspecified. Second,

it is common to employ variable selection procedures when deciding which model

to use. However, the bias and uncertainty that imperfect variable selection adds to

the analysis is rarely acknowledged, rendering standard inferences biased and overly

optimistic. To remedy this, we propose a nonparametric estimand which reduces to

the main exposure effect parameter in a (partially linear) Cox model when that model

is correct, but continues to capture the (conditional) association of interest in a well

understood way, even when this model is misspecified in an arbitrary manner. We

achieve an assumption-lean inference for this estimand based on its influence function

under the nonparametric model. This has the further advantage that it makes the

proposed approach amenable to the use of data-adaptive procedures (e.g., variable

selection, machine learning), which we find to work well in simulation studies and a

data analysis.

Key words: conditional treatment effect; debiased machine learning; estimand;

hazard ratio; model misspecification; post-selection inference.

1 Introduction

The hazard ratio has grown to become one of the most reported measures of association

in epidemiology and medicine. It is by far the most popular measure of association in sur-

vival analysis, expressing, for instance, a contrast in survival distributions between treated
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and untreated individuals. Its popularity can be partly explained by the success of the

Cox proportional hazards model (Cox, 1972), which uses the hazard ratio as a canonical

parameter. Its success more fundamentally underlies a more substantive difficulty when it

comes to measuring associations with respect to event times, namely that the strength of

the association may be dependent upon the length of the time window over which risks are

being evaluated. A (constant) hazard ratio accommodates this by evaluating risks over an

infinitesimally small time window. This gives it some appeal relative to competing mea-

sures (e.g., restricted mean survival differences), which demand pre-specification of a time

window.

The estimation of hazard ratios is routinely based on partial likelihood estimators (Cox,

1972) under a Cox proportional hazards model. This approach has great appeal. It can

incorporate arbitrary types of exposures and covariates, does not require modelling the

time effect, and returns (globally) efficient estimators when the model holds. The latter as-

sumption is questionable, however. Hazard ratios have been argued to be non-proportional

in many practical settings (Stensrud and Hernán, 2020) and it is unlikely that all covariate

effects can be modelled correctly (Robins, 1999; van der Laan and Rose, 2011), especially

when adjustment for many covariates is needed in order to control for confounding or in-

formative censoring. This is a major concern as there is no good understanding of what the

partial likelihood estimator of the hazard ratio converges to when the model is misspecified

(Struthers and Kalbfleisch, 1986). It does not simply converge to a weighted average of the

time-varying hazard ratios (unlike what is suggested in Stensrud and Hernán (2020)), but

instead equals a complex functional of the observed data distribution. For instance, with

a dichotomous exposure A (coded 0 or 1) and in the absence of covariates, this functional
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is the value θ that solves the non-linear integral equation:

0 =

∫
w(t, 1)w(t, 0)

θw(t, 1) + w(t, 0)
{λ(t|A = 1)− θλ(t|A = 0)} dt,

where for a = 0, 1, λ(t|A = a) denotes the hazard at time t in exposure group a, w(t, a) ≡

P (T > t, C > t|A = a)P (A = a) and T and C denote the event and censoring time,

respectively. In the presence of covariate data, the analogous functional is even more

complicated, and delivers a solution that may not even represent a summary measure

of the conditional association between the exposure and event time, given covariates. In

particular, under model misspecification, the partial likelihood estimator of the hazard ratio

may converge to a value different from 1 under the null hypothesis that the exposure is

conditionally independent of the time-to-event endpoint, given covariates, thereby leading

to invalid tests. This failure to summarise the conditional association of interest under

model misspecification is typical of most statistical procedures. For instance, under model

misspecification, ordinary least squares estimators of the exposure effect in linear regression

models with a main effect of exposure and covariates typically do not converge to a summary

measure of the conditional association between exposure and outcome, given covariates

(e.g., a weighted average of conditional mean outcome differences between treated and

untreated individuals) (Vansteelandt and Dukes, 2022).

The natural response to the above concerns would be to make the Cox proportional

hazards model sufficiently complex by incorporating interactions and other non-linearities

where needed. This reflects what is commonly done in practice, but only to a limited degree.

First, the curse of dimensionality forces data analysts to keep models sufficiently simple.

This is usually done by means of data-adaptive procedures, such as variable selection

algorithms, which help steer the model’s complexity, relative to the information in the

data. Second, the primary purpose of a data analysis is to summarise and provide insight.
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Data analysts must therefore strike a balance between keeping models sufficiently simple

so that the key message can be communicated well, versus modelling the real complexity.

Such compromises are often acceptable as we would not usually be interested in knowing

exactly how exposure effects vary between covariate strata so long as the differences are

small, and likewise we would usually not mind reporting a linear dose effect on the log

hazard so long as the association is roughly linear on that scale.

While trade-offs between simplicity versus complexity are thus useful, and indeed often

a necessity, they also raise concerns. The reason is that simplifications of the patterns in the

data, whether by deliberate choice or in view of the curse of dimensionality, are often taken

for granted and viewed as representing some a priori given, ground truth when it comes

to drawing inference (van der Laan and Rose, 2011; Vansteelandt and Dukes, 2022). For

instance, standard inference will commonly ignore that certain model simplifications (e.g.,

linear covariate effects, the absence of interactions, ...) were made for convenience rather

than because they represent a known fact. The resulting potential for model misspecifi-

cation is worrying in view of the earlier discussion. It adds concerns about bias, but also

excess variability which commonly results when models are misspecified (Buja et al., 2019;

Vansteelandt and Dukes, 2022). Likewise, standard inference will commonly ignore that

the decision not to adjust for certain covariates was data-driven. In particular, the bias and

uncertainty that imperfect variable selection adds to the analysis is rarely acknowledged,

rendering standard inferences biased and overly optimistic.

An alternative, albeit less popular response to the above concerns would be to use

less restrictive models that parameterize only the hazard’s dependence on the primary

exposure of interest, A. For instance, given an additional vector L of baseline covariates,

the continuously stratified Cox model (Sasieni, 1992; Dabrowska, 1997) postulates that the
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conditional hazard obeys

λ(t|A,L) = λ0(t|L) exp(βA),

at each time t ≥ 0, where λ0(t|L) is an unknown function. By focussing on this model, one

can prevent misspecification of the hazard’s dependence on time or residual covariates L to

induce bias in the estimated exposure ‘effect’. Semi-parametric (efficient) estimation has

been considered under this model (Dabrowska, 1997) and under a number of submodels

that assume additivity of λ0(t|L) in t and L (or linear functions thereof) (Sasieni, 1992;

Zhong et al., 2022; Huang, 1999; Lu et al., 2006; Scheike and Zhang, 2002; Martinussen

and Scheike, 2006). Though conceptually appealing, existing proposals have had limited

success in practice. This is partly because they are computationally demanding, and of-

ten difficult for use in high-dimensional settings because of reliance on kernel weighting or

splines. Furthermore, as with previous proposals, it is unclear where the suggested estima-

tors converge to when the continuously stratified Cox model is misspecified (e.g., because

of the hazard’s dependence on A being modified by L), in which case valid inference (even

for the population limit of the estimator) is moreover difficult to attain.

To accommodate all of the above concerns, we will initiate the analysis of the conditional

association between an exposure and a time-to-event endpoint, given covariates, without

relating to a specific statistical model. Instead, we will start the analysis with specification

of a so-called estimand, which captures that association in a model-free way. Letting the

choice of an estimand be central to the analysis, is also typical of the causal inference

literature (Hernán and Robins, 2021; van der Laan and Rose, 2011; Daniel et al., 2016).

The estimand that we will propose surpasses the causal inference context and is well-defined

regardless of whether the exposure is discrete or continuous. It has the further advantage

that it reduces to the logarithm of the hazard ratio when the hazard ratio is constant, and
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remains well defined more generally; e.g., for a dichotomous exposure, it represents a well

understood weighted average of time- and covariate-specific differences in the log cumulative

hazard. This is important in view of the earlier discussion on partial likelihood estimators.

We will next achieve an assumption-lean inference for the proposed estimand based on its

influence function under the nonparametric model (Pfanzagl, 1990). This brings several

further advantages. First, it justifies the use of flexible data-adaptive procedures (e.g.,

variable selection or machine learning procedures), while removing the so-called plug-in

bias that would otherwise arise as a result of the bias-variance trade-off of such procedures

being optimised for prediction rather than estimation (van der Laan and Rose, 2011; Naimi

and Kennedy, 2017; Hines et al., 2022). Second, it delivers inferences which express the

overall uncertainty about the considered estimand, including the uncertainty that arises

from variable or model selection, while extracting information only from the data, and not

from modelling assumptions.

The proposed developments build upon related work for generalised linear models in

a discussion paper by Vansteelandt and Dukes (2022), which in turn is closely related to

and leans upon recent developments on targeted maximum likelihood estimation (van der

Laan and Rose, 2011) and debiased machine learning (Chernozhukov et al., 2018). For

the analysis of survival data, to the best of our knowledge, all current developments focus

on estimation of the marginal counterfactual probability of surviving a given time point

(or functionals thereof, e.g., counterfactual marginal restricted mean survival (Dı́az et al.,

2019)) if all individuals were, say, treated, or untreated (e.g., Stitelman et al. (2012); Dı́az

(2019); Cai and van der Laan (2020); Westling et al. (2021)). Such causal estimands are

appealing, and in certain settings arguably more appealing than the estimand we will

propose. However, as will argue in the next section, the proposed approach has several
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important advantages: it lays foundations for statistical tests for a conditional association

between an exposure and a time-to-event endpoint, it enables the analysis of arbitrary (e.g.,

continuous) exposures, limits extrapolation by eliminating covariate strata within which

positivity violations (for exposure) occur, and remains relevant when no causal inferences

are targeted (e.g., when characterising subgroups at greater risk of certain events).

2 A model-free hazard ratio estimand

2.1 Proposal

We begin with some notation. Let R(t) = I(T ≥ t) and Rc(t) = I(C ≥ t) denote the at

risk indicators for the event time T and censoring time C. Further, let A be the exposure

of interest, and L a vector of measured covariates. Finally, let λ(t|A,L), Λ(t|A,L) and

S(t|A,L) denote the conditional hazard, cumulative hazard and survival function of the

event T at time t, given A and L. Throughout, we will assume that data are available on

T̃ = min(T,C), ∆ = I(T ≤ C), A and L for each of n mutually independent subjects, and

that censoring is non-informative in the sense that C ⊥⊥ T |A,L. Further, let Sc(t|A,L)

denote P (C > t|A,L) and let the counting process corresponding to the survival time T

be denoted by N(t) = I(T̃ ≤ t,∆ = 1).

For pedagogic purposes, consider first a dichotomous treatment A, coded 0 (for unex-

posed, say) or 1 (for exposed, say), and suppose that the log cumulative hazard ratio

β(t,L) = log
Λ(t|A = 1,L)

Λ(t|A = 0,L)

is constant in time t (as would be the case when hazards are proportional), but varies

possibly between covariate strata L; in that special case, β(t,L) is also the log hazard ratio
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in stratum L. There is then a distribution of log cumulative hazard ratios, governed by the

distribution of L. A worthwhile goal is to summarise that distribution, e.g. in terms of its

central location and variability. In doing so, it is important to realise that certain covariate

strata may carry little or no information about the conditional association between T and

A, given L, because most individuals in that stratum are either treated or untreated. We

will therefore focus on the following weighted average of β(t,L):

β =
E {w(L)β(t,L)}

E {w(L)}
,

where

w(L) = P (A = 1|L)P (A = 0|L)

and t is arbitrary (given that β(t,L) is assumed constant in t for now). When the contin-

uously stratified Cox model (Sasieni, 1992; Dabrowska, 1997)

λ(t|A,L) = λ0(t,L) exp(γA),

holds for all t ≥ 0, then

β(t,L) = log
Λ(t|A = 1,L)

Λ(t|A = 0,L)
= log

exp(γ)
∫ t

τ0
λ0(s,L)ds∫ t

τ0
λ0(s,L)ds

= γ,

so that β reduces to the log hazard ratio γ in that model. This model expresses that

the hazard ratio of exposure does not depend on time and covariates, but leaves the haz-

ard ratios corresponding to covariates L unrestricted. It thereby drastically relaxes the

restrictions imposed by a standard Cox model. Further relaxing this model to

λ(t|A,L) = λ0(t,L) exp {γ(L)A} , (1)

for certain functions γ(L), we have that β(t,L) = γ(L). The proposed estimand β then

reduces to the average log hazard ratio in a ‘retargeted’ population in which the probability
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of inclusion is proportional to w(L); i.e.

E {w(L)γ(L)}
E {w(L)}

.

Such retargeting by so-called propensity-overlap weights w(L) = P (A = 1|L)P (A =

0|L) has been considered in other contexts (Crump et al., 2006; Vansteelandt and Daniel,

2014; Kallus, 2021; Li et al., 2018; Vansteelandt and Dukes, 2022) with the aim to prevent

extrapolation. The resulting retargeted population arguably characterises the type of indi-

viduals for whom there is sufficient uncertainty about treatment choice in current practice,

so that learning the treatment effect is most relevant for them; in particular, it may roughly

characterise the population of individuals who would be considered for inclusion in a ran-

domised experiment. This is relevant not only from the viewpoint of statistical efficiency,

in the sense that these individuals’ data generally carry more information about the con-

ditional association between T and A, given L, but also because it may be too ambitious

(and often scientifically less relevant) to infer this association for strata of individuals in

which little or no treatment variability is seen. This retargeting is irrelevant when β(t,L)

does not vary with L, but otherwise affects the interpretation of the proposed estimand; in

future work, we will therefore also study the variability in β(t,L).

Consider next a continuous exposure A. We will then redefine β(t,L) to be the least

squares projection (in the Hilbert space of functions of A,L and t, equipped with the

covariance inner product) of log Λ(t|A,L) onto A in individuals from stratum L:

β(t,L) =
Cov {A, log Λ(t|A,L)|L}

Var (A|L)
,

and will moreover redefine w(L) as Var (A|L). This generalises the proposal previously

made for a dichotomous exposure. To acknowledge that β(t,L) may moreover vary with
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time t, we will further generalise the earlier proposal by taking a uniformly weighted average

over time:

β =
E
{
w(L)

∫ τ0+τ

τ0
β(t,L)dt

}
E {w(L)τ}

=
E
[∫ τ0+τ

τ0
Cov {A, log Λ(t|A,L)|L} dt

]
τE {Var (A|L)}

, (2)

where τ0 > 0 is a time point close to zero (to be discussed later) and τ0 + τ is for instance

the end-of-study time.

The fact that the estimand (2) can be interpreted as the standard log (cumulative)

hazard ratio when the partially linear Cox model holds, but continues to represent a known

weighted average of time- and covariate-specific log cumulative hazard ratios more generally,

is precisely what makes it appealing for practical use. Indeed, the high dimensionality of

β(t,L) makes it essentially impossible to report for each t and L separately, prompting

the need to summarise. Summarising usually implies some loss of accuracy, in that only

an approximation of reality is attained. But that is often acceptable, and even desired, as

we may not be interested in knowing precisely how β(t,L) changes with t or L. At least,

by working with a clearly defined estimand, we have the guarantee of it characterising the

conditional association of interest. What is much more disputable is not knowing what

summary measure we end up producing, and whether it even summarises the association

of interest, which is what happens with standard (partial likelihood based) analyses. While

this paper was under review, Huang et al. (2021) published a technical report which likewise

considers model-free estimands that reduce to the exposure coefficient in an accelerated

failure time model when that model holds; however, since their focus is on screening high-

dimensional predictors, their proposal does not consider covariate adjustment.
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2.2 Comparison with alternative estimands

As can be seen from the definition of the weights w(L), the proposed estimand depends on

the exposure distribution. This may be viewed as undesirable (Stitelman et al., 2011; Whit-

ney et al., 2019) as it means that the estimand’s magnitude may be partly determined by

external, ancillary factors. The so-called marginal causal hazard ratio λ1(t)/λ0(t) (Hernán

and Robins, 2021) which contrasts the (counterfactual) hazard λa(t), a = 0, 1 at each time

t if all individuals were treated versus if all were untreated (in the absence of censoring)

undisputably lends itself to a simpler interpretation. However, this greater simplicity comes

with a price. In particular, the appeal of the marginal causal hazard ratio as an estimand

is somewhat deceptive. Indeed, for the same reasons as made clear for partial likelihood

estimators in the introduction, it is not readily clear where standard estimators of it con-

verge to when the assumption of a constant marginal causal hazard ratio is violated. In

view of this, Whitney et al. (2019) focus on the average log marginal causal hazard ratio∫ ∞

0

log

{
λ1(t)

λ0(t)

}
fT (t)dt,

averaging over the marginal time-to-event distribution fT (t), in the special case of dichoto-

mous exposures. Our choice to make a different proposal is motivated by the following

concerns. First, the above proposal does not readily extend to continuous exposures. Sec-

ond, the observed data may carry little information about marginal causal hazard ratios

and/or the marginal time-to-event distribution when there are near positivity violations

(i.e., when individuals with certain covariate values are very unlikely treated or untreated).

The resulting lack of information may result in a few individuals becoming very influential

in the analysis (as a result of inverse probability of treatment weighting). While this may

in turn deliver corresponding estimators with large standard errors, thus flagging a lack of
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information, heuristic and routinely applied remedial measures such as weight truncation

may also end up hiding it. There is thus a need for more extensive empirical evaluations

of estimators of the estimand in Whitney et al. (2019) (which are currently limited to

completely independent censoring and a single dichotomous confounder). Third, the mag-

nitude of the marginal causal hazard ratio may be strongly dependent upon the covariate

distribution of the study population. This needs not be problematic so long as we work

with random samples from a carefully defined study population in which detailed insight is

provided, but arguably this is rarely the case. It renders interpretation at least more subtle

as it makes it unclear whether a reported marginal causal hazard ratio (and/or the consid-

ered marginal time-to-event distribution) is readily transportable to a different population

(Pearl and Bareinboim, 2014), and in our opinion this is too often overlooked by consumers

of study results. Issues of transportability are likewise a concern for the proposed estimand,

but we believe it may well be less sensitive to changes in the covariate distribution, and

thereby better transportable across populations, by only giving large weights to subpopu-

lations that carry much information about the treatment effect (Kallus, 2021; Vansteelandt

and Dukes, 2021); these subpopulations of individuals for whom there is much uncertainty

whether to treat or not, may well be more similar across populations.

Our choice to focus on the cumulative hazard ratio may also be viewed as undesirable,

but is partly motivated by the fact that its causal interpretation does not suffer from the

same subtleties that affect hazard ratios (Hernán, 2010; Martinussen et al., 2020). The

cumulative hazard ratio equals 1 over the entire course of follow-up when the exposure is

(conditionally) independent of the event time. The proposed estimand can therefore be used

as a basis for testing and decision making (see later). Such tests are more cumbersome with

typical debiased machine learning approaches for survival analysis which focus on survival
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probabilities, as they demand simultaneously testing the null hypotheses of equal survival

probabilities at all times. Further, the cumulative hazard ratio exp{β(t,L)} expresses how

a given survival probability S(t|A = 0,L) for an untreated subgroup at time t translates to

a survival probability of S(t|A = 0,L)exp{β(t,L)} for the corresponding treated subgroup at

that time. This then makes the cumulative hazard ratio a relevant and compact summary,

useful for scientific reporting.

3 Data-adaptive inference

3.1 A plug-in estimator

Having constructed a model-free estimand

β ≡
E
[
[
∫ τ0+τ

τ0
Cov {A, log Λ(t|A,L)|L} dt

]
τE {Var (A|L)}

=
E
[∫ τ0+τ

τ0
{A− p(L)} {log Λ(t|A,L)− q(t,L)} dt

]
E
[
τ {A− p(L)}2

] .

(3)

a so-called plug-in estimator is readily obtained. In particular, upon substituting p(L) =

E(A|L), Λ(t|A,L) and q(t,L) = E {log Λ(t|A,L)|L} by consistent estimators p̂(L), Λ̂(t|A,L)

and q̂(t,L) (which will be discussed in the next section), respectively, and moreover replac-

ing population expectations by empirical analogs, we obtain∑n
i=1

∫ τ0+τ

τ0
{Ai − p̂(Li)}

{
log Λ̂(t|Ai,Li)− q̂(t,Li)

}
dt∑n

i=1 τ {Ai − p̂(Li)}2
. (4)

Use of the above plug-in estimators, obtained by plugging consistent estimators of the

unknown (conditional) expectations in (3), raises no specific challenges if these (conditional)

expectations are estimated under pre-specified (semi-)parametric models. In that case,

p̂(L), q̂(t,L) and Λ̂(t|A,L) can all (typically) be expected to have standard asymptotic
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behaviour, which propagates into a standard asymptotic behaviour of the plug-in estimators

of β. In particular, under the standard Cox model

λ(t|A,L) = λ0(t) exp(β̃A+ γ′L), (5)

q(t,L) reduces to log{Λ0(t)} + β̃p(L) + γ′L. Plug-in estimator (4) then reduces to the

partial likelihood estimator of β̃ in model (5). Relying on pre-specified (semi-)parametric

models would however defeat the purpose of the whole approach. Indeed, the likely mis-

specification of these models raises concerns about bias. In view of this, we will focus

on data-adaptive procedures, in line with recent debiased machine learning developments

(van der Laan and Rose, 2011; Chernozhukov et al., 2018). This may include variable selec-

tion procedures under Cox proportional hazards models, as well as more advanced machine

learning methods. The use of such procedures brings new complications, however. First,

their bias-variance trade-off is optimised towards minimal prediction error, but not towards

the considered estimand (van der Laan and Rose, 2011). This may result in bias, e.g., as a

result of not selecting certain variables, thereby inducing confounding bias, or selection bias

due to informative censoring. Second, data-adaptive estimators p̂(L), q̂(t,L) and Λ̂(t|A,L)

have a non-standard and typically unknown distribution. This makes it difficult or even

impossible to account for the uncertainty in these estimators when drawing inference about

β based on (4). This is for instance so when β̃ in model (5) is estimated via post-lasso

(i.e., upon fitting the Cox model (5) for the subset of variables L that were selected via

the lasso), in which case its distribution may be a mixture distribution that cannot be well

approximated by a normal distribution, no matter what sample size. In view of this, we

will make a proposal for accommodating these concerns.
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3.2 Data-adaptive nuisance parameter estimators

Before making the suggested proposals, we explain what estimators p̂(L), q̂(t,L) and Λ̂(t|A,L)

we will use in the simulation experiments in Section 4. To demonstrate the flexibility of

the proposal, we will do this both for the case of variable selection in the Cox model (5),

as well as for the case where no survival model is assumed. The former is computationally

attractive and shows the additional usefulness of the proposal for acknowledging variable

selection uncertainty, but the latter is generally recommended by not relying on the Cox

model restrictions.

First, P (A = 1|L) (or E(A|L)) will be estimated as p̂(L) via Super Learner (van der

Laan et al., 2007), an ensemble learner which we based on a main effects logistic (linear)

model with and without AIC-based stepwise covariate selection, logistic (linear) additive

models and random forests regression. In the simulation studies on variable selection in

the Cox model (5), we first fitted the model using post-lasso (via the function glmnet in

R, with penalty chosen via 20-fold cross-validation to be the largest value of the penalty

such that the prediction error was within 1 standard error of the minimum). We then

estimated S(t|A,L) and Sc(t|A,L) (which will be needed in Section 3.3) using the function

predictSurvProb in the R-package pec, and log Λ(t|A,L)− q(t,L) as β̃ {A− p̂(L)} under

the considered model. In the more general simulation studies, we used survival random

forests (Ishwaran et al., 2008) (using the function survival forest in the package grf) for

the estimation of S(t|A,L) and Sc(t|A,L), or the survival Super Learner (using the function

survSuperLearner; see details later). Further, we estimated q(t,L) for a dichotomous

exposure based on the following identity

q(t,L) = log Λ(t|1, L)p(L) + log Λ(t|0, L) {1− p(L)} .
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In the data analysis, in which also survival random forests were fitted, but the exposure

was continuous, we estimated q(t,L) for each observed event time t via Super Learner

prediction of the obtained estimates of log Λ(t|A,L) = log {− logS(t|A,L)} onto L.

3.3 Debiased machine learning

In view of the aforementioned problems with plug-in estimators, we will develop inference

for β under a nonparametric model. This prevents inference being explicitly or implicitly

reliant on modelling restrictions, which in turn could lead to overly optimistic inferences.

Like other debiased machine learning proposals, this will be achieved by making use of the

influence function of the estimand (Pfanzagl, 1990; Bickel et al., 1993). This is a mean

zero functional of the observed data and the data-generating distribution, which charac-

terises the estimand’s sensitivity to arbitrary (smooth) changes in the data-generating law.

Theorem 1, which is proved in Appendix A, gives the influence function of estimand (3).

Theorem 1. The estimand (3) has influence function under the nonparametric model

for the observed data (T̃ ,∆, A,L) given by

ϕ(L,A, T̃ ,∆) =
{A− p(L)}

τE
[
{A− p(L)}2

] ∫ τ0+τ

τ0

[
log Λ(t|A,L)− q(t,L)− β {A− p(L)}

+
1

Λ(t|A,L)

∫ t

0

dM(s|A,L)
S(s|A,L)Sc(s|A,L)

]
dt,

where β is given by (3), and where p(L) = E(A|L), q(t,L) = E {log Λ(t|A,L)|L}, and

dM(t|A,L) = R(t)Rc(t) {dN(t)− dΛ(t|A,L)}.

If the infinite-dimensional nuisance parameters p(t,L), q(t,L),Λ(t|A,L), S(t|A,L) and

Sc(t|A,L) indexing the influence function were known, then it would follow from its mean

zero property that a consistent estimator of β could be obtained as the value of β that
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makes the sample average of the influence functions zero. In practice, we will however

substitute these nuisance parameters by the estimators discussed in the previous section.

Using the resulting estimators, we obtain a closed-form estimator as the value β that sets

the sample average of the influence functions equal to zero:

β̂ =

[
τ

n∑
i=1

{Ai − p̂(Li)}2
]−1 n∑

i=1

{Ai − p̂(Li)}
∫ τ0+τ

τ0

[
log Λ̂(t|Ai,Li)− q̂(t,Li)

+
1

Λ̂(t|Ai,Li)

∫ t

0

dM̂i(s|Ai,Li)

Ŝ(s|Ai,Li)Ŝc(s|Ai,Li)

]
dt, (6)

where the hazard function estimator dΛ̂(t|Ai,Li) indexing dM̂i(s|Ai,Li) = Ri(s)Ri,c(s)

×
{
dNi(s)− dΛ̂(s|Ai,Li)

}
is chosen to be piecewise constant with jumps at the observed

event times, equal to the change in cumulative hazard at those times. In the special case

of variable selection under the Cox model (5), this reduces to

β̂ = β̃ +

∑n
i=1 {Ai − p̂(Li)}

∫ τ0+τ

τ0

1

Λ̂(t|Ai,Li)

∫ t

0
dM̂i(s|Ai,Li)

Ŝ(s|Ai,Li)Ŝc(s|Ai,Li)
dt

τ
∑n

i=1 {Ai − p̂(Li)}2
,

where the second term debiases the post-lasso estimator β̃.

It follows from the general theory on nonparametric estimation (Pfanzagl, 1990; Bickel

et al., 1993) and the results in the Appendix that when the nuisance parameters are esti-

mated from a separate sample, independent from the one which is used for the calculation

of β̂, then β̂’s asymptotic distribution is governed by its influence function in the sense that

√
n
(
β̂ − β

)
=

1√
n

n∑
i=1

ϕ(Li, Ai, T̃i,∆i) + op(1). (7)

This implies that β̂ is asymptotically normally distributed with bias that shrinks to zero

faster than the standard error, and with a variance that can be estimated as 1 over n times
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the sample variance of the influence functions (where population expectations, nuisance

parameters and the value of β can be substituted by consistent estimates). That is,

V̂ar
(
β̂
)
=

1

n2

n∑
i=1

{
ϕ̂(Li, Ai, T̃i,∆i)

}2

,

where ϕ̂(.) is defined like ϕ(.), but with all nuisance parameters substituted by consistent

estimates. This is quite remarkable as it implies that the uncertainty in these nuisance

parameter estimators, which is typically poorly understood when data-adaptive estimators

are used, does not affect inference based on β̂.

In practice, the requirement that the nuisance parameters are estimated from a separate

sample, independent from the one which is used for the calculation of β̂, can be ensured

using sample splitting (Zheng and van der Laan, 2011), also referred to as cross-fitting

(Chernozhukov et al., 2018). In particular, the data can be split into K (e.g., 10) non-

overlapping folds. In the expression for β, when individual i belongs to fold k = 1, ..., K,

then the nuisance parameter estimators are obtained by analysing allK−1 remaining folds.

Such cross-fitting is needed to ensure asymptotic validity of the proposal, though in small

to moderate sample sizes, better results may sometimes be obtained by avoiding sample

splitting as it may deliver better nuisance parameter estimates. The following theorem

details the additional conditions required to ensure validity of the above asymptotic result.

Theorem 2. Estimator β̂ defined in (6) is asymptotically linear (in the sense of (7))

when

1. all nuisance parameter estimators are consistent,

2. all nuisance parameters are estimated on a sample independent to the one on which

β̂ is evaluated,
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3. all of the following terms are op(n
−1/2):

E

[∫ τ0+τ

0

(∫ τ0+τ

max(τ0,t)

Λ̂−1(s|A,L)ds
)(

Sc(t|A,L)− Ŝc(t|A,L)
Ŝc(t|A,L)

)
d

{
S(t|A,L)− Ŝ(t|A,L)

Ŝ(t|A,L)

}]
sup

t∈[τ0,τ0+τ ]

{
Λ̂(t|A,L)− Λ(t|A,L)

}2

E
[
{p̂(L)− p(L)}2

]1/2
sup

t∈[τ0,τ0+τ ]

E
[
{q̂(t|L)− q(t|L)}2

]1/2
E
[
{p̂(L)− p(L)}2

]
,

4. inft∈[τ0,τ0+τ ] Λ̂(t|A,L) > σ w.p.1 for some σ > 0, and

5. |A− p̂(L)| ≤ B w.p.1. for some finite upper bound B.

The condition inft∈[τ0,τ0+τ ] Λ̂(t|A,L) > σ w.p.1 is strong. While ideally τ0 is close to

zero, this condition requires τ0 to be sufficiently large so that events have taken place prior

to τ0. Similar requirements as in Theorem 2 are seen in Westling et al. (2021). They

suggest that slow convergence of the censoring probabilities can be compensated by fast

convergence of the survival probabilities. These requirements hold when parametric models

or certain semiparametric models (e.g. Cox proportional hazard models) are used for

the nuisance functions, even when the fitting procedure involves l1-penalisation (provided

that typical ultra-sparsity conditions hold). However, these conditions hold much more

generally. In practice, we recommend the use of ensemble learners (e.g., SuperLearner)

based on a combination of parametric model-based estimators, which respect the required

rates under correct model specification, as well as data-adaptive (e.g. machine learning)

estimators whose convergence rate is generally less well understood. Use of the highly-

adaptive lasso (Benkeser and van der Laan, 2016) has also been suggested as it is guaranteed

to deliver faster than n1/4 rates, provided that the nuisance functionals lie in a class of
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functions with bounded variation norm. There are currently limited options to proceed

when the rate conditions of Theorem 2 are not fulfilled, so that the remaining bias is too

large for root-n inference. Whilst there is already some theory (e.g., based on higher order

influence functions (Robins et al., 2008)), these methods are currently computationally

prohibiting even for simpler estimands. We refer to Appendix B in the Supplementary

Materials for further discussion of these conditions.

4 Simulation experiments

We illustrate the proposed procedure using two sets of simulation experiments, once us-

ing variable selection under the standard Cox model (5) and once without relating to a

specific survival model (using survival random forests instead). In the first set of simu-

lation experiments, we let L be a 10-dimensional mean zero multivariate normal variate

with unit variance and Toeplitz covariance matrix with correlations 1, 0.9, 0.8, ..., 0.1.

Further, the exposure A is normally distributed with mean
∑10

j=1 Lj/j (where Lj is the

jth element of the vector L) and unit variance, T is exponentially distributed with hazard

exp
(
−2.5 + 0.5A− 0.5

∑10
j=1 Lj/j

)
and C is the minimum of 30 and an exponentially dis-

tributed variable with hazard exp(−3+0.5A+0.1
∑5

j=1 Lj/j+0.1
∑5

j=1 Lj+5/j). The anal-

ysis assumes that the hazard obeys the (correctly specified) Cox model (5), which is then

fitted via post-lasso (with penalty chosen via 20-fold cross-validation to be the largest value

of the penalty such that the prediction error was within 1 standard error of the minimum).

In the second set of simulation experiments, we generate L as before and let the exposure A

be Bernoulli distributed with mean expit(−2
√
|L1L2|+2

√
|L10|−2 cosL5+2 cosL5 cosL6)

and unit variance, T is Weibull distributed with shape parameter 1.5 and scale parameter
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1002/3 exp
(
−A− 0.5

√
|L1L2|+ 0.5

√
|L10| − 0.5 cosL5 + 0.5 cosL5 cosL6

)2/3
and C is the

minimum of 12 and a Weibull distributed variable with shape parameter 1.5 and scale

parameter 25 exp
(
−A− 0.5

√
|L1L10|+ 0.5

√
|L9| − 0.5 cosL5 + 0.5 cosL7 cosL6

)2/3
. The

latter data-generating mechanisms are inspired by that in Dı́az (2019) (with some modifi-

cations, e.g., we did not consider truncated normal covariate distributions, which may have

been chosen in Dı́az (2019) to prevent extreme inverse probability weights, we considered

a continuous-time setup, among others). In the first set of simulation results, roughly 55%

of subjects experienced an event, 40% got censored during the study and the remaining

5% was administratively censored. In the second set of simulation results, roughly 40% of

subjects experienced an event, 30% got censored during the study and the remaining 30%

was administratively censored.

The tables below show results for 1000 simulation runs for the oracle estimator (Oracle)

obtained by fitting a standard Cox model with exposure A and a scalar covariate given

by the corresponding part of the linear predictor that includes all covariate terms, and

for plug-in estimator (4). In the first set of simulations, plug-in estimator (4) equals the

post-lasso estimator; in the second set of simulations, we also provide results for the partial

likelihood estimator (Part Lik) obtained under a misspecified Cox model of the form (5)

(with main effects of exposure and the covariates L) to give some appreciation for the

extent of bias due to model misspecification, and for Cox models with natural splines with

3 or 4 degrees of freedom for all covariates (Spline3, Spline4). We finally also report results

for the proposed debiased machine learning estimator based on survival random forests

without cross-fitting (DML) and with 5-fold cross-fitting (DML-CF) (where the use of 5

folds aligns with other papers on debiased machine learning for time-to-event endpoints

(Westling et al., 2021; Wen et al., 2021)). In the debiased machine learning estimators,
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τ0 was chosen as the time at which the largest estimated survival probability was upper

bounded by exp(−10/n) ≈ 0.99 (in view of the inverse of the cumulative hazard taking

extreme values at lower time points) and where τ0 + τ was chosen as the time at which

the minimum of the product of the estimated survival and censoring probabilities exceeded

10/n. This data-adaptive choice of the interval [τ0, τ0 + τ ] may possibly induce some

residual degree of plug-in bias (see later). In the tables below, we report Monte Carlo

bias as the sample average of the estimates minus the true value of the estimand (0.5 and

1 in the first and second set of results), Monte Carlo standard deviation as the sample

standard deviation of the estimates, the sample average of the standard errors estimated as

1 over root n times the sample standard deviation of the estimated influence functions, and

finally the percentage of times the 95% Wald confidence intervals based on these estimated

standard errors cover the true value of the estimand.

The simulations on variable selection (see Table 1) demonstrate the poor performance

of the post-lasso estimator, which suffers large bias and excess variability as a result of

variability in the selected covariate set. It moreover comes with a poorly estimated, overly

optimistic standard error as a consequence of ignoring variable selection uncertainty. It

therefore produces confidence intervals with poor finite sample performance. Of the two

proposed estimators, the debiased machine learning estimator without cross-fitting gener-

ally performs best in terms of bias, likely as a result of estimating the nuisance parameters

on larger sample sizes. The use of cross-fitting comes with a slight reduction in variability

and, as expected, estimated standard errors that more accurately approximate the Monte

Carlo standard deviation. While the proposed estimators are unsurprisingly more variable

than the oracle estimator, the results at n = 400 show a much reduced variability relative

to the post-lasso estimator.
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Table 1: Simulation results for variable selection in the Cox proportional hazards model:

sample size n, Monte Carlo bias, scaled Monte Carlo bias, Monte standard deviation (SD),

average of the influence function based standard errors (Average SE) and coverage of 95%

Wald confidence intervals (Cov).

Estimator n Bias n1/2Bias SD Average SE 95% Cov

Oracle 200 0.012 0.17 0.10 0.11 96.5

Plug-in -0.31 -4.32 0.21 0.058 20.2

DML 0.023 0.24 0.21 0.19 90.1

DML-CF -0.049 -0.70 0.20 0.19 94.1

Oracle 400 0.0026 0.037 0.074 0.074 95.3

Plug-in -0.14 -2.05 0.20 0.056 52.9

DML 0.0083 0.12 0.14 0.13 92.4

DML-CF -0.025 -0.35 0.13 0.12 93.7
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The simulations on survival random forests reveal a small bias in the debiased machine

learning estimator without cross-fitting, likely by ignoring the data-adaptive choice of the

integration limits. Indeed, when letting the lower limit τ0 equal the first event time at

which all estimated survival probabilities differ from 1, and the upper bound τ0 + τ equal

the administrative censoring time of 12, the bias shrunk to 0.015 at n = 500 and 0.017 at

n = 1000 at the expense of more variability: Monte Carlo SD 0.27 (Mean SE 0.25, Coverage

93.7) at n = 500 and 0.18 (Mean SE 0.18, Coverage 94.8) at n = 1000. We found the small

bias seen in Table 2 not to be worrisome, as the table shows that the bias shrinks at faster

than 1 over root-n rate. This is no longer the case when cross-fitting is used, which results

in an unacceptable bias, though much less variability (of the same magnitude as seen in

the Oracle estimator) that is accurately predicted by the estimated standard errors. This

larger bias is likely the result of the data-adaptive choice of τ0, which may lead to a different

value of τ0 in each fold.

As before, we found the plug-in machine learning estimator to suffer large bias. The

spline-based estimators perform generally well, but the increase in root-n times the bias

with sample size, as seen when 3 degrees of freedom are used, is worrisome. Moreover, note

that comparison with these estimators is somewhat unfair as they rely on the proportional

hazards structure, unlike the proposed estimators, and because their degrees of freedom are

not chosen data-adaptively. Like for the plug-in estimator, we indeed expect to see some

bias when variables and/or degrees of freedom are chosen data-adaptively, as is common

in real applications. In the Appendix, we show that similar (slightly better) results are

seen at lower censoring rates, despite the increased difficulty of estimating the censoring

probabilities.
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Table 2: Simulation results for survival random forests: sample size n, Monte Carlo bias,

scaled Monte Carlo bias, Monte standard deviation (SD), average of the influence function

based standard errors (Average SE) and coverage of 95% Wald confidence intervals (Cov).

Estimator n Bias n1/2Bias SD Average SE 95% Cov

Oracle 500 0.0026 0.058 0.17 0.17 95.2

Part Lik -0.34 -7.69 0.15 0.15 36.7

Spline3 -0.056 -1.26 0.18 0.17 93.7

Spline4 0.057 1.27 0.19 0.18 93.1

Plug-in -0.65 -14.6 0.19 0.0052 0.1

DML 0.052 1.17 0.23 0.24 94.7

DML-CF -0.16 -3.61 0.16 0.16 84.0

Oracle 1000 0.00077 0.024 0.12 0.12 94.7

Part Lik -0.36 -11.2 0.10 0.10 7.1

Spline3 -0.091 -2.88 0.12 0.12 87.2

Spline4 0.015 0.47 0.13 0.12 94.9

Plug-in -0.44 -13.8 0.17 0.0057 0.3

DML 0.024 0.75 0.15 0.17 97.2

DML-CF -0.14 -4.44 0.12 0.12 79.6
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5 Empirical illustration

To illustrate the proposed methods, we consider the analysis of an observational study on

the predictive relationship between the initial concentration of serum monoclonal protein

and death in 1338 patients with monoclonal gammopathy of undetermined significance

(MGUS), residing in southeastern Minnesota (Kyle et al., 2002). MGUS is a condition

in which the blood contains an abnormal protein (monoclonal protein). It affects up to

2% of persons aged 50 years or more (primarily older men). It usually causes no severe

health problems, but can progress to some forms of blood cancer. Cai and van der Laan

(2020) analysed these data using a one-step TMLE, but had to dichotomise the exposure,

namely the monoclonal spike on serum protein electrophoresis, which is discrete but taking

on 29 different levels from 0 to 3 (average 1.16, standard deviation 0.57). The methods

proposed in the current paper do not require such dichotomisation and we will therefore

assess the conditional association between exposure and the time to death, conditional on

the baseline covariates age, gender, haemoglobin, creatinine and time of diagnosis. With

access to complete data on 1338 individuals, a standard Cox analysis delivers a log hazard

ratio of 0.028 (SE 0.0618) corresponding to a unit increase in exposure, after adjusting for

all covariates (using main effects), and of 0.031 (SE 0.0594) after adjustment for only those

covariates that are selected by the lasso. A score test of the proportional hazard assumption

showed evidence of violations with respect to age (P 2 10−7), haemoglobin (P 0.017),

creatinine (P 0.011) and time of diagnosis (P 0.030), suggesting that the above analysis may

be invalid; there was no such evidence with respect to the exposure (P 0.072) and neither

was there sufficient evidence of a violation of non-linearity with respect to the exposure

(P 0.061 based on a likelihood ratio test in a Cox model with 4-degree of freedom natural

splines for all covariates). We thus considered the debiased machine learning proposal with
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survival random forests for the survival and censoring probabilities, and SuperLearner

predictions for the exposure and for the log cumulative hazard at each time (using the

algorithms and integration bounds considered in the simulation study). This resulted in

a plug-in estimator of the log hazard ratio corresponding to a unit increase in exposure,

equal to 0.0063 (SE 0.133), a debiased machine learning estimator equal to -0.063 (SE

0.175) without cross-fitting and -0.042 (SE 0.138) with 5-fold cross-fitting.

6 Discussion

Our focus in this paper has been on reporting a scalar summary of the conditional asso-

ciation between an exposure and a time-to-event endpoint, given covariates. For this, we

were inspired by the estimand proposed in Vansteelandt and Dukes (2022) with comple-

mentary log log link and outcome given by the at risk indicator at a given time t, but we

faced challenges due to censoring and the fact that there is not a unique time t of pri-

mary interest. The resulting proposal may in particular be used to test for a conditional

association between an exposure and a time-to-event endpoint, conditional on covariates,

without relying on the proportional hazards assumption. When this association is highly

non-linear in the exposure (on the log hazard scale), then any attempt to summarise it in

terms of a single number may end up being unsuccessful, unless linearity can be imposed

via transformations of the exposure. In such cases, one may rather need to visualise the

cumulative hazard’s dependence on the exposure, which is beyond the scope of this work.

The proposed estimand is likewise not designed for studies which have specific interest in

effect heterogeneity. Such studies call for the development of specific effect modification

parameters, e.g., along the lines of Vansteelandt and Dukes (2022), or for a parallel devel-
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opment that focuses on the variability (rather than central location) of β(t,L) across t or

L. These developments need further work.

While our primary aim was to develop an inference that is not explicitly relying on

the validity of an assumed Cox model, we have indicated that the proposed results are

also useful to acknowledge variable selection uncertainty when a Cox model is assumed.

In that case, the considered estimand can be interpreted as a standard hazard ratio, so

that our proposal may be viewed as delivering valid data-adaptive inference for hazard

ratios. Relative to competing methods for post-selection inference in survival analysis

(Fang et al., 2017; Van Lancker et al., 2021), the advantage of the proposed strategy is that

it makes a first order bias correction towards the interpretable estimand (3), even when the

analysis relies on the Cox model, by invoking a nonparametrically estimated propensity

score model. In future work, it will be of interest to compare these approaches with the

proposed approach in settings with and without correct model specification.

As in Vansteelandt and Dukes (2022), we have deliberately focused on estimands that

deliver an influence function that does not involve inverse weighting by the conditional

exposure density, given covariates. The reason is that such weighting may render the

approach unstable and sensitive to minor estimation errors in the tails of the density,

especially when a continuous exposure is considered. The resulting estimands moreover

downweigh subjects in whom little exposure variability is seen; this is desirable when this

low variability points towards subjects who are either ineligible to other exposure levels

or unwilling to change their exposure. A key limitation of the proposal, however, is that

it delivers an influence function that involves inverse weighting by the cumulative hazard.

We have remedied this by choosing τ0 in the definition of the estimand not too close to

0. In the Appendix, we discuss a number of alternative estimands that were considered in
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preparation of this work, which also reduce to the hazard ratio under a Cox proportional

hazard regression model when that model is correctly specified. Future work will examine

more optimal ways of averaging β(t,L) over time, e.g. by considering the weighted average

that delivers the estimand with the most favourable nonparametric efficiency bound.
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