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Abstract—The rapid developments of mobile robotics and au-

tonomous navigation over the years are largely empowered by 
public datasets for testing and upgrading, such as sensor odome-
try and SLAM tasks. Impressive demos and benchmark scores 
have arisen, which may suggest the maturity of existing naviga-
tion techniques. However, these results are primarily based on 
moderate structured scenario testing. When transitioning to 
challenging unstructured environments, especially in GNSS-de-
nied, texture-monotonous, and dense-vegetated natural fields, 
their performance can hardly sustain at a high level and requires 
further validation and improvement. To bridge this gap, we build 
a novel robot navigation dataset in a luxuriant botanic garden of 
more than 48000m2. Comprehensive sensors are used, including 
Gray and RGB stereo cameras, spinning and MEMS 3D LiDARs, 
and low-cost and industrial-grade IMUs, all of which are well 
calibrated and hardware-synchronized. An all-terrain wheeled 
robot is employed for data collection, traversing through thick 
woods, riversides, narrow trails, bridges, and grasslands, which 
are scarce in previous resources. This yields 33 short and long 
sequences, forming 17.1km trajectories in total. Excitedly, both 
highly-accurate ego-motions and 3D map ground truth are pro-
vided, along with fine-annotated vision semantics. We firmly 
believe that our dataset can advance robot navigation and sensor 
fusion research to a higher level. 

Index Terms—Data Sets for SLAM, Field Robots, Data Sets for 
Robotic Vision, Navigation, Unstructured Environments. 

Website: https://github.com/robot-pesg/BotanicGarden 

I. INTRODUCTION 
OBILE robots play a crucial role in today’s social devel-
opment and productivity evolution. Over the years, with 

the rapid progress of autonomous navigation, various applica-
tions have emerged, such as robotaxi, unmanned logistics, 
service robots, and more [1]. Meanwhile, existing algorithms  
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begin to saturate the benchmarks, which may suggest that 
current navigation techniques have achieved a maturity in 
moderate and structured scenarios. However, robots often need 
to perform more complex tasks and work in unstructured en-
vironments, which consequently imposes higher demands on 
the capabilities and robustness of navigation systems. 

Modern navigation techniques such as Sensor Odometry (SO) 
and Simultaneous Localization and Mapping (SLAM) [2] are 
indeed highly dependent on good scene compatibility and po-
sitioning aids to avoid tracking losses and cumulative drift. In 
well textured and structured environments, both vision- and 
LiDAR-based navigation methods can operate reliably by in-
tegrating inertial sensors and external positioning signals. 
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Fig.1. Top: A bird view of the 3D survey map of BotanicGarden; Middle: 
The robot is walking through the narrow path and riverside; Bottom: A 
detailed view of the 3D map in GNSS-denied thick woods. 
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However, in problematic unstructured scenarios involving 
GNSS denial, textural monotonicity, and especially within 
dense-vegetated natural fields, their performances can hardly 
sustain at a high level and necessitate further validation. 

As is well known, due to the costly hardware and compli-
cated experiments, robot navigation research relies heavily on 
publicly available datasets for testing and upgrading [3]. The 
most famous resources, including KITTI [4], TUM-RGBD [5], 
and EuRoC [6], have become the indispensable references in 
today’s algorithm developments. Other newer datasets such as 
NCLT [7], Oxford RobotCar [8], Complex Urban [9], Newer 
College [10], and 4-Seasons [11] also complement a wide scene 
variety. However, such datasets are mainly with urbanized and 
indoor environments, which cannot serve as qualified bench-
marks for the aforementioned problematic scene settings. This 
motivates us to build a novel dataset in unstructured natural 
environments to further promote research in robot navigation. 

In this paper, we introduce a high-quality robot navigation 
dataset which is collected in a luxuriant botanic garden of over 
48000m2. An all-terrain robot, equipped with strictly integrated 
stereo cameras, LiDARs, IMUs, and wheel odometry, traverses 
diverse natural areas including dense woods, riversides, narrow 
trails, bridges, and grasslands, as depicted in Fig. 1. Here GNSS 
cannot work reliably due to the block of thick vegetations, and 
the repetitive green features and unstructured surroundings may 
also shake the performance of motion and recognition modules. 
The work most similar to ours could be Montmorency [12], 
while it focuses more on LiDAR mapping, lacking in sensors 
variety, scene scale and diversity, and authentic ground truth. 
Our main contributions are as follows: 
 We build a novel multi-sensory dataset in an over 48000m2 

botanic garden with 33 long and short sequences and 
17.1km trajectories in total, containing dense and diverse 
natural elements that are scarce in previous resources. 

 We employed comprehensive sensors, including high-res 
and high-rate stereo gray and RGB cameras, spinning and 
MEMS 3D LiDARs, and low-cost and industrial-grade 
IMUs, supporting a wide range of applications. By elabo-
rate development of the system, we have achieved high-
ly-precise hardware-synchronization. Both the availability 
of sensors and sync-quality are at the top-level in this field. 

 We provide both highly-precise 3D map and trajectories 
ground truth by dedicated surveying works and advanced 
map-based localization algorithm. We also provide dense 
vision semantics labeled by experienced annotators. This is 
the first field robot navigation dataset that provides such 
all-sided and high-quality reference data. 

II. RELATED WORKS 
A. SO/SLAM-based Navigation 

Traditional navigation systems are typically achieved with 
GNSS (Global Navigation Satellite System), and filtered with 
inertial data. GNSS can provide drift-free global positioning at 
meters level, while inertial data are in duty of attitude and can 
boost the frequency to more than 100Hz. However, as is well 
known, GNSS requires an open-sky to locate reliably, while is 
unworkable indoors and is out of precision in denied outdoor 
areas such as urban canyon, tunnels, and forests. These failure 
cases motivate the developments of modern SO/SLAM-based 
navigation which employ vision and LiDAR as centric sensors. 
SO is the process of tracking an agent’s location incrementally 
over time, with perception and navigation sensors. It has been 
widely researched over the years, forming mature implemen-

tations such as Visual and Visual-Inertial Odometry (VO/VIO), 
which are compact and computationally lightweight. As an 
extension of SO, SLAM is a process of building a map of the 
environments while simultaneously keeping the track of the 
agent’s locations within it. Compared with SO, SLAM could be 
more accurate and robust: by loop closure corrections, SLAM 
is able to optimize the map and path to bound cumulative drifts; 
and it is also possible to re-localize after tracking losses by 
searching the base map. Famous SO/SLAM frameworks in-
clude VINS-Mono [13], ORB-SLAM [14], [15], LOAM and its 
extensions [16], [17], etc. According to the benchmark results, 
state-of-the-art methods exhibit good performance in structured 
environments and can handle occasional challenges. However, 
their robustness in complex unstructured scenarios character-
ized by dense natural elements and monotonous textures re-
mains questionable and necessitates further validation. 

B. Representative Datasets 
Over the past two decades, the field of mobile robotics has 

witnessed the introduction of numerous publicly available da-
tasets, mainly consisting of structured environments such as 
urban, campus, and indoor scenarios. Among the earliest efforts, 
the most notable presented datasets include MIT-DARPA [18], 
Rawseeds [19], and KITTI [4]. These datasets offered a com-
prehensive range of sensor types and accurate ego-motion 
ground truth derived from D-GNSS systems. During this early 
phase, the main objective of these datasets was to fulfill basic 
testing and validation requirements. As a result, the collection 
environments were intentionally designed to be relatively sim-
ple. However, exactly due to the idealistic illuminations, weath-
ers, and static scene layouts, these datasets have received con-
cerns for being too ideal for algorithm assessments [4]. 

To complement previous datasets with a greater emphasis on 
real-life factors, significant efforts have been made in the sub-
sequent years. On the one hand, several long-term datasets have 
been proposed, including NCLT [7], Oxford RobotCar [8], 
KAIST Day/Night [20], and 4-Seasons [11], incorporating 
diverse temporal variations, weather conditions, and seasonal 
effects. On the other hand, to address the need for more com-
plex and dynamic environments, ComplexUrban [9] and Ur-
banLoco [21] were developed. ComplexUrban focused on 
metropolitan areas in South Korea, while UrbanLoco covered 
cities in Hong Kong and San Francisco, bringing in challenging 
features like urban canyon, dense buildings, and congested 
traffics. Throughout this stage, datasets have played a crucial 
role in pushing the boundaries of algorithms, aiming to enhance 
their robustness for real-world applications. 

Many indoor and 6-DoF datasets also exist. Famous reposi-
tories include TUM-RGBD [5], EuRoC [6], TUM-VI [22], and 
more, which significantly promote the research of visual and 
visual-inertial navigation systems (VINS). Besides, in recent 
years, high-quality multi-modal datasets were also continuous-
ly emerging, such as OpenLORIS [23], M2DGR [24], Newer 
College [10], and Hilti SLAM [25]. These datasets encompass a 
wide range of real-life challenges, providing valuable oppor-
tunities for algorithm validation and improvement. 

Up to the present, there is a relatively abundant availability of 
datasets in structured environments, which have become in-
creasingly comprehensive and challenging. However, while 
existing algorithms have shown promising performance in such 
scenarios, due to the wide variation in scene patterns, their ca-
pabilities in unstructured environments remains questionable 
and necessitate concrete and targeted validation. 
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TABLE I.  COMPARISON OF DIFFERENT NAVIGATION DATASETS 

Dataset Environment Platform Camera Stereo Vision 3D LiDAR IMU Sync GT-Pose1 GT-Map2 Semantic Scene Type Gray RGB Resolution Rate 
KITTI [4] Urban Struct Vehicle    1392×512 10   Hw/Sw D-GNSS/INS() - Dense 

TUM-RGBD [5] Indoor Struct Handheld 
Robot  - - - - -  Sw MoCap3() - - 

EuRoC [6] Indoor Struct Drone   - 752×480 20 -  Hw LasTrack4() 
MoCap() Scanner() - 

DARPA [18] Urban Struct Vehicle  - - - -   Sw D-GNSS/INS() - - 

NCLT [7] Campus 
Building Struct Robot  - - - -   Hw/Sw D-GNSS/INS() 

SLAM - - 

RobotCar [8] Urban Struct Vehicle  -  1280×960 16   Hw/Sw D-GNSS/INS() - - 

M2DGR [24] 
Campus 
Building 

Lab 
Struct Robot  -  1280×1024 15   Sw 

D-GNSS/INS() 
LasTrack() 
MoCap() 

- - 

Rellis-3D [36] Off-road Unstruct Robot  -  800×592 10   Hw/Sw GNSS/INS - Dense 
TartanDrive [37] Off-road Unstruct Vehicle  -  1024×512 20   Hw/Sw D-GNSS/INS() - - 
FinnForest [38] Forest Unstruct Vehicle  -  1920×1200 40 -  Hw D-GNSS/INS() - - 
Wild-Places [40] Forest Unstruct Handheld  - - - -   Hw/Sw SLAM SLAM - 
Montmorency [12] Forest Unstruct Robot  - - - -   Sw SLAM SLAM - 
Ours Natural Unstruct Robot    1920×1200 40 vlp16+livox  Hw GT-map ICP() Scanner() Dense 

1 GT-pose: ground truth pose. 2 GT-map: ground truth map. 3MoCap: Motion Capture System. 4LasTrack: Laser Tracker.  denotes the ground truth data are authentic. 

C. Datasets in Unstructured Environments 
Unstructured environments refer to scenarios that lack clear, 

regular, or well-defined features. In such scenarios, there is 
typically a lack of apparent motifs or geometric shapes, which 
raise great difficulty for robotics algorithms to recognize and 
track. Datasets in unstructured environments typically involve 
those collected in sandy and rocky fields, undergrounds, rural 
areas, rivers, and scenes rich in natural elements (forests, wilds, 
and diverse vegetations). Different from datasets in structured 
environments, efforts paid to unstructured scenarios are rela-
tively less. An overview of existing works is given below. 

For datasets with sandy and rocky scenarios, Furgale et al. 
[26] created a long-range robot navigation dataset with stereo 
cameras on Devon Island; Vayugundla et al. [27] recorded two 
sequences on Mount Etna with stereo vision, IMU, and odome-
try sensors; Hewitt et al. [28] collected a dataset in Katwijk 
beach with a wide array of high-quality sensors; and Meyer et al. 
[29] recorded diverse visual-inertial sequences in the Moroccan 
desert. These datasets were challenging for vision methods 
mainly due to the monotonous texture of the scenes. 

For underground environments, Leung et al. [30] collected a 
2km sequence in a large mine of Chile, and Rogers et al. [31] 
created a grand dataset within a huge tunnel circuit. In such 
cases, the challenge mainly lies on the absence of GNSS, where 
the robots may rely solely on ego-sensors for navigation. 

For scenes of rural areas and rivers, Chebrolu et al. [32] and 
Pire et al. [33] collected various sequences in croplands; and 
VI-Canoe [34] and USVInland [35] respectively built a dataset 
in rural rivers and inland waterways. They introduced chal-
lenges related to the lack of distinct features and interference 
caused by water and surrounding vegetations. 

For scenes rich of natural elements, which is also the scope of 
our work, Rellis-3D [36] and TartanDrive [37] focused on 
multi-modal datasets in off-road terrains, and FinnForest [38] 
recorded diverse visual-inertial sequences along wide roads in a 
large forest. These datasets intentionally incorporated chal-
lenges related to monotonous textures and lack of structural cues, 
yet they still managed to secure reliable GNSS signals, which 
may not represent the most demanding case in such scope. 
Towards inner and denser natural spaces, where GNSS cannot 
work reliably, RUGD [39], Montmorency [12], and Wild-Places 
[40] collected diverse data in thick vegetations. However, ex-
actly due to the blockage of GNSS signal, they failed to provide 

authentic ground truth for ego-motion: Montmorency and 
Wild-Places employed SLAM algorithms to estimate the tra-
jectories, while RUGD did not release any trajectory data in the 
original paper. As a result, they were better suited for the vali-
dation of scene perception and place recognition tasks, rather 
than for strict-sensed robot navigation, which primarily focuses 
on state estimation. This serves as the motivation of our paper. 

D. Discussions 
In summary, there is a significant gap between unstructured 

and structured environments in terms of scene patterns, which 
poses much severer challenges for navigation algorithms. 
However, existing datasets still have notable limitations in this 
regard, particularly in environments with dense natural elements 
and degraded GNSS services, where the obtainment of ground 
truth remains a problem. This paper fills the gap by introducing 
a novel high-quality dataset in a luxuriant botanic garden. Table 
I compares our work with key state-of-the-arts and several 
highly-relevant unstructured counterparts, showing that our 
sensors availability, time-sync, and ground truth quality are all 
at the top-level in this field. We thus believe that our work will 
be extremely beneficial for mobile robotics community. 

III. THE BOTANIC GARDEN DATASET 

A. Acquisition Platform 
To cope with the complex field environments, we employ an 

all-terrain wheeled robot Scout V1.0 from AgileX for data col-
lection. It works in a powerful 4-wheel-drive (4WD) differential 
mechanism, which can ensure high driving robustness and ob-
stacle crossing ability in fields and wilds. Each wheel contains a 
1024-line encoder to provide ego-motions, and we have devel-
oped a set of corresponding programs to calculate the robot 
dead-reckoning odometers. To ensure a low latency communi-
cation, the robot is configured to link with the host via a high-
speed CAN bus at 500kbps, which can lower the transmission 
time to less than 1ms. Besides, the host controller is performed 
by an Intel NUC11 running with a Real-Time Linux kernel1 to 
minimize the clock jitter and data buffer time. We have cus-
tomized the NUC to support dual-Ethernet with Precision Time 
Protocol (PTP2, also known as IEEE1588) capability, which is 
able to be synchronized with other devices at sub-μs accuracy. 
 

1 https://wiki.linuxfoundation.org/realtime/start 
2 https://standards.ieee.org/ieee/1588/4355/ 
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TABLE II.  SPECIFICATIONS OF SENSORS AND DEVICES 

Sensor/Device Model Specification 
Gray Stereo DALSA M1930 1920*1200, 2/3", 71°×56°FoV, 40Hz 
RGB Stereo DALSA C1930 1920*1200, 2/3", 71°×56°FoV, 40Hz 

Spinning LiDAR Velodyne VLP16 16C, 360°×30°FoV, ±3cm@100m, 10Hz 
MEMS LiDAR Livox AVIA 70°×77°FoV, ±2cm@200m, 10Hz 
D-GNSS/INS Xsens Mti-680G 9-axis, 400Hz, GNSS not in use 

Consumer IMU BMI088 6-axis, 200Hz, Livox built-in 
Wheel Odometry Scout V1.0 4WD, 3-axis, 200Hz 

3D Survey Scanner Leica RTC360 130m range, 1mm+10ppm accuracy 

On top of the robot chassis, we design a set of aluminum 
profiles to carry the batteries, computers, controllers, sensors, 
and the display, as illustrated in Fig. 2. The computer used for 
data collection is an Advantech MIC-7700 Industrial PC as-
sembled with a PCIE expansion module. It houses an Intel Core 
i7-6700TE 4C8T processor running with Ubuntu 18.04.1 LTS 
and ROS Melodic systems. A total of 8 USB 3.0, 10 GigE, and a 
set of GPIO and serial ports are available. All the GigE ports 
supports PTP, available for precise time synchronization. For 
high-speed data logging, 2×16GB DDR4 memories (dual-chan-
nel) and a 2TB Samsung 980 Pro NVME SSD (of 3-bit MLC, 
over 1.5GB/s sequential writes throughout the whole storages) 
are equipped for real time database. To ensure full communica-
tion bandwidth, both the GigE cards (for sensor streaming) and 
the SSD are fastened to the PCIE slots that directly linked to the 
CPU. Benefiting from our elaborate development, this system 
can record over 500MB/s data stream without losing a single 
piece of image, which is a common issue in many other datasets. 

B. Sensor Setup 
Our dataset focuses on robot navigation research based on 

conventional mainstream sensor modalities and their fusions. 
To this end, we have employed comprehensive sensors in-
cluding stereo Gray and RGB cameras, spinning and MEMS 
3D LiDARs, and low-cost and industrial-grade IMUs. Their 
specifications are as listed in Table II. All the sensors are ac-
curately mounted on a compact self-designed aluminum carrier 
with precise 3D printing fittings, as shown in Fig. 2. 

The stereo sensors are composed of two grayscale and two 
RGB cameras with a baseline of around 255mm. To facilitate 
research on robotic vision, we have chosen models from Tele-
dyne DALSA with both high rate and resolution: M1930 and 
C1930, working at 1920×1200 and 40fps in our configuration. 
The CMOS used for the cameras is the PYTHON 2000 from 
ONSemi with 2/3" format and 4.8μm pixel size, which has a 
good performance under subnormal illuminations. However, 
this sensor in its nature has very strong infrared response, thus 
we have customized IR-cutoff filters of 400-650nm to exclude 
the side-effects on white-balance and exposure. The cameras 
use GPIO as external trigger, and GigE for data streaming, 
which also supports PTP synchronizations. The attended lens 

for imaging is Ricoh’s CC0614A (6mm focus and F1.4 iris), 
which has been adjusted to 5-10m clear view to fit the scene. 

To support different testing demands, 2 LiDARs are used in 
collection: Velodyne VLP16 and Livox AVIA. VLP16 is a 
cost-effective spinning LiDAR with a 360°×30° Field-of-View 
(FoV), suitable for ground robotic navigation tasks. AVIA is a 
MEMS 3D LiDAR with non-repetitive 70°×77° circular FoV, 
thus is more suitable for dense mapping and sensor-fusion with 
co-heading cameras. They are both configured to scan at 10Hz, 
and can be synchronized via pulse-per-second (PPS) interface. 

For inertial sensors, we provide a low-cost BMI088 IMU 
(200Hz) and an industrial-grade Xsens Mti-680G D-GNSS/INS 
system (IMU@400Hz, GNSS not in use) for comparison usage. 
BMI088 is built-in and synchronized with AVIA LiDAR, and 
Xsens supports external trigger via pulse rising edges. 

C. Time Synchronization 
In a precise robot system with rich sensors and multi-hosts, 

time synchronization is extremely vital to eliminate perception 
delay and ensure navigation accuracy. Towards a high-quality 
dataset, we have taken very special cares on this problem. Our 
synchronization is based on a self-designed hardware Trigger 
and Timing board and a PTP-based network, as illustrated in Fig. 
2. The Trigger and Timing board is implemented by a compact 
STM32 MCU. It is programmed to produce three channels of 
pulses 1Hz-40Hz-400Hz in the same phases. The 1Hz channel 
(PPS) is used for the synchronization of VLP16 and AVIA 
accompanied with GPRMC signals: Every time the rising edge 
arrives, LiDAR immediately clears its internal sub-second 
counter, thus all the point clouds in the subsequent second can 
be timed cumulatively based on PPS arrival, which will then be 
appended with UTC integer time by GPRMC. The 40Hz signal 
is used to trigger the cameras, when a rising edge arrives, the 
global shutter will immediately start exposure until reaching a 
target gain, and the image timestamp is acquired by adding half 
the exposure time to the trigger stamp. The 400Hz signal is used 
for triggering the Xsens IMU: Xsens has its own internal clock, 
and when the rising edge arrives, Xsens will be triggered an 
external interruption thus feedbacks its exact time, then our 
program can bridge a transform thus stamp the neighboring 
sample instance. The UTC time is maintained by MCU based on 
its onboard oscillator. Note that, to maintain the timing 
smoothness, we will never interrupt the MCU clock during the 
collections, instead, an UTC stamp will be conferred at the 
begin of each course-day via NTP or GNSS timing. So far, the 
LiDAR-vision-IMU chain has been fully synchronized in hard-
ware. With a sub-μs level triggering consistency between the 
sensors (see Fig. 3), a high sync-precision should be obtained. 

The PTP-based network is designed for synchronizing mul-
ti-hosts and capturing trigger events, thus the wheel odometry 
can be aligned to an identical timeline with other sensors. Our

 
Fig.2. Left: The robot platform design and its base coordinate; Middle: The multi-sensory system and the corresponding coordinate (the camera below the VLP16 
is only for visualization usage, thus is not annotated); Right: The synchronization system of the whole platform. 

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3359548

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Gent. Downloaded on February 01,2024 at 07:54:28 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: BOTANICGARDEN: A HIGH-QUALITY DATASET FOR ROBOT NAVIGATION IN UNSTRUCTURED NATURAL ENVIRONMENTS 
 

5 

  
network frame is built based on LinuxPTP3 library. We assign 
MIC-7700 as grand master, and DALSA cameras and NUC11 
are configured as slaves. When the synchronization starts, the 
slaves will keep exchanging sync-packets with the master, and 
to ensure the smoothness of local clocks, we have not directly 
compensated the offsets, while instead employ a PID mecha-
nism to adjust the time and frequency. During the data collection, 
once the camera is triggered, it will report its timestamp of PTP 
clock, and based on the MCU trigger stamp, our software will 
bridge a relation thus transforms the wheel odometry from PTP 
to MCU timeline. Here although the PTP network and the re-
al-time kernel are used, there exists a latency from the CAN bus 
of around 1ms, which has been compensated in advance. 
D. Spatial Calibration 

Spatial calibration, both for intrinsic and extrinsic parts, is a 
prerequisite for algorithm development. We ensure calibration 
quality through careful error evaluation and manual verification 
of the results. Note that, the calibration is performed based on 
the mounting positions of the sensors on the robot, as they have 
already been well assembled according to the CAD designs. 

1) Camera calibration: For camera intrinsics and extrinsics 
calibration, we choose the Matlab camera calibration toolbox4, 
which uses an interactive engine for inspecting the errors and 
filtering the qualified instances. Considering the standard lens 
FoV, we choose Pinhole imaging model (fx, fy, cx, cy) and a 4th 
degree polynomial Radial distortion model (k1, k2, p1, p2) for 
intrinsics. The calibration is conducted by manually posing a 
large checker board (11×8, 60mm/square) at different distances 
and orientations in front of the cameras. To avoid possible 
motion blur, the exposure has been controlled to ≤10ms, and we 
finally achieve less than 0.1pixels mean reprojection error in all 
the 4 cameras. Furthermore, based upon these intrinsics, the 
extrinsics are finely calculated via joint optimizations, and we 
have checked the epipolar coherence for a verification. 

2) Camera-IMU calibration: The extrinsics between cameras 
and IMUs are determined using the famous Kalibr5 toolbox. 
Thanks to our specially-designed detachable sensors suite, we 
are able to handheld it for 6-DoF movements. Before running 
the joint calibration, we have recorded 20 hours of IMU se-
quences to identify their intrinsics (noise densities and random 
walks of the accelerometers and gyroscopes). During the cali-
bration, we use a 6×6 Aprilgrid as stationary target and properly 
move the sensor suite to excite all IMU axes. To avoid exces-
sive motion blur, we have conducted the calibration in good 
lights and limited the exposure to ≤10ms. Note that, this joint 
calibration can also output time offset, whereas, as the sensors 
 

3 https://linuxptp.sourceforge.net/ 
4 https://www.mathworks.com/help/vision/camera-calibration.html 
5 https://github.com/ethz-asl/kalibr 

have already been hardware-synced, thus to avoid the side ef-
fects, this workflow is limited to camera-IMU extrinsics only. 
The final mean reprojection error is less than 0.5pixels. 

3) Camera-LiDAR calibration: For the extrinsics of camera 
and LiDAR, we have developed a concise calibration toolbox 
based on 3D checker boards. We define the left RGB camera as 
center, then by sub-pixel extractions and extrinsics calculation, 
we can fully reconstruct the known-sized checkerboards to an 
accurate 3D model. At LiDAR side, we choose AVIA as ref-
erence because it works in non-repetitive scan mechanism 
which can integrate a dense point cloud in 1-2s. Then the two 
models are registered by point-to-plane ICP, and the cam-
era-LiDAR extrinsics are thus solved, as illustrated in Fig. 4. 
The registration has achieved a precision of 9.1mm std. 

4) Other calibrations: Based on the aforementioned process, 
an arterial camera-LiDAR-IMU calibration chain has already 
been established. The other sensors can either be calculated 
from the CADs, or be concatenated from the calibration chain. 
For example, AVIA manufacturer has provided explicit coor-
dinates relation between LiDAR and its built-in IMU; Xsens 
and VLP16 also have explicit coordinates provided. To refine a 
better extrinsic for VLP16, we have performed a scan registra-
tion with AVIA, and the related params were updated in the 
chain. For the robot base, we have observed enough data from 
both the CADs and external measurements, achieving sub-cm 
calibration and have integrated it in the main chain, also. 
E. Data Collection 

Our datasets are collected at 5th, 6th, 8th, and 18th of October, 
2022 in a luxuriant botanic garden of our university. Various 
unstructured natural features are covered inside, such as thick 
woods, narrow trails, riverside, bridges, grasslands, as shown in 
Fig. 5. A total of 33 sequences are traversed, yielding 17.1 km 
trajectories, including short and long travels, cloudy and sunny 
days, loop closures, sharp turns, and monotonous textures, ideal 
for field robotic navigation research. Table III and Fig. 8 show 
the specifications and trajectories of 7 sample sequences which 
we have thoroughly tested with SOTA algorithms. The full 
dataset specifications can be accessed on our website. 
F. Ground Truth Map 

Ground truth could be the most important part of a dataset. 
As indicated by Table I, most datasets fail to provide an au-
thentic GT-map, which is necessary for evaluating the mapping 
results and plays a key role in robot navigation. To ensure the 
global accuracy, we have not used any mobile-mapping based 
techniques (e.g., SLAM), instead we employ a survey-grade 
stationary 3D laser scanner and conduct a qualified surveying 
and mapping job with professional colleagues. The scanner is 
the RTC360 from Leica, which can output very dense and 
colored point cloud with a 130m scan radius and mm-level 

 
Fig.3. The hardware triggered 1Hz-40Hz pulses and rising edge 
offsets, indicating a high sync-precision at sensors side. 

 
Fig.4. Camera-LiDAR calibration: Left: The checkerboards reconstructed by stereo vision; 
Right: The registration of vision 3D reconstruction model and LiDAR point cloud. 
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ranging accuracy, as shown the specifications in Table II. For 
possible future benefits, we have arranged two independent 
jobs both in early summer and middle autumn, which takes 
around 20 workdays in total, and respectively with 515 and 400 
individual scans (each scan requires at least 3mins overall, Fig. 
6 shows a work photo during the autumn survey). The scans are 
pre-registered by VI-SLAM and post-registered by Leica Cy-
clone Register360 software based on ICP and graph optimiza-
tion (illustrated in Fig. 6). The final registered maps are gen-
erated in E57 format, and the coverage area is 48000m2 from 
our calculation. According to the Leica Cyclone report, we 
have obtained an overall accuracy of 11mm across all possible 
links and loops within the map. This workflow is mature and 
trustable, as we have previously validated it using a total station, 
identifying an around 1cm global consistency for target points. 
G. Ground Truth Pose 

Serving as the reference of navigation algorithms, ground 
truth poses are supposed to be complete and globally accurate. 
This is why GNSS is widely used for ground truth generation, 
while incremental techniques such as SLAM are not authentic 
due to the cumulative drift. However, in sky-blocked and com-
plex environments, conventional means such as D-GNSS, La-
ser Tracker, and MoCap can hardly work consistently: our 
garden scenario exactly belongs to this scope. To bridge the gap, 
we take advantage of the authentic GT-map, and develop a 
map-based localization algorithm to calculate GT-pose using 
the on-robot VLP16 LiDAR. As the map is quite unstructured, 
and VLP16 is sparse, naive registration methods such as ICP 
cannot correctly converge on its own. This requires an accurate 
local tracking thread to provide a good initial pose for regis-
tration. To this end, we build a full-stack GT-pose system by 
fusing global initializer, VIO local tracker, and fine-registration 
modules. Firstly, the initializer searches the beginning frame in 

a scan-referenced image database for possible candidates, and 
subsequently an accumulated LiDAR segment can be regis-
tered to the GT-map for final initialization; Then, the VIO local 
tracker keeps estimating the robot motions to pre-register and 
undistort the LiDAR data; Finally, the fine-registration module 
employs point-to-plane ICP for final localization, as illustrated 
in Fig. 7. As the scene is really complex, we have slowed down 
the data playback rate and human monitored the visualization 
panel to make sure the GT-poses have converged correctly. To 
assess the accuracy of this method, we use a Leica MS60 laser 
tracker to crosscheck 32 stationary trajectory points in both 
normal- and dense-vegetated areas within the garden, resulting 
in 0.6cm and 2.3cm accuracy respectively. Even considering 
the LiDAR motion distortion that cannot be fully rectified (the 
up limit can be set by the 2-5% distance drift of LiDAR-inertial 
odometry [16], [41]), under an up to 15cm per frame motion 
speed, our GT-pose can still be defined with cm-level accuracy. 
H. Semantic Annotation 

Semantic segmentation is the highest perception level of a 
robot. As a comprehensive and high-quality dataset, we em-
phasize the role that semantic information plays in navigation. 
Since our LiDARs are relatively sparse, we have arranged the 
annotation at 2D-image level. Our semantic segmentation da-
tabase consists of 1181 images in total, including 27 classes 
such as various types of vegetations (bush, grass, tree, tree 
trunks, water plants), fixed facilities, drivable regions (trails, 
roads, grassland), rivers, bridges, sky, and more. The segmen-
tation masks are meticulously generated with dense pixel-level 
human annotations, as shown in Fig. 5. All data are provided in 
LabelMe [42] format and support future reproductions. It is 
expected that these data can well facilitate robust motion esti-
mation and semantic 3D mapping research. Additional detailed 
information can be accessed on our website. 

 

Fig.5. Top: Sample frames of typical scene features (riversides, thick woods, grasslands, bridges, narrow paths, etc.); Middle: The corresponding 3D map venues; 
Bottom: Dense semantic annotations of the corresponding frames. 

 
Fig.6. Left: The surveying process. Right: The point cloud registration process. 

 
Fig.7. GT-pose generation based on our map-localization algorithm. 
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TABLE III.  SEQUENCES SPECIFICATIONS AND SOTA ALGORITHMS ASSESSMENT (VISUAL, LIDAR, AND SENSOR FUSION METHODS, SINGLE-RUN RESULTS) 

1X denotes the algorithm has tracking lost ≥20% of the sequence duration; 2N denotes no loop closure detected; 3LC denotes loop closure detected and corrected. Note that, LOAM and 
LVI-SAM are tested with VLP16 LiDAR, while Fast-LIO2 and R3LIVE are with AVIA LiDAR, which has a less horizontal field-of-view thus may perform weaker in degenerated venues. 

 

IV. EXAMPLE DATASET USAGE 
A. Vision/LiDAR/Multi-sensor-fusion Navigation 

To verify the versatility of our dataset in navigation research, 
we select 7 sample sequences and conduct a thorough assess-
ment on state-of-the-art algorithms (visual, LiDAR, and mul-
ti-sensor fusion methods) against the ground truth, regarding the 
metrics of relative pose error (RPE) and absolute trajectory error 
(ATE) [5]. The evaluation results are listed in Table III, and the 
trajectories comparisons are visualized in Fig. 8. 

From the evaluation results we get mainly three conclusions: 
1. Our dataset can support a wide range of navigation frame-
works, including but not limited to stereo vision, visual-inertial, 
LiDAR-only, LiDAR-inertial, and visual-LiDAR-inertial based 
methods. This also demonstrates the good spatial calibration and 
time synchronization quality of our dataset. 
2. Our dataset is a challenging benchmark for ground robots. As 
shown by the results, the RPE errors are around 5-10 times 
larger than KITTI leaderboard (ORB-stereo even failed 2/7 of 
the tests due to the indistinct textures and large view change at 
sharp corners); and it can be clearly identified that, most algo-
rithms have met significant Z-axis error in the traverses, which 
should be paid more attention in future research. Besides, a 
noteworthy finding is that, although designed loop closures in 
all sequences, only 8/21 tests (visual methods) have succeeded 
in detection, indicating a high textural monotonicity of our data. 
3. Multi-sensor fusion is an inevitable trend of future navigation 
research. It can be clearly seen that, compared with vision- and 
LiDAR-centric methods, multi-sensor fusion frameworks have 
earned very obvious elevation on both accuracy and robustness 
performance: we thus expect that our dataset can serve as a re-
search incubator for novel sensor fusion mechanisms. 
B. Other Possible Usage 

While our dataset is primarily designed for navigation re-
search, its comprehensive data and ground truths enable its use-
fulness in various robotic tasks, including 3D mapping, seman-
tic segmentation, image localization, depth estimation, etc. New 
chances and data will be continuously released on our website. 

V. CONCLUSION AND FUTURE WORK 
This paper proposed BotanicGarden, a novel robot naviga-

tion dataset in problematic and unstructured natural environ-
ment involving GNSS denial, monotonous texture, and dense 
vegetations. In comparison to existing works, we have paid a 
lot of attention to dataset quality, incorporating comprehensive 
sensors, precise time synchronization, rigorous data loggings, 
and high-quality ground truth, all of which are at the top-level 
of this field. We firmly believe that our dataset can ease the 
research and inspire advancements for robot navigation. 

In the future, we will continue to update and extend this da-
taset to enhance its complexity and comprehensiveness. Spe-
cifically, we will significantly increase the spatial coverage and 
trajectory length by traversing in and out of the garden. We will 
also arrange collections in various time periods and different 
weathers to append more challenges into the dataset. More 
importantly, we will enhance the platform by equipping it with 
independent GNSS receivers that are capable of providing raw 
satellite measurements. This will enable us to collect valuable 
source data throughout all four seasons under different vegeta-
tion states (from leaf-on to leaf-off) and satellite signal qualities, 
thereby supporting in-depth research and development towards 
novel and robust GNSS-integrated navigation systems. 
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Stat/Sequence 1005-00 1005-01 1005-07 1006-01 1008-03 1018-00 1018-13 
Duration/s 583.78 458.91 541.52 738.70 620.29 131.12 195.37 
Distance/m 601.60 479.73 591.04 765.80 750.09 115.24 201.23 

Size/GB 66.8 49.0 59.8 83.1 71.0 13.0 20.9 
Method/Metric [5] RPE/% ATE/m RPE/% ATE/m RPE/% ATE/m RPE/% ATE/m RPE/% ATE/m RPE/% ATE/m RPE/% ATE/m 
ORB3(stereo) [15] X1 X 5.586 N2 5.933 N X X 4.143 LC3 3.453 LC 4.148 LC 5.005 LC 5.220 N 1.466 N 5.303 N 2.818 N 

ORB3(stereo-imu) [15] 4.386 N 5.511 N 4.808 N 5.376 N 4.771 N 5.283 N 3.733 LC 3.150 LC 3.853 LC 4.311 LC 4.118 LC 1.116 LC 4.238 N 1.257 N 
VINS-Mono [13] 3.403 N 8.617 N 2.383 N 4.029 N 3.694 N 7.819 N 3.101 LC 2.318 LC 3.475 LC 3.620 LC 3.859 N 1.767 N 5.588 N 2.967 N 

LOAM [16] 1.993 3.744 2.589 5.624 2.293 3.253 2.188 2.553 2.046 2.994 2.530 0.523 2.441 1.330 
Fast-LIO2 [41] 1.827 2.305 1.870 2.470 2.349 4.438 6.573 39.733 2.404 4.019 2.770 2.154 2.562 2.390 
LVI-SAM [43] 1.899 2.774 2.033 2.640 2.295 3.232 2.004 1.700 1.799 1.798 2.595 0.700 2.565 1.061 
R3LIVE [44] 1.924 3.300 1.907 2.259 2.197 3.799 2.192 7.051 2.077 2.776 2.462 0.875 2.779 1.318 

 
Fig.8. Visualization of the SOTA-estimated trajectories against the ground truth. From left to right: sequence 1005-00, 1005-01, 1005-07, 1006-01, 1008-03, 
1018-00, and 1018-13; From top to bottom: top view of the trajectories, and the Z-axis errors. 
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