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Abstract  4 
Climate warming and urbanisation compound the public health risk posed by heat. Heat can be mitigated at 5 
local scales through urban greening, which provides shade and reduces surface and air temperatures. Yet, 6 
the relative effectiveness of different greening options on human thermal comfort based on physiology-7 
based indices is understudied. We installed microclimate stations at 17 locations covering a gradient of tree 8 
canopy cover and perviousness in the city of Ghent, Belgium, and monitored the modified Physiologically 9 
Equivalent Temperature (mPET) during 195 days over Spring and Summer. We assessed the canopy cover, 10 
pervious surface fraction and building sky fraction based on field measures and hemispherical pictures. 11 
Unpaved locations with trees experienced a 2.4-fold reduction in the number of days with strong heat 12 
stress (mPET > 35°C) compared to paved, treeless locations. Based on mixed models and our selected 13 
environmental variables, cooling effects were predominantly driven by tree canopy cover, where locations 14 
with 100% canopy cover had temperature maxima 5.5°C mPET lower than treeless locations throughout the 15 
monitoring period. When air temperatures rose to 40°C, cooling by tree canopies increased to 8.8°C mPET. 16 
The pervious surface fraction and building view factor were less influential, generating variation of at most 17 
1.7°C and 1.1°C mPET, respectively. In contrast, night-time temperatures were rather determined by the 18 
regional-scale urban heat island effect than by aforementioned local factors. Still, tree canopies slightly 19 
cooled the warmest nights only, whereas the vicinity of buildings led up to 1.2°C mPET warming on 20 
average. Expanding the urban tree cover may therefore be the best solution for improving local thermal 21 
comfort levels when daytime heat peaks, but will provide little relief at night.  22 
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Microclimate.   24 



Introduction 25 
People are increasingly exposed to extreme heat levels as climate warming progresses. Under current 26 
policies, around 4 ± 2% of the global population will face ‘unprecedented heat’ (over 75 days with maxima 27 
above 40°C per year) by 2030, increasing sharply to 23 ± 9% by 2090 (Lenton et al., 2023). Such heat strains 28 
the cardiovascular, renal and respiratory system, with potentially fatal outcomes for, particularly, infants, 29 
the elderly and people with a range of pre-existing physical or mental conditions (Ebi et al., 2021). From 30 
2000 to 2017, heat-related mortality in the elderly already increased by 68% globally (Romanello et al., 31 
2022), which will worsen as about half of the global population will be exposed to heat surpassing lethal 32 
thresholds even under most stringent mitigation scenarios by 2100 (Mora et al., 2017).  33 

Heat risks are heterogeneously distributed. At the global scale, people most vulnerable to heat also tend to 34 
be those least responsible for global warming (Lenton et al., 2023). At the regional scale, the Urban Heat 35 
Island effect (UHI) turns cities into heat hotspots. The UHI is generated because: i) human-made heat is 36 
added to the environment (e.g. from motorised traffic and air-conditioning), ii) incoming solar radiation is 37 
more effectively absorbed by urban infrastructure with low albedo and high thermal admittance, iii) heat is 38 
less easily released back, iv) air pollution absorbs and gives off additional long-wave radiation, v) the lack of 39 
pervious surfaces and vegetation reduces the share of energy converted to latent heat and, vi) reduced 40 
wind speeds hamper turbulent heat exchanges (Kleerekoper et al., 2012; Oke, 1973; Stewart and Oke, 41 
2012). The UHI is particularly pronounced at night, when trapped solar radiation is slowly emitted as 42 
longwave radiation (Deilami et al., 2018). Nightly heat presents a health hazard by itself because it 43 
interferes with sleep quality and therefore the body’s recovery capacity (Obradovich et al., 2017). Ongoing 44 
urbanisation compounds the threat of global warming, because expanding the urban fabric will exacerbate 45 
UHI effects (Wang et al., 2019) and because the global rural-to-urban migration (United Nations, 2019) will 46 
expose a quickly growing number of people to UHI-amplified heat. 47 

Technological solutions such as human-made shading structures, reflective surfaces and misting devices can 48 
mitigate heat at the local scale (Taleghani, 2018; Turner et al., 2023; Vanos et al., 2022). They do this by, 49 
respectively, shading passers-by, reducing stored solar radiation and reducing the air temperature via 50 
latent heat transfer (Taleghani, 2018; Wong et al., 2021). However, these costly interventions are resource-51 
intensive in terms of energy, materials and water, and the same can be achieved via more cost-effective 52 
nature-based solutions such as grasslands, green walls and roofs, isolated single trees and groups of trees. 53 
Each of these has the potential to reduce the share of solar energy intercepted and stored by human-made 54 
surfaces, and to lower air temperatures via evapotranspirative cooling, while single trees and groups of 55 
trees additionally provide shade (Taleghani, 2018; Wong et al., 2021). The cooling effect of trees has real 56 
impact, exemplified by a recent Europe-wide study that found 40% of UHI-related deaths to be preventable 57 
should cities guarantee a 30% canopy cover (Iungman et al., 2023).  58 

Since urban greening has great potential to safeguard humans from heat, there is interest in comparing 59 
cooling capacities of existing greenspace types. A large remote sensing study found that tree canopy 60 
surface temperatures were 8-12°C cooler than grey surfaces during hot extremes in European cities, which 61 
was two to four times cooler than treeless greenspaces (Schwaab et al., 2021). Yet, surface temperatures 62 
poorly predict how a human body will physically perceive temperature, since the latter is defined by air 63 
temperature, mean radiant temperature (representing short- and longwave radiation reaching the body), 64 
air humidity and wind speed (Johansson et al., 2014; Mayer and Höppe, 1987). The integrated effect of 65 
these variables is typically proxied using so-called physiological thermal indices, with most notable 66 
examples being the Universal Thermal Climate Index (UTCI) and the Physiologically Equivalent Temperature 67 
(PET) (Potchter et al., 2018).  68 

Ground-based monitoring studies applying such indices exist, but they are often limited in their spatio-69 
temporal coverage and thus also statistical power. For example, cooling effects by vegetation were 70 
reported based on four contrasting locations in the Singapore Botanical Gardens (Chow et al., 2016) and on 71 



six well-spread locations in Ghent, Belgium (Top et al., 2020). One of the largest studies was done in four 72 
cities in the Czech Republic, where at most three hot days were monitored on 17 locations (Lehnert et al., 73 
2020). Furthermore, these studies provide only qualitative descriptions of green elements (e.g. ‘urban park’ 74 
or ‘valley lined with palms’). Together, this restricts the capacity to attribute cooling capacities to specific 75 
environmental factors, both anthropogenic or natural, and in a quantitative manner.  76 

Here, we monitored 195 days of local thermal conditions at 17 different locations within a single 77 
neighbourhood (in Ghent, Belgium) that range from completely ‘grey’ (i.e. a paved industrial site) to 78 
completely ‘green’ (i.e. a small woodland). Location characteristics were described quantitatively using 79 
methods from urban planning and forest ecology. The main aim was to quantify the relative cooling 80 
potential of different types of grey- and greenspaces at the local scale, thereby identifying the most 81 
effective cooling solutions.  82 

Materials & Methods 83 

Study design and locations 84 
Study locations were situated in Ekkergem (51°03'06"N, 3°42'22"E), a mostly residential neighbourhood of 85 
Ghent, Belgium, that also houses a university campus. Based on measures between 1991 and 2020, Ghent 86 
has a mean annual temperature of 10.9°C and the hottest month is July, whose minimum, mean and 87 
maximum temperatures reach, respectively, 13.4°C, 18.4°C and 23.4°C (Royal Meteorological Institute of 88 
Belgium, 2023). In the year we conducted the study, the summer was particularly hot in Belgium. Since 89 
monitoring by the RMI began in 1892, the summer of 2022 was within the top three summers concerning 90 
the number of ‘Summer days’ (36 days above 25°C), ‘tropical days’ (12 days above 30°C), the mean Summer 91 
temperature (19.6°C) and the mean Summer maxima (24.7°C) (KMI, 2022, p. 202). 92 

Seventeen locations were selected (Fig. 1). To maximise the contrast in locations and to disentangle the 93 
effects of trees from the effects of shading by buildings and cooling by non-tree greenery, four categories 94 
were made: i) mostly paved and minimally vegetated (n = 6, hereafter ‘paved & grey’), ii) mostly paved with 95 
trees (n = 3, ‘paved & trees’), iii) mostly unpaved with low vegetation like lawns or a minimal influence of 96 
small trees (n = 3, ‘unpaved & low green’), and iv) mostly unpaved with multiple trees (n = 5, ‘unpaved & 97 
trees’) (Fig. 1). Since variation was still present within these categories, a gradient was obtained from 98 
treeless to treed, and from intensely paved to unpaved (Table 1). The ‘greenest’ location was a small but 99 
fully-developed private forest (Fig. 1C), while one of the ‘greyest’ locations was a large parking area 100 
between university buildings (Fig. 1D). Attention was also paid to have a similar number of N-S or E-W 101 
oriented streets. Local Climate Zone (LCZ) classifications (Stewart and Oke, 2012) were added to Table 1. 102 

Two types of controls were used to compare local-level urban heat stress measures. First, data were 103 
obtained from the nearest synoptic weather station of the Royal Meteorological Institute of Belgium (RMI), 104 
which is located in Melle (RMI code 6434), a rural location c. 11km from Ekkergem. These are air 105 
temperature measures conducted at 2m height above a short lawn. They thereby serve as a comparison 106 
between our local temperature measures and typical temperature conditions as reported to the broader 107 
public e.g. via weather forecasts. The second control measures come from microclimate stations identical 108 
to the loggers installed in Ekkergem, but located in ten forest stands of the TREEWEB network (De Groote 109 
et al., 2017), which were also studied by Gillerot et al. (2022). The forests are scattered roughly 10-20 km 110 
south of Ekkergem in a rural landscape, and can be considered representative for managed mature forest 111 
stands of the region. They are dominated by the tree species Fagus sylvatica, Quercus robur and Q. rubra, 112 
either as monospecific stands or mixtures. Their microclimatic data were averaged into a single time series, 113 
representing an “average, mature rural forest”.   114 

Human heat stress measures 115 
The meteorological factors required for an accurate assessment of human thermal comfort are air 116 
temperature and humidity, wind speed and mean radiant temperature (Tmrt) (Johansson et al., 2014; Mayer 117 



and Höppe, 1987). These variables were measured at the local level using one self-made microclimate 118 
station per location (n = 17). Sensors were mounted on wooden poles at 1.1m height, representing the 119 
average centre of gravity of an adult human body (ISO, 1998; Johansson et al., 2014). Air temperature and 120 
humidity were monitored using Lascar EasyLog EL-USB-2 sensors (accuracy ± 0.45°C and ± 2.25%, 121 
respectively), mounted in tubular PVC radiation shields and oriented towards the north (Zellweger et al., 122 
2019). Wind speed was monitored using a cup anemometer coupled to a Lascar Easylog EL-USB-5 logger. 123 
Tmrt requires the grey globe temperature (Thorsson et al., 2007). It was obtained by using a thermocouple 124 
type T connected to a Lascar EasyLog EL-USB-TC (accuracy ± 1.0°C), which was inserted into a 40 mm 125 
diameter acrylic ball coated in RAL 7001 paint (Thorsson et al., 2007). This roughly represents how a 126 
clothed human body would intercept short- and longwave radiation from the environment, and its small 127 
diameter makes it more responsive to the quickly changing outdoor environment than the standard 150 128 
mm black globes (Aparicio et al., 2016; Nikolopoulou et al., 1999). With this grey globe temperature, Tmrt 129 
can be calculated based on a formula adapted for the outdoors (Thorsson et al., 2007): 130 
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where Tg is the globe temperature (°C), Va is the wind speed (m/s), 𝜀 is the globe emissivity (0.97), D is the 132 
globe diameter (0.04 m) and Ta is the air temperature (°C).  133 

Meteorological factors were measured every 15 minutes at each location. However, due to logistic 134 
constraints, wind speed was only measured in one plot (HG4; see Table 1). This is a caveat, since wind can 135 
vary significantly across sites. Recordings span from March 19th until September 30th 2022 (195 days), to 136 
ensure that hot periods would be covered and could be compared to moderate conditions in Spring and 137 
generally throughout the monitoring period. An exception is plot IV5, which was installed on May 20th. To 138 
buffer out some short-term fluctuations and to obtain smoother temperature trends, a centre-aligned 139 
rolling average was applied with a window of five observations (i.e. the average of a given timestamp and 140 
the four half hours around it). For further methodological details, the sensor calibration procedure and 141 
discussions on data quality, please refer to Gillerot et al. (2022). 142 

Perceived temperature was quantified using the modified Physiological Equivalent Temperature (mPET) 143 
(Chen and Matzarakis, 2018). Similar to PET, the most commonly used thermal index in research (Potchter 144 
et al., 2018), it is based on the human body’s energy balance and it considers the effects of the 145 
aforementioned meteorological conditions (Höppe, 1999; Mayer and Höppe, 1987). It benefits from being 146 
applicable to conditions ranging from extremely cold to extremely hot, and it is expressed in degrees 147 
Celsius, which makes it easily interpretable (Matzarakis et al., 1999). It can then be used to derive heat 148 
stress levels based on thermal stress categories (Matzarakis et al., 1999). One of the main differences with 149 
PET is that mPET will adapt the clothing factor of the model body in function of thermal conditions (Chen 150 
and Matzarakis, 2018). As conditions become hotter, the model will assume that the average person will 151 
reduce their clothing insulation adaptively, which ultimately generates more realistic and more buffered 152 
(conservative) thermal stress values. Potentially, more advanced and accurate thermal indices are available 153 
(Potchter et al., 2018), but we assume that the usage of mPET will provide a robust reflection of relative 154 
differences between locations – which is the focus of this study. mPET values were calculated in RayMan 155 
V3.1 (Matzarakis et al., 2010, 2007).  156 

Site characterisation  157 
Site characteristics were quantified within circular plots with 10m diameter, using the microclimate station 158 
as the centre. A set of complementary measures aimed to describe the grey and green elements within the 159 
plot. Tree and forest measures were focused on their vegetation structure, with particular attention for the 160 
canopy cover given that this was the dominant driver for heat stress mitigation in European forests (Gillerot 161 



et al., 2022). In this paper, canopy cover relates to trees larger than 2m exclusively, distinguishing it as a 162 
shade-casting vegetation type (e.g. hanging plants were not considered). 163 

First, the surface characteristics were described by visually assessing the share of each surface type (e.g. 164 
asphalt, grass, water). These were then categorized according to perviousness (i.e. being penetrable by 165 
water) to obtain the ‘pervious surface fraction’ (%). Second, we visually estimated the height (m) and 166 
measured the distance (m) of each structure (e.g. building, tree) in each cardinal direction relative to the 167 
sensors. These were not included in further analyses but allowed to interpret unexpected findings. Next, 168 
using forest ecology methodologies, we measured the circumference of trees in the plot to calculate the 169 
local basal area, which is a common measure representing the cross-sectional area of tree stems at breast 170 
height per hectare. Species-specific canopy cover was estimated based on the vertical projection of crowns 171 
(Zellweger et al., 2019). At last, five hemispherical pictures were taken with a Nikon D90 camera and a 180° 172 
hemispherical lens: one at the centre of the plot and then one in each cardinal direction at 5m from the 173 
centre. Rather than calculating the sky view factor, a common variable in biometeorology, the ‘building 174 
view factor’ (%) was obtained instead (see e.g. (Yan et al., 2022) with pictures processed in Gap Light 175 
Analyzer 2.0 (Frazer et al., 1999). This was to disentangle shading effects by trees and buildings. An 176 
overview of the locations and their most important environmental characteristics is given in Table 1. 177 

Data analysis 178 
Mean thermal conditions (air temperature and mPET) were calculated for two distinct periods within the 179 
day: night (12pm – 6am) and afternoon (12am – 6pm). Similarly, data were summarised to day-level values 180 
(max, min, mean and 95th percentiles of warmest and coldest readings for a less strongly fluctuating 181 
values). These daily data were used to count the number of days for which maxima fell into thermal stress 182 
categories defined by Matzarakis et al., (1999) per location type. Also based on daily values, offset values 183 
were calculated (urban minus rural control conditions), which is a standard procedure in microclimate 184 
ecology to facilitate statistical analyses and to render buffering effects more explicit and interpretable (De 185 
Frenne et al., 2021). The rural forest measures (mPET) served as control conditions to compare urban 186 
conditions to ‘maximally green’ rural conditions. Offsets were also calculated using RMI weather station 187 
data, but focused on air temperature. 188 

Canopy cover, pervious surface fraction and building view factor were selected as the main complementary 189 
predictor variables based on exploratory analyses. Our assumptions regarding the causal dependencies 190 
between variables are presented in the Directed Acyclic Graph (Fig. 2). We tested whether this DAG was 191 
consistent with the data by assessing the conditional independence statements implied by the DAG and 192 
found that our data were consistent with it (Text S1). We then applied the backdoor criterion (Arif and 193 
MacNeil, 2023) which showed that a multiple regression model with all three environmental predictors (see 194 
next paragraph) was sufficient to estimate the causal effect of each predictor on temperature. Alternative 195 
DAGs were tested including, for example, a version where the building view factor is not causally related to 196 
the canopy cover, but these failed the tests of conditional independence (Text S1). Moreover, debate 197 
around the directionality of causal relationships between the predictors is possible (e.g. the presence of 198 
buildings could be considered to determine the potential canopy cover, but the opposite reasoning is also 199 
possible), but we assume that this has no consequences for their direct effects on thermal conditions in this 200 
case. 201 

Using offset values as response variables (max, min or means of night or afternoon periods), the effects of 202 
environmental predictors were modelled using Linear Mixed Models (LMMs), selected following Zuur et al. 203 
(2009). Predictors were both tested alone and removed from the full model, to verify the robustness of 204 
effects and their predictive power. Control temperatures were also added as a predictor and were allowed 205 
to interact with other predictors in additional models because offsets tend to vary strongly with 206 
macroclimatic conditions (De Frenne et al., 2021). LMMs included ‘location’ as a random factor, and a 207 
correlation structure of the form corAR1(form = ~ 1 | plot) to account for the daily repeated measures. 208 



Significance levels were tested via restricted maximum likelihood estimation (Zuur et al., 2009). To render 209 
effect sizes of the three main predictor variables more explicit, predictions over the observed range of the 210 
target variable were made while keeping the two non-target variables at their mean value. The LMMs were 211 
built using the packages nlme (Pinheiro et al., 2021) and lme4 (Bates et al., 2015), using the programme R 212 
version 4.3.0 (R Core Team, 2023). 213 

Results 214 

Effect of canopy cover during heatwave conditions 215 
The summer of 2022 was exceptionally hot, with July 19th being the hottest day of the year (Fig. 3A), 216 
yielding air temperatures up to 38.4°C at the nearest RMI weather station. At the local scale, most of our 217 
measurements were multiple degrees Celsius warmer in air temperature than official reporting (data not 218 
shown). A second period of interest was the second heatwave of the year (9th until 16th of August), for 219 
which the hottest days were selected (Fig. 3B). Especially during this second heatwave, a large UHI was 220 
captured at night. The night from the 10th to the 11th, the average urban location was about 4°C warmer in 221 
air temperature than official readings outside the city, and the two subsequent nights were about 7°C 222 
warmer.  223 

Trends in perceived temperatures revealed very large contrasts between locations. On the 19th of July (Fig. 224 
3A), the hottest location (HG5) reached 41.5°C mPET, which is 7.0°C mPET warmer than the maximum value 225 
reached on the coolest location (HG2). During the second heatwave (Fig. 3B), these differences were even 226 
further exacerbated, with differences of around 12°C mPET for all three days. The canopy cover seems to 227 
explain a substantial share of this variation (see statistical results below), where especially the highly 228 
covered (> 50%) locations are multiple degrees cooler. The rural forest controls approximately follow the 229 
temperature trend of the coolest urban location, albeit with moderately lower values at night. Nightly 230 
mPET values seem generally less contrasting and little associated with canopy cover based on day-to-day 231 
mPET curves. 232 

Comparison with rural forest conditions 233 
The overall mean mPET temperature was warmer than rural forest controls for 16 out of our 17 urban 234 
location on warm days, where maxima also increasingly diverged with increasing temperatures. Under 235 
moderate heat stress in rural forests, the average ‘paved & grey’ location was 5.9°C mPET warmer (Fig 4A). 236 
‘Paved & trees, ‘unpaved & low green’ and ‘unpaved & trees’, were warmer by, respectively, 3.2°C, 6.3°C 237 
and 2.0 °C. The presence of trees appears to be a dominant factor (Fig. 4B).  238 

Night-time urban mPET readings were between 0.5°C and 1.6°C warmer than rural forests, with less 239 
variation among location types. Nonetheless, perviousness seems more influential than the presence of 240 
trees when it comes to nightly conditions.  241 

Number of days with heat stress 242 
On average, the most urbanised locations (‘paved & grey’) experienced 141 days (out of 195) with slight 243 
heat stress or more (PET > 23°C), and 11.5 days with strong heat stress or more (PET > 35°C) (Fig. 5). The 244 
greenest locations (‘unpaved & trees’) experienced much less heat stress with, respectively, 101 days with 245 
slight and 4.8 days with strong thermal stress. Unexpectedly, locations in the ‘unpaved & low green’ 246 
category resemble ‘paved & grey’ locations and even have slightly more heat days, while ‘paved & trees’ 247 
and ‘unpaved & trees’ locations are more alike based on the mean number of days. Again, tree presence 248 
emerges as a dominant driver.  249 

Average night-time temperatures show a different picture, where ‘paved & grey’ locations had the most 250 
numerous warm nights (61 nights with mPET above 18°C), followed by ‘paved & trees’ (59 nights), ‘unpaved 251 
& trees’ (50 nights) and ‘unpaved & low green’ (49 nights). This suggests again that the perviousness may 252 
be the most influential factor during nights.  253 



Effects of canopy cover, pervious surface fraction and building view factor 254 
Concerning daily maxima, canopy cover emerged as the strongest predictor variable (β = -0.055, t = - 255 
13.657, p < 0.0001), followed by pervious surface fraction (β = 0.017, t = 4.576, p = 0.0005) and building 256 
view factor (β = 0.016, t = 2.169, p = 0.0493). The model explained a large share of variation (R2

marginal ≈ 257 
R2

conditional = 0.83). Repeating analyses for the 95th percentile of warmest readings per day led to very 258 
analogous but slightly lower model coefficients (Text S2). When testing interactions between 259 
environmental characteristic variables and RMI control measures, canopy cover was the only predictor to 260 
significantly vary with control conditions (p < 0.001). This suggests that canopy cover’s effect increases as 261 
official weather station readings rise.  262 

Compared to an average location (building view factor = 23.3% and pervious surface fraction = 46.8%) 263 
without any canopy cover, a 100% canopy cover leads to an average temperature maxima decrease of 5.5°C 264 
mPET. Doing the same for the pervious surface fraction and building view factor (mean canopy cover = 265 
26.3%), an increase in mPET of, respectively, 1.7°C mPET and 1.1°C mPET is expected for a fully pervious 266 
ground surface and for a building-surrounded location. Doing the same but including the interaction 267 
between canopy cover and official weather station readings, a 100% canopy cover under air temperatures 268 
of 20°C, 30°C and 40°C, leads to respective cooling magnitudes of 5.3°C, 7.1°C and 8.8°C mPET. 269 

Concerning afternoon averages (12pm - 6pm), only canopy cover had a significant cooling effect (β = -0.038, 270 
t = -2.487, p = 0.027). This corresponds to a reduction of 3.8°C mPET in afternoon averages for a fully 271 
covered location compared to an average treeless location. 272 

Concerning nightly minima, environmental predictors had much less explanatory power (R2
marginal ≈ 273 

R2
conditional = 0.21). The final model only had significant effects for the interaction between RMI minima and 274 

canopy cover (p < 0.0001) and between RMI minima and pervious surface fraction (p < 0.0001). Repeating 275 
analyses for the 95th percentile of coldest readings per day led to very analogous results (Text S2) When the 276 
RMI station reports a daily minimum of 10°C, a fully canopy-covered location is predicted to be 0.6°C mPET 277 
warmer than a treeless location. At 20°C, this becomes a slight cooling effect of 0.05°C mPET, with tree 278 
canopies leading to stronger cooling as these minima increase and vice-versa. The opposite is observed for 279 
the pervious surface fraction: a fully pervious location will be 0.4°C mPET cooler under a daily minimum of 280 
10°C and 0.1°C mPET warmer under 20°C compared to a fully impervious location.  281 

Concerning nightly averages (12am – 6am), only the building view factor had a significant effect (p = 0.023). 282 
Compared to a location devoid of buildings, the location with the highest building density based on our 283 
data (i.e. 69.1%) is predicted to be 1.2°C mPET warmer. No significant interactions with control 284 
temperatures were found. 285 

  286 



Discussion 287 
Based on 195 days of in situ monitoring of contrasting urban microclimates, we found that tree canopy 288 
cover dominated human heat stress mitigation compared to the building view factor and pervious surface 289 
fraction. Compared to our average treeless location, a full canopy cover reduced daytime heat maxima by a 290 
mean 5.5°C mPET throughout the monitoring period, rising to 8.8°C mPET when air temperatures reached 291 
40°C. The building view factor and pervious surface fraction led to moderate warming effects. Nightly mPET 292 
values were comparatively little influenced by aforementioned local-scale variables. 293 

Effects of canopy cover 294 
Evidence from this study and existing literature suggests that canopy cover much more effectively reduces 295 
local heat stress than the imperviousness and shading by buildings. A modelling study for Freiburg, 296 
Germany, found trees to reduce PET by 3.0°C on average (max. 17.4 °C) while grasslands only achieved a 297 
1.0°C (max. 4.9°C) reduction (Lee et al., 2016). A remote sensing study of European cities found the cooling 298 
capacity of trees to be up to four times more potent than treeless greenspaces based on surface 299 
temperatures (Schwaab et al., 2021). Using an observational setup and a thermal index similar to ours 300 
(UTCI), a multi-city Czech study reported a mean cooling of 5.5-8.5°C UTCI below trees, whereas lawns were 301 
only about 0.9°C cooler - both compared to unshaded impervious locations (Lehnert et al., 2020). Another 302 
study found UTCI to be reduced by 4.7°C under broadleaf- and 4.5°C under coniferous trees, whereas green 303 
roofs and walls could at most reach a cooling of 0.2°C (Geletič et al., 2022). Although we used mPET, both 304 
absolute cooling magnitudes and relative differences between greenspace types are very similar to our 305 
findings. 306 

Even small single trees made a noticeable difference, but strongest cooling seems especially achieved 307 
under high canopy covers (i.e. share of sky area covered by tree canopy biomass) (Fig. 3). Using a modelling 308 
approach, a review found that air temperatures drop by around 0.3°C for each 10% increase in canopy 309 
cover (Krayenhoff et al., 2021). An observational study in Madison, US, found fully covered locations to be 310 
0.7-1.5°C cooler in air temperature than treeless locations (Ziter et al., 2019). They also found that the 311 
effect of canopy cover was non-linear, with canopy cover being disproportionately more effective beyond a 312 
40% cover. This is also suggested by our data, where especially the locations with canopy cover > 50% 313 
strongly diverge from treeless conditions (Fig. 3). Corroborating these findings, a Chinese study found that 314 
streets with 13% canopy cover experienced strong heat stress (> 35°C PET) for about two-thirds of the time 315 
on hot summer days, while such heat stress was never reached in streets with 75% canopy cover, which 316 
were on average 13.7°C PET cooler (Ren et al., 2021). We too observed that the presence of trees 317 
prevented the occurrence of extreme heat stress (PET > 41°C). Monitoring of the microclimate in 131 rural 318 
forest stands also found canopy cover to most strongly cool PET levels, further reinforcing its dominant role 319 
in thermal buffering (Gillerot et al., 2022). Besides canopy cover, indices for canopy density have also been 320 
found to be influential (Rahman et al., 2020), though a recent study found that their effect may be 321 
outweighed by canopy cover (Tamaskani Esfehankalateh et al., 2021). 322 

Effect of Pervious Surface Fraction and Building View Factor 323 
Although only modestly influential based on our data, existing literature suggest that both pervious surface 324 
fraction and Building View Factor also have significant heat mitigation potential. Comparable studies using 325 
physiological indices like mPET, however, remain rare (e.g. He et al., 2015; Yan et al., 2022). 326 

Warmer conditions are often found with increasing imperviousness, partly contrasting our results. Already 327 
in 1972, a study measured a surface temperature difference of 15.5°C between a weed field and a parking 328 
lot on a clear summer day at noon (Landsberg and Maisel, 1972). Interestingly, the air temperature did not 329 
differ at noon, while it was slightly warmer in the parking lot at midnight (Landsberg and Maisel, 1972) 330 
because such impervious surfaces effectively emit trapped heat at night (Taleghani, 2018). More recently, 331 
fully impervious locations were found to be up to 1.3°C warmer in air temperature compared to fully 332 
pervious locations in a mid-sized U.S. city (Ziter et al., 2019). Similarly, increasing the pervious surface 333 



fraction by 10% was found to increase the median UHI maxima by 0.22°C in Rotterdam during summer 334 
months (van Hove et al., 2015). Our results confirm that perviousness has a cooling effect by night (air 335 
temperature < 20°C), but suggest an unexpected warming effect by day. This could partly be due to our 336 
definition of perviousness, which does not exclude unvegetated, compacted and low albedo surfaces (e.g. 337 
trampled bare soil as in plot LG3). Alternatively, it could be related to low soil water content during summer 338 
2022, the driest on record (KMI, 2022), since the cooling capacity of pervious surfaces is driven by soil 339 
water availability (Resler et al., 2021).  Warming could also be generated by confounding indirect effects 340 
such as window-reflected sunlight on the lawn of plot LG2 (see ‘strengths, limitations & recommendations’) 341 
(Taleghani, 2018). Such location-specific effects emphasise the need for comprehensive spatial replication. 342 

Most studies use the Sky View Factor (SVF) instead of the building view factor, which can include vegetation 343 
effects and should therefore be compared with caution. A suitable comparison with minimal vegetation 344 
effects is a study in Hong Kong which found a negative relationship between the SVF and the air 345 
temperature, where a 15% increase in SVF would lead to a decrease of 1°C (Chen et al., 2012). Another 346 
study (this time with a confounding tree effect) found the SVF to explain daytime differences of up to 4°C 347 
PET over a SVF range from ~0.26 to 0.6, but the relationship was non-linear and inconsistent (He et al., 348 
2015). Based on vast spatial coverage, (Yan et al., 2022) found that an increased SVF led to i) warming by 349 
day because of lower shading potential and ii) cooling by night because an open sky facilitates the 350 
dissipation of stored longwave radiation (Chen et al., 2012). However, the SVF can be separated into a 351 
building and tree component, as we have done as well, leading to very diverging results. Indeed, the 352 
building sky fraction was found to warm both day- and night-time air temperatures, while the ‘tree view 353 
factor’ cooled daytime temperatures and had little effect at night (Yan et al., 2022). This is almost exactly 354 
what we found based on mPET, except for an additional cooling effect by trees at night when air 355 
temperature minima reach 20°C or higher. While both buildings and trees can provide shade, distinguishing 356 
their effects is important because buildings are effective radiation traps whereas trees provide additional 357 
evapotranspirative cooling (Taleghani, 2018; Wong et al., 2021).  358 

Comparison with controls and night-time cooling 359 
Comparing rural forest controls (Fig. 3) yielded unexpected results. Rural and urban forest temperatures 360 
were comparable during daytime, although we had expected urban forests to be warmer than their rural 361 
counterparts for two reasons. First, we expected urban forests to be warmed by the UHI and second, their 362 
small surface area would lead to strong ‘edge effects’ (i.e. forest edges being less buffered than interiors), 363 
which were shown to reach at least 50m from the edge in European urban forests (De Pauw et al., 2023). 364 
The UHI, being stronger at night, may have had little influence on daytime temperatures (but see cases 365 
reviewed in Tzavali et al., 2015), and our studied urban forest locations may have been so thoroughly 366 
covered by canopies as to obscure strong edge effects. Another unforeseen result is that differences 367 
between the most urbanized and the most canopy covered locations rarely exceeded 10°C mPET, while we 368 
expected this to be much higher than the contrasts of 14.5°C PET found when comparing forests to a fully 369 
pervious lawn without woody vegetation (i.e. the most common control condition in forest microclimate 370 
research (De Frenne et al., 2021)) under rural circumstances (Gillerot et al., 2022). This is most likely due to 371 
the usage of mPET instead of PET. Indeed, when repeating analyses using PET, maximal differences of well 372 
over 15°C PET are found between the coolest and hottest locations. In sum, mPET strongly buffers out hot 373 
extremes, at least partly because of the automatic clothing model (Chen and Matzarakis, 2018), making it a 374 
rather conservative estimate of cooling capacities.  375 

Based on statistical analyses, but also clearly visible on selected hot days (Fig. 3), environmental factors (i.e. 376 
canopy cover, building view factor, pervious surface fraction) have much less effect on nightly mPET. In 377 
contrast to daytime conditions, all three environmental factors had significant yet modest effects - 378 
depending on whether mPET minima or nightly means were considered. This is very much in line with 379 
results by Ziter et al. (2019) who found a lower air temperature variation by night, and a maximal night-380 
time cooling by pervious surface fraction of 0.7°C. Another study found that a park’s surface temperature 381 



was 8°C cooler during daytime, but only 2°C at night (Nichol, 2005). A review confirms that urban trees are 382 
substantially less influential at night and could sometimes even lead to slight warming depending on the 383 
specific context (Krayenhoff et al., 2021). This was recently also observed in an Australian study (Sharmin et 384 
al., 2023) and during a few night-time hours in a Czech study, though trees provided cooling when 385 
considering the whole night (Geletič et al., 2022). Yet, comparing our local air temperatures to RMI control 386 
measures shows that night-time temperatures seem mostly dictated by a strong UHI effect – which is in line 387 
with literature (Deilami et al., 2018). Top et al. (2020) found it to reach maximally 8.7°C in air temperature, 388 
also in Ghent, which is similar to our findings. This nightly UHI effect is less visible based on our rural forest 389 
controls (Fig. 3), because forests also buffer daily minima, keeping their microclimate significantly warmer 390 
than surrounding open rural spaces where official weather stations would typically be located (De Frenne 391 
et al., 2021, 2019).  392 

Strengths, limitations and recommendations 393 
We quantified environmental conditions at a very local scale within a single city. This allowed for making 394 
precise predictions concerning the relative roles of various environmental conditions, but this restricts the 395 
generalizability beyond our characterised perimeter. Inhabitants, and especially those vulnerable 396 
subgroups that might shelter mostly indoors, may spend only limited time at those specific locations (i.e. 397 
sidewalks, parks, squares) (Wanka et al., 2014), limiting the relevance for people’s health. This may be 398 
addressed by coupling local measures to remotely-sensed landscape-scale metrics, including all three 399 
environmental variables studied here. Yet, extrapolating our data to wider areas will nonetheless probably 400 
yield analogous results. For example, an observational study found that variation in air temperature 401 
reductions could increasingly be explained by canopy cover and pervious surface fraction as the radius of 402 
buffer areas increased until 60-90m (Ziter et al., 2019).  403 

Additionally, our final selection of three environmental variables (i.e. canopy cover, pervious surface 404 
fraction and building view factor) may have failed to capture other significant environmental effects. For 405 
example, we have not examined the influence of the more fine-grained types of impervious and pervious 406 
surfaces, nor did we measured the thermal properties of human-made infrastructure surrounding our 407 
sensors. However, we believe that our variable selection covers the most important environmental 408 
characteristics, as is also suggested by the large share of variation explained by our models (R2 = 0.83).   409 

Two locations presented unexpected brief temperature spikes at similar times in the day during some 410 
consecutive days. Based on the timing, the orientation and the trends in grey globe temperature, the spikes 411 
at locations LG2 and HG1 are probably caused by, respectively, reflection of the morning sun in the nearby 412 
building’s windows and reflection of the afternoon sun in the pond water. The occurrence of such 413 
unexpected findings emphasises the importance of an adequate replication of locations and a thorough 414 
characterisation of the environment. 415 

Besides the spatial limitations, the monitoring of a single year may also have reduced representativeness. 416 
Indeed, the summer of 2022 was exceptionally hot and dry (KMI, 2022), which, for example, may have 417 
impeded the cooling potential of vegetation due to reduced transpiration. Conversely, that summer 418 
provided an interesting case-study, given that it may better represent near-future conditions. 419 

One major strength of the current study is the usage of low-cost microclimate stations (EUR <150) allowing 420 
for a larger spatial and temporal coverage (battery longevity > 2 years) than the bulk of existing 421 
observational studies using advanced weather stations. Auspiciously, the development of cheap sensors is 422 
quickly rising (Krüger et al., 2023), which is particularly interesting if these are coupled to long-term 423 
monitoring of a comprehensive range of thoroughly characterised urban microenvironments (Beele et al., 424 
2022). This enables identifying consistent patterns using statistical approaches, whereas single observations 425 
on per location type will hardly manage to disentangle causal factors. Noteworthy, however, is that 426 
measurement accuracy of our setup may be lower than WMO standards – making our low-cost sensors also 427 
a potential weakness. 428 



Management implications 429 
Based on our data for a mid-sized Belgian city and based on existing local and remote sensing research, 430 
daytime heat is clearly most effectively mitigated by expanding the urban tree canopy cover. Important 431 
cooling benefits would consequently be reached in cities that comply with the ‘3-30-300 rule’, which 432 
advocates that every resident should be able to see at least three trees from their home, that their 433 
neighbourhood has a minimum of 30% canopy cover, and that their nearest greenspace larger than 0.5 ha 434 
is maximum 300m away (Konijnendijk, 2021). In line with these recommendations, a study on the air 435 
temperature of 93 European cities found that guaranteeing a 30% canopy cover would reduce UHI-related 436 
deaths by roughly 40% (Iungman et al., 2023). Yet, but perhaps unrealistic for many cities, other scholars 437 
and us have found that especially canopy covers of 40-50% and higher have a disproportionate cooling 438 
effect (Ren et al., 2021; Ziter et al., 2019) – at least at the local scale. Given that canopy cooling effects are 439 
particularly strong at the local scale and during daytime, extra attention could be paid to guarantee the 440 
presence of trees at locations where people spend most time during peak heat moments of the day (e.g. 441 
benches and busy streets). 442 

Preventable heat death numbers could dwindle even further at those higher canopy cover levels, but urban 443 
planning interventions may first prioritise the equitable distribution of urban trees and forests. Indeed, 444 
neighbourhoods of lower socio-economic status tend to be more exposed to heat stress while its residents 445 
have less material and social resources guaranteeing their heat resilience (Harlan et al., 2006).  446 

Conclusions 447 
Our investigation of urban microclimates during the summer of 2022 underscores the pivotal role of tree 448 
canopy cover in mitigating human heat stress. The study's strengths lie in its meticulous local-scale 449 
analyses, leveraging low-cost microclimate stations for expansive coverage. Fully canopy-covered locations 450 
were remarkably cooler, reducing daytime maxima with 5.5°C mPET on average and reaching 8.8°C mPET 451 
during extreme heat conditions. This contrasts with modest effects from pervious surface fraction and 452 
building view factor. Nighttime temperatures, primarily influenced by the UHI, exhibited less sensitivity to 453 
these local environmental variables. Our findings underscore the critical importance of securing a local 454 
minimal canopy cover of 30% and preferably even more to safeguard urbanites from increasingly prevalent 455 
heat hazards at the local scale.  456 
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 669 

 670 

Fig. 1 | Map (A) with the locations of the 17 microclimate stations (B) measuring air temperature, air humidity, grey globe 671 
temperature and wind speed. Locations span a gradient from dense forest stands (C) to fully urbanised environments (D). © Google 672 
Maps.   673 

  674 



 675 

Fig. 2 | Directed Acyclic Graph (DAG) with the causal assumptions underlying our statistical model.  676 



 677 

Fig. 3 | Trends in perceived temperature for the hottest day of 2022 (A) and three hot days during the second heatwave of 2022 678 
(B). Each light grey line represents one of the 17 locations. Coloured lines represent average temperatures for locations grouped 679 
per canopy coverage. Control measures are averaged modified Physiologically Equivalent Temperature (mPET) data from ten 680 
nearby rural forests.  681 

  682 



 683 

Fig. 4 | Offsets refer to the perceived temperature difference between urban locations minus rural forest controls, where positive 684 
values denote warmer urban conditions compared to rural forest controls. In left graphs (A-C), daily observations are grouped per 685 
location type and right (B-D) the same data are grouped according to the presence of trees in plots. mPET = modified 686 
Physiologically Equivalent Temperature.  687 



 688 

Fig. 5 | The average number of days with daily mPET maxima (A) or average nightly modified Physiologically Equivalent 689 
Temperature (mPET) (B) within heat stress categories, in function of location type. Circle sizes reflect the number of days, which 690 
represent an average of three to six locations per location type. 691 
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Table 1 | Overview of the 17 locations and average values of the rural forest controls. Percentages refer to the surface share within 693 
a circular plot with radius 10 m around the heat stress stations. LCZ = Local Climate Zone.  694 

L
o
c
a
t
i
o
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Coordinates Description Canop
y 

Cover 

Building 
View 

Factor 

Pervious Surface 
Fraction 

Sky 
View 
Facto

r 

Paved & grey  

I
V
1 

51.051562, 
3.702872 

Predominantly paved parking surrounded 
by brick walls of ca. 2.5m height and some 
small flowering beds (LCZ 3). 

0% 0% 15% 86% 

I
V
2 

51.052981, 
3.707041 

Next to a large university campus parking, 
half enclosed by buildings of ca. 10m 
height (LCZ 1). 

0% 34% 0% 66% 

I
V
3 

51.0523569, 
3.7062332 

NS-exposed street next to primary school 
and residential buildings of ca. 10m height 
(LCZ 2). 

0% 66% 0% 34% 

I
V
4 

51.054394, 
3.707708 

Narrow EW-exposed street with houses of 
ca. 7m height (LCZ 3).  

0% 66% 0% 34% 

I
V
5 

51.0522932,
3.700859 

Fully paved abandoned industrial site, next 
to a building of ca. 7m height. ‘Greyest’ 
location (LCZ 8). 

0% 36% 0% 63% 

I
V
6 

51.051662, 
3.70755 

Very narrow EW-exposed street between 
houses of ca. 5m height with small 
flowerbed (LCZ 3). 

0% 69% 1% 31% 

Paved & trees  

L
V
1 

51.052068, 
3.707386 

Unpaved roundabout surrounded by 
asphalted streets, with two mature trees 
(LCZ 3B).  

80% 4% 25% 23% 

L
V
2 

51.0518975,
3.7065614 

NS-exposed street between houses of ca. 
8m, with mid-sized tree (LCZ 3B).  

15% 41% 5% 38% 

L
V
3 

51.054243, 
3.707049 

Narrow EW- exposed street with houses of 
ca. 7m and one young tree (LCZ 3B).  

10% 38% 0% 50% 

Unpaved & low green  



L
G
1 

51.054382, 
3.705726 

Private vegetable garden with between 
buildings of ca. 2m and a small wall of ca. 
2m (LCZ 4D).  

0% 6% 100% 94% 

L
G
2 

51.053699, 
3.708987 

Lawn with tall grasses and forbs, between 
an array of small trees and a university 
building of ca. 11m with many windows 
(LCZ 5D). 

5% 23% 90% 77% 

L
G
3 

51.050522, 
3.704597 

Small neighbourhood park with patches of 
tall grasses and one small tree (LCZ 9D).  

10% 0% 100% 94% 

Unpaved & trees  

H
G
1 

51.055029, 
3.707637 

Pocket forest of around 40a with a 
moderate density of mature trees, next to 
a pond (LCZ A).  

70% 0% 70% 18% 

H
G
2 

51.054851, 
3.707533 

Pocket forest of around 40a with a high 
density of mature trees (LCZ A).  

100% 0% 95% 12% 

H
G
3 

51.050689, 
3.705224 

Private garden with a moderate density of 
mature trees (LCZ 6A).  

75% 0% 100% 19% 

H
G
4 

51.0526691,
3.7067036 

Campus vegetable garden surrounded by a 
lawn and three large trees (LCZ 9B).  

40% 0% 100% 56% 

H
G
5 

51.054537, 
3.707286 

Lawn with three young trees, next to a 
brick wall of ca. 2m (LCZ 5B).  

40% 2% 95% 68% 

R
u
r
a
l 
f
o
r
e
s
t 
c
o
n
t
r
o
l
s 

 

Ten mature managed forest stands 
composed of European beech (Fagus 
sylvatica), pedunculate oak (Quercus 
robur) and/or red oak (Q. rubra) with a 
canopy height of 30 - 35m. 

100% 0% 100% 9% 
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