
Abstract
Due to the latest advances in Deep Learning, Large Language Models
(LLMs) have the potential to automate and simplify code writing tasks.
One of the emerging applications of LLMs is hardware design, where
natural language is used to generate, annotate, and correct code in a
Hardware Description Language (HDL), such as Verilog. This work
provides an overview of the current state of using LLMs to generate
Verilog code, highlighting their capabilities, accuracy, and techniques to
improve the design quality. It also reviews the existing benchmarks to
evaluate the correctness and quality of generated HDL code, enabling a
fair comparison of different models and strategies. The major topics are:

1. What are the potential applications of Large Language Models
(LLMs) in hardware design?

2. How do LLMs contribute to automating and simplifying code writing
tasks in a Hardware Description Language (HDL) like Verilog?

3. What benchmarks are available to evaluate the correctness and
quality of generated HDL code using LLMs?

Applications of Large Language Models
1. Code Generation: LLMs can be utilized to generate code in Hardware

Description Languages based on natural language descriptions. This
can streamline the process of creating complex hardware designs
by allowing engineers to describe the desired functionality in
natural language, which is then translated into HDL code by the
LLM.

2. Bug Detection and Correction: LLMs can be employed to detect and
correct bugs and security flaws in hardware code. By generating
prompts that detail the bug and ask for a repair, LLMs can assist in
addressing security vulnerabilities in hardware designs.

3. Benchmarking: LLMs can be evaluated for their ability to generate
HDL code using benchmarks specifically designed for hardware
design. These benchmarks assess the syntax, functionality, and
quality of the generated HDL code, providing a means to compare
different models and strategies.

Types of Large Language Models uses

Pre-trained LLMs
A pre-trained Large Language Model has undergone an initial training
phase on a diverse and extensive dataset. This initial training allows the
model to capture general language patterns, syntactic structures, and
semantic relationships.. Examples are the ChatGPT-x (Generative Pre-
trained Transformer) models..

Fine-tuning
Fine-tuning involves adjusting the pre-trained weights of the LLM to
improve its performance in generating Verilog code. By fine-tuning,
LLMs are optimized to accurately capture the nuances and subtleties of
hardware design, such as timing constraints, optimization goals, and
verification methods. Fine-tuning only applies to open source LLMs.

Prompt engineering
Prompt engineering enhances natural language descriptions provided to
the LLM, by offering more guidance or details to the model. This can help
the LLM better understand and interpret the requirements for
generating Verilog code, leading to more accurate and tailored outputs.
Prompt engineering doesn’t change the weights of the LLM, it leverages
the existing knowledge to improve the desired outcome.

Approaches to adapt LLMS for Verilog

DAVE: Fine-tuning ChatGPT-2 (11/2020) [Pearce]
• Fine-tuned, based on ChatGPT-2
• Training dataset in the form TASK: <English Text> RESULT: <Verilog

Code>
• Training templates for assignment, register, sequence, multi-task
• Validation on non-trained templates yields 94.8 % accuracy.
• Example:

In-Context-Learning and Chain-of-Thought(7/2023) [Du]
• ICL presents predefined Q&A pairs as examples to the LLM.
• This enables the LLM to learn from these examples.
• CoT prompting gives extra details on how the examples can be

dissected and tackled
• This enables the LLM with extra reasoning capabilities.
• Example: Du et al [2] used CoT to derive the FFT twiddle factors

WN
k = e−j 2πk/N , k ∈ {0,1, … , N/2}

for N=16, 32, 64 given the code for N=8.

Reinforcement Learning with Human Feedback (5/2023)
[Blocklove]
• Prompt is used to create an initial design, code and testbench.
• If there are errors, the LLM tries to fix them autonomously, up to 3

times. If the error persists, simple, moderate and advanced human
feedback is given.

• The conversational method is used to build an 8-bit accumulator-
based microprocessor, using ChatGPT-4.

• Sticky points: requires extra LLM time and prompt engineering
expertise.

Self-planning (9/2023) [Lu]
• Two-step process: planning and coding
• Planning step: the prompt requests a coding strategy in natural

language. This is translating the prompt into natural-language
analysis and reasoning steps, thereby preparing a better prompt.

• The planning step includes the contextual knowledge Verilog to
avoid syntax errors during code generation.

• The coding step is based on the optimized prompt and language
information.

• Self-planning increases the percentage of syntactical and functional
correct codes to resp. 73% and 47% with ChatGPT-3.5

• Example of a self-planning prompt [Lu]:

Correcting Verilog code with LLMs

• CWEs [5], Common Weakness Enumeration lists, contain well-known
vulnerability issues. Ahmad used CWEs as part of the prompt to let
the LLM repair the identified security flaws in the code.

• FLAG [6], finding line anomalies using generative AI, uses the lines
before and after a particular code line to regenerate this line and
check anomalies. FLAG also uses comments to infer the meaning of
the code. Errors are flagged based on the Levenshtein distance
between the generated and the original code line.

Evaluating the LLM performance

Pass@k metric (7/2021) [Chen]

The pass@k value is number of “at least 1 correct solution in k trials"
over the total number of problems presented. Each problem is allowed
k passes through the LLM to achieve a correct solution. This allows for
the variability in the LLM responses.

Vgen (9/2023) [Thakur]
• Data benchmarks taken from GitHub and Verilog source books
• LLMs: Megatron-LM, CodeGen-2/6/16B, J1-Large-7B
• Compares Fine-Tuned vs Pre-Trained LLMs.
• Result: FT increases correct code pass@10 values from 1% to 26%.

VerilogEval (10/2023)[Liu]
• Data benchmarks: 156 problems from HDLBits
• LLMS: Codegen-2/16B, Codegen-16B-Verilog
• Uses Supervised Fine Tuning (SFT) by optimizing the prompt for the

LLM training. The human prompt adapts the original problem
description to a wording amenable to the LLM. The synthetic
machine prompt is obtained by asking the LLM to describe the
golden solution in natural language.

• Result: the machine prompt outperforms the human prompt,
generating functional correct codes with pass@10 > 70% and
pass@10 > 50% respectively.

RTLLM benchmark(9/2023)[Lu]
• Compares 4 LLMs on 30 simple and complex designs.
• Improves the ChatGPT-3.5 prompt using self-planning (SP):

Conclusion
• AI-assisted HDL design is a hot research topic, see the timeline.
• Fine-tuning and prompt engineering improve LLMs.
• Closed source large LLMs may outperform fine-tuned open LLMs.
• Training general LLMs is expensive in time and carbon footprint [10].
• Domain specific LLMs may help to close the gap with e.g. GPT-4.

References
[1] H. Pearce et al., “DAVE: Deriving Automatically Verilog from English,”

ACM/IEEE Workshop Machine Learning for CAD, Nov 2020, pp. 27–32.
[2] Y. Du et al., “The Power of Large Language Models for Wireless

Communication System Development: A Case Study on FPGA
Platforms.” arXiv, Jul. 14, 2023.

[3] J. Blocklove et al., “Chip-Chat: Challenges and Opportunities in
Conversational Hardware Design,” in 2023 ACM/IEEE Workshop on
Machine Learning for CAD, Sep. 2023, pp. 1–6.

[4] Y. Lu et al., “RTLLM: An Open-Source Benchmark for Design RTL
Generation with Large Language Model.” arXiv, Sep. 26, 2023.

[5] B. Ahmad et al., “Fixing Hardware Security Bugs with Large Language
Models.” arXiv, Feb. 02, 2023.

[6] B. Ahmad et al., “FLAG: Finding Line Anomalies (in code) with
Generative AI.” arXiv, Jun. 21, 2023..

[7] M. Chen et al., “Evaluating Large Language Models Trained on Code.”
arXiv, Jul. 14, 2021.

[8] S. Thakur et al., “Benchmarking Large Language Models for
Automated Verilog RTL Code Generation,” in 2023 DATE Conference,
Dec. 2022, pp. 1–6.

[9] M. Liu et al., “VerilogEval: Evaluating Large Language Models for
Verilog Code Generation,” in Proc. IEEE/ACM ICCAD, Oct. 2023, pp. 1–8.

[10] E. Strubell et al., “Energy and Policy Considerations for Deep
Learning in NLP.” arXiv, Jun. 05, 2019.

EXPLORING LARGE LANGUAGE MODELS FOR HDL VERILOG

DEPARTMENT OF ELECTRONICS AND INFORMATION SYSTEMS

Ewout Danneels, Karel-Brecht Decorte, Senne Loobuyck, Arne Vanheule, Ian Van Kets and Erik H. D'Hollander

Ghent University, Ghent, Belgium

Given ’a’ and ’b’, check if

these are both true and

return the result in ’c’.

assign c = a & b;

1 #Implement the design of unsigned 16bit multiplier

based on shifting and adding operation.

2 module multi_16bit(

3 // ...I/O details omitted...

4);

5 #Please try to understand the requirements above and

give reasoning steps in natural language to achieve it.

6 #In addition, try to give advice to avoid syntax errors

Correct GPT-3.5 GPT-3.5 + SP GPT-4

Syntax 55% 73% 81%

Functional 33% 47% 50%

GPT-2

Carbon footprint

DAVE

CoT: Chain of Thought

Pass@k metric

GPT-3.5

VGen

Fixing using CWEs

GPT-4

Chip-Chat: RLHF

Finding Line Anomalies

Self-Planning

RTLLM

VerilogEval

Jan 2019 Jan 2020 Jan 2021 Jan 2022 Jan 2023 Jan 2024

Enhancing LLMs for Verilog: timeline

FLAG strategy to single out each code line for anomaly detection

NO (3x)

NO (3x)

YES

NO
NO

YES

NO

	Slide 1: EXPLORING LARGE LANGUAGE MODELS FOR HDL VERILOG

