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Abstract—The development of intelligent Vehicles (IVs) re-
quires extensive standard datasets for training, benchmark-
ing, and improvement. Autonomous Navigation and Mapping
(ANM), as a critical technology for IVs, imposes exceptionally
high demands on dataset construction. This is significant in
its requirements for comprehensive sensor calibration, precise
time synchronization, and accurate generation of ground truth.
Besides, the whole construction workflow also demands intri-
cate knowledge and sophisticated practices, necessitating lengthy
learning curves for researchers to attain proficiency. The above
challenges have led to a slow production of qualified datasets,
directly constraining the advancement of ANM. However, so far,
an investigation focused on a mature construction methodology
of ANM dataset is still missing. This paper strives to fill the
gap. Specifically, based on our systematic reviews and extensive
practices, for the first time, a full-stack construction methodology
of ANM dataset is proposed, including modules of platform con-
struction, sensor calibration, time synchronization, ground truth
generation, synthetic data production, and benchmark criteria,
with detailed techniques and methodological routes provided in
each step. Several long-standing issues are resolved within the
methodology. Importantly, we introduce versatile calibration and
synchronization frameworks that attain up to us-level and mm-
level precision. Besides, we propose a full-scenario ground truth
system that can generate scene-map and trajectory at cm-level
accuracy. To verify the effectiveness of our methodology, we
design a high-quality dataset and benchmark multiple state-of-
the-art algorithms on it. The successful workflow demonstrates
that our methodology can significantly reduce the research
threshold and help individuals and institutions to construct
datasets in a standardized way.
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I. INTRODUCTION

HE development of intelligent vehicles (IVs) requires
extensive standard datasets for training, benchmarking,
and improvement [1], [2]. Benefitting from publicly available
datasets, profound changes have taken place in IV field over
the last decade, giving rise to diverse applications [2] such as
autonomous driving [1], unmanned mining [2], [3], service
robots [1], and intelligent logistics and transportation [2].
Autonomous Navigation and Mapping (ANM), as a pivotal
technology for IVs, places exceptionally high demands on
dataset construction compared to other tasks. This is significant
in its requirements for comprehensive sensor calibration, pre-
cise time synchronization, and accurate generation of ground
truth. Besides, the whole construction workflow also demands
intricate knowledge and sophisticated practices, necessitating
lengthy learning curves for researchers to attain proficiency.
These challenges have led to the slow production and deficient
quality of datasets, constraining the advancement of ANM.
Due to the construction threshold, existing high-quality
ANM datasets were mainly proposed by established research
institutions and companies. Among the most renowned are
KITTI [4], TUM-RGBD [5], and EuRoC [6], which have
become the indispensable references of current ANM research.
Additionally, there also emerged many newer datasets in
recent years, such as Oxford RobotCar [7], KAIST Urban [8],
Baidu ApolloScape [9], and Waytous Automine [10], further
complementing diverse real-life factors and scenario types.
However, though fulfilling the fundamental testing demands,
existing datasets are still far from sufficient in terms of
quality and volume to trigger giant next-stage technological
breakthroughs. For instance, in KITTI dataset, part of the
system was synchronized by software, which introduced a sub-
10ms temporal error among sensors. In KAIST Urban, due to
the interference by high-rise buildings, the trajectory ground
truth generated by Differential Global Navigation Satellite
System (D-GNSS) can hardly achieve sub-dm accuracy. Be-
sides, datasets focused on corner cases are still seriously
lacking, thus cannot comprehensively reflect the real world.
In such circumstances, the community is in urgent needs of a
mature methodology to broaden the base of contributors and
standardize the quality and process for dataset construction.
This paper strives to fill the gap. Specifically, based on our
systematic reviews and extensive practices, for the first time,
a full-stack construction methodology of ANM datasets is
proposed, including modules of platform construction, sensor
calibration, time synchronization, ground truth generation,
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synthetic data production, and benchmark criteria, with de-
tailed techniques and methodological routes provided in each
step. Several key issues are resolved within the methodology.
Importantly, we introduce versatile calibration and synchro-
nization frameworks that can achieve up to us-level and
mme-level precision in complex vehicle settings. Besides, we
propose a full-scenario ground truth system that can generate
scene-map and trajectory both at cm-level accuracy. As a
validation, we design a meticulous robot platform and build
a high-quality dataset within an indoor-outdoor integrated
scenario. Our assessment confirms that its key metrics have
achieved leading-level of the field. We also benchmark multi-
ple state-of-the-art (SOTA) ANM algorithms on it, proving
a high versatility of the dataset. The successful workflow
demonstrates that our proposed methodology can significantly
reduce the research threshold and facilitate individuals and
institutions to construct datasets in a standardized way. To
date, the most relevant work regarding the topic of vehicle data
could be [11] (Kang et al.) published by IEEE Transactions
on Intelligent Vehicles in 2019. It comprehensively overviews
the publicly available datasets for autonomous driving, mainly
serving as a dictionary for dataset selection. Different from this
work, our paper is focused on the construction methodology
and inherent techniques of ANM datasets.
The main contributions of this paper are as follows:

o We propose a full-stack methodology for the construc-
tion of standard ANM datasets, covering modules from
platform construction to benchmark criteria, with detailed
techniques and methodology routes provided. This is the
first paper to investigate ANM datasets at technical level.

o We tackle several long-standing challenges in the field,
including the proposal of versatile calibration and syn-
chronization frameworks and an integrated navigation and
mapping ground truth system. This directly bridges the
gap for high-quality and standardized dataset creation.

« We construct a multi-sensory robot platform and design a
high-quality dataset in an indoor-outdoor connected sce-
nario. The key dataset metrics are evaluated and multiple
SOTA algorithms are successfully executed and bench-
marked, demonstrating the effectiveness and versatility
of our proposed methodology.

Website: https://github.com/robot-pesg/Standard-Data-ANM

II. RELATED WORKS
A. Autonomous Navigation and Mapping (ANM)

ANM arises in the context that intelligent vehicles demand
autonomous navigation and mapping to facilitate path plan-
ning, scene recognition, autonomous operations, and other
transportation tasks. The technology of ANM encompasses
several key elements, including Dead Reckoning (DR) [12],
Sensor Odometry (SO) [13], Simultaneous Localization and
Mapping (SLAM) [14], Visual-Inertial Navigation System
(VINS) [15], and Light Detection and Ranging (LiDAR)
Mapping System (LMS) [16]. While their underlying prin-
ciples are highly interrelated, their specific applications and
emphases could differ. Among these, DR/SO/SLAM serve as
foundational technologies, whereas VINS/LMS are specialized

implementations tailored to particular sensor modalities and
application scenarios.

DR/SO plays a fundamental role in autonomous navigation.
It involves the step-by-step estimation of the vehicle’s posi-
tion and orientation based on previously determined motion
states [12]. Traditionally, for ground vehicles, DR is typically
implemented by fusing wheel odometry and inertial sensors
[17]. However, such system may be impractical for non-
standard locomotion platforms like aerial and aquatic vehi-
cles. Furthermore, it is well recognized that wheel odometry
can lose precision due to slippage and may perform poorly
on rugged terrains [18]. In response to these challenges,
perceptual sensors have gained significant research attention
to achieve robuster performance, commonly referred to as
Sensor Odometry (SO). SO encompasses solutions like Visual
Odometry (VO) [18], Visual-Inertial Odometry (VIO) [15],
LiDAR Odometry (LO) [19], and more, which are also re-
garded as modern DR techniques. Note that, DR is subject
to cumulative errors, and as a result, it is often integrated
with external positioning aids in practice (such as Global
Navigation Satellite System (GNSS) [12]).

SLAM extends the capabilities of SO by not only tracking
the vehicle trajectory but also constructing and maintaining
an environmental map [14]. Relying on perceptual sensors
capable of both pose estimation and scene reconstruction,
SLAM constructs a map that enables loop closure upon
revisiting known locations, eliminating cumulative drifts, and
facilitating relocalization even without external positioning
aids [14]. While SLAM is more resource-intensive due to
its map maintenance compared to DR and SO, its real-time
operation remains an advantage for navigation systems, pro-
viding heightened accuracy and robustness. Moreover, profit
by the global consistency of the loop-closed map, dense SLAM
systems can also be adapted for mapping-centric tasks [20].

VINS is an approach that fuses vision and inertial sensors
to achieve lightweight and accurate navigation functionality
[15]. The two modalities are designed to complement each
other: inertial sensor provides high-rate ego-motion but drifts
quickly, while vision sensors can provide more reliable motion
estimation and correct the real-time inertial bias [21]. VINS
can be implemented with both VIO [22] and Visual-Inertial
SLAM (VI-SLAM) [21], and has formed a self-contained
research branch in recent years [15].

LMS is a technology that utilizes LiDAR as its centric
sensor to achieve high-quality 3D mapping through mobile
data acquisition and registration [16]. It can be implemented
through LiDAR Odometry and Mapping (LOAM) [23] and
LiDAR SLAM [24]. Additionally, to achieve better precision
and richer information, advanced LMSs often employ multi-
sensor fusion techniques. This involves the optimization by
factor graph for smoothing and mapping [24], as well as the
texturization of the map by camera reprojection [20].

B. Datasets for ANM

As introduced from the above background, compared to
other research areas, ANM is typically a sophisticated and in-
tricate task. Consequently, creating the corresponding datasets
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Fig. 1. The development stages and evolution trend of standard datasets in ANM field.

is quite complicated and has a high barrier to entry. Such com-
plexity is particularly reflected in the requirement for precise
and diverse sensor inputs, as well as the necessity of high-
quality ground truth data for navigation and mapping. Over
the past two decades, research focused on ANM datasets has
been continuously expanding, emphasizing their significance
as an independent and crucial research domain within the field.
However, existing datasets are still insufficient in terms of
scale, quality, and diversity, which limit the breakthrough of
ANM and delay its transitioning to mature productivity.

We roughly categorize the development of standard datasets
into four stages to review the evolution trend of this field.
These stages are referred to as the Functionality Stage, Au-
thenticity Stage, Challenging Stage, and Standardization Stage,
as illustrated in Fig. 1.

Functionality Stage: During the Functionality Stage, stan-
dard datasets primarily fulfilled basic testing and evaluation
purposes. The proposed datasets primarily focused on sensor
availability and ground truth reliability, while the collection
were mainly conducted in controlled or ideal environments.
Representative datasets include MIT-DARPA [25], TUM-
RGBD [5], and KITTI [4], which were extensively used for
nascent ANM research. This stage gave rise to many VO
and Visual-SLAM (V-SLAM) systems represented by ORB-
SLAM [26] and LSD-SLAM [27], as well as LIDAR Mapping
algorithms represented by LOAM [23].

Authenticity Stage: During the Authenticity Stage, standard
datasets strived to address the needs of ANM algorithms
as they transitioned from controlled and ideal environments
into daily real-world scenarios. Representative works include
NCLT [28], Oxford RobotCar [7], and KAIST Day/Night [29].
They investigated the expansion of spatial-temporal scales,
such as capturing larger environments, recording sequences of
longer durations, and incorporating data of day/night timeslots.
Furthermore, researchers began to explore updated sensor
combinations suitable for real-life practice, with a particular
focus on datasets tailored for VINS, represented by EuRoC
[6] and TUM-VI [30]. Benefiting from these efforts, ANM
methods have gained significant enhancements and iterations
(e.g., ORB-SLAM2 [31] and SVO2 [32]), and many novel
state-of-the-art algorithms came to the fore (e.g., DSO [33]
and VINS-Mono [21]). However, meanwhile, as datasets are

getting out of controlled and ideal environments, there is a
certain reduction in data quality. For example, TUM-MonoVO
[34] used LSD-SLAM [27] to generate ground truth, yet failed
to achieve a qualified level of accuracy; TUM-VI [30] only
provided trajectories at the start and end segments for long
sequences, which were incomplete for algorithm assessment.

Challenging Stage: During the Challenging Stage, stan-
dard datasets aimed to address robustness issues, pushing
algorithms to their limits by seeking out corner cases [35],
[36]. Representative datasets include Complex Urban [8],
FinnForest [37], TartanAir [38], ParallelEye-CS [39], [40],
BotanicGarden [41], efc. They were typically collected under
challenging scenarios, including urban canyons, congested
traffics, extreme weather and illuminations, complex mo-
tion patterns, unstructured environments, and repetitive and
monotonous textures. Simultaneously, this stage also gave
rise to ANM systems based on novel sensor modalities, such
as event vision, thermal camera, and Radar, exemplified by
datasets such as Vector [42], M2DGR [43], and RADIATE
[44]. In the Challenging Stage, ANM technologies were in
full bloom, with traditional methods steadily improving (e.g.,
ORB-SLAM3 [45] and LeGO-LOAM [46]), deep learning
approaches coming to the fore (e.g., CNN-SLAM [47] and
SuMa++ [48]), novel sensor modalities and frameworks show-
ing promise (e.g., Ultimate-SLAM [49] and Radar-SLAM
[50]), bringing ANM ever closer to a thorough breakthrough.
However, under such circumstance, the construction of stan-
dard datasets also met great challenges. For instance, the cali-
bration and synchronization quality were not paid full attention
[43], [51], the realism of synthetic datasets was still insufficient
[38], and importantly, to obtain accurate ground truth in large-
scale complex scenarios [8] became fairly difficult.

Standardization Stage: Standardization Stage corresponds
to the current phase, which is the Large-Scale Standardization
Stage. In this phase, ANM aims to achieve key technological
breakthroughs and advancements through massive amounts of
standard datasets [2], [52]. The community is experiencing
thorough refinement and modularization of traditional meth-
ods, maturation of deep learning approaches [2], [52], and
breakthrough of novel frameworks (e.g., NeRF-based localiza-
tion [53] and mapping [54]). During this stage, datasets must
be high-quality, all-rounded, and possess significant scale for
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Fig. 2. Schematic graph of the construction process regarding both real-world and synthetic datasets.

training, testing, and improvement [52], [55]. Representative
works include Waytous AutoMine [10], Boreas [56], KITTI-
360 [57], and Scenarios Engineering (SE) framework and
datasets [52], [58], [55], [59]. Additionally, synthetic datasets
and simulators are gaining significant attention, with notable
examples including SHIFT [60], UniSim [61], and NVIDIA
Drive Sim [62]. However, due to the construction complexity
and technical challenges, large-scale and high-quality datasets
are still notably lacking at the present time. The community
is in urgent demands of a mature and full-stack methodology
to stimulate standardized construction, crowdsourcing, and
realistic virtual data synthesis. This is exactly the motivation
of our paper.

III. GENERAL CONSTRUCTION METHODOLOGY
A. Dataset Structure

1) Data Sequence: Based on the workflow that ANM
estimates movements and/or builds scene maps through mobile
sensing, the essential part of ANM datasets is, therefore, the
sequential input data consisting of navigation series (Inertial
Measurement Unit (IMU), GNSS, wheel encoder, etc.), vision
streams (grayscale, RGB, thermal, etc.), and LiDAR scans.
For modern ANM systems, it is imperative to have at least
a sequence of vision or LiDAR scanning [4] data available.
Moreover, the inclusion of multi-sensor data is highly recom-
mended, as it broadens the applicable scopes of datasets and
facilitates diverse sensor fusion research.

2) Calibration Parameters: Due to the combined usage of
homogeneous and heterogeneous sensors, their spatial coor-
dinates need to be aligned into an identical frame, which is
so-called spatial extrinsic calibration. The extrinsics consist
of pairs of rotation matrices and translation vectors and are
usually set with respect to the center of a vehicle. Besides,
the internal properties of sensors should also be determined,
such as camera intrinsics (world-to-pixel projection matrix and
lens distortion), IMU white noise and bias, and so on.

3) Synchronized Timestamps: To ensure the reliability of
multi-sensor fusion, data from different sources should be
precisely aligned to an identical timeline, which is so-called
time synchronization. Importantly, the timestamp should be set
to the exact data sampling time, rather than the trigger or data
receiving time.

4) Ground Truth: For navigation and mapping tasks,
Ground Truth (GT) mainly refers to the precise ego-motions

(position and/or orientation) and scene maps that are qualified
for the assessment of algorithms. Importantly, the navigation
GT should also be synchronized with the sequential data to
avoid biased evaluation. Moreover, the extrinsics of GT with
respect to the source sensors should also be applied.

5) Semantic Annotations: Semantic information is usually
annotated on 2D images and 3D point clouds. For 2D images,
annotations are pixel-wise [41] and are typically represented
by bounding contours accompanied by semantic labels. For
3D point clouds, the annotations are point-wise [57], labeled
with specific object categories. Usually, semantic annotations
are not a necessary part for ANM datasets, but they are highly
encouraged to facilitate semantic-related ANM research.

B. Construction Process for Standard Datesets

ANM datasets can be classified into two categories: real-
world and synthetic ones. Both of them involve five main con-
struction steps: platform construction, spatial-temporal align-
ment, data collection, ground truth generation, and benchmark
criteria, as illustrated in Fig. 2. The first step is platform
construction. In the case of real-world datasets, this entails
preparing a vehicle tailored to specific working environments
and equipping it with desired sensors. For synthetic datasets,
a virtual platform is integrated within the software engine,
involving the simulation of motion patterns and sensor models.
The second step is spatial-temporal alignment. In the case
of real-world datasets, this step includes two key aspects:
the geometrical calibration of sensors, both intrinsic and
extrinsic, and the time synchronization among sensors and
host computers. For synthetic datasets, faultless alignment
can be achieved by computer design. Nevertheless, given the
practical challenges of achieving ideal alignment in real-world
operations, it is recommended to consider both the inclusion
or exclusion of alignment errors in the simulation process. The
third step is data collection, which involves the preparation of
testing scenarios and the definition of collection policies. It
is recommended to prepare or simulate various conditions of
the target scenes and collect the environment as completely as
possible. The fourth step is ground truth generation. It refers
to the accurate measurement of vehicle trajectory and scene
map. For real-world datasets, this process is typically achieved
by leveraging external high-end instruments, which hold a
much higher accuracy than the tested algorithms. For synthetic
datasets, ground truth can be acquired automatically from the
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simulator, and the accuracy is faultless. Besides, ground truth
may also involve the annotation of semantics. The last step
is the definition of benchmark criteria. It includes the metrics
and principles for algorithm assessments [5]. At present, the
benchmark criteria are relatively mature and generic, but they
can also be customized depending on different evaluating
dimensions and difficulty levels. In the following sections, we
will begin by investigating the full-stack construction pipeline
for real-world datasets. The techniques for producing synthetic
data will be carried out in an individual dedicated section.

IV. PLATFORM CONSTRUCTION
A. Vehicle Preparation

Preparing the vehicle involves primarily considering the
testing scenarios of the dataset, as well as the quantity and size
of the hardware facilities intended for deployment. Typically,
the vehicles can be categorized into four main classes: ground
vehicle, aerial vehicle, surface and underwater vehicle, and
human-carried equipment.

1) Ground Vehicle: Ground vehicles encompass a variety
of platforms such as wheeled robots [41], full-sized cars [4],
motorcycles [63], trucks [10], and more. These platforms offer
ample space to accommodate diverse sensor types, making
them vital for research of multi-sensor fusion. Additionally,
ground vehicles can typically provide wheel odometry data,
further enhancing their suitability for such studies.

2) Aerial Vehicle: Aerial vehicles primarily refer to un-
manned aerial vehicles (UAVs) [6]. In contrast to ground ve-
hicles, UAVs offer increased flexibility and exhibit a 6-degree-
of-freedom (6-DoF) motion pattern, posing greater challenges
[64] for navigation and mapping algorithms. However, due to
their compact and lightweight nature, UAVs face limitations
in carrying a wide array of sensor types.

3) Surface and Underwater Vehicle: Surface and underwa-
ter vehicles mainly include surface vessels, unmanned surface
vehicles (USVs) [51], and autonomous underwater vehicles
(AUVs) [65], [66]. Similar to ground vehicles, such platforms
can also carry a wide range of sensors, making them suitable
for sensor-fusion studies [51]. However, their motion patterns
tend to be very smooth, which can result in datasets that are
less challenging to push the limits of algorithms.

4) Human-carried Equipment: Human-carried equipment
mainly includes handheld rigs [30], backpacks [16], and
helmets [42]. These devices are not actual vehicles but provide
challenging 6-DoF motions, including sharp turns and frequent
shakes [30], which can increase the comprehensiveness for
algorithm testing. Such platforms are typically compact and
have limited capacity, thus are not suitable for integration of
a large number of sensors.

The characteristics of some commonly used platforms are
listed in Table I, explaining their Degree-of-Freedom (DoF),
speed, and motion properties. In practice, it is recommended to
diversify the data collection platforms to create datasets with
varying difficulty levels.

B. Sensor Configuration

The sensor configuration of datasets is determined by the
based sensor modalities of the tested algorithms. Typically,

TABLE I
CHARACTERISTICS OF DIFFERENT MOBILE PLATFORMS
Platform  |DOF| Speed Motion Properties

Car 3 |10-25m/s| Smooth forward/turn/shifting, Fast motion
Wheeled robot| 3 1-5m/s |Smooth forward/turn/shifting, Slow motion
usv 3 | 1-5m/s |Smooth forward/turn/shifting, Slow motion

Drone 6 | 1-15m/s Moderate turn/rotation, Agile motion
Handheld 6 | ~lm/s |Frequent shake, Sharp turn/rotation/shifting

there are six types of sensors involved for ANM applications:
GNSS, IMU, Distance Measurement Instrument (DMI), Vision
sensors, LIDAR, and mmWave radar, as described below.

1) GNSS: GNSS is a system that uses satellites to de-
termine the absolute geographic positions of GNSS devices.
With a minimum requirement of 4 independent navigational
satellites, by performing trilateration, the system can measure
locations at meters level accuracy in open areas. In addition,
by D-GNSS and Real-Time Kinematic GNSS (RTK-GNSS)
technologies, the accuracy can be further improved to cm-level
[4]. In practice, due to the financial considerations, moderate
GNSSs are typically more suitable for algorithm development,
while D-GNSSs are mainly used for generating trajectory
ground truth [4].

2) IMU: IMU is an electronic device primarily utiliz-
ing accelerometers and gyroscopes to measure the accel-
eration, angular rate, and optionally the orientation of the
host body. Depending on the precision, there are consumer-
grade and high-standard IMUs. Consumer IMU is typically
achieved by micro-electromechanical systems (MEMS) which
is lightweight and low-cost but with poor precision and drifts
quickly [21]. High-standard IMUs typically incorporate larger
yet more precise gyroscopes, such as fiber optic gyroscopes
(FOQG), ensuring sustained precision over extended periods [8].
In practice, MEMS IMUs, known for their affordability and
sufficient properties for sensor fusion [21], are the prevalent
choice in most ANM applications. In contrast, high-standard
IMUs are primarily reserved for tactical applications or em-
ployed as ground truth devices [8].

3) DMI: DMI is a system that uses motion sensors to
estimate positional change over time. In most cases, it refers
to the wheel odometry of ground vehicles that measures
displacements based on rotational encoders. DMI is not a
precise system and is sensitive to cumulative errors.

4) Vision Sensors: Vision sensors refer to different types of
cameras that mainly capture 2D optical imaging information.
There are many modalities and configurations of cameras used
for ANM, including monocular, binocular, multi-camera sys-
tem, fisheye, omnidirectional, thermal, event, and RGB-Depth
(RGB-D) cameras, suitable for different tasks. A monocu-
lar camera is the minimum visual configuration for ANM
[26], which has been widely researched due to its low-cost,
compact, and easy-to-integrate features [33], [27]. However,
mono-camera alone cannot recover scene scale, and may suffer
from pure rotation problem [32]. Binocular camera captures
synchronized image-pair with stereo disparity, enabling it to
inherently recover scene depth and scale even without move-
ment [31]. In practice, binocular-based SO/SLAM systems
can already provide very good navigation performance, and
are also capable of achieving dense mapping of the scene
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[67]. Multi-camera, fisheye, and omnidirectional cameras are
intended to increase the perception field-of-view (FoV) [68]
of the system, which can strengthen not only the navigation
module but also map completeness. Thermal, event, and RGB-
D cameras are three novel modalities applied in this field.
Thermal camera has a longer sensing spectrum than visible
light and can work consistently in dark night, thick fog, and
other challenging conditions [69]. Event camera is designed to
capture intensity changes of each image pixel at very high rates
[70]. It is especially suitable for agile and fast applications
such as high-speed vehicles and drone racing [71], while it
is not suitable for mapping-centric applications. RGB-D is a
novel modality that combines imaging and ranging sensors
[72]. Tt collects synchronized color and depth image-pairs
and typically works within 10 meters. Furthermore, due to
its sensitivity to infrared light, RGB-D sensors are primarily
used for indoor applications.

5) LiDAR: LiDAR is a type of optical sensor that measures
the distance of an object or a surface by emitting a laser
beam and counting its time of return (i.e., ToF, time-of-
flight) [73]. Benefiting from the active ranging mechanism,
LiDAR can output very accurate and dense 3D scanning of
the environment in a straightforward way. Besides, LiDAR
is robust to challenging illuminations and can work in very
remote distances (hundreds of meters typically), which makes
it extensively used for autonomous driving [74] and mobile
mapping system (MMS) [75]. Nevertheless, on the other hand,
LiDAR is also an expensive sensor, which limits its application
in cost-intensive scenarios. Note that, despite its exceptional
ranging accuracy, LiDAR can be compromised under adverse
weathers, such as dense fog, heavy rain, snowfall, and more
[76].

6) mmWave Radar: mmWave radar is a special class
of radar that uses millimeter-range electromagnetic waves
as medium to detect the position and direction of objects.
Through the Doppler effect, mmWave radar can also measure
the speed of targets, which makes it preferable in object
detection and tracking applications. The greatest strength of
mmWave radar is that, due to the sensing spectrum, it can work
in all weather conditions without losing too much ranging
accuracy [76], [77]. Among different technologies, Frequency-
Modulated Continuous-Wave (FMCW) radar systems are more
appealing as they can provide relatively dense representations
of the environment, which is necessary and proved to be
effective in navigation and mapping fields [50]. This paper
also chooses FMCW Radar as the focus.

In platform construction, it is encouraged to make full use
of the vehicle space and equip it with as many sensor types
as possible, so as to facilitate research of various ANM tasks.

C. Platform Demonstration

To provide an application demonstration for platform con-
struction, we have designed and integrated a mobile robot
system equipped with a comprehensive set of sensors, as
illustrated in Fig. 3. The platform features a four-wheel
differential drive wheeled robot chassis, enabling powerful
and reliable operation in various terrains. Above the chassis,

GNSS Antenna

Livox+BMI088

Fig. 3. The platform design and sensors coordinates of our robot system.

TABLE II
SENSORS SPECIFICATIONS OF OUR ROBOT PLATFORM
Sensor Model Specification
Gray Stereo Dalsa M1930 1920x1200, 71°x56°FoV, 40Hz
RGB Stereo DALSA C1930 1920x1200, 71°x56°FoV, 40Hz
Spinning LiDAR| Velodyne VLP16 [+3cm@ 100m, 360°x30°FoV, 10Hz
MEMS LiDAR Livox AVIA +2cm@200m, 70°x77°FoV, 10Hz
Industrial IMU | Xsens Mti-680G 9-axis, sub-deg gyro, 400Hz
Consumer IMU BMI-088 6-axis, Livox built-in, 200Hz
GNSS Ublox ZED-F9P-01B 1.5m accuracy, 10Hz
Wheel Encoder Scout V1.0 4WD, 3-axis, 200Hz

we design a complete set of standard aluminum profiles to
mount the host computers, control modules, sensor suites, and
more. For the sensor system, we have developed independent
brackets using 3D printing and standard profiles, ensuring
their flexibility for easy disassembly to meet the calibration
and maintenance requirements. To ensure a high versatility
of this platform, full-modal sensors are meticulous equipped,
including stereo RGB and Grayscale cameras, spinning Li-
DAR, MEMS LiDAR, GNSS, high-precision IMU, consumer-
grade IMU, and wheel encoders (refer to Table II for their
specifications). To benefit the community, we create a detailed
hardware selection and integration guideline and open-source
it on our website. This eliminates the time-consuming trial and
error, enabling researchers to rapidly complete the platform
construction process.

V. SPATIAL CALIBRATION

Complex vehicle systems typically include various types of
sensors. In the whole calibration process, cameras, benefiting
from their good precision and versatility, are better positioned
to serve as the central nodes. This section aims to introduce
a versatile calibration framework for comprehensive sensors.
Three general calibration methodologies are first introduced,
followed by thorough reviews and detailed explanations of
camera-to-sensor calibration techniques. Finally, the overall
calibration framework is carried out, which can support both
calibrations from scratch and online extrinsics adjustment.

A. General Methodology

1) Matching-based Methods: Matching-based calibration
consists of target-based and targetless approaches. The under-
lying principle is to identify and establish correspondences be-
tween different sensor observations [78], leveraging the mutual
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information to achieve alignment. Target-based methods entail
the use of specific calibration targets or patterns observed by
multiple sensors simultaneously. By having precise knowledge
of the reference points or features, the correspondences can be
established with high confidence and accuracy [79], thereby
resulting in more robust and reliable calibration results. Tar-
getless methods, instead, aim to find correspondences between
sensor observations in a scene without prior knowledge [80].
They typically utilize features or key points extracted from raw
sensor data, adopting techniques such as feature matching or
point cloud registration to solve for the extrinsics. Even though
targetless methods offer more flexibility and convenience, their
accuracy may decline in less-than-ideal environments [80],
[81]. Therefore, such methods are only recommended when
target-based methods are not practicable [82].

2) Motion-based methods: Motion-based
methodologies generally consist of hand-eye
and sensor fusion-based calibration. Hand-eye calibration
treats the motions of different rigid-connected sensors as
independent processes and solves for the extrinsics by
adhering to the equation AX=XB [83]. Here, A and B
represent the respective sensor motions, and X denotes the
extrinsics between them. While this methodology is explicit,
it requires precise motion measurement or estimation for
both sensors [82], which are not applicable in most cases.
In contrast, sensor fusion-based calibration represents an
advanced approach to the hand-eye mechanism. It treats
sensor calibration as an optimization problem, where the
extrinsic parameters are assigned as variables to be optimized
[84]. By considering motion constraints, extrinsics, and other
cost functions, the calibration can be effectively solved by
minimizing the overall objective error [21].

3) Learning-based methods: Learning-based calibration in-
cludes end-to-end calibration and learning-aided calibration.
In end-to-end calibration, a complete process is formulated as
a single learning task, where the calibration parameters are
directly predicted from the input sensor data. This approach
leverages the power of deep learning models to learn the
intricate relationships between sensor inputs and calibration
parameters in an automatic and data-driven manner [85], [86].
By training the model on large-scale datasets that encompass
diverse sensor configurations and environmental conditions,
end-to-end calibration can achieve moderate calibration results
[87]. On the other hand, learning-aided calibration takes a
more traditional calibration pipeline and incorporates learning
techniques to enhance the calibration rather than output the re-
sults in a one-stop shop [88]. For example, learning algorithms
can be used to extract mutual features [89], handle challenging
scenarios [90], or to correct miscalibrations [91]. Nevertheless,
though bringing in great simplicity and efficiency, learning-
based calibration could be less reliable, while spatial precision
is crucial for standard datasets [82]. Therefore, it is typically
not suitable for principled calibration from scratch.

calibration
calibration

B. Camera Calibration

Camera calibration plays a crucial role in 3D vision and is
the most critical link of the calibration chain for a vehicle.

It involves estimating the camera intrinsics, which describe
the mapping between the 3D world and the 2D image plane,
as well as the extrinsics that define the relationship between
multiple cameras in a system [92]. While various camera
models exist, this section focuses on the pinhole camera model
due to its versatility, with the consideration that the underlying
principles can apply to other camera models as well.

Camera calibration encompasses several methods, including
target-based calibration using 3D [93] or planar targets [79],
active motion calibration using precise external motion control
[94], and self-calibration based on theories such as Kruppa
equations [95] and absolute dual quadric [96]. Given the
critical importance of precision and the need for a flexible
calibration process, target-based methods are often considered
the optimal solution. Tsai’s method [93] and Zhang’s method
[79] are the two most widely used target-based techniques
in practice. Tsai’s method relies on a known 3D object with
precise geometry as the target. It establishes correspondences
between image pixels and 3D positions, allowing for the
determination of the best projection matrix through linear
least squares. The intrinsics and extrinsics are subsequently
obtained through decomposition. Nonlinear least squares is
then employed for refinements and to estimate the distortion
parameters [93]. In contrast, Zhang’s method only requires a
planar target and a few observations of different orientations.
It offers a closed-form solution in a more concise setup [79].

The precision of camera calibration can be evaluated by re-
projection errors of feature points among the input images. An
ideal calibration process typically exhibits a precision of sub-
0.1 pixels [41]. Comparative studies have shown that Zhang’s
method exhibits greater accuracy and robustness and is more
flexible in terms of target manufacturing [97]. Consequently, it
is more widely utilized in practice and serves as the foundation
for calibration tools in OpenCV and Matlab. At present,
with the advancement and complementation of different lens
models [98], camera calibration can be considered as a mature
technique.

C. Camera-IMU Calibration

Inertial sensors, unlike cameras, lack environmental obser-
vations, which makes matching-based methods infeasible for
extrinsics calibration. Additionally, IMU sensors alone are less
precise for motion tracking, making them unsuitable for the
hand-eye mechanism. As a result, camera-IMU calibration
often relies on visual-inertial fusion techniques, where the
extrinsics are parameterized as variables to be optimized [99].
In other words, the final extrinsics are the ones that make
the sensor-fusion system achieve the best possible motion
estimations.

Camera-IMU calibration consists of both offline [100] and
online [21] approaches. Offline approaches involve designing
and executing carefully planned motion sequences to obtain
sufficient motion excitations and diverse trajectory patterns,
so as to construct a well-constrained calibration problem
[101]. Many open toolboxes exist, and their methodologies are
common. Here we choose the most influential and community-
recognized toolbox Kalibr [100] for a description. During the
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Fig. 4. A versatile calibration framework suitable for full-source sensor systems.

calibration process, the visual-inertial sensor suite is handheld
to wave in front of a visual pattern, as illustrated in the
upper middle of Fig. 4. The captured data from the sensor
suite, combined with the constraints provided by the calibra-
tion pattern, serve as inputs for motion estimation. Kalibr
utilizes a unified principled maximum-likelihood estimator
that parameterizes both the transformation matrix and time-
offset [101], [102]. By minimizing the overall objective errors,
the Levenberg-Marquardt (LM) algorithm can estimate all the
unknown parameters simultaneously. The precision can also
be evaluated by the reprojection errors of visual patterns.
Online approaches optimize an initial coarse extrinsic or
estimate extrinsics from scratch within real-time operations.
Such methods typically rely on real-time sensor fusion algo-
rithms and optimization techniques, widely used for miscali-
brations or adapting the calibration parameters on the fly to
compensate for dynamic changes and environmental variations
[103]. Many systems have implemented this methodology,
including VINS-Mono [21], OpenVINS [104], etc. From the
perspective of calibration precision, offline approaches make
sure to build a well-constrained optimization problem, leading
to optimal and reliable outcomes, which are necessary for
creating standard datasets. On the other hand, in practice,
online approaches also hold significant importance in scenarios
where geometric relations may experience subtle shifts over
extended periods and are in need of timely adjustments.

D. Camera-LiDAR Calibration

Camera and LiDAR are two crucial modalities in ANM
systems, and their fusion is important for accurate mapping
[105] and semantic perceptions. As both of them have ex-
plicit observations, the no-doubt choice is matching-based
calibration. Target-based matching and targetless matching are
both possible [82]. Target-based matching requires calibration
patterns to be both visually and structurally recognized. Geiger
et al. [106] used a combination of 2D chessboards at different
orientations and positions. With the 3D recovery of visual cor-
ner points and the target extraction from LiDAR scans, the two
point-sets can be accurately registered, and the extrinsics are

thus solved. Autoware [107] presents an interaction calibration
toolbox, which enables users to manually align two sensors’
data based on board edges. Targetless matching methods
extract mutual environmental features in camera and LiDAR
frames. Yuan et al. [80] developed a toolbox that uses image
contours and LiDAR edges for alignment. For disambiguation,
they choose spatially discontinuous point cloud edges for
alignment and have achieved comparative accuracy against
target-based methods. However, this method only performs
well in structured scenarios that have rich edge features. For
sparse LiDARs, a pre-mapping process that accumulates the
point clouds is necessary, which could bring in additional
errors. In assessing the calibration precision, methods based on
3D reconstruction are typically evaluated using the registration
error of corresponding 3D points [41], and methods based on
edge extraction are typically evaluated based on the alignment
error after projecting LiDAR points onto the pixel plane [80].
Under proper settings, they are supposed to obtain sub-cm and
sub-pixel precision respectively.

Many online and learning-based calibration methods also
exist, such as RegNet [108], CalibNet [86], RGGNet [109],
etc. Compared with visual-inertial calibration, camera-to-
LiDAR calibration is exempted from motion degeneracy, thus
online approaches are also possible to achieve qualified results.
Whereas, to ensure the authenticity of datasets, offline and
target-based methods are still the optimal choice. On the
other hand, online calibration can serve as a complement for
adapting to the geometrical shifts over time.

E. Camera-Radar Calibration

Radar, compared to LiDAR, has significantly lower scan-
ning density and point resolution, making it challenging to
perform feature recognition when calibrating with cameras.
To address this issue, a well-recognized approach is to use
composite targets, precisely combining visual markers with
radar reflectors to facilitate simultaneous recognition. Since
the relative positions of both markers are precisely known,
extrinsic calibration can be easily achieved by projecting Radar
points onto the image plane. The calibration accuracy can
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be assessed through reprojection errors, which are typically
within a few pixels for well-aligned setups. Traditionally, a
radar reflector is built from three orthogonal metal plates
[110], which are designed to efficiently retroreflect the radar
emissions, producing highly distinct points on radar imagery.
Recent advancements have seen the emergence of compact,
highly precise active radar reflectors that demonstrate im-
proved performance, and have become the standard calibration
setup of many vehicle companies [110], [111]. We have given
an illustration of such a target in the bottom right of Fig. 4,
where the red star denotes the active radar reflector.

While there are sensor-fusion-based methods capable of
estimating the extrinsic parameters online [112], it is firmly
believed that target-based calibration is indispensable. We
maintain the viewpoint that fusion-based methods should
ideally serve as refinement tools, supplementing the calibration
process, rather than being utilized for calibration from scratch.

E. Versatile Calibration Framework

Building upon the techniques delineated above, we intro-
duce a versatile calibration framework that is suitable for full-
source sensor systems, as illustrated in Fig. 4. This framework
is proficient either in conducting initial calibrations or adapting
to long-term geometrical drifts. Considering the ubiquity and
good precision of visual sensors in intelligent vehicles, we
have designated the camera as the center of our entire calibra-
tion framework, allowing other sensors to be interconnected
via the camera node. For Camera-Camera, Camera-LiDAR,
Camera-IMU, and Camera-Radar calibrations, we have pro-
vided detailed explanations of their respective techniques
in the preceding sub-sections. Importantly, to enhance the
flexibility and precision for Camera-LiDAR calibration, we
also contribute a novel toolbox that requires only three quasi-
orthogonally placed visual plates [41], as illustrated in Fig. 5.
Different from Geiger’s method [106], we reconstruct a dense
and noiseless vision 3D model, and the LiDAR point clouds
are reversely registered to vision models by point-to-plane ICP.
Since the vision model is highly-precise, our method is more
robust to the LiDAR noise. This tool has been open-sourced to
the community on our website. For all the calibration groups,
we recommend using target-based methods to attain high
reliability and precision. If circumstances impose limitations,
then alternative targetless methods can be considered. For
other navigation sensors such as GNSS, Inertial Navigatioin
System (INS), and DMI, the manufacturers typically have
provided precise measurement origins for them. As a result,
one can directly obtain their 3D coordinates with respect to
the vehicle using Computer-Aided Design (CAD) softwares or
determine their mounting positions through manual external
measurements. This method often yields extrinsics precision
at sub-cm level, while their angular parameters can further be
figured out through algorithmic adjustments. So far, the vehicle
sensor system has been fully calibrated, and subsequently, a
motion-based online calibration process can be performed, in
order to optimize the calibration-chain to a highly consistent
one. Through extensive data tuning, all the extrinsics will be
refined and adjusted to their optimal values.

Fig. 5. Calibration demonstration between Camera and LiDARs (Spinning
& MEMS) using the proposed calibration framework, resulting in a precision
of ~9.5mm std. (evaluated by CloudCompare [114] software).

Sometimes, in case cameras are not available, it is also
feasible to calibrate the sensor pairs directly. For example,
there already exist mature open tools (e.g., LI-Calib [81] and
OpenCalib [113]) which leverage motion-based optimization
to estimate the extrinsics between LiDAR-IMU pairs. Besides,
for multi-LiDAR systems, since the point clouds are already
precise, it is an explicit way to calibrate them by scan-to-scan
or map-to-map registration. These calibration pairs make sense
in specific sensor systems, while simultaneously, they can also
be merged into our main chain as additional constraints.

To demonstrate the effectiveness of our framework, a
complete calibration process has been conducted on our
constructed robot platform. For multi-camera calibration, we
employ Zhang’s method [79], achieving better than 0.1 pixels
reprojection error. For camera-IMU calibration, we utilize
the Kalibr toolbox [101], achieving a reprojection error of
sub-pixel. Importantly, for camera-LiDAR calibration, we use
our proposed toolbox and verify its registration precision of
~9.5mm, as illustrated in Fig. 5. For the other sensors, their
calibration parameters are accurately measured in the CAD
model and post-refined by algorithm optimization. To benefit
the community, we create a detailed calibration guideline and
open-source it on our website.

VI. TIME SYNCHRONIZATION

Time synchronization can be categorized into software-
based and hardware-based techniques. Generally, soft-sync is
ubiquitous and hardware-independent, while hard-sync can
achieve higher precision and stability but necessitates hard-
ware support. This section explores the key techniques of both
categories (their properties are subsequently compared in Table
IIT), and finally, a versatile synchronization framework suitable
for all-level sensor systems is introduced.

A. Software Synchronization

1) Network Time Protocol (NTP): NTP [115] is a basic and
common network protocol for time synchronization among
computers and sensors. It works at the software level and does
not require specific hardware except for a network interface
[115]. The basic principle of NTP synchronization is achieved
through a client-server model. In this model, the NTP server
is configured as the time source, while sensors or terminal
computers act as NTP clients, synchronizing with the server
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by exchanging time packets and determining the time offsets
[116]. NTP can work both in wired and wireless settings, and
can achieve up to sub-ms precision in local Ethernets [117].

2) Real-Time Kernel (RT-Kernel): A moderate soft-sync
sensor system is subject to transfer delay, clock jitter, and
data buffer time, which make the received timestamps of data
unstably later than its real sampling time [118]. To bridge this
gap, a real-time kernel makes sure to guarantee a response
within specified time constraints, which avoids large time
deviations and can lower the data latency to milliseconds
and sometimes microseconds level [119]. The principle of
real-time kernel mainly lies in preemption, priority-based
scheduling, and high-precision timer [120]. These mechanisms
organize the process’s execution based on their priority levels
and allow high-priority tasks to interrupt those of lower
priority, ensuring time-sensitive events to be completed at first
and on time. State-of-the-art real-time kernel implementations
include PREEMPT_RT, RTLinux, Xenomai, RTAI, [120] etc.
Thereinto, PREEMPT_RT is realized as a patch of Linux
kernel [121], offering a simple way to achieve quasi-real-time
performance with excellent compatibility with standard Linux
systems. In contrast, RTLinux, Xenomai, RTAI, efc., offer
hardware-level real-time performance but might require deep
systemic modifications and much more complex development
and maintenance works.

3) Temporal Calibration: For most low-cost and self-
assembled sensors, synchronization interfaces could be un-
available. Though RT-Kernel can avoid messy timestamps,
minor transmission delays (several milliseconds and more)
will still exist [122]. Under such a situation, it is necessary
to calibrate the time offset and compensate it on the fly.
Temporal calibration can be achieved with both offline and
online approaches. The methodology is similar to motion-
based extrinsics calibration — parameterizing the time offset
and constructing a well-constrained motion optimization prob-
lem, the best suitable delay can be determined. The calibration
is usually carried out against IMU, for example, Kalibr [100]
and LI-Calib [81] respectively provide offline time-offset cali-
bration between camera-IMU and LiDAR-IMU, while VINS-
Mono [21] and Fast-LIO2 [123] respectively provide online
camera-IMU and LiDAR-IMU temporal calibration. Besides,
there is also a simplified approach that leverages the steep
points to align the motion processes of different sensors. For
example, [124] uses gyro rotational series to align different
IMUs, and Rawseeds [125] uses sensor odometry results to
align different sensor motions. These approaches are likely to
obtain sub-ms level calibration accuracy.

Note that, temporal calibration assumes that the time offset
is constant among a time segment or the whole process, thus
it cannot deal with random timestamp jitters. Besides, there
is a high risk that ANM algorithms might break down under
subpar software-only synchronization systems.

B. Hardware Synchronization

1) GNSS Timing: Except for positioning service, GNSS
systems are also capable of providing highly accurate time
information anywhere on Earth [126]. Crucially, each satellite

contains multiple atomic clocks that contribute very precise
time data to the GNSS signals, offering stability and accuracy
to the level of billionths of a second. GNSS receivers decode
these signals, enabling them to determine the actual time
without owning and operating atomic clocks. Typically, GNSS
receivers can output one-pulse-per-second (1PPS) signals to
trigger the sensors or devices to reset their internal counters,
and the subsequently arrived National Marine Electronics
Association (NMEA) sentences will transfer the pulse-per-
second (PPS) corresponding times to force the clocks up to
date [41]. GNSS timing is widely recognized as the most
ubiquitous, precise, and mature synchronization technique.
However, its functionality is limited in GNSS-denied areas,
and its precision might experience drift after prolonged signal
losses [127]. In such scenarios, the concept of mimicking a
GNSS-clock can offer a viable alternative [41], [127].

2) Precision Time Protocol (PTP): PTP, also known as
IEEE 1588, is a protocol to achieve high-standard synchro-
nization on specific hardware through local networks [128].
Similar to NTP, PTP uses a master-slave model, and by
exchanging time packets, the clock offset can be determined
and the slave clocks can thus be adjusted and synchronized.
Crucially, the operations are all progressing at the hardware
level [41], which can achieve sub-us and even nanoseconds
precision. Many up-to-date advanced sensors have provided
PTP capability, such as Livox [129] and Ouster [130] LiDARs,
Dalsa [131] and Basler [132] cameras, efc. Especially, PTP
is very good at inter-host synchronization, enabling users to
distribute massive sensors in different host computers.

3) Hardware Trigger: Hardware trigger is a technique to
synchronize sensors by external interruptions [41]. It also
requires the hardware capabilities of target sensors [133].
Typically, the trigger signal is a set of electrical pulses, when
the rising or falling edge arrives, the sensors can be controlled
to start or stop sampling. For some sensors, the trigger signal
does not directly control the measurement process, instead,
it calls for feedback of the actual time from sensors and
bridges a relationship between the controller and sensor clocks
[41]. Hardware triggers can typically achieve nanoseconds
synchronization precision, and its robustness could be better
than PTP as no data transmission process is involved.

TABLE III
COMPARISON OF TYPICAL TIME SYNCHRONIZATION TECHNIQUES

Type Technique Requirements Precision
RT-Kernel Short data packet | up to sub-ms
Soft-sync NTP Network interface |sub-ms to 10ms
Temporal calibration | Online/offline align | up to sub-ms
GNSS Timing Open-sky, PPS 10s of ns
Mimicked GNSS PPS interface sub-us to 10us
Hard-sync - -
External Trigger GPIO interface 10s of ns
IEEE-1588 PTP PTP hardware 10ns to sub-us

C. Versatile Synchronization Framework

To accommodate sensors of different grades and properties,
we introduce a versatile synchronization framework that is
suitable for all-level sensor systems, as illustrated in Fig. 6. We
broadly categorize the vehicle sensors into four types based on
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Fig. 6. A versatile synchronization framework suitable for all-level sensor systems.

their supported synchronization protocols. The first category is
sensors with GPIO interfaces. The second category is sensors
supporting PTP synchronization. The third category is sensors
without any sync-interfaces, mainly consisting of high-rate
IMUs, DMIs, and the like. The fourth category is sensors with
other synchronization protocols.

Considering a system equipped with massive sensors, to
prevent data loss and relax the processing load of the sys-
tem, we distribute these sensors across four host machines,
as illustrated in Fig. 6, labeled as Host-0, Host-1, Host-2,
and Host-n. Initially, Host-O receives the GNSS signal for
satellite timing, synchronizing with UTC time at nanoseconds
precision. Subsequently, Host-0 propagates its timestamps to
the other host machines, namely Host-1, Host-2, and Host-
n, which also support PTP, in a master-slave configuration.
This ensures that all these host machines synchronize with
Host-0 at sub-microsecond precision. It is worth noting that
Net cards and host computers that support PTP-sync are quite
common today, such as Intel i210 and i350 series. We do not
recommend using NTP-only cards for development, as they
would reduce the sync-precision to ms-level at most.

Next, we address the synchronization between the sensors
and their respective mounting hosts. For Host-0, since the
sensors themselves do not support synchronization, we use a
real-time kernel to restrict data buffering and processing time.
We estimate the total data delay using theoretical calculations
of transmission time and algorithmic temporal calibration to
compensate for it. For Host-1, since all the connected sensors
support PTP, we configure Host-1 as the master clock, while
the sensors are configured as slaves. It is important to note
that the sync quality of PTP is also influenced by the network
condition, so it is advisable to use dedicated data acquisition
equipments. For Host-2, as all the attached sensors support
general-purpose input/output (GPIO) interfaces, it can gener-
ate multiple pulses with exactly the same phase. Then, the
sensors can achieve high-precision synchronization with the
host through synchronized triggering, PPS timing, and master-
slave clock alignment. Finally, Host-n will handle sensors with
other sync-protocols, such as NTP and IEEE1394. So far, the
entire system has been synchronized successfully, aligned with
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Fig. 7. Timestamp difference between two hardware-triggered cameras from
two PTP-synced host computers, suggesting a precision of ~1.56us std.

Coordinated Universal Time (UTC) time at a high precision.

If the number of sensors continues to increase, our syn-
chronization network can also be expanded accordingly. When
GNSS is unavailable, Host-0 can serve as the reference UTC
clock, ensuring a high sync-precision within the local network.
Note that, for non-navigation sensors that do not support any
sync protocols, such as camera and LiDAR, due to their
large data volume, the transmission time can be unpredictable,
making it difficult to accurately recover the real data sampling
time. Therefore, such sensors are never recommended for the
construction of standard datasets.

To demonstrate the effectiveness of our framework, a rigor-
ous synchronization system is implemented on our platform.
We distribute all the sensors across two host computers that
are synchronized through PTP. One computer is connected
to the robot via a Controller Area Network (CAN) bus
and runs a real-time kernel, dedicated to the acquisition of
wheel encoder data. The other computer is responsible for
receiving data from all the other sensors, which are fully
synchronized by hardware trigger pulses. Note that, the em-
ployed cameras also support PTP protocol, which can be
used for verification of the synchronization precision of our
framework. The whole system is synchronized with UTC by
GNSS timing. To validate the synchronization precision of
the system, we intentionally distribute four cameras on two
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PTP-synced host computers. This setup allows us to verify the
timestamp difference between the cameras which are triggered
by consistent pulse rising edges. The results, as shown in Fig.
7, indicate that the synchronization precision has achieved
1.56us within the 68.3% confidence interval (one standard
deviation) based on statistical analysis. It is important to note
that, since the cameras need to capture images to complete
the test, this already represents the sync-quality of the system
under full collection load, which also tactfully proves the
robustness of our framework. To benefit the community, a
detailed synchronization guideline is provided on our website.

VII. DATA COLLECTION
A. Scene Preparation

Scene preparation mainly involves the selection of collection
scenes and the arrangement of environmental conditions.

Collection scenes, depending on their appearance and struc-
tural properties, can generate different difficulties in ANM
datasets. Generally, the scenes can be categorized into struc-
tured and unstructured ones. A structured scene refers to a
scene with clear organization and regular patterns. Such scenes
often exhibit apparent motifs, geometric shapes, and specific
layouts. Examples include indoor rooms, urban buildings, and
road networks. In structured scenes, the textures and structures
are straightforward to recognize, track, and reconstruct, mak-
ing navigation and mapping less difficult. On the other hand,
unstructured scenes lack explicit organization and regularity.
These scenes tend to have complex shapes, randomness,
and diversity. Examples include natural environments, forests,
mountains, and deserts. In unstructured scenes, the features
and attributes may be irregular and highly variable, making
navigation and mapping relatively tough.

There are several special scenes that are known to be
challenging for ANM systems, which are also the current
research focus of this field:

o GNSS-denied environments, such as indoor scenes [134],
undergrounds [16], thick vegetations [41], and urban
canyons [8], which are likely to cause signal loss and
inaccurate satellite positioning.

o Texture-less areas, such as pure-white walls [135], uni-
form grasslands [64], sandy beaches [136], and more,
which are difficult for visual tracking.

o Degeneration areas, such as long corridors [42], tunnels
[8], caves [137], and so on, which may cause mis-
registration for LiDAR-based methods.

Aside from the scene type, environmental conditions can
also impact the suitability and complexity of the dataset. This
primarily involves factors such as lighting intensity, weather
conditions, seasonal effects, time frame, and dynamic objects
and humans. A high-quality dataset should encompass a wide
range of environmental conditions to meet the demands of
comprehensive algorithm testing.

B. Collection Policies

When collecting ANM datasets, there are certain require-
ments and considerations to ensure the quality and suitability
of the data. Some common points are:

Fig. 8. Map construction by registering numerous individual scans as a whole
with graph optimization.

o Completeness and Coverage: The collection path should
cover the entire scene as much as possible. It is essential
to ensure that the path traverses various types of areas,
including open spaces, narrow passages, corners, regions
of different heights, and so on, which are essential for
the thorough testing of algorithms.

e Pose and Motion Diversity: The platform motion and
poses along the path should exhibit diversity, including
different viewpoints, rotations, translations, and accel-
erations. This mainly helps to test the robustness and
adaptability of algorithms.

o Adequate Path Overlap: Sufficient path overlap is im-
portant for triggering the relocalization and loop closure
functions of algorithms [26], which is one of the key
evaluation metrics for ANM. Additionally, for mapping-
centric systems, adequate overlap can improve the accu-
racy and consistency of the map.

VIII. GROUND TRUTH GENERATION
A. Pose Ground Truth

The technique for generating GT-pose could differ regard-
ing different collection scenarios. For simple small-scale and
indoor scenes, the most effective solution is the motion capture
system (MoCap) [6], [138]. It works by emitting infrared
light to the reflective markers and recognizing their imaging
pixel locations, thus the marker pose can be precisely solved.
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Fig. 9. Schematic graph of the proposed mapping-localization ground truth
system.

But there are still drawbacks of it: MoCap cannot work well
under severe occlusion or areas with infrared interference (e.g.,
strong sunlight) [138]. For large-scale outdoor scenarios, D-
GNSS could be the most effective and mature solution [4]. It
can provide up to cm-level positioning accuracy, and with a
dual-antenna configuration, the orientation states can also be
accurately measured. However, the working requirements are
also strict: the receiver should be exposed to an open sky [4],
otherwise, its accuracy may seriously decline thus cannot meet
the standard of ground truth. For open environments, another
reliable choice is the Laser Tracker (LasTrack) system which
attains up to sub-mm precision [64], [43]. However, it cannot
provide orientation measurement, and occlusion-free should be
ensured [43] in case of tracking losses.

The above are all high-precision but expensive techniques,
some cheaper alternatives include the use of visual marker
[139], ultrasound positioning [140], and SLAM with multi-
sensor-fusion [8]. These methods are passable choices for
testing purposes, while they are likely to suffer from low
precision and incomplete trajectory coverage, making them
unqualified for building high-quality ANM datasets.

B. Map Ground Truth

For GT-map reconstruction of a regular-sized environment,
the ideal solution is to conduct rigorous survey works using
professional terrestrial laser scanners (see Fig. 8), which make
sure to provide mm-level precision in each individual scan,
and can achieve cm-level accuracy in global coordinates after
registration [41]. Benefiting from the stationary scan process,
the point cloud is noiseless and consistent. However, when
extended to city-scale environments, the time cost could be
exceptionally long. In such a case, a more effective solution
is to use a professional MMS (mounted by ground or aerial
vehicles) for mobile collection. Such systems fuse tactical
D-GNSS&INS, survey-grade LiDARs, and odometry data,
capable of building maps at cm-level global-accuracy [75].
On the other hand, in cases where high-end instruments are
not accessible, one can consider reconstructing the map using
SLAM with moderate sensors [141] and multi-sensor fusion.
However, this approach can hardly achieve a qualified accuracy
for constructing standard datasets.

Fig. 10. GT-pose generation within the pre-build high-quality map database.
The real-time LiDAR point clouds are fully undistorted for final registration.

C. Integrated Mapping-Localization Ground Truth System

To solve the challenge of generating GT-pose in large-scale
complex environments, we propose a high-accuracy mapping-
localization integrated ground truth system, as illustrated in
Fig. 9. The methodology of this system involves creating
a high-accuracy prior 3D map as a global reference, and
then utilizing the information from onboard LiDAR and
other sensors to achieve matching, tracking, and localization
within the map. This mechanism is fundamentally similar to
satellite navigation, as both aim to establish high-accuracy
global references and perform reliable pose estimation within
the coverage area. However, unlike satellite navigation, this
system can operate in any complex environment without the
need for external equipment once the map has been pre-
scanned. It is also resilient to environmental obstructions or
variations in scene scale. The system primarily consists of four
modules: the multi-level feature map construction module,
the Monte Carlo initialization and localization module, the
high-frequency multi-sensor fusion odometry module, and the
LiDAR point cloud rectification and registration module.

Firstly, in the map construction module, professional survey-
ing works are conducted to collect laser point clouds, images,
and geographical data all around the scene. This is typically
accomplished by mobile mapping systems and high-end ter-
restrial laser scanners, as illustrated in Fig. 8. Subsequently,
the point clouds and images from each individual frame or
station are registered and stitched together to form a globally
consistent high-accuracy 3D map. Meanwhile, salient vision
and structural features are extracted and associated with map
coordinates to support subsequent position indexing. Next,
in the initialization and localization module, the real-time
vehicle vision and LiDAR data are searched within the map
database for key feature matching. A Monte Carlo localization
model is then constructed to ensure that the initialization
results converge correctly within a short period of time.
Once the initialization is complete, the vehicle enters a dual-
thread tracking framework that combines high-frequency local
odometry and timely global localization. The odometry thread
utilizes high-frequency data from vision, IMU, and encoders
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Fig. 11. Validation of the proposed mapping-localization ground truth system
by a Leica MS60 (Imm accuracy) Laser Tracker.

to achieve rapid and smooth motion estimation. Subsequently,
based on the odometry poses, by LIDAR undistortion and fine-
registration with prior map (as illustrated in Fig. 10), the global
localization thread makes sure to generate accurate GT-poses
at LiDAR frame rate. Finally, the output GT-poses are also
back-propagated to the odometry module, enabling real-time
bias correction and thus boosting the ground truth much higher
to the IMU frame-rate (over 100Hz).

To demonstrate the effectiveness of our methodology, we
carry out a rigorous workflow in a large-scale indoor-outdoor
interconnected scenario. For GT-map construction, we employ
a survey-grade Leica RTC360 laser scanner and conduct an au-
thentic survey and mapping job with professional colleagues.
This scanner can acquire dense and colored point clouds with
Imm accuracy and 130m ranging radius in each individual
scan. To ensure the completeness of the map, we have
scanned 137 locations all around the scene. By accurate pre-
alignment and fine-registration, we have achieved an overall
8mm accuracy in the final map as reported by the Leica
Cyclone Register360 software. For GT-pose generation, we
fully implement the proposed mapping-localization system on
our robot platform, yielding complete trajectories in all short
and long sequences (a sample trajectory is shown in Fig. 10).
To further verify the accuracy of this system, a Leica MS60
laser tracker (Imm accuarcy) is employed to track the crystal
prism mounting on top of the LiDAR center for reference
positioning, as shown in Fig. 11. We choose two paths without
occulusion to conduct the experiments, ensuring that MS60
can work consistently. After alignments for both trajectories,
we have achieved an accuracy of 10.98mm root-mean-square
error (RMSE) for the indoor test and 7.79mm RMSE for the
outdoor test, as shown in Fig. 12.

A comparison of different GT techniques has been shown in
Table IV, depicting their data degree, theoretical accuracy, and
operation requirements. Among these solutions, our proposed
system can provide ultimate cm-level mapping and localiza-
tion accuracy with the slightest requirements (avoid deserted
areas, where D-GNSS is the optimal choice). We recommend
researchers comprehensively consider the collection environ-
ments, financial cost, desired accuracy, and GT degree for the
determination of ground truth techniques in dataset creation.
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Fig. 12. Evaluation of GT-localization accuracy for both indoor and outdoor
environments: 10.98mm RMSE (indoor) and 7.79mm RMSE (outdoor).

TABLE IV
COMPARISON OF GROUND TRUTH TECHNIQUES

GT Technique Degree Accuracy Requirement
MoCap 6D | sub-mm/sub-deg Sparse sunlight
D-GNSS 3D/6D | up to cm-level | Outdoor open-sky
Pose LasTrack 3D up to sub-mm Sparse occlusion
SO/SLAM 3D/6D | 2%-10% length | Multi-sensor fusion
Marker, Ultrasound | 3D/6D dm-level Accurate placement
Scanner 3D | mm- to cm-level | Sufficient overlap
Map MMS 3D cm-level Authentic sensors
LMS 3D 2%-10% length | Multi-sensor fusion
Full | MapLoc (proposed) | 3D-6D cm-level Avoid deserted area

IX. SYNTHETIC DATASET PRODUCTION

As illustrated in previous sections, the collection of real-
world ANM datasets [4] is known to be complicated and time-
consuming, making the data difficult to collect frequently or to
meet the timely customization demands of users. To circum-
vent these issues, synthetic datasets that simulate real-world
vehicles, sensors, motions, and environments have been pro-
posed for testing purposes [142]. By computerized techniques,
the environmental factors, such as weather, illumination, and
dynamic objects can be fully controlled, and the motion
patterns and trajectories can be arbitrarily customized within
the same environmental settings [143], which can support
variable-controlled and closed-loop simulators [144].

Depending on whether part of the data is seeded from
the real world, synthetic approaches [145] can be categorized
into full-simulation and semi-simulation ones. Section III has
already described a general construction pipeline of synthetic
datasets, ranging from platform construction to ground truth
generation. This section will delve deeper into the inherent
methodology from a technical perspective, with some mile-
stone works analyzed to serve as good lessons.

A. Full-simulation Synthesis

In full-simulation synthesis, the entirety of the dataset is
artificially generated, devoid of any real-world data seeding.
This approach empowers researchers to design and create
datasets from scratch, tailoring them precisely to the needs
of experiments. The cornerstone of this approach lies in the
creation of virtual 3D environments and rendering of realistic
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data. Full-simulation synthesis can generally be categorized
into three technical lines: synthesis with 3D creator and
renderer, synthesis with vehicle simulator, and synthesis with
3D computer game.

1) Synthesis with 3D Creator and Renderer: Synthesis
with 3D creator and renderer involves modelling a virtual
environment and simulating realistic data within it. Off-the-
shelf 3D creators and renderers include OpenGL [146], Unreal
Engine [147], PovRay [148], Unity [149], etc. Many popular
synthetic datasets were constructed with this methodology,
including SYNTHIA [142], SceneNet [150], Replica [151],
InteriorNet [143], and more. SYNTHIA created a virtual city
using Unity3D platform and simulated a moving car within
it. SceneNet built virtual environments directly from CAD
designing, and the collection was simulated by Chrono physics
engine [152] and NVIDIA ray tracer. Replica also leveraged
diverse indoor CAD models and simulated vehicle explo-
ration within it. InteriorNet imported large-scale 3D furniture
designs from Kujiale, and dedicated simulator and renderer
were developed to provide realistic data simulation. For such
implementations, the quality of scene models plays a crucial
role towards high-fidelity rendering, and meticulous design of
sensor models are also required for realistic data simulation.

2) Synthesis with Vehicle Simulator: In recent years, with
the rapid development of autonomous vehicles, there has
been a growing demand for simulation data, leading to the
emergence of various open-source vehicle simulators. Such
simulators can provide mature and full-stack data simula-
tions, including environment construction, dynamic objects,
real-time manipulation, comprehensive sensors modelling,
and ground truth generation, greatly improving production
efficiency of datasets. Among the off-the-shelf simulators,
CARLA [144] and AirSim [153] are most extensively used
for dataset creation. CARLA is a simulator focused on road
scenarios, arising many popular datasets such as V2X-Sim
[154], CarlaScenes [155], and SHIFT [60]. These datasets
offer a wide array of sensor types, including camera, LiDAR,
GNSS, and IMU, along with accurate trajectories, maps, and
semantic ground truth, supporting various tasks for on-road
vehicles. AirSim, on the other hand, is a simulator suitable
for both aerial and ground vehicles. Compared to CARLA,
it provides more challenging motion patterns. TartanAir [38]
could be the most representative dataset constructed using this
simulator. It creates a large number of extreme environmental
conditions in AirSim and provides a rich array of data types,
including depth images, optical flow, occupancy maps, and
more. There are also other simulators like LGSVL [156] and
Gazebo [157] that can achieve similar functionalities, enabling
mature closed-loop simulations as well. In summary, public
vehicle simulators have offered significant convenience for
data production and frequent testing of algorithms. However,
since they are also built on 3D platforms like Unreal Engine
and Unity, there is still considerable room for future improve-
ment in terms of image rendering quality.

3) Synthesis with 3D Computer Game: Open-source off-
the-shelf simulators often suffer from lower image rendering
quality, which significantly affects the authenticity of the
generated datasets. In contrast, using meticulously crafted and

high-budget 3D computer games for data collection ensures a
high level of realism. In such case, the challenge lies in the
fact that the source code and game content are typically not
open to the public. To address this problem, Richter et al. [158]
proposed a novel data simulation methodology based on the
GTA-V game engine, yielding the large-scale VIPER vision
dataset [158]. They injected a middleware between the game
and the graphics library to intercept rendering commands. By
integrating software updates, bytecode rewriting, and bytecode
analysis techniques, they achieved scene object recognition,
coordinate extraction, and data association, enabling real-time
generation of ground truth such as scene structures, camera
trajectories, and semantic annotations. However, due to the
restriction of the game engine, only monocular camera se-
quences can be provided, lacking other commonly used vehicle
sensors like LiDAR and IMU, which limits its application
range for testing of diverse algorithms.

B. Semi-simulation Synthesis

Semi-simulation synthesis leverages real-world data seeding
for synthetic dataset generation, resulting in a hybrid approach
that capitalizes on the benefits of both the virtual and real
world. This blending allows for a substantial increase in data
realism, which can significantly enhance the applicability of
datasets. At present, semi-simulation is typically achieved
with four approaches: trajectory cloning, scene layout cloning,
scene model cloning, and neural scene/sensor simulation.

1) Trajectory Cloning: Trajectory cloning entails recording
real-world motions to capture datasets within virtual environ-
ments. Handa et al. [159] and Antonini et al. [160] present
two exemplary implementations of this approach, yielding
the popular ICL-NUIM and BlackBird datasets, respectively.
Handa employed Kintinuous SLAM [161] to generate real-
world trajectories on several handheld RGB-D sequences.
These paths were then transposed into two virtual indoor
environments, where realistic image sequences were captured
through the Pov-Ray [148] render engine. Antonini recorded
several aggressive UAV flights using an accurate motion
capture system. Subsequently, these trajectories were replayed
with FlightGoggles [162] engine to generate sequences across
multiple scenarios. By cloning real-world trajectories, such
simulation can attain a high realism at motion pattern level,
greatly improving the authenticity of synthetic datasets.

2) Scene Layout Cloning: Scene layout cloning involves
constructing virtual environments by faithfully replicating
the real-world scene layout, encompassing structure, assets,
dynamic objects, and more. Representative implementations
include Virtual KITTI [163] and Virtual KITTI2 [164]. These
two datasets selected 5 sequences from the original KITTI
dataset [4] for extracting real-world environmental elements.
Subsequently, leveraging the Unity engine [149], twin virtual
environments were constructed, and diverse weather and envi-
ronmental conditions are simulated to generate new synthetic
sequences. Through this approach, the characteristics of the
original environment can be preserved to some extent, allow-
ing for variable-controlled scene manipulations and facilitating
comprehensive testing of algorithms.
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3) Scene Model Cloning: Scene model cloning involves
scanning real-world 3D environments and simulating new
sequences within the twin scenarios. Representative implemen-
tations include HM3D [165] dataset and CMU-Exploration
[166] platform. HM3D used Matterport to generate thousands
of high-resolution indoor 3D scans, and these models were
then imported into Habitat Sim to serve as virtual environ-
ments. In contrast to HM3D, CMU-Exploration was specif-
ically designed to accommodate larger-scale environments,
encompassing both indoor and outdoor spaces. It can support
more various types of scene models, including photo-realistic
models from Matterport3D and CMU-Reacon, as well as pro-
fessional survey models of point cloud environmental maps.
Then by configuring motion trajectories within the simulators,
numerous synthetic sequences can be generated. In comparison
to cloning motion trajectories and scene layouts, replicating
scene models allows for more detailed incorporation of real-
world elements. However, on the other hand, due to the inher-
ent imperfections of scene models and the unfamiliarity with
new viewpoints, achieving highly realistic image rendering has
become a significant technical challenge.

4) Neural Scene/Sensor Simulation: To overcome the lim-
itations of conventional rendering methods in realistically re-
producing real-world environmental conditions and achieving
high-fidelity synthesis from unfamiliar viewpoints, a recent
breakthrough called Neural Radiance Fields (NeRF) [167] has
been proposed and widely explored. NeRF is an advanced 3D
modeling and novel view synthesis technique based on neural
networks. As illustrated the principle in Fig. 13, it represents
a scene using a fully-connected deep network, whose input
is a single continuous 5D coordinate (spatial location (x, y,
z) and viewing direction (f, ¢)) and whose output is the
volume density and view-dependent emitted radiance at that
spatial location. By using volume rendering techniques, a
novel synthesized image can be composited by querying along
camera rays to integrate the related values. As the rendering
function is differentiable, by minimizing the residual between
synthesized and ground truth observed images, a neural scene
representation can be trained and optimized, and accurate
lighting conditions can be rendered. Based on this underlying
mechanism, many neural scene/sensor simulators and datasets
have been proposed, including READ [168], MARS [169],
UniSim [61], NVIDIA Drive Sim [62], and more, which
achieve not only highly realistic vision renderings but also
multi-sensor simulation. Up to this point, Neural scene/sensor
simulation can be regarded as the approach closest to real-
world settings. However, due to the difficulty in scene manip-
ulation, they also present greater challenges when it comes to
achieving closed-loop simulation.

Generally, full-simulation synthesis is much easier to ac-
complish, while semi-simulation can provide outstanding data
realism (see Fig. 14 for a comparison). During the early stage
of algorithm development, conducting rapid feasibility tests is
quite essential. Therefore, considering the developmental cost,
it is reasonable and widely encouraged to use full-simulation
synthesis for data production. However, as the algorithm pro-
gresses to the testing and elevation phases, excessive reliance
on full-simulation dataset should be avoided. Researchers are
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Fig. 14. A comparison of data realism between SHIFT (left) and UniSim
(right), which are produced by full-simulation (CARLA) and semi-simulation
(Neural) respectively. The artifact of the left image can be clearly recognized,
while it is fairly hard to distinguish the right image from real world.

supposed to comprehensively incorporate high-fidelity semi-
simulation data and real-world data to ensure the correctness
of model training and performance assessment.

X. BENCHMARK CRITERIA
A. Pose Criteria

For pose (position and orientation) evaluation, the most
widely used criteria could be the two proposed in the TUM
RGB-D Benchmark [5]: Relative Pose Error (RPE), and Ab-
solute Trajectory Error (ATE).

RPE investigates the local motion accuracy across a fixed
time interval A. Define the estimated poses as P4, ..., P, €
SE(3) and the ground truth poses as Q1,...,Q, € SE(3),
then the relative pose error at time step ¢ over period A could
be defined as:

E; = (Q;'Qisa) (P 'Piyn). (1)

Considering a sequence of n camera poses, there could
be (m=n-A) individual RPEs. To measure the global perfor-
mance, RPE metric is proposed to compute the (RMSE) over
all possible time intervals, and typically only the translational
part is taken into account:

m 1/2
1 2
RMSE(Byn, A) = | — > |[trans(E;)|| )
i=1

Note that due to the amplification of the Euclidean norm,
RMSE could be sensitive to outliers. So, if desired, it is
also reasonable to evaluate the mean or median errors as an
alternative. Additionally, the selection of time interval A could
vary with different systems and conditions. For instance, A
can be set to 1 to examine real-time performance, resulting
as per frame drift. As for systems estimating states based on
a batch of frames, performing local optimization, or focusing
on long-range navigation, it is not necessary nor reasonable
to count on each individual frame. However, it is also not
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appropriate to set A to n directly, because it penalizes early
rotational errors much more than those that occurred near the
end. Instead, it is recommended to average the RMSEs over
a wide range of time intervals. In practice, to avoid excessive
calculation complexity, a simplification that counts on a fixed
number of sample intervals could also make sense [4].

ATE measures the global accuracy by comparing the es-
timated trajectory against the ground truth to get absolute
distances. As the two trajectories could lie in different coor-
dinates, an alignment via a rigid-body transformation S that
maps the estimated poses Pj., onto the ground truth poses
Q1. is required in advance. Then the ATE at time step ¢
could be computed as:

F;:=Q;'SP. 3)

Similar to RPE, ATE is also proposed to compute the RMSE
over all time indices of the translational part:

n 1/2
RMSE(Fy.,) := % S rans(F)2] . @
=1

For ease of expression and calculation, in the above def-
initions, only translational parts of the poses are taken into
account. However, as biased rotations can also result in drifted
translations, evaluating only the translational components can
still provide insight into the overall performance of the al-
gorithm, covering both position and orientation aspects. In
practice, compared to RPE, ATE has an more intuitive error
visualization on the whole trajectories, which is benefit for
inspecting the accidental position of the algorithms.

Building upon the aforementioned criteria, over the years,
there have been various extensions and complementary ap-
proaches that contribute to more comprehensive evaluations.
For example, KITTI extends RPE to include rotational errors
as well for a thorough assessment [4]; TartanAir defines the
Success Rate (SR) metric as the ratio of non-lost frames [38],
which is particularly useful under the context that both RPE
and ATE have not accounted failure instances inside.

B. Map Criteria

The evaluation criteria for 3D reconstruction mainly origi-
nated from the Middlebury dataset [170]. Denoting the ground
truth as G and the reconstruction as R, there are mainly two
metrics: reconstruction accuracy, and completeness.

The accuracy measures how close R is to G by computing
the distances between the corresponding points, which can be
determined by the nearest match [171]. If the models are in
other formats like triangle meshes, the vertices could be used
for comparison. One issue could be encountered in case G is
incomplete, resulting in the nearest reference points falling on
the boundary or at a distant part. In such a case, a hole-filled
model G’ is recovered (see Fig. 15), and the points matched
to the repaired region will be discounted in calculation [170].

The completeness investigates how much of G is modeled
by R. In contrast to the accuracy metric that compares R
against G, the completeness metric evaluates the distances
from G to R. Essentially, if the distance exceeds a specified
threshold, we can conclude that there is no corresponding point

TABLE V
QUALITY COMPARISON OF OUR DESIGNED DATASET USING THE
PROPOSED METHODOLOGY WITH SEVERAL SOTA DATASETS

Dataset/Metrics | Spatial-Calib | Time-Sync | GT-Pose GT-Map
= prec.? ~ prec. A2 accur. /2 accur.
Rawseeds [125] -¢ Sms sub-dm -
KITTTI [4] sub-dm [106] Sms sub-dm -
KAIST Urban [8] |sub-dm [173] - dm-level dm-level
OpenLORIS [174] sub-cm ms-level | few% dist. -
M2DGR(out) [43] - 10ms sub-dm -
NewerCollege [175] - - Scm lcm
Ours sub-cm us-level 2cm lem

 Calibration precision between Camera and LiDAR.
° Synchronization precision among Camera, IMU, and LiDAR sensors.
¢ Data not reported or difficult to ascertain.

TABLE VI
NAVIGATION ASSESSMENT OF SOTA ANM ALGORITHMS AND GNSS
AGAINST TRAJECTORY GROUND TRUTH

Sequence 0805-01 0805-02 0806-04
Method/Metric RPE/% ATE/m | RPE/% ATE/m | RPE/% ATE/m
VINS-Mono 1.573 3.523 | 7411 10.773 | 3.798 5.435
ORB-SLAM3 4.543  3.653 | 11.696 15.017 | 7.534 9.334
LOAM 2.029 1.022 | 2.501 3.565 | 10.254 15.645
Fast-LIO2 1.482 1.754 | 2770 8.117 | 3914 6.833
LVI-SAM 1.553  1.119 | 1.402 3900 | 3.465 2.998
GNSS (outdoor) N/A N/A | 12202 13471 | 5970 8.203

of G on R. Consequently, such kinds of points can be logically
inferred as “not reconstructed”, as illustrated in Fig. 15.

(@)

Fig. 15. Evaluation policy while G is incomplete [170]. (a) the two models.
(b) the matches with hole-filled area will not be included. (c) those matched
distances run beyond the threshold will be regarded as “not reconstructed”.

At present, regarding pose and map assessments, the princi-
ples outlined above have already gained extensive recognition
and adoption, proving their suitability and correctness. When
creating new datasets, one can readily draw upon these estab-
lished criteria and the available open-source tools [172], [114].
Nevertheless, depending on the complexity and specific focus,
it is also encouraged to propose novel metrics, methods, and
tools for a more comprehensive evaluation.

XI. DATASET AND BENCHMARK DEMONSTRATION
A. The ParkingLot Dataset

To demonstrate the effectiveness of the proposed methodol-
ogy, we design a high-quality dataset in an indoor-outdoor con-
nected scenario based on our constructed robot platform (see
Fig. 3 for platform design and coordinates). Comprehensive
data types are provided, including stereo RGB and Gray vision
sequences, spinning and MEMS LiDAR sequences, industrial
and consumer-grade IMU series, wheel odometry, and GNSS
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Fig. 17. Navigation results of SOTA ANM algorithms and GNSS against GT
trajectory (0806-04). GNSS drifts quickly at outdoor-indoor connected areas
and performs badly in lush vegetated areas (large z-axis errors), which also
proves the versatility and significance of our Map-Loc ground truth system.

series (sensor specifications listed in Table II). The spatial
calibration and time synchronization processes are illustrated
and demonstrated in Section V and Section VI. Various urban
features are covered inside, including high-rise buildings,
wide and narrow roads, lush vegetations, open parking lots,
underground parking lots, cafeteria, efc., as shown in Fig. 16.
To completely duplicate the scenario, we traverse 8 sequences
of 8.27km in total, covering short and long trajectories, day-
time and night-time illuminations, loop closures, and sharp
turns, leading to a thorough and challenging benchmark. To
facilitate comprehensive algorithm assessments, We provide
both trajectory and 3D map ground truth (the GT-map and a
sample trajectory are shown in Fig. 10), which were generated
using the proposed Map-Loc GT system in Section VIII. In
Table V, we compare the key metrics of our dataset with sev-
eral SOTA multi-sensory datasets. The results indicate that our
dataset possesses a comprehensive quality evaluation, and its
precision/accuracy of spatial calibration, time synchronization,
and ground truth all reach industry-leading levels.

B. SOTA Algorithms Benchmarking

To demonstrate the versatility of the constructed dataset,
we comprehensively test SOTA ANM algorithms of differ-
ent sensor modalities on representative sequences, includ-
ing indoor-only (0805-01), outdoor-only (0806-02), indoor-
outdoor connected (0806-04), and night-time scene conditions
(0805-02). Specifically, we choose VINS-Mono (mono-IMU)

TABLE VII
MAPPING ASSESSMENT OF SOTA ANM ALGORITHMS AGAINST
3D-MAP GROUND TRUTH

Sequence 0806-02 0806-04
Method/Metric | Accuracy/m* Complete/% | Accuracy/m Complete/%
LOAM 0.675 82.351 3.095 57.969
Fast-LIO2 0.593 69.339 0.888 71.091
LVI-SAM 0.275 86.950 0.451 88.366

% We adopt one standard deviation (std.) here to represent the accuracy metric.

[Least Square P’

Fig. 18. LVI-SAM mapping evaluation (0806-04). We set the completeness
threshold to 2m, so that points in GT map with >2m matching distance (white
part) will be regarded as incomplete (either caused by >2m mapping error or
lack of coverage), which in practice means should to be further complemented
to meet the required qualifications. The accuracy metric is computed by the
point-to-plane registration error between the LVI-SAM map and GT map, with
all the distances considered (rather than the <2m parts, to comprehensively
indicate the mapping performance).

[21] and ORB-SLAMS3 (stereo-IMU) [45] for testing of Visual-
Inertial navigation, choose LOAM [23] and Fast-LIO2 [123]
for testing of LiDAR and LiDAR-Inertial navigation and map-
ping, and choose LVI-SAM [24] for testing of Visual-LiDAR-
Inertial navigation and mapping. We follow the benchmark
criteria from Section XI for performance assessments, and
the evaluation results and visualization are shown in Table
VI, Table VII, Fig. 17, and Fig. 18. The successful work-
flow demonstrates that our methodology can construct full-
task ANM datasets and enables comprehensive performance
assessments for algorithm benchmarking.
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XII. CHALLENGES AND FUTURE DIRECTIONS
A. Challenges

1) Data Collection and Annotation Costs: Gathering and
annotating ANM datasets are expensive in terms of hardware
and human resources. One has to procure mobile vehicles and
mainstream sensors for platform integration, as well as high-
end instruments for GT generation, which are huge financial
burdens for individual researchers and smaller institutions.
Besides, data collection and post-processing are known to de-
mand significant human labor for conducting field experiments
and annotations. These factors are very likely to hinder the
large-scale expansion of standard datasets.

2) Accuracy Evaluation for Ground Truths: Datasets with
deficient GT accuracy may cause bias assessments and should
not be included in the compliant dataset repository. Although
we have analyzed the theoretical accuracy of existing ground
truth techniques in Section VIII, and experimentally demon-
strated the accuracy of our proposed Map-Loc GT system,
their actual performances are still largely dependant on the
on-site operations and configurations, with potential significant
variations in accuracy across different scenarios. For example,
the accuracy of D-GNSS can significantly decrease in complex
environments such as bridges, tunnels, and urban canyons; be-
sides, when using terrestrial scanner for GT-map, its accuracy
could also decrease if the scan-overlaps are not enough. Given
the inherently high accuracy of the GT itself, evaluating it will
demand much higher level measurement techniques in specific
environments. This undoubtedly presents a notable challenge
in both equipment and technology aspects.

3) Data Realism of Synthetic Datasets: Despite their cru-
cial role, synthetic datasets are currently suffering from a
lack of realism in terms of sensor models, motion patterns,
and especially image quality. For datasets generated by full
simulation, the image renderings exhibit distinctly artificial,
which are not realistic enough to substitute real-world datasets.
On the other hand, semi-simulation, despite its considerable
potential to produce highly-realistic image renderings, remains
in an nascent stage and faces a shortage of readily available
open-source materials. As a whole, due to the technical
intricacies and developmental costs, attaining mature near-true
simulators will demand huge research efforts.

B. Future Directions

1) High-quality Challenging Datasets: Future development
of ANM datasets should continue to emphasize challenging
scenarios that push the boundaries of algorithms. This entails
creating datasets featuring dense dynamic objects, adverse
weather conditions, intricate scene structures, and situations
where conventional sensors encounter limitations. Such chal-
lenges will push researchers to devise solutions that can excel
in the most demanding real-world settings.

2) Automatic Data Annotation System: Developing auto-
mated data annotation systems will greatly accelerate the
construction process for high-quality datasets. Such systems
should support a diverse range of data types, such as vision
semantics, LIDAR semantics, object tracking, and more. These
data will enhance the application range of datasets.

3) Specialized Sensor Suites and Hardware: General-
purpose hardware and sensors commonly encounter issues of
integration and exhibit suboptimal performance when adapted
for field experiments. Therefore, it is advisable to explore
the development of specialized sensor suites that not only
offer comprehensive modalities but also with a reduced cost.
Additionally, there is a demand for novel industrial computers
equipped with ample bandwidth and protocol support to guar-
antee reliable data collection and precise time synchronization.

4) Near-true and Closed-loop Simulator: A high-fidelity
simulator plays a pivotal role in bridging the gap between the
slow production of real-world data and the urgent demand for
comprehensive datasets. Besides, it effectively addresses the
scarcity of corner cases in real-life data collection. To further
advance in this field, future endeavors should be focused on
elevating data realism, with the ultimate goal of attaining near-
true closed-loop simulations within the virtual domain.

XIIT. CONCLUSION

This paper proposes a full-stack methodology for construc-
tion of standard ANM datasets. Specifically, the introduced
versatile calibration and synchronization frameworks, along
with the proposed integrated Map-Loc ground truth system,
address the long-standing challenges within the field.

We have utilized the proposed methodology to construct a
multi-sensor robot platform and curated a high-quality dataset.
Through rigorous experimental validation, the dataset achieves
sub-cm spatial calibration precision, us-level time synchroniza-
tion precision, 2cm accuracy for pose ground truth, and lcm
accuracy for 3D map ground truth. By comparing our dataset
quality with other state-of-the-arts, we have achieved industry-
leading levels across all the key metrics. This indicates that our
methodology can significantly reduce the dataset construction
threshold, thereby accelerate breakthroughs in ANM field.

At the same time, we are also considering a crucial question:
what quality standard should a dataset meet to be considered
satisfactory? Currently, setting a strict high threshold may
seem overly ambitious. However, based on the methodology
proposed in this paper, even without employing optimal hard-
ware configurations (such as assembly without CAD models,
using hardware with merely NTP protocol, or utilizing less-
accurate mobile mapping systems), achieving calibration pre-
cision of better than 2cm, synchronization precision in the sub-
ms range, and accuracy of pose and map ground truth at sub-
dm level are still very straightforward. These are the quality
expectations we currently have for standard ANM datasets.

Given the inherent challenge for individuals or single insti-
tutions to build a grand comprehensive dataset on their own,
we believe the future flourishment of ANM data society should
be achieved by coordination and crowdsourcing. To achieve
this goal mainly involves three stages. The first stage involves
establishing a full-stack methodology for constructing standard
datasets, which has been addressed in this paper. The second
stage is the defination of quality standards for datasets by
authoritative organizations. Though we have set preliminary
standards based on the lower hardware specifications or the
absence of certain protocols when using our methodology,
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further iterations and evaluations based on algorithm perfor-
mance are still necessary for objective refinements. Ultimately,
authoritative organizations such as IEEE, ITSS, and RAS will
be responsible for setting the final standards. The third stage
involves exploring a crowdsourcing data collection framework
and establishing a cloud platform for data-sharing. This frame-
work will encompass modules of task distribution and manage-
ment, data quality control, data security and privacy protection,
data integration and processing, data storage and openness,
etc. In subsequent research, we will continue to explore the
technological framework and systems for crowdsourced data
collection. Additionally, we encourage more authors to present
their perspectives on this topic to expedite the flourishment of
public data repository.
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