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Abstract

The classical Weierstrass transform is an isometric operator mapping elements of the weighted L, —space
L2(R, exp(—2?/2)) to the Fock space. We defined an analogue version of this transform in discrete Her-
mitian Clifford analysis in one dimension, where functions are defined on a discrete line rather than the
continuous space. This transform is based on the classical definition, in combination with a discrete
version of the Gaussian function and discrete counterparts of the classical Hermite polynomials. The
aim of this paper is to extend the definition to higher dimensions, where we must take into account the
anticommutativity of the basic Clifford elements and use the generalised discrete Hermite polynomials.
Furthermore, we investigate, back in dimension 1, the asymptotic behaviour if the mesh width approaches
0.

Keywords: Discrete Clifford analysis, Weierstrass transform, Generalised Hermite polynomials, Monogenic
polynomials

1 Introduction

The classical Weierstrass transform is an isometric operator mapping elements of the weighted Lo,—space
Lo(R, exp(—x2/2)) to the Fock space [1]. The result W[f] is a "smoothed” version of f, obtained by averaging
the values of f, weighted with the Gaussian function at the corresponding points. It has numerous applications
in physics and applied mathematics. It is for example closely related to the heat equation, see e.g. [2] and
[3]: if the function f describes the initial temperature at each point of an infinitely long rod with constant
thermal conductivity 1, the temperature of the rod at ¢ = 1 time units later is given by W[f]. The Weierstrass
transform is also often used in image processing, where it is called the Gaussian blur, see for example [4], [5]
and [6]. Another use case of the Weierstrass transform is in statistics where it is used for data smoothening,
see e.g. [7]. Given a function that respresents noisy data, one wants to build a function that approximates the
important patterns of the data, omitting the noise. Furthermore, the Weierstrass transform is used in signal
processing, for example in [8]. The use of the Gaussian kernel also leads to the name ” Gauss transform” or
” Gauss-Weierstrass transform”. The classical Weierstrass transform is closely related to the Segal-Bargman
transform, which takes a function in the Hilbert space L2(R, exp(—22/2)) and sending it to the Fock space.
We refer to [9] and [10] for this topic in Clifford analysis.

In a previous paper [11], we defined the Weierstrass transform in a discrete Clifford setting in one dimension.
This was done based on the classical definition, applied on Hermite polynomials, which form the basis of
the space of squared integrable functions. We translated this classical definition to the discrete Hermite
polynomials and created the discrete Weierstrass space, for which the discrete Hermite polynomials form the
basis. This way, we could extend the new discrete Weierstrass transform to more general discrete functions:
those in the closure of the space spanned by the discrete Hermite polynomials.

In this paper, we ask ourselves two questions.

1. How do we adapt the definition from [11] when we work on a discrete line with width h # 1?7 What
happens when h tends to 0 and what is the link to the continuous setting? It will appear that the



definitions are easily extended based on previous basis definitions from [12] and that taking the limit
for h to 0 brings us to the continuous case.

2. How can we extend this definition to higher dimensions, i.e. m > 2. Two main differences will be:

a) The basis Clifford elements eq,...,e, are not commutative. In particular, it holds that e;e; =
j
—epej if j # k. To handle this issue, we will use the discrete rotation invariant operators R;,
introduced in [13]:
_ ot pt - p—
R;=e;R; +e; R/,

with ch scalar operators.

(b) The basis functions of the discrete Weierstrass space W in one dimension, the discrete Hermite
polynomials, must be generalised to higher dimensions. Therefore, we use the generalised discrete
Hermite polynomials, as described in [12]. The discrete operators H,, ., P, are the composition
of a discrete spherical monogenic operator P, i.e. 9P, = 0 and EP, = rP,, of degree r with the
(discrete) Hermite polynomial H,, ., ,» of degree n. Note the dependency of H,, ,, » on the degree
r of the monogenic P,.

By means of recurrence relations for n on the one side, and an alternative equivalent definition on
the other side, we will be able to give explicit expressions for the Weierstrass transform in dimension
m > 2.

We start by giving a general introduction in discrete Clifford analysis in the preliminaries. Definitions and
properties are given for general mesh width h and in general dimension m.

2 Preliminaries

Starting from the m—dimensional Euclidean space R™, with orthonormal basis ey, ...,e€,,, construct the
Clifford algebra R,, 0. Consider its complexification C,, = C ® R, of dimension 2. For every basis
element e; (j =1...m), it holds that e? =1.

Now consider the discrete grid Z}* = {z = (ni1h,n2h,...,nyuh) | n € Z™} and split every basis vector e; in
a forward and backward basis element e , resp. e, such that e;r + e; = e;. They satisfy the following
commutator relations:

] )
eieerek e; =0 (1)
efe; +eg el = (2)
A main type of involution is the Hermitian conjugation f, defined on the basis elements as (ej)Jr =

e; and (e;)T = e;“. It reverses the order of multiplication: (ab)Jr = blat, with a,b € C,,

To construct a discrete Dirac operator, define the forward and backward differences for j = 1,...,m by
f(x+ hej) — f(z)
A;rf(x) = }Jl ,
_ _ f(x) = f(z — hey)

with z € Z}".
Denote 9; = ejA;" +e; Aj_. The discrete Dirac operator is then defined as
m m
0= Z 0; = Z e’ A+ +e;
j=1 j=1
A discrete function f satisfying df = 0, is called left monogenic.
Likewise, denote £; = er ; e X j’ . The discrete vector variable operator

fzzfﬂ' :Zer;—i—e;Xf7
j=1

Jj=1



with X]i scalar operators, is defined in such a way that it satisfies the skew-Weyl relations
056 — §i0j = 0y, j=1,...,m.

The following interaction relations regarding &; and 0; complement and are in accordance with these skew
Weyl relations:

{&,6i} =1{0;,0:} =1{9;,&} =0 jFi

We emphasise that the operators £; and 0; are vector operators, since they contain the basis elements eji.
Hence also the operators £ and 0 are vector operators.

Let .
E = Z §j8]
j=1

be the discrete Euler operator. The natural powers of the operators ;, acting on the ground state 1, i.e.
¢F[1], k € N, fullfill the relation E£F[1] = k£¥[1] and are thus called discrete homogeneous polynomials.
They constitute a basis for all discrete polynomials. Explicitly, they are given by

gﬁfluﬂx>—-xjf1( 20) (ef +e5).
5?’71[1](35) = <m +khax; (ejr —e; el )) 1:[ (x —52h2)

We will omit the sub index h in &; 5, for ease of notation. The natural powers of the Hermitian conjugation
1 of £ are analogous: they only differ by a different sign of the bivector part.

<§;>2k+1 1] = 2k+1 =1, H ( 52h2> (ej +ej—) ,

()" 1= (2= kns (cfe; —eref)) g(x —s2n?)

In (3) and (4), the discrete vector variable £ acts from the left on the base state [1]. As the Clifford algebra
we are working in is not commutative, the action from the right is, in general, not equal to the action on the

left. In [12], it is proven that
(¢"m) ot = & (¢°n1]) (5)

(€01]) €f = 1), (6)
To overcome the lack of community of £ and 0, let us introduce the rotational invariant operators R; =
ejR;r +e; R;, j=1,...m, which were defined in [13].

The operators interact with in and Ajt in the following way:

+ +
Ri[1] = ¢,
RIXF =X R, R;X; =X R],

FA- — AP At — A- Pt
RYAT = AYR;, R;AY = AR

It follows that, on co-ordinate level, they satisfy the following (anti-)commuting relations:

Ri& — R = 0= R;0; — O;R,;
Ri& + &R = 0= R0, + OpR; j#k.



These operators R; will be implemented in the definition of the action of operators on Clifford elements.

The discrete delta functions are the building blocks of discrete function theory.

0 else

= if x = nh
6nh() {h

In one dimension, discrete function f can be decomposed into discrete delta functions by

=Y f(nh) héun(jh).

nez

The same function f can also be expressed as an infinite series of powers of the basis vector variables, its

Taylor series:

-y

k=0

5 5 f (w)]u=o-

==

In particular, the Taylor series of the delta functions are

N (D
x) = Z g!g!h%ﬂ
£=0

o) 1Z+1 - .
+ZZ:€-£1')WM 1) (x) (e —e7).

A discrete distribution is a linear functional defined on the set of discrete functions, with values in the
Clifford algebra. As in the classical setting, a regular distribution F' is one that is associated with a so called

density function f, such that (F,V) fR

x)dz. The translation to the discrete setting is immediate:

V)= Y V(x)f(z)h

x€Zh

Let F denote a (not necessary regular) discrete distribution, V" a discrete polynomial and a a Clifford number.

Then

<@Rv>=—<RV@> (7)
(&R V) = (Fvel) (8)
(Fa,V) = (F,V)a 9)
(F,aV) = a(F,V) (10)

The building blocks of discrete distributions are the discrete delta distributions é,, associated with the

discrete delta functions 6,

<5P7f>:f(p)a p € Z.

There is a natural correspondence between the discrete delta function and the delta distribution, given by

£y =Y f(nh)sn(nh)h = f(jh).

nez

For the derivatives of the discrete delta distribution, we then have

In particular, if f = ¢[1](x), then

(_ké!’
<@L”£Q]> {0 ;>l

(OhdjnF) = (~1)" (8:n, 0k ) = O S (j).

Gh) k<t



The dual Taylor series are for distributions what the Taylor series are for functions. Every discrete
distrubtuion F' can be written in terms of derivatives of the delta distribution.

F= Z k' a,’jla’w a§m50<F,5f1 52...5’;;n[1}>. (11)

k=0

The discrete Gauss distribution is another important distribution in our theory. It is uniquely defined
via its action on the discrete homogeneous polynomials:

<G’§,fl i ---57’2”[1]> _ {(2@2 17, (ki — DI if all k; even 12)

0 else,

with its Taylor formula, immediately derived from (11):

oo (—1)*l Ky ko & ki cko k
G= 3 pmar i ok (Gl i)
Kot oo =0 12T
[eS) m 1
:Z(Zﬂ-)z 2k1+.~.+kmk1' I '851852...87%”60 (13)
Z Vookm!

2
= (27)% exp (?) dp-

The discrete Hermite polynomials are defined using the Gauss distribution. They are polynomials in &,
defined by the recurrence relation Hy,1G = (—1)*T'0H,G. Using the relation 0G = —¢G, they satisfy

Rodriguez’ formulae
HoG = (—1)*9?*G and Hop11G = (—1)FHo* G, (14)

In dimension m = 1, one can use the radial Hermite polynomials. However, from dimension m > 2 on, one
needs the generalised Hermite polynomials, which are the composition of a spherical monogenic operator P,
of degree r with the Hermite polynomial H,, ,, , of degree r. They satisfy the same corresponding Rodriguez’
formulae:

H2k:,m77‘PrG = (_1)k82kPTG

15
Hopi1m o PG = (—1)"10%% 1P, G, (15)
An explicit form for the Hermite polynomials is
k
H2k,m,r Za§k£2j H2k+1,m,r - Z gf_tllf%—i_l (16)
§=0
with
, Fk+%+r)
2k k— 2
b= () o
: Fk+%+r+1)
2k+1 k—
A2j 41 _(_1)j2 J( )F(]+ > +T‘+1) (18)

As the Hermite polynomials of degree n are the n—th derivative of the Gaussian polynomial, one can of
course also reverse this relationship as given in the next lemma. The appearing coefficients are the same as
the Hermite coefficients, up to sign.



Lemma 2.1. The action of natural powers of & on the discrete Gauss distribution is as follows:

&G = Zb tale

14

€2l+1G I Z bggi%ﬁmﬁﬂG

=0

5o
it =2 () Hr s

J+3+1
In [11], we defined the discrete Weierstrass transform in one dimension and with mesh width A = 1,
based on the transform of the discrete Hermite polynomials.

with

<Hn(§h)G, e—z2/2+5h zm> — (_DL%J [ ™.
Using this outcome, we could define the Weierstrass transform on more general discrete functions: those in
the so-called Weierstrass space WW: the closure of the span of the discrete Hermite polynomials.

Definition 2.2 (Discrete Weierstrass transform). For a discrete function f € W, f = Y oy Hyak, its
Weierstrass transform is defined as

(G e 1) = S WH,Ja, = 30 (1) F a2,

WIA(z) = —=
m neN neN

The result is an element of the continuous (complex) Fock space.

We now aim to generalise this definition to higher dimensions and for mesh width h # 1.

3 Discrete Weierstrass transform on mesh with width h # 1

In [11], we worked on a discrete grid with mesh width h = 1. We ask ourselves how the value h influences
the definition and results of the Weierstrass transform. What will happen if h tends to 07

As seen in the preliminaries, the mesh width h does not appear explicitly in the definition of G. It does
however appear in its density function.

To calculate its density function, we will need an expression for the even derivatives of dq:

2k
%6 = Z < )5—(k ih

i=0

B i (71)k+z 2%k 5.
B n2k \i4 k)"

i=—k

=2 i+k)o"

i=—k

Then

-3 5
k=0

ok (G.chm)



0 2kvf4’2k
_ " (e

2k
(2Kk)12F ! 9%

k=0

SV | & ()R 2k 5
*szk! 2. n2k \i4 k)"
k=0 i=—k

n+l 20
*\ﬁz Z Qéglhu <n+€> Onn

nezZ | =n \

1
=2 ZI cxp ( h2>6”h’ with n = %

neE”Z

Here, Z,,(2) is the modified Bessel function of the first kind. Therefore, in a point © = nh € Zj, the value of

G is
V2T 1 1

and thus the density function (in general dimension m) reads as
 (V2m)m m\ 14 1 T

We again proceed in dimension m = 1. To analytically investigate the asymptotic behaviour of the Gauss
distribution as h — 0, we use formula 9.7.7 from [14]:

(21)

1
T, (vz) = exp( 1/77 1+ Z Uk =v1+224+In (

e V=)

which describes the uniform asymptotic expansion for large orders v and is valid for z in the sector ’arg(z)‘ <
5. The terms Uy(p) are polynomials in p = (1 + 22)_% of degree 3k, recursively given by

Uo(p) =1
Ueni(p) = 570~ )00 + 5 [ (1= 52000y

0
As the density function of ¢ is even in its argument we may apply it for our case in both positive and negative
r—axis. As seen in figure 1, cases for h =1, h = {5 and h = 1—00 approach the continuous Gaussum This is
clearly confirmed by implementing formula (21) 1nt0 the definition of g with v = ¥ and 2z = E' Taking the

limit for h — 0 gives exp (——2) the continuous Gaussian distribution.

Another way to visualise the effect in G of h approaching 0 is given in figure 2, where we let h approach 0
n (20) Be aware that = nh, hence the absolute value of = increases with the same factor as h decreases,
resulting in a rescaling of the plots and x-axis. As h — 0, all points of the grid collapse to the origin, hence
g tends to 1.

The discrete Weierstrass transform was defined based on the transform of the Hermite polynomials. Because
there is no explicit appearance of the mesh width A in formulas (16), the outcome of the Weierstrass transform
will not change, as h tends to 0.

(Ho(€0)G, e~ /2402 1)) = (—1)[Blom e /27802 1))
= (-1)[8le=2n G, Z fzzjm
=0 v




[— h=1 ——p=1/10

h=1/100 - --- exp(-p2/2) |
Figure 1: Asymptotic behaviour of discrete Gauss distribution for h = 1,h = %, h =
continuous Gauss distribution.
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Figure 2: Density function of discrete Gauss distribution for h = 1,h = %, h =

1 .
Too respectively.



= ()l e g et
i=0

= (-plele=2 Y Za o)
=0

=(-1) [5]e—2"/2 Z j(z_ﬂn)ﬁav f}i;n[lb

i=n

n 2 s ZjJrn j
= (bt 3 2@ g
7=0

_ P i (2)!
= (nLEe: ;O(Zj)!mzjj!

=(-1) %] Vor 2™,

Also in [11], we found that the discrete delta function is an element of the discrete Weierstrass space, defined
as the the completion of the right Clifford module of Hermite polynomials in £ in the norm defined by the
inner product

(£,9) = (£© L 9(O1) = (FE)C, [1(9(€)T). (22)

with f(§) and g(&) the Taylor series expansions of the discrete functions f and g.

4 Weierstrass transform in dimension m = 2

As a direct generalisation of the discrete Weierstrass transform of discrete Hermite polynomials, studied in
[11], we find

Definition 4.1. The definition of the Weierstrass transform of the n—th degree generalised Hermite polyno-
mial in dimension m is

— |2

W[Hn,m,rpr}(é) = mim <Hn,m,rPrGa exp <2 + §RZ> [1]> y

m - - . .
where z = ijl zje; is a continuous complex Clifford variable.

In order to fix ideas and limit notations, let us start in dimension m = 2. It is furthermore clear that,
amongst other, all discrete polynomials are in the span of the generalised Hermite polynomials.

4.1 Recurrence relation for the degree n of the Hermite polynomial

Our first goal is to express W[H,, 2, P-](z) in terms of W[H,,_12,P,](z). This is mainly based on the
recurrence relation of the generalised Hermite polynomials (15), however some technical lemmas will finish
the trick.



= 21exp< |2§| ) <( V'OH,—1.2,.P.G z (5‘7!;) [1]>
( 1)n+1 —|Z|2 [e%e} 1
B ( 2 ) S (Hu120 PG (6 Ruz + £ Roz) 101 + 02
. 1=0 29)
-1 n+1 _ 00 1
= 2)7r oxp ( |§| > l}% il <Hn1,2,TPrG7 (&1R121 + &Ro2)'[1] (a{ + a§>>

—1)n+1 _
- o () £ 52 () (120 e
7r
=0 5=0

+ (Hoor20 PG RIS R 71 ]8£>}

. l .
Lemma 4.2. Vj, k,l € N: If j and k have equal parity, then & R¥[1] (8:) = eFolel[1].

Proof. 1f j and k are even, then R¥ = 1, hence apply calculation rule (5) to find

&Rk () = €l (af) = alelln) = katelln)

If j and k are odd, then &/[1] = (fg)j [1] and R¥[1] = R;[1] = e;[1]. There are two options for the dirac
operator 9;, keeping in mind that §? = <8ZT )2 is scalar. If [ is even, say 2[, then scalar
er) ()" =glet] (91)" = (91)" (&) el = est?elln).
If [ is odd, say 20 + 1, then
R (o) = o (le}) = o7 (83 G ) 1] =02 (e0rg’1)) = 02l 1)
O

Remark 4.3. [t should be noted that interaction of different indices i in &;,0;, R; does not affect the order
or involutions T of operators in the previous lemma. They can only introduce a change of sign.

We continue from (23)

_1\n+1 1.2 o . . .

=0 j=0 cej—
g&it

+ <Hn 1,2, PG, §]R1Z1-el2 J 62§l_j Zé J[1]>
——

(1—j)ey 7t

_1\nt1 _ ! o
() [ (i)

1=0 =

-1

+Z<l.><l—j><Hn 12 PG E R ey g 2y f{ﬂ>]'

i=o M

10



Lemma 4.4. For any index i =1...m and any power j € N,

el 1) = el RI1)

Proof. The aim is to bring the factor eg ~!in the left hand side through the basic discrete polynomial flj -1
in order to re-write it as the operator Rffl, acting on [1]. However, e;§; = dei. If j is even, j — 1 is odd,

K3

J-1 , .
which means <§T> [1] = &7 "[1). If jis odd, j — 1 is even and e/~' = 1. In both cases, the lemma is

proven. O

Let us proceed with (24)

_1\n+1 _ 2 o] l
W[H,2.P/](z) = %exp <|Z> Z%‘ Z( )]6121 <Hn 12, PG, fj IRJ ! j 151 ]Rl = J[1]>

2 )=
-1 | |
+ Z( > e <Hn 12 PG E RIS R Jflzé—]fl[lb
7=0
(*1)n+1 < 2| ) ilzi (( ) ;
= 7 = Jj+ Dzier + () (I — j)zen
2T 2 o = O ! j+1 ]

><<Hn 12 PG G R 2GRy T 1[1]>

(1! S 1 i1 gt 1o
= Texp ZZ ( . >(2161 +22€2) <Hn 127«P G ijl 1 2 J- Rziji 227J7 [1]>
=1 ]:O

—1 n+1 e
_ v ;ﬂ exp ( ) Z;
[H

= (=1)"*!(21€1 + 2002) W

(z1€1 + 22€2) <Hn—1,2,rP7’G; (&GR121 + 523222)l71[1}>

n—1,2,r T]( )
(25)

We have proven

Theorem 4.5. For the discrete Weierstrass transform of the discrete generalised Hermite polynomials in
two dimensions, it holds that

WI[H, 2, P/|(2) = (=1)" (z1€1 + 2262)W[Hy—1,2,- ] (2).

Let us check this theorem by looking at some examples for low values of n.

Example 4.6. For r = 0, the results of the general definition 4.1 for the discrete Weierstrass transform
must coincide with the former definition of [11], i.e. the transform of the n—th Hermite polynomial should
be the n—th power of

underlinez. Let us check this form =0 andn=1. As Py =1, we will omit this notation.

2 o0
= %exp <_|;| ) Z % <G7 (&1R121 + &Roz0)'| ]>
=0
_1exp<|z|2>§:12l:<l>< g]RJ J l JRl gl ][1]> (26)
2 2 s =0
1.2 oo l
.
=0 " j=o0 M



The Gaussian distribution vanishes when acting on odd powers of £[1], see (12). Hence, the only remaining
indices are those where j and [ are both even.

1 _‘§|2 X1 (2 25 _21-25 25 42§ 21-2j 221—2j
W(Ho2,0](z) = %GXP< 5 ) z wz 9;)%1 *2 <G’€1 ey & [1]>

N 2P\ 21 s (20N oy an; (2)! (21— 2)!
- <2>Z(2l)! (21')'2f 2 ) (&)

Example 4.7. The next example uses the same calculations as seen in the general proof and again the fact
that the Gaussian vanishes when acting on odd powers of £[1].

WI[H:20](2) = iﬂ exp <_|Z| ) (H12,0G, exp ((Rz) [1])

2 2
1 —|§|2 — 1 l
= 2—exp 9 Z ﬁ <— (81 +82)G, (flRlzl +§2R222) [1]>

=0 "~
2 00 l

= iexp —lz Zl ! <G ¢RI l‘le‘jzl‘j[l]aT>+<G ¢RI l—le—jzl—jmaT>

o 9 l:O“j:Oj 1§11 2160 "y 29 1 611218 T hig T 29 2

1 2P\ =1 | (1

P —_— il

= 271_exp< 5 );l' Jz::l (j)z{zQ 7 <G,ej1£{ & Teq 3[1]>

-1

INLid=i_ (G deld—i-14-i

"‘Z j 21z (1= J) (G, &le1és ey *[1]

j=0
1 —|§|2 - 1 L2041 2§41 2025 . 25 -20—2§
27rexp( 5 );(2[4—1)! j;) 9 + 1 207 2y 61(2j+1)<G,§1 & [1]>

l
20+ 1 ; iy . P 21—2i
+;O< % >sz2§”1 2Jeg(2l+1—23)<G,g?§§l 2J[1]>
00 l . .

_ *|§|2 1 2041\ 2541 21-2j . (25)! (20 —2j)!
eXp( 2 ; 20+ 1)! ; 0j 1) 2 it

l . .
Z 204+ 1\ 95 2141-2; L (29)! (20 —27)!

oo 1 1
2541 _20—-2j5 25 _2l+1-2j5
Z Z 2L51(1 — j {le 7 etz j€2}

(28)

The end results were calculated with a computational program.

Based on the above calculations in examples 4.6 and 4.7, together with the results of theorem 4.5, we have
an explicit expression for the n — th degree discrete Hermite polynomial in dimension 2 with r = 0.

12



W(Hzg 2,0](2) = (—1)" (2161 + 22€2)°",

29
WIHak11.20](2) = (=) (2161 + 22e9)?FFL. (29)

Having found a recurrence relation for the degree n of the Hermite polynomial, we seek for an analogous
formula, expressing the Weierstrass transform of H,, 5 P, in function of H,, 2 »—1p,. ;.

4.2 Recurrence relation for the degree r of the monogenic

In what follows, results will be proven for the basis monogenic polynomials, and hence we will use the notation
P, for (&2 — &1)(§&2 + &1)...(§&2 £ &1). Let us furthermore introduce the notations P, and d.

T times

Notation 1. We denote
Pr= (& — &) (& + &) (&2 £ &),

r times
Po=(L+&)(&—&)(&LFh)
r times
and
0= 0o+ 01,
- (30)
0= 82 - 81.
In combination with the discrete Gauss distribution, we know that 0P.G = —(P,.G, which we now can write
as

OP,.G = —£P.G = —P,,1G.

We now try to exploit this relationship to find the recurrence relation we are looking for. Having in mind
that Ho = 1,Vm,Vr', we calculate W[P,|(z) = W[Ho,2..Pr](2).

_ 2\ &1
WI[Ho 2, Pl(z) = —exp <|2> Z'Z(j>< (81 4 02) P, 1 G EIRI TR T AL 1[1]>
=0  §=0
Ziexp _|§j 001 ~ (1 < G€]RJJZJRl]l][](8T+aT)>
o 2 N\ Nt 12
=0 7=0
S mlzl:l < G, elel 12 ”R””[l]>
or P\ T TN, - 2
=0 Jj=1
-1 l )
(o snttini
j=0

) -1
1 z 1 l
_ _ 1= - . j]jl]ll]lljl
_2ﬂ_exp< 2)?_1 i 0(j+1>(J+1)z161< G, RIEITIR, 1)

Jj=

-1

3 (1) 0 e (ProsGo g R R )

=0

o l
= %exp < H ) Z 111 ( ) z1€1 + 29€3) <PT_1G, (&R +§232Z2)z[1]>

= (z1€1 + 22€32) W[HO,2,7‘71PT71](§)7
(31)
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P,
s 1 0 1 2 3
Hy
0 1 (z1€1 — 22€2) (z1€1 + 22e2)(21€1 — 22€2) (z1€1 — 22€2)(21€1 + 22€2)(21€1 — 22€2)
(z1€1 + 29€2) (Zlelfzsz)(ZIF1+ZzP2> (z161 + 29€2) (2161 — 29€2)(21€1 + 29€2)
1 (2161 + 22€2) (z1€1 + 22€2)(21€1 — 22€2) (2161 + 29€2)(21€1 — 2262)(21€1 + 22€2) (z1€1 + 2262) (2161 — 22€2)(21€1 + 22€2) (2161 — 22€2)
2 —(z1e1 + 2262)2 —(z1€1 + 2262)2(2191 — z9e2) | —(z1€1 + 2282)2(2161 — zpe9)(z1€1 + 2202) | —(z1€1 + 2262)2(2’161 — z9€9)(z1€1 + 22€2)(21€1 — 22€32)
3 —(z161 + 2262)° | —(2161 + 2262)% (2161 — 22€3) | —(21€1 + 2262)3 (2161 — 2202) (2161 + 22€2) | —(21€1 + 22€2)° (2161 — 22€2) (2161 + 22€2) (2161 — 22€2)
4 (z1e1 + 2262)T | (2161 + 22e2) (2161 — 22€2) | (2161 + 22€2) (2161 — 22€2) (2101 + 22€2) | (2161 + 2262) (2161 — 22€2) (2101 + 22€2) (2161 — 22€2)
5 (2161 + 22€2)° (2161 + 22€2)° (2161 — 22€2) (161 + 22€2)° (2101 — 22€2) (2161 + 22€2) (z1€1 + 22€2)° (2101 — 22€2) (2101 + 22€2) (2161 — 226€9)

Table 1: Weierstrass transform of generalized Hermite polynomials in two dimensions.

where we used the same methods as in (25). Analogously, it is easily checked that, with the new notation,
OP, = 0. It then holds that o B
OP.G = —(& — &) PG = —PaG,

so we can calculate

2
Wik P,l(2) = o exp (—'Z' ) ) (02— 0P sG R R )
) (PG i R ] - o)

Z% Z(j>3< PraGee] 2 Ry U2 )

|
[\
=1"—‘
(e}
.
o
|
M‘E
[ V]
\_/
T
(e}
<
i
I

j=0 J
1 |Z| 1 G RIS pla1 i1
= 5. OXP Zﬁ Z 321€1< r—1G, & 27 % []>
=1 j=1
-1

- (é)(l—j)Z2ez< 1 G R Ry 2y )

1 l2]° | o= 1 L1 plg=1 =i
2p< )Z“ ()Zlel—zm><m@£m Ry )

= (2161 — 22€2) W[H0727,«_1P,._1](§).

(32)
We conclude the results of the previous calculations in the next theorem:
Theorem 4.8. For the discrete Weierstrass transform in dimension 2, it holds that
WI[Ho 2, P;](2) = (2161 + 22€2) W[Hp2,,—1Pr_1(2)]

W[Ho,Q,rPr](z) = (2161 - 2262) W[HO,2,T—1157’—1K§)-

Combining theorems the recurrence relations in 4.5, 4.8 and the trivial example in (29), we can calculate the
Weierstrass transform of every generalised Hermite polynomial in two dimensions, see table 1. For example:
W(Hs23P|(2) = —(z1€1 + 22€2)% (2161 — 22€2)(21€1 + 22€2) (2161 — 22€2).
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The previous method in section 4.2 might be perceived as quite artificial. It is, in addition, not directly
extendable to higher dimensions, because it relies on the specific representation of the basic monogenics P,
if m = 2. It gives us, however, a good idea of the results when m > 2. Another approach is needed when we
enter higher dimensions.

5 Weierstrass transform in dim m > 2

This section will follow the same structure as the previous one. The first subsection will be straightforward,
however the second subsection will outline an alternative expression for the Weierstrass transform which
implicates the recurrence relation found above.

5.1 Recurrence relation for the degree n of the Hermite polynomial

Definition 5.1. The definition of the n—th degree generalised Hermite polynomial in dimension m is
—m —|z/”
WI[H, m.Prl(z) = V21 Hy . PrG,exp — +&Rz | [1]).

All notations, calculations and results from subsection 4.1 apply for m > 2. However, due to the overload in
notations, we limit ourselves to the results.

As a direct generalisation of theorem 4.5, we find

Theorem 5.2. The discrete Weierstrass transform of the discrete generalised Hermite polynomials in m
dimensions is recursively given by

WIH i Pr](2) = Z 2j€j (—1)"*t WIH 1m0 Pr] (2)- (33)
j=1
To start the recursive definition, it can be easily calculated that

W[Ho,m,()} (é) = ]-7

WIH mol(2) =) zje;.
j=1

5.2 Recurrence relation for the degree r of the monogenic

To generalise the recurrence relation of the Weierstrass transform of H,, 5 in function of H, 5 ,—1 in section
4, we will first enlist some examples to fix ideas. Let n = 0 and let us calculate the discrete Weierstrass
transform of the basic spherical monogenic polynomials P,.. Therefore, let us rephrase some important
notions.

Theorem 5.3 (Cauchy-Kovalevskaya extension for discrete monogenic functions, [12]). Let f be a dis-
crete function in the variables T, ..., %y, defined on the grid Z™~' and taking values in the algebra over
{ef,ey,...,ef e }. Then there exists a unique discrete monogenic function F in the variables 1, ..., T,
defined on the grid Z™ and taking values in the algebra over {ef‘, el,...,et e}, such that the restriction

of F to the hyperplane x1 = 0 equals f. This function F is given by
> N (x
CK[f)(z1,.-2m) = Z%ﬁe(@,...,xm),
k=0

where fo = f and fry1 = (—l)kJrl 27:2 0; fie-
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Theorem 5.4. The set
{CKKQ] |Q: (a27"'7am)7052+--~+05m :T}

constitutes a basis for the set of discrete spherical monogenics of degree r in dimension m.
Let us introduce some notations.

Notation 2. We denote

o i =& — &,

o i =& + &,

® Y =z — 21,

® yi=z+ 2z,

o (my,-..m, )T means that every even occurrence (i.e. second, fourth, sixth,...) of n; is replaced by 1j;
and vice versa. The composition of E,. , ... F,, 1is denoted in short by E,, ., .

e Analogously, (mi,, ...m, )97 means that every odd occurrence (i.e. first, third, fifth,...) ofn; is replaced
by 1j; and vice versa. The composition of O, ...O,, is denoted in short by Oy, ., .

o Fora=(ag,...,aqn) € N1 €2 =¢52  £9n. The degree of the operator €% is k = ag + ... + Q.

o With every o, we associate the k—tupple (l1,...1x), with every l; € {2,...m}, l; < ifi < j and the
number of times that j appears in (I1,... 1) is a;.

From [15], we know that

o asg!. .. apy! ’
CK[E2) = === 30 sen(m ey )™
’ 7(l1,..1k)

where the sum runs over all distinguishable permutations 7 of (I1,...l). sgn(w) is +1 or —1, according to
the sign of the permutation .

Example 5.5. For m =2, we find

CK[&] = (&2 — &) + &) (&£ &) = P

r times

This P, is unique, up to a scalar multiplication. Hence the dimension of the discrete monogenic polynomials
of degree r in two dimensions is one.

With these notations, we can rewrite, for example, the result of example 4.7:
WIH1 2,0](2) = Wi2] = 4.

In the next section, we will give some examples of the Weierstrass transform of CK[£9], for low values of
la|| = r. This can be interpreted as the Weierstrass transform W[Hg ,, CK[£2]], as any Hermite polynomial
of degree 0 equals 1.

5.3 Examples

Example 5.6. ||o]| =1
CK[&%] = n;, when £ = (j). Hence P, = & — & Having in mind that §G = —0G, this leads us to the
calculation of example 4.7.

Example 5.7. ||a|| =2
Two combinations are possible (i,j # 1,4 # j):

1' Z = (Z?])7
2. 4= (5,7)-
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In the first case, CK|[£%] = % (nmj — 77j77i) = &&= 6& +&6&. This will result in the Weierstrass transform
1 (yiy; — yjyi). For ezample, take m =3 and £ = (2,3).

W23 — &3+ &1&2] =

3
2

e ("2’" ) (62646 exp (€R2) [1]) — (616G exp (6R2) 1]) + (1626, exp (€R2) 1])]

The three terms in the RHS are completely similar, so we will only work out the first term.

(eaGepEr) 1) =Y 7 3 ( L

ivada <§2§3G, 5{1 R.{l Z{lfézR%Z ]3RJ3 ]3 >
£=0  ji+ja+jz={ L2

8283G 5.71 R]l ]16%2RJ2 JSRJS J3 >
G,fjl lezil %2Rj2 2£§5R13 3 6T8T>

G €J1 Rh 182552 R%é Z%Q 636%3 R?);S Zij)"a [1]>

Il
(e
|~
/_\/\C_\/\
.
o~
; =
\_/ N~ ~— \_/
P P PR

jojs <G §J1R31 J1§J2 1R]2 J2€J3 1RJ3 J3[1]>

(20)!
(251)1(2j2 + 1)1(243 + 1)!

(272 +1)(273 + 1)

I
ngk
g

M

]1+J2+J3—f
<G, 5%]1 R2J1 231§2J2R2J2+1 2J2+1§2]3R2]3+1 ?2)J3+1[1]>
— 1 (%) 271 _2ja+1 233+1 < 251 272 27
=D o . 217z ezes (G, 671 657%¢ J3[1]>
2oy . LR Ut
Jitjetis=-"3=

1 2j1 242 +1  2js+1 (271)! (242)! (253)!

= : z eses
2 L @iN2g) 2! T T TR 201 2d2 5,1 2ia )
L= 0J1+j2+]3—

J J J
- 22 1 (22 1 (232 1
=2 2 5 ail) e ) g
€:0j1+j2+j3=6772 1 v 2 > 3 ¥

2
= exp D) Z9€9223€3.

During this calculation, we used this lemma:

Lemma 5.8. Leti e {1,...,m} and let j € N. Then it holds that <G,§gRi[1]> =e; <G,§g[1]>.

Proof. First, note that ffRi[l] = fgei[l]. To switch the order of & and e;, remark that &e; = el-f;f. However,

if j is odd, f;r] [1] = €/[1], so this case is covered. If j is even, one can write {ﬁ;r V1] as €[1]— 567 [1)(e] —eh).
But as the Gaussian distribution G vanishes on odd powers of £, we can also cover this case. O

The result of the three terms together will then be

wik

9 (m2ms — 773772)] = zpeg23€3 — z1€123€3 + 21€122€2

3 (Y23 — Y3y2) -
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In the second case, CK[{%] = n;1; = ff —261&5 — €2, which will give y;y; as a result. Let us verify this for
m=3 and { = (2,2).

WIES — 26,6 — €] =

- exp (';'2> [<5§G,exp (ER2) [1]) — 2 (616G, exp (ER2) [1]) — (€3G, exp (¢Rz) m}}

o>

Using the result of the previous calculation, we only need to know <§§G, exp (ERz) [1]>

(GG cr M) =3 1 (8.6 Rk RE 56 R 1)
<(02 +1)G ,5{1R{Iz{1£§2R§2z§2£§3Ré3z§3[1}>
<G, & RI A R R AP R 1)(0) + 1>>
) (G Ry (03 + Ve R el R )

g o o
(i~ 1) (G Ry o 42 R el R 1)

<G €I RJ A €32 RI2 207 €0 RIS 2001 }>)

o0

1 20)! s 2s 12 2 2]

_ Z L Z : '( ’)‘ — <2j2(2j2 _ 1) <G 5?1]{%]1 2]1§2J2 Qjozzghé-ngRg]sZgjs [1]>
(271)1(272)!(273)!

" j1tdatiz=¢t

_|_
s

251 p2J1 241 ¢2j2 p2J2 ,2j2 ¢273 p2j3 273
G, &7 R 21 7 Ry 257 6570 Ry 237 (1]

— 1 (QE)' 27 271 ¢2J2—2 p2j2 242 +27 2j3 27
= Z _— Z e (2j1)'(2j2 — 2)'(233)' <<G glle J1 Jlf J2— R2J2Z2J2§333R3J323]3 [1]>
D jitjatis=

+ <G, ﬁm Rfjl ijl fgm joz Z;aﬁ ggjs jos Zgjs [1}>)

00 1 9 21 241 w222 2jn +24a s
N Z Z (271)1(272 — 2)!(243)! (Zz <G,§1] 27T 272857 [1]>

£=0 j1+j2+js=¢
<G 6%]1 2J1§2J2 2]25233 2J3 [1]>>

=224 1= (2e)2+1.

We used lemma 2.1 and lemma 4.2. As a result, Wnaija] = WI[E3 — 2616 — &) = 23 +1—2z1€120e0— 27 — 1 =
z% — 2z1e129€3 — Z% = Ya2Ya.

Example 5.9. ||af| =3
Three combinations are possible

1 0= (i,j.k)
2. L= (i,j,5) or = (i,4,5)
3. 0= (4,4,7)
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For the first case, CK[§%] = 3 (nimjne — nymink ~+ 1mens — em;mi — nienj + mkmin ). Using the same rea-

soning as in the previous examples, this is simply transformed into % (yiyjyk — YiYilk + YiYRYi — YkYiYi — YRy, + ykyzy])
The second case splits up in two sub cases, however both are identically calculated. VW [C’K[{g” = %W [mﬁmj — 051 + 1N
YiliY; —YiY;Ui +y;¥i¥i. Therefor, we need a combination of previous calculations. Finally, CK[{;’] = ;1051

becomes zjZ;z;.

The structure of the Weierstrass transform of the basic monogenic polynomials CK[£2] is clear: every factor
n; or 1j; translates into y; or ¢, in the same order. Looking at lemma 2.1, every power of ;, acting on G,
corresponds to a polynomial of the same degree in 0, acting on G. This polynomial will result in the same
polynomial in zje;. Another way to obtain this result, is by bringing the powers of £, acting on G in the left
hand side, to an action from the right on [1] in the right hand side.

Now that we know what to expect, the only thing that remains is to prove the result. Therefore, we have
another look at the situation in the classical setting.

It is now clear how to calculate the discrete Weierstrass transform of discrete monogenic polynomials. There
is no particular need for a recurrence relation on the degree of that monogenic. Although we now know what
to expect, these results are not proven yet. If we want to do so, we have to look for another approach, which
is discussed in the next section.

6 Alternative approach

In the classical setting, the Weierstrass transform has a an alternative definition. However more informal, it
leads to certain advantages such as the idea of the inverse of the Weierstrass transform [16].

Definition 6.1. The continuous Weierstrass transform can be written as

Wil = exp (502) o) = 3 02 o).
j=0

This definition plays with convergence of the series. There are functions that are Weierstrass transformable,
but for which this series does not converge. For details, also see [16]. Nonetheless, it inspires us to look for an

alternative approach for the discrete Weierstrass transform. Therefore, let us calculate exp (—%2) " P.(8)[1],

with P, a monogenic homogeneous polynomial of degree r (as is CK[£%]).

For the even case, n = 2/

exp (—2) G

(_1)j anEQEPT [1]

124

I
.
~ |l M&
[=)

(N YT r+ )T +L) 5
S tarrrgoprari-gt ol
¢ )
= (D)7 TU+r+3)T(+1) 5
= 2 T TG BTG Ty € Pl
¢ ., VA F(€_|_m_|_r) )
_ (_1\¢ q\iol—i T+ 5 47)
=(-1) i:O( 1)"2 (i)p(iJrr;H)& P 1]

= (_1)€ H%,m,r(g)Prm'
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For the odd case, n =20+ 1

—1) ..
(J'2] 82J52Z+1PT[1]

2
exp (i) SR GINE

.
~ 1M~
o

(=1)) HT{l+r+Z+1)T(+1)

2041-2j p 1]
T Tlrr 2 -+ DT+ 1-)° (1]

<.
(e}

~

()= T(l+r+Z+1)T(+1)

(Z—Z)'Ql ZF(’L+7’—|— +1) (Z+1 §2i+1pr[1]

O

i=

)
L m r )
— (_1)5 Z(_l)z 9t—i <€> 1—\(6 + +r+ 1; §2H~1PT[1]
=0

(i+%5+r+1
= (_1)e HQ@-&-LW,T(OPTH]'

Together, we see that
0? n
o <‘2> P (O] = (~1)F Hy o r (O PO

or thus

2
exp (i) o ()P (O)[1] = (~1) 126" (6)]1]

After replacing the discrete variable ¢ into the continuous variable z = > | z;e;, we see that

j=1

1. For r = 0, this is exactly the result obtained by calculation with the original defintion.

2. For n = 0, this is exactly the result obtained by direct calculation of the examples in the previous
paragraph.

As the generalised Hermite polynomials form a basis for the of the space of functions which are Weierstrass
transformable and as the result obtained by the original definition 4.1 is identical, we can state that this
alternative approach makes sense and is valid to work with.

This is a short, but clear way to deduce the structure of the discrete Weierstrass transform of the (generalized)
Hermite polynomials.

Conjecture 6.2. The discrete Weierstrass transform of the generalised Hermite polynomials is given by
W [HpmPr] (2) = (-1)!212"P,(2) (35)

where z =

=1 Zj€j.

7 Conclusion

We established two generalisations of the Weierstrass transform in discrete Clifford analysis, based on the
initial definition from [11]. First, we investigated the consistency of the definition with the classical setting, by
considering a mesh with width h # 1 and letting h tend to zero. The discrete Gauss distribution approaches
the continuous Gauss distribution as the mesh width approaches zero. Furthermore, we proved the structure
of the discrete Weierstrass transform in dimension m > 1. This was done based on the recurrence relation of
the discrete generalised Hermite polynomials and on the alternative definition in the classical setting.
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