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Abstract

Consistent among-individual variation in behavior, or animal personality, is present in a wide var-

iety of species. This behavioral variation is maintained by both genetic and environmental factors.

Parental effects are a special case of environmental variation and are expected to evolve in popula-

tions experiencing large fluctuations in their environment. They represent a non-genetic pathway

by which parents can transmit information to their offspring, by modulating their personality.

While it is expected that parental effects contribute to the observed personality variation, this has

rarely been studied in wild populations. We used the multimammate mouse Mastomys natalensis

as a model system to investigate the potential effects of maternal personality on offspring behav-

ior. We did this by repeatedly recording the behavior of individually housed juveniles which were

born and raised in the lab from wild caught females. A linear correlation, between mother and off-

spring in behavior, would be expected when the personality is only affected by additive genetic

variation, while a more complex relationship would suggests the presence of maternal effects. We

found that the personality of the mother predicted the behavior of their offspring in a non-linear

pattern. Exploration behavior of mother and offspring was positively correlated, but only for slow

and average exploring mothers, while this correlation became negative for fast exploring mothers.

This may suggests that early maternal effects could affect personality in juvenile M. natalensis, po-

tentially due to density-dependent and negative frequency-dependent mechanisms, and therefore

contribute to the maintenance of personality variation.
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Consistent among-individual variation in behavior through time

and/or across context, or animal personality, has been observed in a

wide variety of species (Gosling 2001; Réale et al. 2007; Carere and

Maestripieri 2013). Indeed, several studies have shown that this be-

havioral variation within species is adaptive (Dingemanse and Wolf

2010) with potential fitness costs and benefits (Smith and Blumstein

2008). Fluctuating and negative frequency-dependent selection are

being considered as the main evolutionary mechanisms responsible

for the existence of personality variation (Dall et al. 2004; Boon

et al. 2007; Wolf et al. 2007, 2008; Dingemanse and Wolf 2010;

Wolf and Weissing 2010, 2012; Bergeron et al. 2013). Meta-

analyses have shown that the average heritability of personality

traits is relatively high, where 20–50% of the behavioral varia-

tion between individuals is due to additive genetic variation

(Dochtermann et al. 2015, 2019).

However, this means that 50–80% of the behavioral variation

within a species stems from a combination of measurement error,

behavioral plasticity, and permanent environmental effects which

have long-term impacts on the individuals’ phenotype, such as their

habitat (Dochtermann et al. 2015). Urban populations of the
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European blackbirds Turdus merula, for instance, are more neopho-

bic than individuals from rural areas (Miranda et al. 2013), while

urban great tits Parus major are more explorative and bolder com-

pared with individuals living in forests (Riyahi et al. 2017). Another

important environmental effect, which may influence behavioral

variation, is conspecific density (Wright et al. 2019). Red squirrels

Sciurus vulgaris, for example, living in low-density areas are more

active and aggressive compared with individuals from high-density

areas (Haigh et al. 2017). Indeed, conspecific density has been

argued to have a large influence on personality variation among as

well as within populations (Le Galliard et al. 2015; Nicolaus et al.

2016; Araya-Ajoy et al. 2018; Wright et al. 2019). The multimam-

mate mice Mastomys natalensis, for instance, experiences strong

fluctuations in density over a short period of time (Leirs et al. 1994,

1997; Sluydts et al. 2007) which has been shown to affect the com-

position of the population with respect to personality as density

changes (Vanden Broecke et al. 2019).

A special case of permanent environmental factors are parental

effects which have been shown to affect the observed phenotypic

variation as well, especially for behavioral traits (Groothuis and

Carere 2005; Groothuis et al. 2008; Taylor et al. 2012; Groothuis

and Dario 2013). For instance, body size of cross-fostered zebra

finches Taeniopygia guttata was predicted by their genetic parents,

indicating genetic inheritance, while this was not the case for their

exploration behavior. Instead, this was predicted by the behavior

of their non-genetically related foster parent (Schuett et al. 2013).

Another example is that risk taking in juvenile Trinidadian guppies

Poecilia reticulata was strongly influenced by maternal traits, while

this effect diminished in adults (White and Wilson 2019). Parental

effects are expected to evolve in species living in variable environ-

ments, where parents modulate the personality of their offspring in

order to increase their fitness (Marshall and Uller 2007; Reddon

2012; Groothuis and Dario 2013). However, the type of modulation

depends on the predictability of the environmental conditions in

the future (Proulx and Teotónio 2017). When there is either little or

no information available about future environmental conditions,

parents may use a bet-hedging strategy whereby they produce off-

spring with a variety of personalities ensuring that some individuals

are suited for their environment. Alternatively, when there is infor-

mation available, parents could predict the future environmental

conditions and bias the personality of their offspring in order to

make them more suited for that specific environment (Marshall and

Uller 2007; Reddon 2012; Proulx and Teotónio 2017; Langenhof

and Komdeur 2018). The is commonly referred to as anticipatory

parental effects and are expected when, for instance, changes in pre-

dation pressure (Storm and Lima 2010; Bestion et al. 2014; Bell

et al. 2016), resource availability (Warner and Lovern 2014), or

population density (Dantzer et al. 2013) are good predictors of fu-

ture environmental conditions which allow parent to anticipate on

these changes (Marshall and Uller 2007; Reddon 2012; Langenhof

and Komdeur 2018). It is therefore expected that parental effects

should contribute to the observed personality variation within spe-

cies experiencing different, yet predictable, environmental condi-

tions between parent and offspring, but this has rarely been studied.

In this study, we used the multimammate mice M. natalensis as a

model system to investigate the potential effects of the parental per-

sonality on the behavior of their offspring. Two personality axes

have been described for this species using a hole-board test. The first

one is an exploration-activity axis (referred to as exploration) where

highly explorative individuals were more active and explored the

blind holes more frequently compared with less explorative

individuals. The second personality axis is a grooming–jumping axis

(referred to as stress-sensitivity) where high stress sensitive individu-

als jumped more frequently, but spent less time grooming themselves

compared with less stress sensitive individuals (Vanden Broecke

et al. 2019). We focused on maternal effects since mothers provide

most of the parental care; moreover, multiple paternity has been

found in more than 47% of the litters (Kennis et al. 2008). Their re-

productive cycle is strongly correlated with seasonal rainfall patterns

and starts when food becomes abundantly available (Leirs et al.

1989, 1994, 1997; Sluydts et al. 2007). This leads to strong seasonal

and annual fluctuations in density, where the population size

changes from 20 to 500 individuals per hectare in just a couple of

months (Leirs et al. 1994; Sluydts et al. 2007; Borremans et al.

2017). During this period of increasing density, home range sizes de-

crease (except for adult females) while home range overlap increases

resulting in an increase of foraging contacts and competition among

individuals (Borremans et al. 2014, 2017). We therefore expect that

mothers can predict these environmental changes and hence adjust

the behavior of their offspring in order to increase their fitness in the

future environment.

However, these mothers should only alter the personality of their

offspring if it increases their fitness (Marshall and Uller 2007).

While it is currently unknown if there are potential fitness conse-

quences of personality in M. natalensis, more explorative and stress

sensitive individuals have been found more frequently at higher den-

sities (Vanden Broecke et al. 2019). This may suggest that increased

exploration behavior may be beneficial at higher densities, since it

could provide the individual with information about the environ-

ment such as the availability of food resources (Tebbich et al. 2009).

This information might be crucial for juveniles, since they have been

found to be more explorative than adults and even increase their ex-

ploration behavior when density increases (Vanden Broecke et al.

2018, 2019). However, it is currently unknown if these differences

in exploration behavior between adults and juveniles are purely

driven by environmental cues or due to early maternal effects.

In order to test the hypothesis that maternal effects affect vari-

ation in juvenile behavior, we raised juveniles in a controlled labora-

tory setting from wild mothers. These mothers were caught during

different time-points in the breeding season, when densities change

rapidly, and therefore experienced different levels of population

densities. We used this data to test three predictions. 1) If the per-

sonality scores are only affected by additive genetic variation, we

would expect a linear correlation between maternal personality and

that of her offspring, resembling a parent–offspring regression

(Falconer and MacKay 1996). 2) A more complex relationship be-

tween maternal personality and her offspring is expected when ma-

ternal effects, in combination with genetic variation, contribute to

the variation in juvenile behavior. On the one hand, we expect that

slow exploring mothers, occurring more frequently at low densities

(Vanden Broecke et al. 2019), should produce offspring with a fast

exploring personality. These fast exploring juveniles should have a

competitive advantage in the predicted future environment of

increased density and competition for food resources, since food

becomes more scarcely available at higher densities (Leirs et al.

1997; Myers 2018). On the other hand, fast exploring mothers are

expected to produce less explorative offspring allowing them to in-

vest more resources into survival in order to survive until the next

breeding season (Leirs et al. 1993; Réale et al. 2010). 3) Finally, it is

possible that exploration behavior in juveniles is not affected by gen-

etic or maternal effects. If this would be the case, we would expect

to find no effect of maternal behavior on their offspring and current
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environmental conditions will be the main driver of the personality

differences between adults and juveniles in M. natalensis.

Material and Methods

Study species
Mastomys natalensis is the most common indigenous rodent in sub-

Saharan Africa, an agricultural pest species (Leirs et al. 1994) and

host for several diseases such as Lassa virus (Frame et al. 1970),

plague (Ziwa et al. 2013), and Morogoro virus (Günther et al.

2009). Two personality traits have been found in this species: ex-

ploration and stress sensitivity of which the former has been found

to influence viral infection probability (Vanden Broecke et al. 2018,

2019). The analysis of movement patterns during a long-term field

study has shown that during periods of high resource availability,

home ranges overlap greatly with each other indicating a low level

of territoriality and reduced spatial activity (Borremans et al. 2014).

The absence of territoriality is in line with the scramble mate compe-

tition, where males roam around to find as many females as possible

(Kennis et al. 2008). While males are polygynous, females are poly-

androus and multiple paternity occurs in more than 47% of the lit-

ters (Kennis et al. 2008). The mean gestation period is 23 days and

M. natalensis is able to produce large litters, with a mean litter size

in utero between 11.3 and 12.4 young (Leirs 1995).

Experimental setup
Pregnant females were trapped from May until July 2017 on three

different areas on the main campus of the Sokoine University of

Agriculture (SUA) in Morogoro, Tanzania. Due to technical and lo-

gistical problems, we were not able to trap for three consecutive

nights in a row at a certain location, which is needed to accurately

estimate the population density size within a trapping grid.

However, the period in which we trapped the pregnant females coin-

cided with the start of the breeding season when the population

density is expected to increase rapidly, with a peak in October (Leirs

1995). We therefore believe that females that were captured later in

the breeding season would have experienced a larger density com-

pared with those that were captured earlier in the breeding season.

In order to avoid spatial dependence, we spaced the three trapping

areas at least 2 km from each other (Borremans et al. 2014).

Sherman LFA live traps (Sherman Live Trap Co., Tallahassee, FL)

were set in the evening in both fallow land and maize fields within

each area using a mix of peanut butter and maize flour as bait.

Traps were checked in the early morning and captured individuals

were transported to the animal facilities of the SUA Pest

Management Centre. We recorded the weight, sex, and reproductive

status of the trapped rodents following Leirs et al. (1994). Pregnant

females were kept solitary in cages (28�11.5�12 cm, food and

water ad libitum) in the laboratory for no longer than 80 days after

they gave birth. The young were kept together with their mother

until they were independent (15–29 days old; Coetzee 1975), after

which they were marked, weighed, sexed, and housed in individual

cages. Due to variation in litter size and neonate survival, we

selected at least two and maximal five individuals of each nest.

Behavioral trials were conducted using a hole-board test, which

is based on the open field test with holes in the floor to measure ex-

ploration independently of activity (File and Wardill 1975; Martin

and Réale 2008b). The box (75�55�90 cm; L�W� H, respect-

ively) was constructed out of strong white plastic with six blind

holes in the bottom (Ø: 3.5 cm; depth: 6 cm) each spaced 19 cm

apart from each other. The box was closed with a lid containing an

infrared camera. Behavioral recordings lasted for 10 min and started

when the individual was inside the box, and the lid was closed. All

behavioral recordings were made during the evening, which coin-

cides with the active period of M. natalensis (Coetzee 1975;

Borremans et al. 2017), in a completely dark room within the SUA

Pest Management Centre. Juveniles were recorded for the first time

when they were, on average 26.47 days old (range¼17–52), after

which they were housed in individual cages. The box was cleaned

with 70% ethanol after each trial to remove scent and dirt. Each in-

dividual was tested up to four times (one individual died during the

experiment and was observed only three times) and each consecutive

test was separated by 2 weeks. The juveniles were released in the

area where we captured their mother after the experiment.

Video analysis
We measured five different behaviors during the hole-board test: ac-

tivity, hole sniffing, head dips, time spent grooming, and number of

jumps using MTrackJ (Meijering et al. 2012), a plugin for ImageJ

(Schneider et al. 2012) and JWatcher 1.0 (Blumstein and Daniel

2007). See Vanden Broecke et al. (2019) for a more detailed descrip-

tion of the different behaviors.

All experimental procedures were approved by the University

of Antwerp Ethical Committee for Animal Experimentation

(LA1100135) and adhered to the EEC Council Directive 2010/63/

EU and followed the Animal Ethics guidelines of the Research Policy

of SUA.

Statistical analysis
Maternal effects

The fieldwork of this study was performed during the same period,

and in collaboration with Vanden Broecke et al. (2019). Therefore,

all behavioral measurements in this study were performed using the

same hole-board test as described in Vanden Broecke et al. (2019),

with animals that were trapped at the same location during the same

period. We therefore decided to pool all behavioral measurements

from this study with those previously published in Vanden Broecke

et al. (2019) which allowed us to compare our results with the previ-

ous research. This led to the construction of a dataset of 1001 be-

havioral recordings of 295 unique individuals. All individuals were

recorded on average 3.5 times (range¼2–8 observations) with an

average of 17 days between recordings (range¼11–71). In order to

reduce the number of variables, we ran a principal component ana-

lysis (PCA) on the pooled dataset using the Kaiser–Guttman criter-

ion (eigenvalue > 1; Kaiser 1991; Peres-Neto et al. 2005) to decide

on the number of components to retain. After the PCA, we removed

all datapoints from Vanden Broecke et al. (2019) and used the ori-

ginal dataset for further analysis.

During this experiment, we conducted a total of 255 behavioral

observations involving 65 unique juvenile individuals from 18 differ-

ent mothers. Individuals were recorded four times, except one indi-

vidual who was recorded three times, with on average 13.4 days

between subsequent recordings (range¼11–15). However, one nest

was identified as an outlier and had a disproportional large influence

on the results and was therefore removed from the analysis.

We used generalized additive mixed models (GAMMs; Zuur

et al. 2009; Wood 2017) to study the effects of maternal personality

on their offspring’s behavior. This was done because an exploratory

data analysis suggested a non-linear relationship between the re-

sponse and explanatory variables. GAMMs are a combination of
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linear mixed models (LMMs) and generalized additive models

allowing to estimate random effects as well as linear and non-linear

covariates within one model (Zuur et al. 2009; Wood 2017).

We ran two models using either exploration or stress sensitivity

as dependent variables. For both variables we started first with a full

model where we included the individual’s sex (male or female) and

age in days (which was within-individual centered: deviation of one

observation from the individuals’ mean; van de Pol and Wright

2009) as fixed effects. The former was included to look for potential

differences in behavior due to sex, while the latter allowed us to

look at group-level plasticity. However, it is unclear if this group-

level plasticity is due to increasing age or habituation to the hole-

board test since the individuals became older the more they were

recorded and it is therefore impossible to distinguish these two

effects from each other. In order to test for potential maternal

effects, we included the personality of the mother (average explor-

ation behavior or average stress-sensitivity in the model with, re-

spectively, exploration or stress-sensitivity as response variables) as

additional fixed effect with a smoother function to look for a poten-

tial non-linear relationship between the personality of the mother

and the behavior of her offspring. Finally, we added the date when

we captured the mother as an additional fixed effect. This would

allow us to test if only the density that the mother experienced be-

fore being brought to the laboratory would affect the behavior of

her offspring. We included the field of origin of the mother as a ran-

dom effect in order to test if it was the mother’s environment rather

than maternal personality per se that affected the phenotypical vari-

ation between individuals. Additionally, we included M. natalensis

identity (ID) as a random effect to account for pseudo replication,

because we repeatedly sampled each individual. Finally, individual

variation in plasticity was estimated by including age (within-indi-

vidual centered) as a random slope (Dingemanse and Dochtermann

2013). Significance of the random effects was tested using a likeli-

hood ratio test (LRT) comparing the model with and without the

random effect, a P-value < 0.05 indicates that it explained a signifi-

cant amount of the variance, non-significant random effects were

removed from the final model.

Personality–density

The main assumption in our study is that more explorative and

stress sensitive mothers would occur more frequently at higher den-

sities, as has been found in Vanden Broecke et al. (2019), resulting

in a positive correlation between density and the mean exploration

and mean stress-sensitivity of the mother. In order to test this, we

created two LMMs with either average exploration or average

stress-sensitivity of the mother as response variables. We included

the date that the mother was captured as a fixed effect which we

used as an alternative for density, since we assumed that individuals

that were captured later in the breeding season experienced higher

population densities. Indeed, all the individuals were captured dur-

ing the breeding season in which the population density increases

rapidly through time (Leirs 1995). The area where the mother origi-

nated from was included as a random effect. However, our analysis

showed no correlation between date of capture and mean explor-

ation or stress-sensitivity behavior of the mother (see the “Results”

section) due to a low sample size (N¼17, one mother was removed

as it had been identified as an outlier). We therefore created a larger

dataset including all animals that were captured on the same three

locations and whose behavior was first recorded in the laboratory.

This led to a dataset of 50 unique individuals (Nmales ¼ 11, Nfemales

¼ 39). We reran the LMMs as described above, with sex as an

additional fixed effect. All continuous covariates were centered

around their grand mean before analysis and all statistical analyses

were executed using R software 3.6.0 (R Core Team 2013) with the

R packages “gamm4” (version 0.2-5; Wood and Scheipl 2017) and

“lmer4” (version 1.1-21; Bates et al. 2015).

Results

Principal component analysis
The PCA reduced the number of behavioral variables to two compo-

nents, explaining 66.45% of the total variance (Table 1). The load-

ings of both components were very similar as previously found in

Vanden Broecke et al. (2019) except for the directions, which were

reversed. We therefore multiplied both components with �1 allow-

ing us to compare our results with those from Vanden Broecke et al.

(2019). The first component was positively correlated with activity,

hole sniffing, and head dipping and can be seen as an activity-

exploration axis and will further be referred to as “exploration”

(Table 1). The second component was negatively correlated with

auto-grooming and positively with jumping. We named this second

component “stress-sensitivity” (Table 1), in line with Vanden

Broecke et al. (2019).

Exploration
The GAMM with exploration as dependent variable revealed that

there was a significant non-linear correlation between the explor-

ation personality score of the mother and of her offspring (Table 2

and Figure 1). The model showed a positive correlation between off-

spring and maternal exploration behavior, but only for slow and

average exploring mothers. Fast exploring mothers, on the other

hand, produced offspring with a lower exploration score compared

with their mother (Figure 1). Additionally, we found evidence for

group-level plasticity, where individuals became less explorative

when they became older (Table 2 and Figure 2). However, it remains

unclear if this is an age effect or if they habituated to the test.

Interesting is that this effect differed between individuals since the

random slope was significant (Table 2) with a positive intercept-

slope correlation. This suggests that there is individual variation in

plasticity based on the individuals’ personality, where slow explor-

ing individuals decreased their exploration behavior inside the hole-

board test faster than average when they became older compared

with fast exploring juveniles (Figure 2). We found no statistical dif-

ference between males and females in exploration behavior

(Table 2). Maternal origin did not explain a significant amount of

Table 1. Correlation of each behavior observed during the hole-

board test with the components of the PCA (all the values were

multiplied with �1)

Component PC1 (exploration) PC2 (stress-sensitivity)

Activity 0.552 �0.111

Head dip 0.454 �0.069

Sniffing 0.584 �0.321

Grooming �0.336 �0.517

Jumping 0.116 0.783

Total variance (%) 42.35 24.10

Eigenvalue 2.117 1.205

Notes: The two components were named, respectively, exploration and

stress-sensitivity. Bold type indicated the behaviors that have a major contri-

bution to the component.
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variance (Table 2) but there were repeatable differences between

individuals, with a repeatability of R¼0.416 (Table 2). The final

model had an R2 of 0.096 which is low and suggest that other, un-

accounted factors (e.g., in utero variations in maternal care or mul-

tiple paternity) affected juvenile behavior as well.

Stress-sensitivity
The GAMM with stress-sensitivity as dependent variable revealed

that none of the fixed effects explained a significant proportion of

the variation in stress-sensitivity (Table 2). There were no differen-

ces between males and females and their stress-sensitivity did not

change when they became older, suggesting that they did not habitu-

ate to the test regarding stress-sensitivity (Table 2). The personality

score of the mother, regarding stress-sensitivity, did not correlate

that of her offspring (Table 2). Additionally, we found no indication

for individual variation in plasticity nor for an effect of maternal ori-

gin (Table 2). However, individual identity was significant (Table 2)

suggesting that there are consistent differences between individuals

in stress-sensitivity, with a repeatability of R¼0.205.

Personality–density
The LMM with mean exploration behavior as response variable,

using only the mothers from the experiments, revealed no correl-

ation between the date that the mother was captured (used as an al-

ternative for density size) and mean exploration behavior

Figure 1. Fit of the GAMM of average exploration score of the mother against

exploration behavior of their offspring. Exploration behavior is averaged

within each nest and represented as dots with the standard error of the mean.

Figure 2. Linear correlation between the individuals exploration behavior and

their within-individual changes in age. The solid black line represents the

population effect, while the smaller black lines are the individuals’ reaction

norms.

Table 2. Results from the two GAMMs with either exploration (PC1) or stress sensitivity (PC2) as dependent variables

Fixed (linear) effects PC1 (exploration) PC2 (stress-sensitivity)

Est6SE t-Value P-value Est6SE t-Value P-value

Intercept 0.79660.178 4.478 <0.001 �0.54460.068 �7.998 <0.001

Sex (male) �0.13760.252 �0.547 0.585 �0.05360.106 �0.503 0.616

Age (mean centered) �0.29960.093 �3.206 0.002 0.00860.034 0.226 0.822

Capture date mother 0.15960.136 1.167 0.245 0.04860.055 0.871 0.385

Fixed (non-linear) effects Smooth F-value P-value Smooth F-value P-value

Exploration mother 3.536 3.449 0.007 – – –

Stress sensitivity mother – – – 2.514 1.938 0.080

Random effect Variance Corr. P-value Variance Corr. P-value

Individual 0.960 – <0.001 0.078 – 0.001

Age (mean centered) 0.199 1 <0.001 0.016 �0.15 0.618

Origin mother <0.001 – 1 0.037 – 0.103

Residual 1.346 – – 0.264 – –

Repeatability 0.416 – – 0.205 – –

Note: Statistical significant results (P<0.05) are marked in bold.
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(estimate 6 SE¼�0.249 6 0.436, t15¼�0.572, P¼0.576). This ef-

fect was also absent for the LMM with mean stress-sensitivity as re-

sponse variable (�0.113 6 0.153, t15¼�0.739, P¼0.472). The

area where the mother was captured had no effect on either mean

exploration behavior (LRT¼0, P¼1) nor on mean stress sensitivity

(LRT¼0.005, P¼0.944).

However, the lack of a correlation between personality and cap-

ture date might be due to low sample size. We therefore created a

larger dataset including all animals that were captured on the same

three locations and whose behavior was first recorded in the labora-

tory and reran the LMMs. The LMM with exploration as response

variable revealed, as predicted, a positive correlation between the

date that the mother was captured and mean exploration behavior

(0.317 6 0.116, t47¼2.728, P¼0.009, Figure 3). This suggests that

we caught more explorative individuals later in the breeding season,

when population densities are expected to be higher (Leirs 1995),

which is in line with the results from Vanden Broecke et al. (2019).

We found no difference between males and females

(�0.119 6 0.277, t47¼�0.428, P¼0.671) and no differences

among the areas in which the individuals were trapped in (LRT¼0,

P¼1). We found, however, no effect of capture date on mean

stress-sensitivity (�0.040 6 0.055, t47¼�0.730, P¼0.469) and

no differences between males and females (�0.189 6 0.132,

t47¼�1.430, P¼0.159). Additionally, there were no differences be-

tween the three areas in mean stress-sensitivity in which the individ-

uals were trapped (LRT¼0, P¼1).

Discussion

Parental effects are expected to evolve in species that experience fast

and large changes in environmental conditions such as M. natalensis

(Marshall and Uller 2007; Reddon 2012; Taylor et al. 2012; Proulx

and Teotónio 2017). Indeed, reproduction of M. natalensis is strong-

ly correlated with seasonal rainfall which leads to large density fluc-

tuations (Leirs et al. 1994, 1997; Sluydts et al. 2007). In turn, this

results in large changes in their environment on a very short tem-

poral scale, due to density-dependent changes in foraging contacts

(Borremans et al. 2017), home range size, and overlap (Borremans

et al. 2014). Parental effects are expected to influence behavioral

variation within these populations, allowing fast adaptation to these

rapid changing environments (Mousseau 1998; Kuijper and Hoyle

2015; Proulx and Teotónio 2017). We found a non-linear relation-

ship between mother and offspring behavior, with respect to explor-

ation, even though they were born and raised individually in a

controlled laboratory setting. This may suggest that personality in

young M. natalensis is at least partly determined by maternal effects.

Nonetheless, our findings cannot be assigned solely to maternal

effects. Since we had only one generation, we were not able to disen-

tangle between genetic and non-genetic effects (Wolf and Wade

2009). It has been argued that genetic variation influences personal-

ity in a wide variety of species (Dochtermann et al. 2015). Indeed,

23% of the behavioral variation within populations, across species,

is due to the effects of additive genetic variation (Dochtermann et al.

2019). Nevertheless, a non-linear pattern would not be possible if

our results were only determined by additive genetic effects. We are

therefore confident that personality in M. natalensis is at least partly

determined by maternal effects for which we have two explanations:

either due to a combination of density dependence and negative-

frequency-dependent mechanisms or due to differences in maternal

stress.

Density dependence and negative-frequency-dependent mecha-

nisms, where the fitness payoff of a certain phenotype (or personal-

ity) is expected to increase as it becomes rarer, are being considered

to be among the main mechanisms responsible for the existence and

maintenance of personality variation within populations (Dall et al.

2004; Wolf et al. 2007, 2008; Dingemanse and Wolf 2010; Wolf

and Weissing 2010; Wolf and McNamara 2012). We argue that

these processes might also be responsible for the non-linear pattern

that we have observed in exploration behavior between the mother

and offspring. While exploration behavior provides an individual

with information about the environment (Schwagmeyer 1995;

Tebbich et al. 2009; Rojas-Ferrer et al. 2020), the competitive ad-

vantage and benefits of expressing high levels of exploration behav-

ior is expected to change with density and the frequency of certain

personalities in the population.

We found that slow and average exploring mothers produced

offspring which were slightly more explorative than themselves.

These mothers were caught early in the breeding season, when den-

sities are expected to be low (Leirs 1995) and corresponds with

Vanden Broecke et al. (2019), who found that the population con-

tains more slow and average exploring individuals at lower den-

sities. During these periods, food is abundantly available (Leirs et al.

1989, 1994) and together with a lack of territoriality (Borremans

et al. 2014) and a generalist diet (Mulungu et al. 2011) results in

low competition for food resources. However, densities are expected

to increase rapidly throughout the breeding season and food

becomes more scarce (Leirs et al. 1989). During this period, fast

exploring individuals are expect to have a competitive advantage

over slower exploring individuals. Indeed, fast exploring great tits,

for instance, outcompete slower individuals at clumped food resour-

ces in winter and obtain higher quality territories (Dingemanse and

de Goede 2004; Both et al. 2005; Cole and Quinn 2012).

This competitive advantage of fast exploring individuals would

result in a positive correlation between density and exploration,

leading to an increase of fast exploring individuals entering the

population when density increases, which has been observed for

Figure 3. Linear correlation between the mean exploration behavior of the

wild caught individuals with their capture date. Black dots represent the fe-

males that gave birth in the laboratory and who were used in the experiment.
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M. natalensis (Vanden Broecke et al. 2019). However, this propor-

tional increase of fast exploring individuals at higher densities may

result in an increase of intra-specific competition and a reduced fit-

ness payoff for fast exploring individuals compared with slower indi-

viduals (Wright et al. 2019). Indeed, food becomes extremely scarce

at high densities which eventually leads to a population crash due to

food depletion (Leirs et al. 1997). Wright et al. (2019) suggested

that fast exploring individuals are less resistant to the increased

intra-specific competition at high densities potentially affecting their

survival. Indeed, fast exploring and active individuals are found to

have a lower survival probability at high densities in great tits

(Nicolaus et al. 2016) and in the common lizard (Zootoca vivipara;

Le Galliard et al. 2015). Fast exploring mothers should, in order to

increase their fitness during these conditions, produce offspring

which are on average less explorative than themselves. These juve-

niles will be more resistant to the high levels of intra-specific compe-

tition resulting in an increased survival probability, which is

important for young M. natalensis since juveniles breed in the next

breeding season after the one in which they were born (Leirs et al.

1993). This may result in the observed negative correlation in explor-

ation behavior between fast exploring mothers and her offspring.

Previous studies have found maternal effects on behavior in, for

example, yellow-bellied marmots (Marmota flaviventris; Petelle

et al. 2013), North American red squirrels (Tamiasciurus hudsoni-

cus; Taylor et al. 2012), zebrafish (Danio rerio; Ariyomo et al.

2013), and Trinidadian guppies (P. reticulata; White and Wilson

2019). However, mothers can only alter the behavior of their off-

spring toward a better suited personality for future environments if

they can predict those environmental conditions (Marshall and Uller

2007; Reddon 2012; Proulx and Teotónio 2017; Langenhof and

Komdeur 2018). It is possible that the density increase in M. nata-

lensis could be predicted by the mother via changes in the social en-

vironment (Borremans et al. 2014; Borremans et al. 2017). Indeed,

variation in the perceived social environment, rather than resource

availability itself, have been found to affect maternal hormones in

North American red squirrels (T. hudsonicus; Dantzer et al. 2013)

and prenatal social conditions, experienced by the mother, has been

found to affect the behavior of their offspring in guinea pigs

(Guenther et al. 2014). An alternative is predation pressure, which

increases with density as well (Leirs et al. 1997; Vibe-Petersen et al.

2006) and has been found to affect maternal effects in field crickets

(Gryllus pennsylvanicus; Storm and Lima 2010) and in common liz-

ards (Bestion et al. 2014).

Nonetheless, we found no significant relationship between the

date that the mother was captured (which was used as a proxy for

density) and exploration behavior of her offspring. While this could

be due to a low sample size, it may also indicate that the density,

experienced by the mother, may not fully explain the observed vari-

ation in exploration behavior among the nests. This may result from

differences in maternal stress or due to unaccounted environmental

differences between the three areas from which the mothers origi-

nated. However, the latter seems unlikely since the area of origin

from the mother was not significant in any of our models, suggesting

that there were similar environmental conditions between the differ-

ent areas during our experiment. Maternal stress may provide an al-

ternative explanation for our results, which would be more

prominent in fast exploring mothers. Indeed, prenatal stress has

been found to affect exploration behavior in rodents and other

mammals, where juveniles that were exposed to stress prenatally

were less explorative compared with juveniles from non-stressed

mothers (Poltyrev et al. 1996; Braastad 1998; Curley et al. 2008;

Groothuis and Dario 2013). This could potentially explain the nega-

tive correlation in exploration behavior between fast exploring

mothers and her offspring, while the observed positive correlation

may reflect the heritability of this trait (Dingemanse et al. 2002;

Drent et al. 2005; Dochtermann et al. 2015, 2019). However, this is

not always the case (Groothuis and Dario 2013) and contradicts

with studies on stress and personality, where shy and slow exploring

individuals are commonly found to be more stressed in both rodents

(Montiglio et al. 2012; Clary et al. 2014) and birds (Carere et al.

2003; Cockrem 2007; Baugh et al. 2013).

Our analysis revealed an effect of group-level plasticity, where

all the individuals decreased their exploration behavior during sub-

sequent recordings. These results reflect either an age effect or ha-

bituation to the test. The latter contradicts previous findings of

Vanden Broecke et al. (2018, 2019) who found no effects of habitu-

ation in juveniles to the same experimental setup. These different

results are probably due to variations in days between consecutive

recordings. In this study, we were able to control the time between

recordings, which was not possible in the previous studies since it

was performed on wild caught individuals. Those individuals were

released back in the wild after being recorded, resulting in large vari-

ation between consecutive recordings within and among individuals

(Vanden Broecke et al. 2018, 2019). Indeed, Dingemanse et al.

(2012) found that the level of habituation in great tits was generally

more pronounced when the time interval between subsequent tests

was short compared with long intervals. Nonetheless, this suggests

that exploration behavior is flexible in juveniles and correspond to

previous results, where juveniles changed their exploration behavior

with changes in the environment (Vanden Broecke et al. 2019).

However, the level of habituation to the hole-board test differed

among individuals and depended on the individual personality. Our

results suggested that slow exploring individuals habituated faster

compared with fast exploring juveniles, which fits within the general

idea that fast exploring individuals are less flexible compared with

slow individuals (Coppens et al. 2010).

We found no correlation between mother and offspring for the

second personality trait, which we referred to as stress-sensitivity

(Vanden Broecke et al. 2019). This suggests that stress-sensitivity in

juveniles is not affected by potential maternal effects and/or that the

heritability is low and therefore largely determined by environmen-

tal effects. Vanden Broecke et al. (2019) found that this trait was

highly repeatable in wild M. natalensis and suggested that these re-

peatable behavioral differences between individuals are probably

the consequence of environmental effects which the juvenile itself

experiences rather than being the result of maternal and genetic

effects. An alternative explanation is that mothers use a bet-hedging

strategy, where they increase the variety of personalities within their

offspring ensuring that some individuals are suited for their environ-

ment (Marshall and Uller 2007; Reddon 2012).

To summarize, our results suggest that pregnant females can an-

ticipate on the considerable environmental changes experienced by

M. natalensis and potentially modulate the behavior of their off-

spring in order to increase their fitness. These early maternal effects

may therefore contribute significantly to the maintenance of person-

ality variation in the multimammate mice.
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