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Abstract. A full classification (up to equivalence) of all minimal blocking
sets in PG(2, 9) was obtained by computer. The resulting numbers of
minimal blocking sets are tabulated according to size of the set and
order of the automorphism group. For the minimal blocking sets with
the larger automorphism groups explicit (geometric) descriptions are
given. Some of these results can also be generalised to Desarguesian
projective planes of higher order. We also give a complete list of all
blocking semiovals in PG(2, 9) (up to equivalence).
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1. Introduction

A blocking set in a finite plane is a set B of points such that every line of
the plane is incident with at least one point of B. A blocking set B is called
trivial when it contains an entire line. It is called minimal if no proper subset
of B is a blocking set. Given a set B, we define the weight wB(`) of a line `
w.r.t. B (usually denoted w(`) if B is clear from context) to be the number
of points of B incident with `.

Two blocking sets are called PΓL-equivalent if there exists a collineation
of PG(2, q), i.e., an element of PΓL(3, q), mapping one to the other. Two
blocking sets are called PGL-equivalent or projectively equivalent, if there
exists a projectivity, i.e., an element of PGL(3, q), mapping one to the other.
The subgroup of PGL(3, q) that stabilises a blocking set B is the projective
automorphism group of B, denoted by GB (or G if B is clear from context).
The subgroup of PΓL(3, q) that stabilises B will be called the collineation
group (or: full automorphism group), denoted by ΓB or Γ.

We shall write Fq for the finite field of order q = ph, p prime. We
will usually, but not exclusively, work over F9 where the field elements will
be written as a + bi where a, b ∈ F3 and i2 = −1. Note that (i − 1)2 = i
and therefore i − 1 is a primitive element of F9. The map x 7→ xq is the
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Frobenius automorphism (of the field extension Fq2/Fq) and we shall often
write x̄ instead of xq. The norm (resp. trace) of a field element x is given by
N(x) = xx̄ (resp. T (x) = x+ x̄).

The main result of this paper is that we now have a complete list of
all minimal blocking sets in PG(2, 9), up to equivalence (i.e., 15 429 238 in
total). This classification was obtained by computer.

The algorithm used is briefly described in Section 2 below. Section 3
provides some overview tables listing our results according to size and au-
tomorphism groups. Sections 4 and beyond give some explicit geometric de-
scriptions of the more ‘interesting’ cases, in particular those with a full au-
tomorphism group of size at least 42.

2. Generation algorithm

The classification of all minimal blocking sets in PG(2, 9) (up to equivalence)
was produced by a computer program1 (written in C++) using a generation
algorithm that is fairly straightforward:

Call a set B a pre-blocking set if every point of B lies on at least one
line ` such that wB(`) = 1. Note that a subset of a pre-blocking set is again
a pre-blocking set and that every minimal blocking set is also a pre-blocking
set. To generate all minimal blocking sets it is therefore sufficient to construct
all pre-blocking sets point by point and stop whenever a pre-blocking set is
reached that is a true blocking set, i.e., when every line of the plane has
weight at least 1.

The main difficulty in this generation process is to ensure that only a
single (pre-)blocking set is generated for each equivalence class. For this we
have used the well-established technique of canonical augmentation [17].

Although we use essentially the same algorithm as in [8], the new imple-
mentation for the particular case of PG(2, 9) turned out to be significantly
faster. The earlier implementation represented points and lines by their co-
ordinate triples and used a matrix representation for projectivities, while the
most recent version represents the plane as a perfect difference set and uses
a permutation group representation, employing Nauty [18] for isomorphism
checks. (It is however not clear whether this change in representation is the
main reason for the increase in speed.)

Using the latest version, the full classification of the minimal block-
ing sets of PG(2, 9) takes three days of computer time. Preliminary tests
have shown that using the same program for PG(2, 11) is not feasible for
two reasons: the current program would probably take more than 50 years of
CPU-time, and maybe more importantly, the total number of non-isomorphic
blocking sets in PG(2, 11) will be too large to store all of them for further
processing. The number of blocking sets of PG(2, 11) that have a non-trivial

1Source code can be found at https://caagt.ugent.be/bsets/
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automorphism group will probably be small enough to be practical, but gener-
ating these without also generating those with a trivial automorphism group
will require further research.

3. Tables

In Table 1 we present a full classification of the non-trivial minimal blocking
sets in PG(2, 9), up to equivalence. For each of these sets B we have de-
termined the full and projective automorphism groups. Each column in the
table corresponds to a different set size |B|. The second row (labelled #PGL)
denotes the number of PGL-inequivalent minimal blocking sets of that size.
The third row (labelled #PΓL) denotes the number of PΓL-inequivalent mini-
mal blocking sets of that size. For each set size |B| we specify a list of possible
full and projective automorphism group orders (denoted by |Γ| and |G|, re-
spectively) and for each of these, the number (#) of minimal blocking sets
with a full and projective automorphism group of that order. (For example,
there are 5 inequivalent (with respect to PΓL(3, 9)) blocking sets of size 17
with a projective automorphism group of order 4 and a full automorphism
group of order 8.)

Table 2 provides references to geometric descriptions for the minimal
blocking sets that are treated in this text, including all those with a full
automorphism group of size at least 42. Each line of the table refers to a
description of (at least) one blocking set of given size and orders of the auto-
morphism groups. Note that for smaller automorphism group sizes this table
is not complete: for example there are 2 inequivalent blocking sets of size 24
with |Γ| = 12 and |G| = 6, but only one is described by Theorem 5.5 with
|S| = 2.

4. The icosidodecahedron

It is well known [12, Lemma 13.9] that a blocking set can be constructed
by taking the dual of the secants of a complete arc. There are only four
projectively inequivalent complete arcs in PG(2, 9) ([12, p386], [27, p100]), of
which two provide a minimal blocking set with this construction. One is the
unique blocking semioval of size 21 which will be discussed in Sections 8 and
9 (Theorem 9.1). The other is presented in [22] where the minimal blocking
sets of size 15 in PG(2, 9) are classified. We now determine the stabilizer
group of this minimal blocking set.

It is well known [3] that PG(2, q) over a finite field of order q = ±1 mod
10 admits a group of projectivities isomorphic to the alternating group Alt(5).
This group can be generated by the following elements of order 2, 3 and 5,
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respectively:

g2 : (x y z) 7→ (−x y z)
g3 : (x y z) 7→ (y z x)

g5 : (x y z) 7→ 1

2
(x y z)

 1 −φ−1 φ
φ−1 −φ −1
φ 1 −φ−1

 .

where φ = 1+
√

5
2 . This group acts very much like the icosahedral group on the

surface of the real 3-dimensional sphere where antipodal points are identified.
For that reason we shall borrow some of the terminology of Archimedean
solids below.

The group has an orbit O6 of six points (corresponding to the vertices
of the icosahedron on the real 3-dimensional sphere) having the following
coordinates:

(±φ, 0, 1), (0, 1,±φ), (1,±φ, 0),

an orbit O10 of ten points (the dodecahedron), with coordinates

(±1,±1,±1), (±φ2, 1, 0), (0,±φ2, 1), (1, 0,±φ2)

and an orbit O15 of 15 points (the icosidodecahedron), with coordinates

(1, 0, 0), (0, 1, 0), (0, 0, 1),

(1,±φ2,±φ), (±φ2,±φ, 1), (±φ, 1,±φ2).

If q is a square, Alt(5) can be extended to Sym(5) by adding the
collineation f : (x, y, z) 7→ (ȳ, x̄, z̄). We have φ̄ = −φ−1 and it is easily
seen that f leaves all three orbits O6, O10 and O15 invariant.

We may specialise the above to the case q = 9, with φ = −1 − i to
obtain the following

Theorem 4.1 ([22]). In PG(2, 9) the set O6 is a complete arc and the set O15

is a minimal blocking set.

It now easily follows from the above that the projective (resp. full)
automorphism group of O15 is Alt(5) (resp. Sym(5)), a maximal subgroup of
PGL(3, 9) (resp. PΓL(3, 9)).

5. Blocking sets derived from a unital

Let U denote a unital in PG(2, q2). Recall that lines intersect U in either 1
or q + 1 points and are then called tangents or secants to U , respectively.
Through a point of U there are one tangent and q2 secants. Through a point
not on U there are q+1 tangents and q2−q secants. This makes U a minimal
blocking set of size q3 + 1. The q + 1 tangents through a point P /∈ U define
q + 1 points on U ; these points are called the feet of P and together they
form the pedal set of P , denoted by τ(P ).

There are several known constructions of blocking sets obtained from a
Hermitian unital by adding a set of points off the unital and removing (parts
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of) their pedal sets; see for example [14, Section 4] and [19, Construction
3.1 and 3.5]. We generalize some of these results to obtain a larger family
of minimal blocking sets, and also calculate the automorphism groups of the
resulting sets. Moreover, we apply this idea to the union of conics unital,
a Buekenhout-Metz unital [6, 20] whose properties were explored by Szőnyi
[29].

5.1. Blocking sets derived from the Hermitian curve

In what follows we consider a Hermitian curve H in PG(2, q2). Note that for
a point P not on H we have τ(P ) = H ∩ `P , with `P the polar line of P .

The following is a reformulation of Construction 3.1 from [19]:

Construction 5.1. [19, Construction 3.1] Let H be a Hermitian curve in
PG(2, q2), q > 2, and Q ∈ H. Let `Q denote the tangent line to H through
Q. Let S denote a set of points of `Q \ {Q} of size |S| = n ≤ q. Then
B = H \ {τ(P ) | P ∈ S} ∪ {Q} ∪ S is a minimal blocking set of size
q3 − nq + n+ 1.

We will expand on this in two ways: firstly, we will show that certain
sets S of size bigger than q can still yield a minimal blocking set with the
above construction; secondly, we will determine the sizes of the automorphism
groups of B for certain choices of S. For both cases, we need the following

Lemma 5.2. Let H be a Hermitian curve in PG(2, q2), q > 2, and Q ∈ H.
Let `Q denote the tangent line to H through Q. Let S denote a set of q points
such that S∪{Q} is a Baer subline of `Q. Then, any secant of H not through
Q has at most two points in common with {τ(P )|P ∈ S}.

Proof. Without loss of generality, we can choose H : xȳ + yx̄ + zz̄ = 0, and
choose Q to have coordinates (0, 1, 0) implying `Q : x = 0. We may also take
a point Pa of S to have coordinates (0, a, 1) with a ∈ Fq and corresponding
polar line `a with equation z = −ax.

A point P (x, y, z) on τ(Pa) = `a ∩H must satisfy xȳ + yx̄+ a2xx̄ = 0.
For x = 0 we obtain the point Q, otherwise we may set x = 1, z = −a and
P (1, y,−a) must satisfy ȳ + y + a2 = 0, i.e., Tr y = −a2. Hence τ(Pa) =
{Q} ∪ {(1, y,−a)|Tr y = −a2}.

Let ai ∈ Fq, i = 1, 2, 3 and consider three points (1, yi,−ai) ∈ τ(Pai).
If these points are collinear, then∣∣∣∣∣∣

1 y1 −a1

1 y2 −a2

1 y3 −a3

∣∣∣∣∣∣ = 0.

Because a1, a2, a3 ∈ Fq, we have

0 = Tr

∣∣∣∣∣∣
1 y1 −a1

1 y2 −a2

1 y3 −a3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 Tr y1 −a1

1 Tr y2 −a2

1 Tr y3 −a3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 a1 a2

1

1 a2 a2
2

1 a3 a2
3

∣∣∣∣∣∣ .
This is a Vandermonde determinant which is zero if and only if not all of
a1, a2, a3 are different. �
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Theorem 5.3. For q odd, any set B of Construction 5.1 where S is contained
in q−1

2 Baer sublines of `Q through Q, is a minimal blocking set. Adding one
more point of `Q to S still yields a minimal blocking set.

For q even, the set B is a minimal blocking set if S is contained in q
2

Baer sublines of `Q through Q.

Proof. Assume q odd and let S be contained in q−1
2 Baer sublines of `Q

through Q. Due to Lemma 5.2, any secant ` of H, not through Q, has at
most two points in common with the pedal sets of the points of a Baer
subline of `Q through Q. Since S is contained in q−1

2 such Baer sublines, `
has at most q− 1 points in common with {τ(P )|P ∈ S} and is hence blocked
by at least two points of B. Thus, adding one more point to S still yields a
blocking set.

For q even and S contained in q
2 Baer sublines of `Q through Q, a similar

argument shows that ` has at most q points in common with {τ(P )|P ∈ S}
and is hence blocked by at least one point of B.

It is easy to see that the resulting blocking set B is minimal for all of
the above cases. Through Q there are |S| lines of weight one, any other point
of B ∩ H is the only point blocking the tangent to H through that point. A
point of S is the only point blocking the tangents to H through its feet. We
conclude that B is a minimal blocking set. �

In what follows, we determine the sizes of the automorphism groups of
B for certain choices of S. Although the structure of the automorphism group
of H and its subgroup GQ that stabilises a point Q ∈ H is well known [13,
21], we need to establish an explicit relation between the subgroups of GQ
that fix further points on the tangent ` through Q and the action of GQ on
the points of `:

Lemma 5.4. Let H be a Hermitian curve in PG(2, q2). Let Q ∈ H and let `
denote the tangent line to H through Q. Let GQ denote the group of projec-
tivities that stabilises H and fixes Q. Let GQ,` denote the subgroup of GQ that
fixes every point of `. Then GQ,` is isomorphic to the additive group of Fq
and the quotient group GQ/GQ,` is isomorphic to the affine group AGL(1, q2)
of the affine line ` \Q.

In particular, let S = {P1, P2, . . .} denote a subset of ` \ Q and let H
denote the subgroup of AGL(1, q2) that leaves S invariant. Then the projective
automorphism group that stabilises H ∪ S is isomorphic to H : q.

Proof. Without loss of generality we can choose H to be the Hermitian curve
with equation xȳ+ yx̄+ zz̄ = 0 and choose Q ∈ H with coordinates (0, 1, 0).
Then ` is the line with equation x = 0.

Any projectivity ψ that fixes Q and ` has a matrix that can be written
in the form a b c

0 d 0
0 e 1

 with a, d 6= 0.
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Applying ψ to the equation of H yields

ax(b̄x̄+ d̄ȳ + ēz̄) + āx̄(bx+ dy + ez) + (cx+ z)(c̄x̄+ z̄)

= (ab̄+ āb+ cc̄)xx̄+ ad̄xȳ + ādx̄y + (aē+ c)xz̄ + (āe+ c̄)x̄z + zz̄ = 0

Hence for H to be left invariant we must have

ad̄ = 1, ab̄+ āb+ cc̄ = aē+ c = 0.

Choosing d, e determines a = 1/d̄, c = −ē/d̄ uniquely and requires b to be
such that Tr(b̄/d̄) = −eē/dd̄, or equivalently Tr(bd̄) = −eē, which leaves q
possibilities for b.

The action of ψ on the line x = 0 then amounts to (y, z) 7→ (dy+ ez, z)
which corresponds to the affine group AGL(1, q2). Fixing every point on that
line requires that d = 1, e = 0 and then a = 1, c = 0 and Tr b = 0. The
resulting matrices are of the form1 b 0

0 1 0
0 0 1

 with Tr b = 0

and form a group GQ,` that is isomorphic to the additive group of Fq. Because
GQ,` is the pointwise stabiliser of a set that is fixed by GQ it is a normal
subgroup of GQ. �

Theorem 5.5. Let B denote the minimal blocking set of Construction 5.1 and
let GB denote its projective automorphism group.

• If n = 1 then |GB | = q(q2 − 1).
• If n = 2 then |GB | = 2q.
• If S ∪{Q} can be extended to a Baer subline of `Q by adding one point,

then |GB | = q(q − 1).
• If S ∪ {Q} is a Baer subline of `Q, then |GB | = q2(q − 1).

In each of the above cases the blocking set is unique up to equivalence and the
collineation group of B has size twice that of GB.

Proof. When n < q, it is easy to see that the points of S are the only points
of B that lie on q lines of weight one. Indeed, through Q there are only n
lines of weight one, through a point of B ∩H there is one line of weight one
(this is the tangent to H) and all other lines through this point are secant
lines to H and have weight at least two in B. Hence, any element of GB must
fix the set S, and of course also Q, being the only other point on the line
defined by S.

Two distinct Hermitian curves can intersect in at most (q + 1)2 points
[16], so because |B \ S| = q3 − nq + 1 > (q + 1)2 for all q > 2 and n < q,
H can be identified as the only Hermitian curve that contains all points of
B \ S. Therefore, GB is the subgroup of the automorphism group of H that
fixes both S and Q. The subgroup of AGL(1, q2) that fixes a point, a pair of
points, resp. a set of points that can be extended to a Baer subline by adding
one point, has size q2−1, 2, resp. q−1. By Lemma 5.4, the statements about
the size of GB follow.
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Finally, let n = q with S ∪Q a Baer subline of `Q. By Lemma 5.2, any
secant of H not through Q has weight at least q − 1. So, in B, the line `Q
can be uniquely identified as the only line of weight q + 1 such that each of
its points is incident with q lines of weight one. The points of B \ `Q lie on a
unique Hermitian curve, H, as |B \ `Q| = q3 − q2 > (q + 1)2. It follows that
GB is the subgroup of the automorphism group of H that fixes Q = H ∩ `Q
and S = B \ H. By Lemma 5.4, |GB | = q2(q − 1).

Note that in each of these cases the set of points S can be chosen to be a
subset of the canonical Baer subline of `Q. Then the Frobenius automorphism
fixes S proving |ΓB | = 2|GB |. �

Applied to PG(2, 9), Theorem 5.5 explains the existence of three mini-
mal blocking sets, namely of size 26, 24 and 22 and respective automorphism
group sizes (2×)24, (2×)6 and (2×)18.

In addition, for |S| = 3 and S ∪ {Q} not a Baer subline of `Q, the
resulting minimal blocking set is of size 22 and has automorphism groups
of size (2×)3. If S is chosen such that S ∪ {Q} is a Baer subline of `Q,
Theorem 5.3 shows that we can expand S by any point of `Q (and delete its
pedal set except for Q) to again obtain a minimal blocking set. This yields
a projectively unique blocking set of size 20, with automorphism group sizes
(2×)3.

There are some further choices for S that also give rise to minimal
blocking sets computationally, though this is not guaranteed by Construction
5.1. Choosing S with |S| = 4 in a different manner than in Theorem 5.3 does
not necessarily yield a blocking set, but when it does, it yields one with
projective automorphism group of size 6 and collineation group of size 12,
and it is projectively unique. There exist sets S of size 5 such that the set
B of Construction 5.1 still yields a blocking set in PG(2, 9). These cases are
listed in Table 2. One of them has a fairly large automorphism group and is
also given by Theorem 7.1. In PG(2, 9) there exist no sets S of size 6 that
yield a blocking set.

In the above we have added points on a fixed tangent to H (and deleted
their pedal sets) to obtain minimal blocking sets. The theorems below show
that doing the same with points on multiple tangents to H can again yield
minimal blocking sets, some of which have fairly large automorphism groups.

Theorem 5.6. Let H be a Hermitian curve in PG(2, q2). Consider two points
P1, P2 not on H with corresponding polar lines `1, `2 such that P1 ∈ `2 and
P2 ∈ `1, (i.e., P1, P2 are two vertices and `1, `2 are two sides of a polar
triangle). Then removing the points of `1, `2 from H and adding P1, P2 yields
a minimal blocking set B2 of size q3 − 2q + 1. When q > 2 the projective
automorphism group of B has size 2(q+1)2 and the full automorphism group
has size 4(q + 1)2.

Proof. Any secant of H different from `1 and `2, has its weight reduced by
at most 2 by the removal of these two lines. Also, the tangents through the
points of `1 ∩H and `2 ∩H are blocked by the points P1 and P2. Moreover,
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because we have chosen P1 ∈ `2 and P2 ∈ `1, also `1 and `2 are blocked by B.
Hence, B is a blocking set. Note that all tangents to H have weight 1 w.r.t.
B, and each point of B lies on at least one such tangent. Hence B is minimal.

Let q > 2. We may identify P1 and P2 as those points of B that lie
on q + 2 lines of weight 1. The remaining q3 − 2q − 1 points of B uniquely
determine the Hermitian curve H, because q3 − 2q − 1 > (q + 1)2. And
then also `1, `2 are determined as the polar lines of P1, P2. Therefore, the
automorphism group of B is the subgroup of the automorphism group of H
that fixes {P1, P2} (and therefore also the line P1P2 and the pole P3 = `1∩`2
of that line).

Without loss of generality we may takeH with equation xx̄+yȳ+zz̄ = 0.
Still without loss of generality we may choose P1, P2 to have coordinates
(0, 0, 1) and (0, 1, 0), and then P3 has coordinates (1, 0, 0). Let ψ denote a
projectivity that fixes the three points P1, P2, P3. Then ψ is of the form
(x, y, z) 7→ (ax, by, z) with a, b 6= 0. To stabilise H, ψ must also satisfy
aā = bb̄ = 1, i.e., N(a) = N(b) = 1. This yields q + 1 possibilities for a
and q + 1 possibilities for b. Because only the set {P1, P2} is combinatorially
determined and not each point separately, we must also consider the possi-
bility of interchanging P1 and P2. The projectivity (x, y, z) 7→ (x, z, y) does
just that and also fixes H.

Hence the projective automorphism group of B has size 2(q+1)2, and it
is easily seen that the Frobenius automorphism extends this to a collineation
group of twice this size. �

For q = 3 this yields a blocking set of size 22 and automorphism groups
of size (2×)32. For q = 2 this blocking set is a line.

Theorem 5.9 below yields another minimal blocking set with an auto-
morphism group of reasonable size. For the case q = 3 of the proof of that
theorem, we need two lemmas.

Lemma 5.7. Let H be a Hermitian curve in PG(2, q2) with q odd. Consider
a polar triangle w.r.t. H with vertices P1, P2, P3 and sides `1, `2, `3. Then a
line of PG(2, q2) can intersect `1 ∪ `2 ∪ `3 in at most two points of H.

Proof. We may choose coordinates P1(1, 0, 0), P2(0, 1, 0), P3(0, 0, 1) and take
H to have equation xx̄ + yȳ + zz̄ = 0, without loss of generality. Consider
a line that intersects `1 ∪ `2 ∪ `3 in three different points. The coordinates
of these points can then be taken as (1, a, 0), (0, 1, b), (c, 0, 1). Collinearity
of these points is equivalent to abc = −1. If all three points belong to H,
we have aā = bb̄ = cc̄ = −1, and then −1 = (aā)(bb̄)(cc̄) = (abc)(abc) =
(−1)(−1) = 1, a contradiction when q is odd. �

Lemma 5.8. Let H, H′ be two distinct Hermitian curves in PG(2, 9). If H,
H′ share a polar triangle P1, P2, P3, then |H ∩ H′| = 4.

Proof. We may choose coordinates P1(1, 0, 0), P2(0, 1, 0), P3(0, 0, 1) without
loss of generality. The equation of a Hermitian curve that has P1P2P3 as a
polar triangle, is of the form axx̄ + byȳ + czz̄ = 0 with a, b, c ∈ F3 \ {0}, in
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other words, of the form ±xx̄± yȳ± zz̄ = 0. Again without loss of generality
we may choose H,H′ to have equations

H : xx̄+ yȳ + zz̄ = 0, H′ : xx̄+ yȳ − zz̄ = 0.

It is now easily computed that H∩H′ consists of the points with coordinates
(1, α, 0) where α ∈ F9 such that N(α) = −1. There are exactly 4 values α
that satisfy these properties. �

Theorem 5.9. Let H be a Hermitian curve in PG(2, q2) with q > 2. Consider
a polar triangle w.r.t. H with vertices P1, P2, P3 and sides `1, `2, `3. Then
B = (H\(`1∪`2∪`3))∪{P1, P2, P3} is a minimal blocking set of size q3−3q+1,
projective automorphism group of size 6(q+1)2 and full automorphism group
twice this size.

Proof. The proof that this is a minimal blocking set runs along the same
lines as the proof of Theorem 5.6, except that the weight of a secant to H
can now be as low as q − 2 w.r.t. B.

For any q > 2, the tangents to H are the only lines of weight 1. This is
easy to see when q > 3, for q = 3 this is due to Lemma 5.7. As a consequence,
the points P1, P2, P3 can be identified as those points of B that lie on q + 1
lines of weight 1. When q > 3, the q3 − 3q− 2 remaining points of B lie on a
unique Hermitian curveH since q3−3q−2 > (q+1)2. When q = 3, Lemma 5.8
is required to ensure that the points of B lie on a unique Hermitian curve. To
obtain the group we use the same argument as in the proof of Theorem 5.6.
However, because we can now freely permute P1, P2, P3 we obtain a factor 6
instead of 2. �

For q = 3 this yields a blocking set of size 19 and automorphism groups
of size (2×)96.

Theorem 5.10. Let H be a Hermitian curve in PG(2, q2) with q > 2. Consider
a polar triangle w.r.t. H with vertices P1, P2, P3 and sides `1, `2, `3. Let P ∈
(`14`24`3) \ H with polar line `. The set B = (H \ {`1 ∪ `2 ∪ `3 ∪ `}) ∪
{P1, P2, P3, P} is a minimal blocking set of size q3 − 4q + 1.

Proof. Without loss of generality, P ∈ `1 and hence P1 ∈ `. We have to prove
that removing ` (except P1) from and adding P to the minimal blocking set
of Theorem 5.9 (which we will refer to as B′), again yields a minimal blocking
set.

For B to be a blocking set, we have to make sure each line through a
point of `∩H is still blocked. The line ` is blocked by P1, each of the tangents
to H through the q + 1 points of ` ∩ H is blocked by the newly added point
P . Every other line through a point of ` ∩H has weight at least 2 w.r.t. B′,
and hence has weight at least 1 w.r.t. B.

Note that any point of {P1, P2, P3, P} is incident with at least q + 1
lines of weight 1 and are hence essential. Any other point of B is a point of H
and is the only one blocking the tangent line to H through this point. This
proves that B is minimal. �
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For q = 3 this yields a minimal blocking set of size 16 with automor-
phism groups of size (2×)8.

5.2. Blocking sets derived from the union of conics unital

Consider the projective plane PG(2, q2) with q odd. Let δ ∈ Fq2 . Define Bδ to
be the set of (affine) points with coordinates (x, y, 1) such that y− δx2 ∈ Fq,
together with the point P∞(0, 1, 0). Note that Bδ can also be seen as the
union of q parabolas Cδ,f : y = δx2 + f , with f ∈ Fq, intersecting in the
common point P∞.

Theorem 5.11. [12, §12.3] Let δ ∈ Fq2 . If δ is not a square, then Bδ is a
minimal blocking set. Each point of Bδ lies on exactly one line of weight 1.
All other lines have weight q + 1.

This blocking set is an example of a Buekenhout-Metz unital (of which
there exists only one up to equivalence in PG(2, 9)) and although it provides
the same weight distribution as a Hermitian curve, it is not equivalent to it.
Note that the choice of the non-square δ in the construction is not important,
all sets constructed in this way are projectively equivalent.

The set Bδ has q3 +1 points. There are q3 +1 lines of weight 1 w.r.t. Bδ.
These are precisely the tangents of the constituent parabolas with the line at
infinity `∞ (z = 0) their common tangent in P∞.

The projective automorphism group of Bδ consists of the transforma-
tions of the form

(x, y, z) 7→ (ax+ bz, a2y + 2δabx+ (δb2 + f)z, z)

with a2 ∈ Fq, a 6= 0, b ∈ Fq2 and f ∈ Fq. This group has size 2(q−1)q3. The
semilinear map

(x, y, z) 7→ (
δ̄x̄√
δδ̄
, ȳ, z̄)

extends this group to the full collineation group of Bδ of size 4(q − 1)q3.

An important difference with the Hermitian curve is the structure of
the pedal sets. For a study on this topic, see [1]; we can restrict ourselves to
the following lemma, which is a reformulation of [1, Corollary 1].

Lemma 5.12. Let P be a point of PG(2, q2) that does not belong to Bδ. If
P /∈ `∞ then τ(P ) is contained in an arc (a parabola through P ), if P ∈ `∞
then τ(P ) lies on a line `P through P∞.

Theorem 5.13. Let Bδ denote the union of conics unital as described above
and consider a point P /∈ Bδ.

1. If P /∈ `∞, then B1 = (Bδ \ τ(P )) ∪ {P} is a minimal blocking set of
PG(2, q2) of size q3 − q + 1.

2. If P ∈ `∞, then B2 = (Bδ \ τ(P )) ∪ {P,Q1} for any Q1 ∈ τ(P ) is a
minimal blocking set of PG(2, q2) of size q3 − q + 2.
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Proof. Let P /∈ `∞. To prove that B1 is a blocking set, we have to show that
any line through a deleted point Qi ∈ τ(P ) is blocked by a point of B1. The
tangent line to Bδ through Qi is now blocked by P , any other line through
Qi is a secant of weight q+1 w.r.t. Bδ, and has its weight reduced by at most
2 due to the removal of τ(P ) as these points lie on an arc (Lemma 5.12) and
hence no three are collinear. We conclude that B1 is a blocking set.

Every point of B1 is essential as it lies on at least one line of weight 1:
P lies on the q + 1 lines PQi of weight 1, any other point of B1 lies on the
unique tangent to Bδ through that point, which has weight one w.r.t. B1. So,
this blocking set is minimal.

Now, let P ∈ `∞. Let Qi, i ∈ {2, . . . , q+1} denote the points of Bδ \B2.
The tangent line to Bδ through Qi is again blocked by P and is now a tangent
line to B2. The line `P (using the notation of Lemma 5.12) is blocked by Q1,
any other line through Qi, i ∈ {2, . . . , q + 1} has weight q.

Again, any point of B2∩Bδ is essential in B2, P lies on the q lines PQi,
i ∈ {2, . . . , q+ 1}, of weight one and Q1 lies on the line `P of weight one. We
conclude that B2 is a minimal blocking set. �

In PG(2, 9), B1 is a minimal blocking set of size 25 with projective
automorphism group of size 2 and collineation group of size 4. B2 is a minimal
blocking set of size 26, but its automorphism group depends on the choice
of Q1. When Q1 = P∞, the projective automorphism group and collineation
group have size 12 and 24, respectively, in the other case, 4 and 8, respectively.

It is possible to add and delete more points to and from B1 and B2,
but this can get technical quite fast and reduces the already small sizes of
automorphism groups, hence yielding minimal blocking sets with little or no
symmetry. We limit ourselves to the following theorem, the proof of which
immediately follows from Lemma 5.12.

Theorem 5.14. Let Bδ denote the union of conics unital as described above.
Let S denote a set of points on `∞ \ {P∞} of size |S| = n ≤ q. Then B =
Bδ\{τ(P ) | P ∈ S}∪{P∞}∪S is a minimal blocking set of size q3−nq+n+1.

6. A blocking set of index three

The index of a blocking set is the minimum number of lines that can be
used to cover the blocking set. The following is a well-known blocking set of
index three, a class of blocking sets about which quite a lot is known (see,
for example, [7]). It is also a blocking set of Rédei type. More specifically it
contains two Rédei lines, all of which have been characterized [5, 25, 26]. The
following theorem establishes the automorphism group of this blocking set.

Theorem 6.1. Let π be a Baer subplane of PG(2, q2) with q > 2. Let `1, `2, `3
be three secant lines of π intersecting in a common point P (cf. Figure 1).
Then B = (`1 \ π) ∪ (`2 \ π) ∪ (`3 ∩ π) is a minimal blocking set of PG(2, q2)
of size 2q2 − q + 1.
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The full automorphism group of B has size 4q2(q − 1) and is generated
by the Frobenius automorphism and projectivities (x, y, z) 7→ (x, z, y) and
(x, y, z) 7→ (ax+ by + cz, y, z) where a, b, c ∈ Fq, a 6= 0.

Proof. Since the Frobenius automorphism stabilises π pointwise, it also sta-
bilises `1 and `2 and hence B. It remains to establish the projective auto-
morphism group G of B. Note that any element of G must stabilise the set
{`1, `2} as these are the only lines of weight q2 − q + 1 w.r.t. B (and q > 2).
Similarly, any element of G must stabilise the line `3 because it is the only
line of weight q+1. (All other lines have weight 3 or lower since B lies entirely
on the three lines `i.) Without loss of generality we may choose π to be the
Baer subplane of all points with coordinates in Fq and the lines `i to have
equations `1 : y = 0, `2 : z = 0, `3 : y = z. If a projectivity g stabilises the
three lines `1, `2, `3, then g : (x, y, z) 7→ (ax + by + cz, y, z) with a 6= 0. If
moreover g fixes π then a, b, c ∈ Fq. Note that only the set {`1, `2} has to be
stabilised and not each line individually; the projectivity (x, y, z) 7→ (x, z, y)
interchanges `1 and `2 and fixes B. �

In PG(2, 9), the above yields a minimal blocking set of size 16 with
projective and full automorphism group size of 36 and 72, respectively.

π

P

`2

`1

`3

Figure 1. Blocking set B of Theorem 6.1 for the case q2 = 9.

7. Full automorphism groups of order 48

One can see from Table 1 that PG(2, 9) has four minimal blocking sets with
a full automorphism group of size 48 and that they all have a projective
automorphism group of size 24. These blocking sets have sizes 17, 18, 22 and
26. The one of size 26 is given by Theorem 5.5 with |S| = 1. The set of size 22
is described in [10], albeit without description of the automorphism group.
The theorem below gives a description of the sets of size 17 and 18.

Theorem 7.1. Let O12 denote the set of twelve points of PG(2, 9) with coor-
dinates of the form

(0,±1, 1) (0,±i, 1) (±1,±1, 1) (±1,±i, 1)
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Let e1, e2 denote the points with coordinates (1, 0, 0) and (0, 1, 0) respectively.
Let O3 denote the set {(0, 0, 1), (1, 0, 1), (−1, 0, 1)} and let O4 denote the set
of points with coordinates of the form (1,±i ± 1, 0). Define B17 = O12 ∪
{e1, e2} ∪O3 and B18 = O12 ∪ {e1, e2} ∪O4.

Then B17 and B18 are minimal blocking sets of PG(2, 9) of size 17 and
18 respectively. The projective automorphism group of both sets is isomorphic
to 4D6 (of size 24) and the full automorphism group is isomorphic to D8D6

(of size 48).

Proof. Consider the group G generated by the following projectivities

(x, y, z) 7→ (x+ z, y, z), (x, y, z) 7→ (−x, y, z), (x, y, z) 7→ (x, iy, z).

These generators act on the lines with equations Ax + By + Cz = 0 in the
following manner:

(A,B,C) 7→ (A,B,C−A), (A,B,C) 7→ (−A,B,C), (A,B,C) 7→ (A,−iB,C).

It is easily seen that the third generator generates a cyclic group of order
4, and the first two generate a group isomorphic to D6. It follows that G is
isomorphic to 4D6.

To prove that B17 and B18 are minimal blocking sets, we note that all of
O12, {e1}, {e2}, O3 and O4 are point orbits under the group G. The group G
has 10 orbits on lines of PG(2, 9), whose interactions with these point orbits
are summarized in the following table.

A B C |O| wO12
we1 we2 wO3

wO4
wB17

wB18

1
±1 ±i

24 1 1 1±i ±i± 1

1 ±i± 1
±i

24 2 1 2 3±i± 1

1
±1 0

12 2 1 3 2±i ±1

1 ±i± 1
0

12 1 1 1 1±1

1 0
±i

6 1 1 1±i± 1

1 0
0

3 4 1 1 6 5±1

0 1
±1

4 3 1 4 4±i
0 1 ±i± 1 4 1 1 1
0 1 0 1 1 3 4 1
0 0 1 1 1 1 4 2 6

Column 4 gives the size of these orbits and columns 5–9 list the weight
wS(`) of a line ` in that orbit with respect to any of the sets S from the
statement of this theorem. (A blank entry denotes a zero weight.) The last
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two columns list the weights with respect to B17 and B18 and are obtained
by summing the appropriate columns to the left.

Although a bit tedious, the entries in this table can easily be computed
by hand, as for each line orbit only a single line must be investigated. For
example, for the third row, we may take the line x = y which clearly intersects
O12 (only) in (1, 1, 1) and (−1,−1, 1) and O3 in (0, 0, 1).

From this table it is now easily read that B17 and B18 block all lines
and that each of their points lies on at least one line of weight 1.

It is easily proven that the projective automorphism group of B17 and
B18 cannot be larger than G. Furthermore, note that the Frobenius automor-
phism leaves B17 and B18 invariant, and extends the cyclic group generated
by (x, y, z) 7→ (x, iy, z) to a group isomorphic to the dihedral group of 8
elements. �

Note that the blocking set B18 of Theorem 7.1 can also be produced
from a Hermitian curve by applying Construction 5.1 (with |S| = 5); for
example, choose H : i(x̄z − xz̄) + yȳ − zz̄ = 0, Q = e1 and S = {e2} ∪O4.

8. Blocking semiovals

A semioval is a set S of points in a projective plane such that there is a
unique tangent through each point of S. A blocking semioval is a blocking
set that is also a semioval. It follows immediately that this must be a minimal
blocking set. A full classification (up to equivalence) of the blocking semiovals
in PG(2, 7) and PG(2, 8) is given in [24] and [2], respectively.

Let xi denote the number of lines of the plane with weight i. Then
X(S) = (x1, x2, . . . , xq−1) is called the weight distribution of the blocking
semioval S. In [28, Theorem 6.3], Suetake classifies all blocking semiovals in
PG(2, 9) with an 8-secant. This classification distinguishes between sets of
different size, construction, and weight distribution. We extend this classifi-
cation by also including information about the automorphism groups of these
sets:

Let S be a blocking semioval in PG(2, 9) with x8 6= 0. For |S| = 22,
there are two distinct possibilities, one with |Γ| = 8, |G| = 4, the other with
|Γ| = 4, |G| = 2. For |S| = 23, there are two distinct possibilities for a blocking
semioval constructed by [28, Theorem 4.2], one with |Γ| = 16, |G| = 8, the
other with |Γ| = 8, |G| = 4. If S is a blocking semioval constructed by Dover
[9], then X(S) = (23, 21, 32, 12, 0, 1, 1, 1), |Γ| = 4 and |G| = 2.

The full classification of the blocking semiovals in PG(2, 9) is given in
Table 3. References to descriptions for some of these blocking semiovals can
be found in Table 2.

The minimum size of a blocking semioval was unknown for PG(2, 9) until
one of size 21 was constructed in [11]. We can now confirm that this is the only
blocking semioval of size 21 in PG(2, 9) as the authors of [11] suspected. This
blocking set is constructed by taking the union of three (specific) Kestenband
arcs, cf. Theorem 9.1 below.
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9. Blocking sets from three Kestenband arcs

In PG(2, q2), let σ denote a Singer cycle. Take a point P0 ∈ PG(2, q2) and
put Pi = σi(P0), which allows us to identify the points Pi of PG(2, q2) with
the integers i modulo q4 +q2 +1. Select a line `0 (the points on this line form
a perfect difference set) and put `j = `0 − j. It now follows that i ∈ `j ⇐⇒
i+ j ∈ `0.

Because σ has order q4 + q2 + 1 it follows that 〈σq2+q+1〉 and 〈σq2−q+1〉
generate subgroups of 〈σ〉 of size q2 − q + 1 and q2 + q + 1, respectively.
The orbits of the points of the plane under the action of these subgroups
are complete arcs (called Kestenband arcs) and Baer subplanes, respectively.
Let us denote these orbits by Kr = {r + i(q2 + q + 1)|i = 0, . . . , q2 − q}
for r = 0, . . . , q2 + q and Bs = {s + i(q2 − q + 1)|i = 0, . . . , q2 + q} for
s = 0, . . . , q2 − q. Let H denote the Hermitian curve associated with the
Frobenius automorphism φ : i 7→ q3i. Note that a point i lies on H if and
only if φ(i) ∈ `i ⇐⇒ q3i ∈ `i ⇐⇒ (q3 + 1)i ∈ `0.

(We refer the reader to [11, 12] for further information about blocking
semiovals, Kestenband arcs and perfect difference sets.)

From this point on, let us look at PG(2, 9) with perfect difference set
`0 = {0, 1, 3, 9, 27, 81, 61, 49, 56, 77}. Then i ∈ H ⇐⇒ 28i ∈ `0 ⇐⇒ i ≡
0, 2, 5 or 6 mod 13; in other words, H is the union of the four Kestenband
arcs K0, K2, K5 and K6.

The unique blocking semioval of size 21 from [11] is constructed as
the union of three Kestenband arcs. However, that is not the only minimal
blocking set that can be constructed in this way. Note that |Ki ∩ `j | =
|Ki ∩ `j+13| = . . . = |Ki ∩ `j+13k| = wKi(`j) and hence, when studying the
intersection of an arc Ki with the lines of the plane, we can limit ourselves
to the lines `0 . . . `12. Using the fact that wKi

(`j) = wKi+1
(`j−1) it becomes

fairly easy to set up a table that shows the sizes of the intersections of the
arcs and the lines of the plane. For example, for H = K0 ∪K2 ∪K5 ∪K6, we
have

`0 `1 `2 `3 `4 `5 `6 `7 `8 `9 `10 `11 `12

K0 1 2 2 1 2 1 1
K2 2 1 2 1 1 1 2
K5 2 1 1 1 2 2 1
K6 2 1 1 1 2 2 1
H 1 4 1 4 4 1 1 4 4 4 4 4 4

The bottom row of the table contains the weights of the lines `0, . . . , `12 (and
hence implicitly of all lines). Because there is no entry 0, H is a blocking set.
Also the minimality of this blocking set can be established from the table: the
point P0 lies on a line `0 of weight 1, the point P2 lies on a line `2 of weight
1, etc. Applying the Singer cycle, we see that every point of K0,K2,K5 and
K6 is essential. (We shall follow a similar reasoning on different tables in the
proof of the theorem below, without explicit proof.)
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Theorem 9.1. Up to equivalence, there are three minimal blocking sets in
PG(2, 9) that consist of the union of three Kestenband arcs:

1. B1 = K0 ∪K2 ∪K4 with |G| = 7 and |Γ| = 14;
2. B2 = K0 ∪ K2 ∪ K8 with |G| = 21 and |Γ| = 42 (this is the blocking

semioval from [11]);
3. B3 = K0 ∪K2 ∪K7 with |G| = 168 and |Γ| = 336.

Proof. The tables below prove that these are minimal blocking sets.

`0 `1 `2 `3 `4 `5 `6 `7 `8 `9 `10 `11 `12

K0 1 2 2 1 2 1 1
K2 2 1 2 1 1 1 2
K4 1 2 1 1 1 2 2
B1 2 4 1 2 1 2 1 2 2 3 4 1 5

`0 `1 `2 `3 `4 `5 `6 `7 `8 `9 `10 `11 `12

K0 1 2 2 1 2 1 1
K2 2 1 2 1 1 1 2
K8 2 1 1 1 2 2 1
B2 1 6 2 2 2 1 2 2 3 3 2 1 3

`0 `1 `2 `3 `4 `5 `6 `7 `8 `9 `10 `11 `12

K0 1 2 2 1 2 1 1
K2 2 1 2 1 1 1 2
K7 2 1 1 1 2 2 1
B3 1 4 3 3 1 1 1 4 1 4 3 1 3

The sizes of the automorphism groups were calculated by computer. �

Now, let us look at some additional properties of B = K10 ∪K12 ∪K4,
which is equivalent to B3, the example with the largest automorphism group.
First, note that δ = PiPjPk forms a polar triangle w.r.t. H if and only if
i ∈ `27j , j ∈ `27k and k ∈ `27i, in other words, if and only if i+ 27j, j + 27k
and k + 27i are all in `0.

Is it possible for the polar triangle δ to lie entirely in B? And, more
specifically, with i ∈ K4, j ∈ K10 and k ∈ K12? Put i = 4 + 13a, j = 10 + 13b
and k = 12 + 13c with a, b, c ∈ {0, . . . , 6} and then this is the case if and only
if 1 + 13(a− b), 61 + 13(b− c) and 29 + 13(c− a) are all in `0. This can easily
be checked to be equivalent to (a = b∧c = a+4)∨ (b = c∧a = b+2). We see
that there are two ways to partition the points of B into 7 polar triangles:

a b c δ1 a b c δ2
0 0 4 4,10,64 2 0 0 30,10,12
1 1 5 17,23,77 3 1 1 43,23,25
2 2 6 30,36,90 4 2 2 56,36,38
3 3 0 43,49,12 5 3 3 69,49,51
4 4 1 56,62,25 6 4 4 82,62,64
5 5 2 69,75,38 0 5 5 4,75,77
6 6 3 82,88,51 1 6 6 17,88,90
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Notice that any point of B lies on two polar triangles: one of type δ1, one
of type δ2. Let us define an incidence geometry G = (P,L , I) with P the
polar triangles of type δ1, L the polar triangles of type δ2, and an element
of P is incident with an element of L if the polar triangles have a point of
PG(2, 9) in common. For example, P 3 (4, 10, 64)I(4, 75, 77) ∈ L because
they both contain P4. It is now easy to show that G is in fact a Fano plane.

There is another way of looking at this blocking set. For this, let us look
at the following construction of a generalized hexagon by Tits [30] (notation
and formulation taken from [23, Construction 8]). Recall that a generalized
n-gon of order (s, t) is a rank 2 point-line geometry whose incidence graph
has diameter n and girth 2n, where each vertex corresponding to a point has
valency t+ 1 and each vertex corresponding to a line has valency s+ 1.

Theorem 9.2. [30] Let U be a Hermitian curve in PG(2, 9). Let P be the
set of points off U and let L be the set of polar triangles with respect to U .
Then (P,L , Inat) is a generalized hexagon of order (2, 2) isomorphic to the
dual of H(2).

It is now easy to see that the following holds:

Theorem 9.3. Let U be a Hermitian curve in PG(2, 9). Let P be the set of
21 points of B = K10 ∪K12 ∪K4 and let L be the set of 14 polar triangles
that lie entirely in B. Then (P,L , Inat) is a generalized hexagon of order
(2, 1).
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|B| 13 15 16 17 18
#PGL 1 2 3 132 30726
#PΓL 1 2 3 91 15855

|Γ| |G| # |Γ| |G| # |Γ| |G| # |Γ| |G| # |Γ| |G| #
11232 5616 1 120 60 1 6 3 1 1 1 14 1 1 14263

192 96 1 16 8 1 2 1 20 2 1 795
72 36 1 2 2 24 2 2 570

4 2 17 3 3 15
4 4 2 4 2 144
6 6 1 4 4 11
8 4 5 6 3 11
12 6 2 6 6 11
16 8 3 8 4 15
24 12 1 8 8 1
32 16 1 12 6 9
48 24 1 16 8 4

18 9 1
24 12 2
32 16 1
48 24 1
144 72 1

|B| 19 20 21 22
#PGL 524394 4544050 12508783 10899207
#PΓL 263904 2276093 6259366 5453644

|Γ| |G| # |Γ| |G| # |Γ| |G| # |Γ| |G| #
1 1 259106 1 1 2263708 1 1 6247527 1 1 5442318
2 1 3255 2 1 7850 2 1 9820 2 1 7794
2 2 1320 2 2 4218 2 2 1704 2 2 3019
3 3 32 3 3 7 3 3 164 3 3 196
4 2 110 4 2 261 4 2 93 4 2 219
4 4 30 4 4 22 4 4 19 4 4 26
6 3 21 6 3 4 6 3 20 6 3 34
6 6 2 6 6 1 6 6 2 6 6 3
8 4 21 8 4 11 8 4 8 8 4 21
12 6 2 10 10 1 8 8 1 12 6 5
16 8 2 12 6 4 12 6 1 16 8 4
18 9 1 16 8 4 14 7 1 18 18 1
36 18 1 24 12 2 16 8 3 32 16 1
192 96 1 32 16 1 36 18 1

42 21 1 48 24 1
336 168 1 64 32 1

|B| 23 24 25 26 28
#PGL 2252493 65702 195 6 2
#PΓL 1127161 33011 100 5 2

|Γ| |G| # |Γ| |G| # |Γ| |G| # |Γ| |G| # |Γ| |G| #
1 1 1125123 1 1 32551 1 1 86 4 4 1 216 108 1
2 1 1800 2 1 299 2 1 2 8 4 2 12096 6048 1
2 2 202 2 2 88 2 2 2 24 12 1
4 2 23 3 3 47 3 3 7 48 24 1
4 4 7 4 2 9 4 2 2
8 4 5 4 4 1 6 3 1
16 8 1 6 3 8

6 6 4
12 6 2
24 12 1
768 384 1

Table 1. Number of (non-trivial) minimal blocking sets of
PG(2, 9) according to size of the set and order of automor-
phism group, up to equivalence. Recall that there are no
minimal blocking sets of size 14 [4] or 27 [15].
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|B| |Γ| |G|
10 933120 466560 Line.
13 11232 5616 Baer subplane.
15 120 60 Icosidodecahedron. Secants to a complete 6-arc. Theorem 4.1.
15 192 96 Projective triangle.
16 16 8 Theorem 5.10.
16 72 36 Theorem 6.1.
17 32 16 [12, Lemma 13.2(ii)]
17 48 24 Theorem 7.1.
18 12 6 Construction 5.1 with |S| = 5.
18 48 24 Theorem 7.1. Construction 5.1 with |S| = 5.
18 144 72 Conic-tangent [8, Example 1].
19 192 96 Theorem 5.9.
20 6 3 Construction 5.1 with |S| = 4 and S ∪ {Q} contains a Baer subline through Q.
20 12 6 Construction 5.1 with |S| = 4.
21 14 7 Theorem 9.1(1).
21s 42 21 Theorem 9.1(2). Secants to a complete 7-arc. [11].
21 336 168 Subhexagon. Theorem 9.3. Theorem 9.1(3).
22s 4 2 Section 8 [28, Theorem 5.2].
22 6 3 Construction 5.1 with |S| = 3 and S ∪Q not a Baer subline.
22s 8 4 Section 8 [28, Theorem 5.2].
22 36 18 Construction 5.1 with |S| = 3 and S ∪Q a Baer subline, see also Theorem 5.5.
22s 48 24 [10].
22 64 32 Theorem 5.6.
23s 4 2 Section 8 [9].
23s 8 4 Section 8 [28, Theorem 4.2].
23s 16 8 Section 8 [28, Theorem 4.2].
24 12 6 Construction 5.1 with |S| = 2, see also Theorem 5.5.
24s 768 384 Triangle without vertices [8, Example 3].
25 4 2 Theorem 5.13, B1.
26 8 4 Theorem 5.13, B2 with Q1 6= P∞.
26 24 12 Theorem 5.13, B2 with Q1 = P∞.
26 48 24 Construction 5.1 with |S| = 1, see also Theorem 5.5.
28s 216 108 Union of conics unital
28s 12096 6048 Hermitian curve.

Table 2. Descriptions of selected minimal blocking sets of
PG(2, 9), including all those with a full automorphism group
of size at least 42, and some related examples. The super-
script s indicates that the blocking set is a semioval (see
Section 8).
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|B| 21 22 23 24 25 26 28
#PGL 1 104 3645 5440 54 3 2
#PΓL 1 60 1832 2751 28 2 2

|Γ| |G| # |Γ| |G| # |Γ| |G| # |Γ| |G| # |Γ| |G| # |Γ| |G| # |Γ| |G| #
42 21 1 1 1 41 1 1 1812 1 1 2655 1 1 21 4 4 1 216 108 1

2 1 9 2 1 16 2 1 55 2 1 1 8 4 1 12096 6048 1
3 3 3 2 2 1 2 2 14 3 3 5
4 2 3 4 2 1 3 3 19 6 3 1
6 3 2 8 4 1 4 2 4
8 4 1 16 8 1 6 3 1
48 24 1 6 6 1

24 12 1
768 384 1

Table 3. All blocking semiovals in PG(2, 9), arranged by
size of the set |B|, size of the collineation group |Γ| and size
of the projective automorphism group |G|.


