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Summary 46 

Our knowledge about fundamental aspects of biofilm biology, including the mechanisms behind the 47 

reduced antimicrobial susceptibility of biofilms, has increased drastically over the last decades. 48 

However, this knowledge has so far not been translated into major changes in clinical practice. While 49 

the biofilm concept is increasingly on the radar of clinical microbiologists, physicians and healthcare 50 

professionals in general, the standardized tools to study biofilms in the clinical microbiology 51 

laboratory are still lacking; one area in which this is particularly obvious is that of antimicrobial 52 

susceptibility testing (AST). It is generally accepted that the biofilm lifestyle has a tremendous impact 53 

on antibiotic susceptibility, yet AST is typically still carried out with planktonic cells. On top of that, 54 

the microenvironment at the site of infection is an important driver for microbial physiology and 55 

hence susceptibility, but this is poorly reflected in current AST methods. The goal of this review is to 56 

provide an overview of the state-of-the-art concerning biofilm AST and highlight the knowledge gaps 57 

in this area. Subsequently, potential ways to improve biofilm-based AST will be discussed. Finally, 58 

bottlenecks currently preventing the use of biofilm AST in clinical practice, as well as the steps 59 

needed to get past these bottlenecks, will be discussed. 60 
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INTRODUCTION 61 

Microbial biofilms are communities of one or more microorganisms (bacteria and/or fungi) 62 

embedded in an extracellular polymeric matrix (produced at least partially by the microorganisms 63 

themselves); biofilms can be surface-attached or occur as suspended aggregates (1-3). Although cells 64 

in surface-attached biofilms and suspended aggregates show the same phenotype (1), the molecular 65 

mechanisms underlying their formation are not necessarily identical (4). In line with previous work, 66 

microbial aggregates will be defined as biofilms in this text, regardless of whether they are attached 67 

to a biotic or abiotic surface (1). 68 

Microbial biofilms are present in virtually every ecological niche on Earth and it has been estimated 69 

that 40-80% of all microbial cells are biofilm-associated (5). An estimated 65-80% of all infections is 70 

considered to be biofilm-related (6, 7) and although it is not always completely clear what criteria 71 

are used to define an infection as biofilm-related, there is no doubt they have a considerable impact 72 

on morbidity, mortality, and healthcare-related costs (8). Biofilms can be found in many types of 73 

infections and while typically associated with chronic infections, recent data point to a role for 74 

biofilms in acute infections as well (9, 10). Many biofilms are associated with the use of indwelling 75 

medical devices, including (but not limited to) cardiovascular implants, intravascular devices, 76 

orthopedic implants (mainly knees and hips), urinary catheters, endotracheal tubes, breast implants, 77 

contact lenses, dental implants and intrauterine devices (8, 11-16). Risk factors for developing a 78 

chronic-device related infection include immunomodulatory therapy, diabetes, smoking, and renal 79 

disease, suggesting that a compromised innate immune response increases the risk for developing 80 

these infections (17). However, not all biofilm infections are related to the use of medical devices, 81 

and examples of native tissue biofilms include these identified in respiratory tract infections (e.g. in 82 

patients with cystic fibrosis (CF) and chronic rhinosinusitis), chronic otitis media, native valve 83 

endocarditis, the oral cavity and chronically infected wounds (14, 18-22). 84 

While our knowledge about fundamental aspects of microbial biofilms (including knowledge 85 

concerning the mechanisms behind their reduced antimicrobial susceptibility) has increased 86 

tremendously over the past decades (1, 13, 23-26), the translation of this increased knowledge 87 

about biofilm biology to clinical practice is lagging behind. That does not mean no progress was 88 

made: for example guidelines for improved diagnosis of biofilm-associated infections have been 89 

published (27, 28) and at least for prosthetic joint infections ‘biofilm-active’ antibiotics (e.g. 90 

rifampicin, ciprofloxacin) have been identified (29-31). However, biofilm-based susceptibility testing, 91 

i.e. antimicrobial susceptibility testing (AST) using biofilm-grown bacteria to select the antibiotic(s) 92 

to treat a biofilm-related infection, has not yet found its way to the clinical microbiology laboratory, 93 

although proposed technologies to do so have been around for over two decades (32). In the 94 
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present review I outline the state-of-the-art concerning biofilm AST, highlight the knowledge gaps, 95 

and propose solutions to improve biofilm-based AST. In addition, I will discuss what will likely be 96 

needed for these biofilm AST methods to be implemented in the clinical microbiology laboratory.  97 

 98 

 99 

CURRENT APPROACHES FOR ANTIMICROBIAL SUSCEPTIBILITY TESTING 100 

Conventional approaches 101 

In most cases (empirical therapy being the notable exception), the selection of antimicrobial therapy 102 

is made based on the susceptibility profile of the infecting organism, as determined using phenotypic 103 

tests in which susceptibility is quantified by measuring the effect of the antibiotic on bacterial or 104 

fungal growth, using broth microdilution or gradient strip-based methods. Values obtained in these 105 

tests (i.e. minimal inhibitory concentrations, MICs) are then compared to breakpoints established for 106 

specific dosing regimens by international organizations like EUCAST and CLSI (33, 34): if the MIC is 107 

below the breakpoint, the organism is considered susceptible to the antibiotic, and therapy with this 108 

antibiotic is predicted to be successful. Alternatively, susceptibility can be assessed using disk 109 

diffusion assays in which susceptibility is quantified based on the size of the inhibition zone (35, 36). 110 

While there are automated systems for phenotypic susceptibility testing (37), the majority of these 111 

also rely on growth of the bacterium and as a consequence it typically takes 1-2 days to complete 112 

the test for rapidly growing microorganisms, and even more time is required for fastidious, slow-113 

growing microorganisms.  114 

 115 

Genomic detection of resistance mechanisms 116 

A potential solution for the latter problem is to move beyond phenotypic (growth-based) 117 

susceptibility testing, and to use bacterial whole genome sequences (WGS) to infer antimicrobial 118 

susceptibility (38-42). However, most WGS-based approaches focus on finding known resistance 119 

mechanisms and while they are successful in that, identifying (combinations of) mutations in one or 120 

more genes not previously associated with reduced susceptibility, and incorporating these in a 121 

prediction algorithm, remains a major challenge (43). In addition, information derived from WGS 122 

cannot predict expression patterns of genes involved in antimicrobial susceptibility in specific 123 

conditions (44). Indeed, the specific conditions in a biofilm and at the infection site lead to distinct 124 

gene expression profiles that are different from those observed in vitro (45-47), complicating the 125 

prediction of biofilm susceptibility based on WGS. For example, several biofilm-specific efflux 126 

systems have been described (48, 49) as well as the biofilm-specific synthesis of cyclic-β-1,3-glucans 127 

that sequester antibiotics (50) and these mechanisms would be difficult to pick up with WGS alone.  128 
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 129 

Alternative Methods for Susceptibility Testing 130 

An alternative approach potentially yielding faster results relies on mass spectrometry (more 131 

specifically on matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-132 

TOF MS). With MALDI-TOF MS, a spectrum can be obtained from a microbial sample that can be 133 

used for rapid and accurate identification to the species level (51, 52) but also to predict 134 

antimicrobial susceptibility (53-55). Discrimination between susceptible and resistant isolates can be 135 

made based on presence/absence or change in intensity of certain peaks in the MALDI-TOF 136 

spectrum (56, 57). More recently, advanced machine learning algorithms have been used to predict 137 

antimicrobial susceptibility of various pathogens based on MALDI-TOF profiles (58-60).  138 

Heat is a by-product of the majority of biological processes; the amount produced is directly related 139 

to growth and the heat production rate is related to the metabolic fluxes; using microcalorimetric 140 

devices, the energy released during metabolic processes in microorganisms can be measured (61). 141 

Microcalorimetry has two major advantages, (i) it is label-free and can be applied in virtually all 142 

conditions (e.g. also in turbid media containing blood) and (ii) it allows real-time measurements. 143 

Microcalorimetry has been used to determine antimicrobial susceptibility in different organisms and 144 

the results obtained so far look are overall in agreement with results obtained with conventional 145 

susceptibility tests (62-68).  146 

Alternative culture-based approaches for AST are also being developed. An example of such an 147 

approach is the AtbFinder system, in which a medium is used that supports growth of many different 148 

bacteria (TGV medium) (69, 70). The system is based on direct plating of clinical specimens on TGV 149 

agar, with or without antibiotics added at a concentration that can be achieved at the infection site; 150 

the approach claims to also consider polymicrobial interactions influencing antimicrobial 151 

susceptibility. Case studies have suggested this approach leads to selection of antibiotics with better 152 

efficacy for treating nosocomial pneumonia (71) and chronic relapsing urinary tract infections (72). A 153 

recently-published clinical trial in which the AtbFinder system was used in the context of respiratory 154 

tract infections in CF patients (35 patients, of which 33 were chronically colonized with 155 

Pseudomonas aeruginosa) suggests that antibiotics selected with AtbFinder lead to clearance of P. 156 

aeruginosa, a decrease in the number of pulmonary exacerbations, and an increase in lung function 157 

(73).  158 

Finally, various microscopy-based approaches for AST have been developed (74-77). For example the 159 

Accelerate Pheno system uses tracking of the size, shape, and division rate of growing cells exposed 160 

to antibiotics, to estimate susceptibility (74, 75); in a clinical trial use of this system led to faster 161 

changes in antibiotic therapy for bloodstream infections caused by Gram-negative bacteria (78). 162 



7 
 

However, despite the promising results obtained with some of the alternative AST methods 163 

discussed above, additional validation will be required prior to their routine clinical use.  164 

 165 

Shortcoming of Current Approaches 166 

There is frequently a poor correlation between results obtained with in vitro susceptibility tests and 167 

the effect in vivo, for example in respiratory tract infections in patients with CF (79-81). Indeed, both 168 

pharmacodynamic parameters (determining the relationship between the concentration of the 169 

antibiotic at the site of action, and its physiological effects) and pharmacokinetic parameters 170 

(determining the relationship between the concentration of the antibiotic in body fluids and tissues, 171 

and time) are crucial for the activity of antibiotics in vivo (82-84). However, the behavior of 172 

microorganisms in vitro can be very different from that observed in vivo. An important factor 173 

contributing to failure of antimicrobial therapy is that in vivo microorganisms form biofilms that 174 

show reduced susceptibility towards antimicrobial agents (23, 25). Biofilm cells are phenotypically 175 

very different from planktonic cells and the microenvironment in these surface-attached or 176 

suspended biofilms (including gradients of O2, nutrients and waste products) (85, 86), leads to an 177 

altered metabolism linked to reduced susceptibility (24). In addition, the spatial heterogeneity of 178 

biofilms may support diversification, i.e. the development of subpopulations with varying degrees of 179 

susceptibility, within a patient (87-90). The presence of such subpopulations leads to intrasample 180 

diversity in antibiotic susceptibility of isolates and raises questions about the validity of sampling 181 

procedures and the common practice of performing susceptibility testing on a limited number of 182 

isolates (91, 92). It is worth pointing out that this is not only the case for respiratory tract infections 183 

in CF patients, as adaptation and diversification (also in terms of antimicrobial susceptibility) are also 184 

observed in other diseases, including non-CF bronchiectasis and urinary tract infections (93-96). 185 

Finally, interactions between different microorganisms during (chronic) infections (97-102), as well 186 

as interactions between pathogens and the host (103, 104) play an important role in antimicrobial 187 

susceptibility, but are difficult to mimick in vitro.  188 

 189 

 190 

BIOFILM-BASED ANTIMICROBIAL SUSCEPTIBILITY TESTING  191 

Pharmacodynamic Parameters for the Assessment of Antimicrobial Activity in Biofilms 192 

While the MIC and minimal bactericidal concentration (MBC, defined as the lowest concentration 193 

that kills all planktonic bacteria) are well-established parameters to assess antimicrobial activity and 194 

predict the success of a treatment, no such standardized parameters are available for biofilm 195 

susceptibility testing. Several parameters, including minimal biofilm inhibitory concentration (MBIC), 196 
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biofilm inhibitory concentration (BIC), minimal biofilm eradication concentration (MBEC), biofilm 197 

prevention concentration (BPC), minimum biofilm bactericidal concentration (MBBC), minimum 198 

antibiotic concentration for killing (MCK) and biofilm tolerance factor (BTF) have been introduced as 199 

measures of biofilm susceptibility (105-111). However, their exact definition frequently varies 200 

between different studies and may also depend on the method used to quantify biofilms (e.g. plate 201 

counts, crystal violet staining, resazurin-based viability staining) (112, 113) (Table 1). On top of this 202 

lack of unambiguously defined pharmacodynamic parameters, there is also an overall lack of 203 

standardization in biofilm research that makes comparison between different studies difficult (114-204 

116). Finally, no biofilm-specific breakpoints have been defined yet, complicating the interpretation 205 

and clinical use of the above-mentioned parameters.  206 

 207 

Tools for Biofilm-based Antimicrobial Susceptibility Testing 208 

While most studies on biofilm susceptibility use microtiter plate (MTP) based systems, in principle 209 

any biofilm model system can be used to determine biofilm susceptibility (12, 117-121). 210 

Nevertheless, specific methods for biofilm susceptibility testing have been developed and the most 211 

well-known in this context is the MBEC Assay Kit, also known as the Calgary Biofilm Device (32, 107). 212 

In this MTP based assay, biofilms are formed on plastic pegs (uncoated or coated) that are attached 213 

to the lid of a 96-well MTP and are immersed in a liquid; subsequently, the established biofilms are 214 

transferred to a new 96-well plate for AST (122). Examples of recently described advanced model 215 

systems for biofilm susceptibility testing include a microfluidic platform with an integrated sensor 216 

(the BiofilmChip) (123), an ex vivo CF lung model comprised of pig bronchiolar tissue and synthetic 217 

CF sputum (124), the BioFlux system (125, 126) and dissolvable alginate hydrogel-based biofilm 218 

microreactors (127). Other innovative models for biofilm AST were recently reviewed (128).  219 

An important part of biofilm-based AST is the quantification of the number of (remaining) viable 220 

and/or culturable cells in treated and untreated biofilms. Quantification can be done using 221 

detached/dispersed cells, either immediately (i.e. plating of detached cells and counting CFUs after a 222 

suitably long incubation time) or after a re-growth phase. In the latter case, the presence or absence 223 

of growth can be measured (spectrophotometrically or by plating) or the length of the lag phase can 224 

be used to quantify the number of viable cells (129). Alternatively, quantification can be done 225 

directly on the biofilm, using for example ATP measurements, crystal violet staining, resazurin-based 226 

viability staining, microscopy, electrical impedance, or molecular methods (12, 123, 130-134). A 227 

detailed description of biofilm quantification approaches is outside the scope of the present review 228 

but it is important to reiterate that different quantification approaches often measure very different 229 

things (e.g. measuring optical density after regrowth does not allow to determine the log reduction 230 
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in CFU, crystal violet stains more than only living cells etc), and that minor modifications to 231 

procedures may lead to different outcomes, as documented for example with crystal violet staining 232 

(115, 135). Crystal violet staining of surface-attached biofilms is arguable the most used technique, 233 

but due to its limitations, it is insufficient as the only method to measure biofilm reduction and it is 234 

recommended that results obtained with crystal violet staining are confirmed using other 235 

approaches (e.g. CFU counts, microscopy). In addition, in many studies, important characteristics like 236 

repeatability (i.e. the ability to obtain the same results when performing multiple tests in the same 237 

laboratory), reproducibility (i.e. the ability to obtain the same results when performing multiple tests 238 

across multiple laboratories) and responsiveness (i.e. the ability to differentiate between different 239 

concentrations of the treatment) (116, 136) are not investigated. A thorough assessment of these 240 

parameters is of course crucial prior to any clinical implementation. Examples of biofilm-based 241 

antimicrobial susceptibility test for which this was done include the MBEC biofilm disinfectant 242 

efficacy test (137) and several MTP based approaches (115).  243 

 244 

Is There an Association Between Biofilm Formation and Antimicrobial Susceptibility? 245 

If there would be an association between the biofilm formation in vitro (i.e. can an organism form a 246 

biofilm in a certain model system? how much biofilm is formed in a certain period of time?) and 247 

antimicrobial susceptibility (i.e. the MIC value), the capability and extent of biofilm formation could 248 

be used to predict susceptibility. Below I present a selection of the many studies in which this 249 

question has been addressed, organized per taxonomic group in order to facilitate comparisons 250 

between studies.  251 

Staphylococcus spp. Biofilm formation was associated with amikacin resistance in a 252 

collection of 49 methicillin-resistant Staphylococcus aureus (MRSA) isolates, but not with 253 

susceptibility to 15 other antibiotics (138). In a collection of 300 S. aureus isolates, no associations 254 

could be detected between methicillin-resistance and biofilm formation, while resistance to 255 

erythromycin, clindamycin and rifampin was associated with increased biofilm formation (139). In a 256 

collection of 111 staphylococci from prosthetic joint infections, no association was found between 257 

MBEC/MIC ratios and biofilm formation for S. aureus, while for S. epidermidis increased biofilm 258 

resistance (i.e. high MBEC/MIC ratio) to several antibiotics was observed in strong biofilm-producers 259 

(140). No significant differences were observed between the biofilm-forming capacity of methicillin-260 

susceptible and methicillin-resistant Staphylococcus spp. isolates, or between isolates susceptible or 261 

resistant to most other tested antibiotics (total of 229 isolates investigated) (141). The exception 262 

was rifampicin: on average rifampicin-resistant strains formed significantly more biofilm than 263 

susceptible strains (141) (Fig. 1A). In a collection of 70 staphylococci from prosthetic joint infections, 264 
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MBEC/MIC ratios for ciprofloxacin (but not for seven other antibiotics tested) were significantly 265 

higher for ‘strong biofilm producers’ than for ‘non/weak producers’ (142).  266 

Acinetobacter baumannii. In a collection of 271 A. baumannii isolates, non-multidrug-267 

resistant (MDR) A. baumannii isolates tended to form stronger biofilms than MDR and extensively 268 

drug-resistant (XDR) strains. For 20/21 antibiotics tested (polymyxin being the exception), 269 

susceptible isolates were stronger biofilm formers than intermediate and resistant ones (143). 270 

However, in a study with 207 A. baumannii isolates, susceptible and less-susceptible strains were 271 

found to be equally capable of biofilm formation (144). Likewise, in a collection of 309 A. baumannii 272 

isolates, no difference was observed between MDR and non-MDR isolates in terms of their biofilm-273 

forming capacity (145).  274 

Escherichia coli and Klebsiella pneumoniae. In a meta-analysis of the link between biofilm 275 

formation and antibiotic resistance in uropathogenic E. coli (17 studies included), 14 studies showed 276 

a positive association between biofilm formation and antibiotic resistance, two studies did not show 277 

any association and a single study reported a negative association between biofilm production and 278 

antibiotic resistance (146). Two studies addressed this question in K. pneumoniae. In a first study 279 

(120 isolates), XDR strains showed a higher ability to form biofilms than MDR and susceptible strains 280 

(147). In a second study with 100 K. pneumoniae isolates, ciprofloxacin-susceptible isolates formed 281 

stronger biofilms than resistant isolates; such a difference was however not observed for other 282 

antibiotics (148). 283 

Pseudomonas aeruginosa. Increased biofilm formation (as well as reduced motility) was 284 

observed in MDR/XDR high-risk P. aeruginosa clones (ST-111, ST-175, and ST-235) (149). However, in 285 

a collection of 302 P. aeruginosa isolates, the distribution of isolates with different biofilm-forming 286 

capacities did not differ among the MDR and non-MDR groups (150). In contrast, in a study with 66 287 

isolates (of which 40 were MDR), an inverse association between resistance and biofilm formation 288 

was observed, with more biofilm formation in isolates categorized as non-MDR (151). Finally, a 289 

meta-analysis (20 eligible studies published between 2000 and 2019, on isolates recovered in Iran) 290 

found that overall biofilm formation was higher in MDR P. aeruginosa, although a significant 291 

association between biofilm formation and antibiotic resistance was only observed in 10 studies 292 

(50%) (152). The above-mentioned studies suggest that the interaction between antimicrobial 293 

resistance mechanisms and biofilm formation in P. aeruginosa is complex. For example, inactivation 294 

of the negative regulator NfxB leads to overexpression of the MexCD-OprJ efflux pump but also to 295 

impaired constitutive AmpC overexpression and consequently to decreased periplasmic β-lactamase 296 

activity (important for β-lactam resistance). While this leads to increased susceptibility to β-lactam 297 



11 
 

antibiotics in planktonic cells, AmpC secreted by nfxB mutants still protects biofilm cells, probably 298 

due to the accumulation of AmpC in the biofilm matrix (153). 299 

 Discussion. The studies mentioned above clearly indicate that the question whether there is 300 

an association between biofilm formation and antimicrobial susceptibility is difficult to answer, with 301 

conclusions differing between different studies, even within the same taxonomic group. However, 302 

closer inspection reveals that the setup of many studies is suboptimal in terms of including a 303 

sufficiently diverse and large collection of isolates, the biofilm model system and quantification 304 

approach used, as well as analysis and interpretation of data. In many cases the biomass of surface-305 

attached biofilms is indirectly quantified (e.g. by using crystal violet) and the values obtained are 306 

compared to that of a reference strain and/or arbitrary cut-offs. For example, in one study biofilms 307 

yielding optical density (OD) read-outs (at 550 nm, OD550nm) after crystal violet staining that were 308 

higher than that of the negative control, but lower than that of a particular reference strain were 309 

designated as ‘weak biofilm formers’, while those with OD550nm values higher than that of the 310 

reference strain were considered ‘strong biofilm formers’ (143). In another study the mean of blank-311 

corrected OD values was used to group isolates into the categories ‘nonproducer’ (OD < 0.120), 312 

‘weak producer’ (0.120 < OD < 0.240) and ‘strong producer’ (OD > 0.240) (140). While these 313 

approaches may work well within a single study, they will likely be difficult to reproduce between 314 

different laboratories and the biological relevance of the (seemingly arbitrary) cut-offs established is 315 

unclear. In addition, biofilm susceptibility is often defined based on the MIC of a particular antibiotic 316 

for a given isolate, and as discussed in more detail below, using breakpoints established for 317 

planktonic cells to categorize biofilms as ‘susceptible’ or ‘resistant’ may lead to misleading results. 318 

Finally, the post hoc ergo propter hoc assumption (after this, therefore because of this) is frequently 319 

made in studies in which a link between biofilm formation and antimicrobial susceptibility is 320 

observed, but we need to be careful to accept such an assumption. Biofilm formation and 321 

antimicrobial susceptibility (of planktonic and biofilm cells) are influenced by many factors, including 322 

stochastic events (e.g. stochastic formation of dormant persister cells) (154), variability in microbial 323 

populations (e.g. occurrence of heteroresistance in populations containing subpopulations of cells 324 

with lower susceptibility than the majority of the population) (155, 156) and the microenvironment 325 

(in vitro as well as in vivo at the site of infection, e.g. presence of certain nutrients) (26, 157, 158) 326 

and it may very well be that there simply is no mechanistic link between biofilm formation and 327 

planktonic susceptibility. 328 

 329 

Can Biofilm Susceptibility Be Predicted Based on the MIC? 330 
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The question whether planktonic susceptibility can be used to predict biofilm susceptibility is an 331 

important one, because if MIC values, determined according to highly standardized EUCAST or CLSI 332 

procedures, would be a good proxy for biofilm susceptibility, dedicated biofilm AST would not be 333 

needed. Although planktonic and biofilm susceptibility parameter values for the same 334 

strain/antibiotic combinations have been determined in many studies, direct comparisons are again 335 

difficult due to differences in methodology and/or the lack of reporting susceptibility data for 336 

individual isolates. Below I focus on a selected set of studies that addressed this question for P. 337 

aeruginosa clinical isolates.  338 

Moskowitz et al. compared susceptibility of planktonic cultures (MIC, determined according to CLSI 339 

guidelines) and biofilms (BIC, using the Calgary Biofilm Device) for 94 P. aeruginosa isolates towards 340 

12 antibiotics (105). BICs were substantially higher than MICs for doxycycline and most of the β-341 

lactam antibiotics investigated (aztreonam, ceftazidime, piperacillin-tazobactam and ticarcillin-342 

clavulanate), while BICs of gentamicin and meropenem were only somewhat higher than the 343 

corresponding MICs, and BICs and MICs were fairly similar for amikacin, tobramycin and 344 

ciprofloxacin. Azithromycin showed fairly low BICs, although P. aeruginosa is considered as resistant 345 

in standard susceptibility testing. In a study with 57 non-mucoid P. aeruginosa isolates, planktonic 346 

(MIC) and biofilm (BPC, BIC) susceptibilities were determined for levofloxacin, ciprofloxacin, 347 

imipenem, ceftazidime, tobramycin, colistin and azithromycin (106). Some antibiotics showed 348 

median BPCs that were in the same range as MICs (fluoroquinolones, tobramycin, colistin), while 349 

others (ceftazidime, imipenem) had BPCs that were much higher than MICs. The former antibiotics 350 

also had relatively low BICs, indicating they may have activity against established biofilms. In a study 351 

with 133 P. aeruginosa isolates, marked differences between MIC and ‘biofilm active score’ (BAS) 352 

values (the latter determined based on microscopic assessment of the fraction of living cells after 353 

treatment) were observed for aztreonam and tobramycin (159). For 19.4% and 30.0% of the isolates 354 

that are resistant towards aztreonam and tobramycin, respectively, when grown planktonically, the 355 

biofilm biomass (as evaluated microscopically) was reduced with 50–75%. Vice versa, 63.6% of the 356 

aztreonam-sensitive and 66.2% of the tobramycin-sensitive isolates were non-responsive when 357 

grown as a biofilm. Using MIC, minimum antibiotic concentrations for killing (MCK, the concentration 358 

that resulted in a certain reduction in number of CFU of biofilm-grown cells) and the biofilm 359 

tolerance factor (BTF, the ratio of MCK and the MIC) (Table 1) as parameters for susceptibility to 360 

tobramycin, ciprofloxacin and colistin, Thöming & Häussler (110) observed that in a large (n=352) 361 

collection of clinical P. aeruginosa isolates, biofilm susceptibility values showed a wide distribution, 362 

even among isolates for which MIC values were similar; in addition, among isolates with a similar 363 

MCK value a wide spread in MIC values was observed (110). In a recent study, BPC values of 364 
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tobramycin, ciprofloxacin or colistin (obtained with a resazurin-based viability staining on P. 365 

aeruginosa biofilms formed in a synthetic CF sputum medium) were at least four-fold higher than 366 

the MIC values (160) (Fig. 1B). However, BPC/MIC ratios were antibiotic-dependent, with BPC/MIC 367 

ratios for colistin being significantly higher than those for ciprofloxacin. Overall, a strong and 368 

significant rank correlation was observed between the MIC and the BPC for all antibiotics (i.e. strains 369 

showing higher MICs also show higher BPCs). Comparison of BPC with the MBC yielded a different 370 

picture. BPC values could be higher, equal or lower than the MBC and overall differences between 371 

BPC and MBC were smaller than differences between BPC and MIC. The BPC/MBC ratio was 372 

significantly smaller for ciprofloxacin than for colistin or tobramycin and while strong and significant 373 

correlations were observed between MBC and BPC for tobramycin and ciprofloxacin, this was not 374 

the case for colistin (160). 375 

The selected studies discussed above suggest that while there may be an overall positive correlation 376 

between planktonic and biofilm susceptibility measurements, in many cases the reduced 377 

susceptibility observed in biofilms is independent of resistance in planktonic cultures. In addition, 378 

the relation between planktonic and biofilm susceptibility is antibiotic-dependent, and the impact of 379 

the biofilm model used and the stage in which the biofilms are tested on this relation is likely 380 

substantial (161-165). Finally, due to the lack of biofilm-specific antimicrobial susceptibility 381 

breakpoints, in many studies BPC, MBIC or MBEC values that are above the MIC are taken as 382 

evidence for ‘biofilm resistance’. Considering the profound differences between planktonic cultures 383 

and biofilms, it seems however ill-advised to use breakpoints established for planktonic cells to 384 

categorize biofilms as ‘susceptible’ or ‘resistant’. 385 

 386 

Do Results of Biofilm-based Susceptibility Tests Correlate with Clinical Outcome? 387 

While there are many in vitro studies in which planktonic and biofilm susceptibility towards different 388 

antibiotics are compared, there are few studies in which these data are linked to the clinical 389 

outcome of treatment with these particular antibiotics. Most of these pertain to prosthetic joint 390 

infections or respiratory tract infections in CF.  391 

Prosthetic joint infections. In the context of prosthetic joint infections, biofilm-active 392 

antibiotics (defined as antibiotics that penetrate into the biofilm and are able to eradicate the 393 

bacteria in the biofilm) have been identified; these include rifampicin for staphylococci and 394 

ciprofloxacin for Gram-negative bacteria (31). A distinction is frequently made been ‘difficult-to-395 

treat’ infections that are caused by pathogens resistant to these biofilm-active antibiotics, and 396 

prosthetic joint infections caused by susceptible organisms (29). Using a prospective cohort of 397 

patients (n=163) treated with a two-stage prosthesis exchange according to a standardized 398 
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algorithm, Akgun et al. investigated whether the outcome of ‘difficult-to-treat’ prosthetic joint 399 

infections (n=30, 18.4%) is worse than that of other prosthetic joint infections (n=133, 81.6%) (166). 400 

While the infection-free survival rate at 2 years did not differ between both groups, hospital stay, 401 

prosthesis-free interval and duration of treatment were significantly longer in the ‘difficult-to-treat’ 402 

group than in the other group. This indicates that treatment with antibiotics that have activity 403 

against biofilms improves outcome, suggesting that knowing which antibiotic has an such an anti-404 

biofilm activity could be clinically relevant. In a prospective cohort study with 131 patients with a 405 

prosthetic knee infection, outcome of treatment was compared between patients treated with 406 

biofilm-active antibiotics (n=55, 42%) or other antibiotics (n=76, 58%) (30). The infection-free 407 

survival after 1 year and 2 years was significantly higher for patients who received biofilm-active 408 

antibiotics and treatment with biofilm-active antibiotics was associated with lower pain intensity 409 

(30). In a group of 93 patients with infected spinal implants, treatment outcome was also compared 410 

between patients receiving biofilm-active antibiotics (n=30, 32%) and those who received no biofilm-411 

active antibiotics (n=63, 68%). The infection-free survival differed significantly between both groups: 412 

for patients who received biofilm-active antibiotics it was 94% and 84% after 1 and 2 years, 413 

respectively, while it was only 57% and 49% for patients who received no biofilm-active antibiotics. 414 

In addition, patients receiving biofilm-active antimicrobial therapy reported lower intensity of 415 

postoperative pain (167). In a retrospective, observational, multicenter study involving 203 cases, 416 

treatment with biofilm-active antibiotics (rifampicin/fluoroquinolones) had a favorable impact on 417 

infections caused by staphylococci and Gram-negative bacteria. For example, the combination 418 

fluoroquinolone/rifampicin for staphylococcal infections significantly reduced implant failure (2% 419 

compared to 11% in the control group) (168). However, despite these observations, no association 420 

between MBEC values (for oxacillin, daptomycin, levofloxacin, rifampicin and levofloxacin/rifampicin 421 

combinations) and clinical outcome was observed in a study with 88 patients with a S. aureus 422 

prosthetic joint infection (169). This seems to contradict the evidence that the good in vitro anti-423 

biofilm activity of antibiotic combinations containing rifampicin translates into high activity in animal 424 

prosthetic joint infection models and in patients suffering from biofilm-associated staphylococcal 425 

prosthetic joint infections (142, 170-176). It should be noted that the addition of rifampicin to the 426 

standard treatment did not lead to better outcomes in a recent clinical trial (177), although the 427 

setup of this trial was later criticized (31, 178). In two recent studies, MBEC/MIC ratios were 428 

determined for staphylococci recovered from prosthetic joint infections and linked to clinical 429 

outcome (140, 142). In both studies these ratios were lowest for rifampicin, again suggesting 430 

rifampicin has good antibiofilm activity in vivo. For 70 strains recovered from 49 patients with a first-431 

time prosthetic joint infection (monomicrobial infection caused by staphylococci or polymicrobial 432 
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infection caused by two different species of staphylococci), the oxacillin MBEC/MIC ratios were 433 

significantly higher in recurrent infections compared to resolved infections; no significant differences 434 

between the two patient groups were observed for MBEC/MIC ratios for other antibiotics (142). In a 435 

subsequent study (111 staphylococcal strains from 66 patients), the increased oxacillin MBEC/MIC 436 

ratios for S. aureus from unresolved prosthetic joint infections (median MBEC/MIC ratio of 1166 for 437 

isolates from unresolved infections vs. median MBEC/MIC ratio of 808 for isolates from resolved 438 

infections) was confirmed (140), suggesting that high relative MBEC values (compared to the MIC) 439 

are associated with poorer treatment outcome after a staphylococcal prosthetic joint infection. 440 

There are less data on the added value of using biofilm-active fluoroquinolones against prosthetic 441 

joint infections caused by Gram-negatives. In a study with 47 patients with acute prosthetic joint 442 

infections caused by a Gram-negative organism, treatment with a fluoroquinolone (when all the 443 

strains isolated were susceptible to this antibiotic) was associated with a good prognosis (179). In a 444 

study on 160 patients with an early prosthetic joint infection, treatment failed in 43 patients (26.9%) 445 

and the presence of a Gram-negative infection not treated with fluoroquinolones was identified as 446 

an independent predictor of therapy failure (180). Finally, in patients with prosthetic joint infections 447 

due to ciprofloxacin-susceptible Gram-negatives, the success rate of treatment was 79% (98/124 448 

patients) in patients receiving ciprofloxacin; this was significantly lower in patients not treated with 449 

ciprofloxacin (40%, 6/15 patients) (181). 450 

Respiratory tract infections in CF. In a retrospective study involving 110 CF patients 451 

(infected with different microorganisms), patients treated with antibiotics that were found to be 452 

active against biofilm-grown bacteria in vitro showed a significant reduction in the sputum bacterial 453 

density, a significant reduction in length of hospital stay and a non-significant decrease in treatment 454 

failure (182). However, the only two randomized clinical studies addressing the added value of using 455 

antibiotics with activity against biofilms yielded no evidence for choosing antibiotics based on 456 

biofilm AST for the treatment of P. aeruginosa respiratory tract infections in people with CF (183). In 457 

the first study (184), 39 patients were randomized to biofilm or conventional treatment groups, in 458 

which antibiotics were selected based on biofilm susceptibility testing with the Calgary biofilm 459 

device and broth susceptibility testing, respectively. However, no microbiological or clinical 460 

differences were observed between both groups. In the second study (185), the effect of 14 days of 461 

intravenous antibiotic treatment for pulmonary exacerbations due to P. aeruginosa was compared 462 

between patients receiving treatment based on conventional or biofilm antimicrobial susceptibility 463 

results. Also in this study no differences in microbiological (sputum density at day 14 of the 464 

treatment and at the 1 month follow-up visit) or lung function parameters could be observed 465 

between both groups.  466 
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Potential explanations for the lack of association between biofilm susceptibility and 467 

clinical outcome. While large randomized clinical trials about the use of biofilm-active antibiotics in 468 

prosthetic joint infections are lacking, the data summarized above seem to indicate an added value 469 

of using biofilm-active antibiotics in this context, suggesting that predicting which antibiotics would 470 

have activity against biofilms (especially in the context of ‘difficult-to-treat’ infections and/or 471 

infections caused by less-frequently encountered pathogens) could lead to an improved outcome 472 

(although the apparently conflicting data about biofilm-activity of rifampicin remains to be settled). 473 

The situation is however different in the context of biofilm-related respiratory tract infections in CF, 474 

where two randomized clinical trials could not find an added value of biofilm-based susceptibility 475 

testing, despite promising data in a retrospective study (182). While it cannot be ruled out that the 476 

very different etiology of prosthetic joint infections and respiratory tract infections in CF is behind 477 

this apparent discrepancy, it should be noted that in the two clinical trials in CF patients, biofilm 478 

susceptibility was determined using the Calgary biofilm device and cation-adjusted Mueller-Hinton 479 

broth as growth medium (105, 184, 185). In this model biofilms will develop as surface-attached 480 

communities in a growth medium that is physico-chemically very different from CF sputum. 481 

However, we know that the microenvironment plays an important role in various aspects of biofilm 482 

biology (including metabolism) and likely has a profound impact on antimicrobial susceptibility (13, 483 

26, 160, 186, 187). It should thus maybe not come as a surprise that biofilm susceptibility testing in 484 

an in vitro model that is poorly representative of the in vivo situation, yields susceptibility data that 485 

are poorly representative of the activity of the antibiotic against in vivo biofilms (114, 188); indeed, 486 

such tests may not be a better predictor of in vivo anti-biofilm activity than planktonic susceptibility 487 

tests.  488 

 489 

 490 

HOW CAN WE IMPROVE BIOFILM SUSCEPTIBILITY TESTING AND MAKE IT 491 

MORE RELEVANT FOR CLINICAL PRACTICE? 492 

 493 

The Importance of Standardization and Use of Appropriate Parameters 494 

In order for biofilm AST to find its way to clinical practice, substantial standardization will be 495 

required in order to obtain methods that are reproducible and repeatable, and yield susceptibility 496 

data that are in categorical agreement, regardless of the place where they were obtained (114). 497 

Standardization and reproducibility in biofilm research has been receiving increasing attention, 498 

especially (but not exclusively) in the context of developing products or devices with anti-biofilm 499 

activity (114-116, 120, 137, 188-192). The recent launch of an International Biofilm Standards Task 500 
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Group (https://www.biofilms.ac.uk/international-standards-task-group/) is in line with this increased 501 

attention for standards. The challenge of developing standardized biofilm susceptibility tests should 502 

not be underestimated. Biofilm-based assays are inherently more complex than assays based on 503 

planktonic cells, and even results from these (technically less-demanding) conventional susceptibility 504 

tests are influenced by minor deviations from the published reference methods, again highlighting 505 

the need for standardization and adequate quality control (34, 193-196). While many factors 506 

influence the outcome of a biofilm experiment, results from several studies suggest that how the 507 

biofilm is grown and how the inoculum is prepared are crucial (115, 197-199), and that 508 

reproducibility between laboratories improves when a common (standardized) protocol is used 509 

(115). 510 

However, prior to standardization, there needs to be a consensus on which pharmacodynamic 511 

parameter(s) (Table 1; Fig. 2) is (are) the most important. It could be argued that in line with 512 

planktonic susceptibility testing, we first and foremost want to know which antibiotic will affect the 513 

development of a biofilm, but whether this pertains to the development starting from a planktonic 514 

culture (i.e. prevention of biofilm formation, parameter: BPC) or from a young biofilm (i.e. inhibition 515 

of progression of biofilm formation, parameter: MBIC) is open for discussion. It is currently unclear 516 

whether biofilm-associated infections are initiated by the introduction of single cells, aggregates or 517 

both (1), but regardless of this, it seems in most cases unlikely that antibiotic therapy would be 518 

started so quickly after the introduction of the organisms that no aggregates would be present at the 519 

start of the treatment (even if the infection was initiated by single cells), which would argue for the 520 

use of MBIC as parameter. An exception to this would be antibiotic therapy started prior, during, or 521 

immediately after surgery in which case the presence of single cells or very small aggregates is more 522 

likely. In many cases, antibiotic therapy will only be started after the patient starts showing 523 

symptoms, and this means that in most cases biofilm aggregates will already have formed. This 524 

implies that it is also important to know which concentrations of an antibiotic will lead to partial 525 

reduction (i.e. a reduction in biofilm, but not complete eradication) or full eradication. For the latter 526 

the MBEC is an appropriate parameter, while the MCK-x (i.e. the concentration required to achieve 527 

x-log reduction) can be used for the former. Finally, biofilm tolerance factors (BTF-I, BTF-E, BTF-x; 528 

Table 1) could be used to quantify biofilm-related reduced susceptibility in comparison to 529 

susceptibility of planktonic cells (110).  530 

The proposed definitions in Table 1 are independent of the analysis method used and are (at least in 531 

theory) equally valid for different biofilm quantification approaches. However, in the context of 532 

biofilm AST, approaches that directly (e.g. plate counts) or indirectly (e.g. resazurin-based viability 533 

staining, ATP measurements) quantify the number of living and/or culturable cells will likely be 534 
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preferred over methods that only provide crude measurements of biofilm biomass (e.g. biofilm 535 

biomass staining with crystal violet).  536 

 537 

Setting of Biofilm Breakpoints 538 

Breakpoints are used to distinguish between ‘susceptible’ organisms (‘susceptible’ implying that the 539 

use of a particular antibiotic for this organism is associated with a high likelihood of therapeutic 540 

success) and ‘resistant’ organisms (‘resistance’ implying that the use of this particular antibiotic for 541 

an infection caused by this organism is typically associated with clinical failure) (33, 200). These 542 

breakpoints are set by organizations like EUCAST and CLSI and take into account a wide range of 543 

parameters, including data from large-scale clinical studies, wild-type MIC distributions, and PK/PD 544 

aspects (33, 35, 36, 201-203). As none of these data are currently available for biofilm infections, 545 

setting biofilm breakpoints will be far from trivial and as already mentioned above, there is no 546 

evidence for an added value of using planktonic breakpoints to categorize biofilms as ‘susceptible’ or 547 

‘resistant’. Recently a potential solution was proposed for the lack of biofilm breakpoints, i.e. 548 

determining epidemiological cut-off (ECOFF) values (MBIC-ECOFF and MBEC-ECOFF) to distinguish 549 

between strains belonging to the wild-type population and strains belonging to the population 550 

possessing acquired mechanisms responsible for reduced antimicrobial susceptibility of biofilms 551 

(204). This approach is in line with the EUCAST recommendations for setting breakpoints for the 552 

topical use of antimicrobial agents and the use of inhaled antibiotics (205). Of course, establishing 553 

such ECOFFs would only be the first step, and biofilm breakpoints should ultimately be based on 554 

data from large clinical studies.  555 

 556 

Increasing the Biological Relevance of In Vitro Tests 557 

We know that the nutritional environment can influence results of conventional AST and several 558 

attempts have been made to increase the biological relevance of in vitro AST by re-creating the in 559 

vivo conditions in vitro (104, 158, 206-212). However, in the absence of a thorough validation it is 560 

unclear whether these modified test conditions really are more in vivo-like and it is often also 561 

unclear whether microorganisms grown in these systems reflect the in vivo biofilm phenotype.  562 

Many different artificial or synthetic sputum media, mimicking the composition of CF sputum have 563 

been developed (213-216) and it is also in this context that the ‘in vivo-likeness’ of at least some 564 

media has been evaluated to the greatest extent, both in terms of gene expression (45, 47) and in 565 

terms of morphological similarity between in vitro and in vivo P. aeruginosa aggregates (217). 566 

Likewise, substantial efforts have been made to develop growth media that better represent the in 567 

vivo microenvironment of a prosthetic joint infection, mainly based on the addition of human or 568 
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animal synovial fluid, or the development of synthetic synovial fluid (218-226) (Fig. 3). Most of the 569 

work done in these media so far has focused on studying the formation of biofilm aggregates in 570 

various staphylococci, but some of the media developed have been used to asses biofilm 571 

antimicrobial susceptibility as well (219, 220, 222). Finally, a range of relevant models for the study 572 

of infected wounds have been developed that allow to study antimicrobial treatments of these 573 

biofilm-related infections under in vivo or in vivo-like conditions (227-234). 574 

 575 

 576 

The Need for Clinical Trials to Validate the Use of Biofilm-based Susceptibility Testing in Clinical 577 

Practice 578 

Even if we manage to develop standardized and physiologically relevant in vivo-like biofilm models 579 

that can be incorporated in the workflow of a clinical microbiology lab, their success will ultimately 580 

depend on whether using them improves the clinical outcome of a treatment.  581 

The added value of biofilm-based AST for treating a specific biofilm-related infection could be 582 

determined in a clinical trial in which patients are randomized to a ‘conventional treatment group’ 583 

(in which antibiotic treatment is selected based on conventional susceptibility testing) and a ‘biofilm 584 

treatment group’ (in which antibiotic treatment is selected based on biofilm-based susceptibility 585 

testing), much like was done for CF (184, 185). A protocol of a proposed prospective randomized 586 

clinical trial for selection of antibiotics in periprosthetic joint infections guided by MBEC and MIC 587 

determinations was recently published (235). This trial aims to include patients with first-time 588 

prosthetic joint (hip or knee) infections (monomicrobial infections with Staphylococcus spp.) and its 589 

primary outcome measurement is the proportion of changes in antimicrobial regimen from first-line 590 

treatment. The trial aims to recruit 64 patients that will be randomized to a standard of care arm 591 

(choice of antibiotic guided by MIC) or a comparative arm (selection of antibiotics based on MIC and 592 

MBEC) (235).  593 

However, setting up such a randomized controlled trial, with a sufficiently-high number of patients 594 

in each group and clearly-defined endpoints, will be challenging. Obtaining ethical approval might 595 

also be difficult, either because it is accepted by many that a particular antibiotic is superior to 596 

others, e.g. in the case of rifampicin for treating prosthetic joint infections (178), or because of the 597 

disappointing outcomes in earlier trials, e.g. in CF (184, 185). Finally, for many biofilm-related 598 

infection (including wound infections and prosthetic joint infections), administration of antibiotics is 599 

only a part of the treatment and variations in other interventions (e.g. surgical debridement, one-or 600 

two-stage revision surgery) will complicate recruitment, randomization and interpretation of the 601 

outcome (236). Considering these difficulties, a more feasible alternative approach could be 602 
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envisaged in which the antibiofilm activity of antibiotics is determined in one or more optimized 603 

models in order to devise treatment regimens with potential in vivo activity against biofilms. In a 604 

second step, the clinical outcome of these biofilm-active regimens can then be compared to the 605 

outcome observed with conventional therapy (i.e. therapy with antibiotics selected based on 606 

conventional AST).  607 

The results obtained such studies will allow to build a knowledge base for further research that 608 

could ultimately pave the way for a broader introduction of these approaches in the clinical 609 

microbiology laboratory. 610 

 611 

Practical Aspects 612 

The success of biofilm-based AST in the clinical laboratory will also depend on the development and 613 

implementation of affordable, reproducible and high-throughput tools that yield results that are 614 

easy to interpret, as it seems very unlikely that methods based on complex low-throughput biofilm 615 

model systems, using expensive advanced approaches for readouts, and/or requiring extensive 616 

hands-on time, will find their way to clinical practice. However, the highly successful introduction of 617 

MALDI-TOF mass spectrometry for rapid and accurate identification of microorganisms in the clinical 618 

microbiology laboratory (237-240) shows that the development and implementation of advanced 619 

methodology is possible. While it is at this point difficult to predict what exactly will be needed, it 620 

will likely involve the development of validated and standardized pre-made relevant media to grow 621 

biofilms and the development and implementation of automated and high-throughput methods for 622 

reading biofilm susceptibility. Regardless of what form biofilm-based AST ultimately will take, the 623 

successful implementation will require collaboration between basic researchers, clinical 624 

microbiology laboratories and (potentially new) companies involved in developing and marketing 625 

diagnostic tools.  626 

 627 

 628 

CONCLUDING REMARKS 629 

The call for bringing biofilm AST to the clinic is not new. Already in 2006, Sandoe et al wrote that 630 

‘Data from large numbers of clinical episodes would be required to define the relationship between 631 

MBIC and clinical outcome before any advantages over MIC could be assessed. We hope that this 632 

work will stimulate the investigation of susceptibility tests that have more relevance to biofilm 633 

infections than current methods.’ (241). Our profound knowledge about biofilm formation (1), our 634 

insights into mechanisms responsible for reduced susceptibility in biofilms (25, 86) and the 635 

realization that the infectious microenvironment plays a crucial role in antimicrobial susceptibility 636 



21 
 

(26), will be essential to develop and validate relevant biofilm-based AST methods that can be used 637 

in clinical microbiology laboratories. The crucial next step will be the evaluation of these methods in 638 

well-designed clinical trials, with as ultimate goal to improve antibiotic treatment of patients 639 

suffering from biofilm-related infections. 640 

 641 
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TABLE 1. Proposed key pharmacodynamic parameters that could be used as measures for biofilm susceptibility and their definition. Information in this 651 

table is partially based on (but not necessarily equal to) definitions proposed previously (107, 109-111, 113).  652 

 653 

 Parameter Abbreviation Proposed definition/commenta 

Prevention Biofilm prevention concentration BPC Lowest concentration of an antibiotic required to fully 

prevent formation of a biofilm (including biofilm 

aggregates) starting from planktonic cells 

Inhibition Minimal biofilm inhibitory concentration MBIC Lowest concentration of an antibiotic required to fully 

prevent the further development of a biofilm 

Eradication Minimal biofilm eradication concentration MBEC Lowest concentration of an antibiotic required to fully 

eradicate an established biofilm (i.e. resulting in a read-out 

below the detection limit) 

Killing Minimum antibiotic concentration for biofilm 

killing to achieve x-log reductionb 

MCBK-x Lowest concentration of an antibiotic required to achieve x-

log reduction in an established biofilmc 

Relative parameters Biofilm toleranced factor-prevention BTF-P The ratio of the BPC and the MIC 

 Biofilm tolerance factor-inhibition BTF-I The ratio of the MBIC and the MIC

 Biofilm tolerance factor-eradication BTF-E The ratio of the MBEC and the MIC 

 Biofilm tolerance factor-x BTF-x The ratio of the MCBK-x and the MIC 
a The definitions are proposed in general terms, i.e. independent of a specific quantification method. 654 
b The word ‘biofilm’ was added to the definition previously proposed (110) to avoid any confusion. 655 
c The MCBK resulting in complete eradication is equal to the MBEC. 656 
d For an in-depth discussion and definition of tolerance see references (25, 155, 242-245).657 
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FIGURE 1. A. Association between biofilm-forming capacity and resistance to specific antibiotics in a 658 

collection of 299 Staphylococcus spp. strains; *: p< 0.05. Only for rifampicin a significant association 659 

between increased biofilm formation (assessed by crystal violet staining) and resistance was 660 

observed. Based on data reported in (141). Abbreviations: FOX, cefoxitin; ERY, erythromycin; CLI, 661 

clindamycin; NOR, norfloxacin; GEN, gentamicin; SXT, sulfamethoxazole/trimethoprim; TIG, 662 

tigecycline; LZD, linezolid; FUS, fusidic acid; RIF, rifampicin; VAN, vancomycin. B. Association 663 

between planktonic (MIC) and biofilm (BPC) susceptibility towards three antibiotics for nine P. 664 

aeruginosa isolates. The yellow line indicates the situation in which both parameters would be 665 

identical. While the BPC is always higher than the MIC, exact BPC values cannot be predicted based 666 

on MIC. Based on data reported in (160). Abbreviations: TOB, tobramycin; CIP, ciprofloxacin; COL, 667 

colistin. 668 

 669 

FIGURE 2. Illustration of key pharmacodynamic parameters that could be used as measures for 670 

biofilm susceptibility. MIC, minimal inhibitory concentration; MBC, minimal bactericidal 671 

concentration; BPC, biofilm prevention concentration; MBIC, minimal biofilm inhibitory 672 

concentration; MBEC, minimal biofilm eradication concentration.  673 

 674 

FIGURE 3. A. P. aeruginosa biofilm aggregate grown in SCFM2 medium. B. S. aureus biofilm 675 

aggregate grown in synthetic synovial fluid medium. C. Biofilm prevention concentration of three 676 

antibiotics against nine P. aeruginosa biofilms (A-I) determined in SCFM2 (based on data reported in 677 

(160)). 678 

 679 

  680 
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