| 1  | Biofilm Antimicrobial Susceptibility Testing: Where Are We and                           |
|----|------------------------------------------------------------------------------------------|
| 2  | Where Could We Be Going?                                                                 |
| 3  |                                                                                          |
| 4  | Tom Coenye <sup>a</sup> #                                                                |
| 5  |                                                                                          |
| 6  |                                                                                          |
| 7  | <sup>a</sup> Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium |
| 8  |                                                                                          |
| 9  |                                                                                          |
| 10 | *Address correspondence to Tom Coenye, <u>Tom.Coenye@UGent.be</u>                        |
| 11 |                                                                                          |
| 12 |                                                                                          |
| 13 | Running Head: Biofilm Antimicrobial Susceptibility Testing                               |
|    |                                                                                          |

| 15 | INTRODUCTION                                                                           | 4      |
|----|----------------------------------------------------------------------------------------|--------|
| 16 | CURRENT APPROACHES FOR ANTIMICROBIAL SUSCEPTIBILITY TESTING                            | 5      |
| 17 | Conventional Approaches                                                                | 5      |
| 18 | Genomic Detection of resistance mechanisms                                             | 5      |
| 19 | Alternative Methods for Susceptibility Testing                                         | 6      |
| 20 | Shortcoming of Current Approaches                                                      | 7      |
| 21 | BIOFILM-BASED ANTIMICROBIAL SUSCEPTIBILITY TESTING                                     | 7      |
| 22 | Pharmacodynamic Parameters for the Assessment of Antimicrobial Activity in Biofilm     | s 7    |
| 23 | Tools for Biofilm-based Antimicrobial Susceptibility Testing                           | 8      |
| 24 | Is There an Association Between Biofilm Formation and Antimicrobial Susceptibility?    | 9      |
| 25 | Staphylococcus spp.                                                                    | 9      |
| 26 | Acinetobacter baumannii                                                                | 10     |
| 27 | Escherichia coli and Klebsiella pneumoniae                                             | 10     |
| 28 | Pseudomonas aeruginosa                                                                 | 10     |
| 29 | Discussion                                                                             | 11     |
| 30 | Can Biofilm Susceptibility Be Predicted Based on the MIC?                              | 11     |
| 31 | Do Results of Biofilm-based Susceptibility Tests Correlate with Clinical Outcome?      | 13     |
| 32 | Prosthetic joint infections                                                            | 13     |
| 33 | Respiratory tract infections in CF                                                     | 15     |
| 34 | Potential explanations for the lack of association between biofilm suscepti            | bility |
| 35 | and clinical outcome                                                                   | 15     |
| 36 | HOW CAN WE IMPROVE BIOFILM SUSCEPTIBILITY TESTING AND MAKE IT MORE RELEV               | /ANT   |
| 37 | FOR CLINICAL PRACTICE?                                                                 | 16     |
| 38 | The Importance of Standardization and Use of Appropriate Parameters                    | 16     |
| 39 | Setting of Biofilm Breakpoints                                                         | 17     |
| 40 | Increasing the Biological Relevance of In Vitro Tests                                  | 18     |
| 41 | The Need for Clinical Trials to Validate the Use of Biofilm-based Susceptibility Testi | ng in  |
| 42 | Clinical Practice                                                                      | 19     |
| 43 | Practical Aspects                                                                      | 20     |
| 44 | CONCLUDING REMARKS                                                                     | 20     |
|    |                                                                                        |        |

### 46 Summary

47 Our knowledge about fundamental aspects of biofilm biology, including the mechanisms behind the 48 reduced antimicrobial susceptibility of biofilms, has increased drastically over the last decades. 49 However, this knowledge has so far not been translated into major changes in clinical practice. While 50 the biofilm concept is increasingly on the radar of clinical microbiologists, physicians and healthcare 51 professionals in general, the standardized tools to study biofilms in the clinical microbiology 52 laboratory are still lacking; one area in which this is particularly obvious is that of antimicrobial 53 susceptibility testing (AST). It is generally accepted that the biofilm lifestyle has a tremendous impact 54 on antibiotic susceptibility, yet AST is typically still carried out with planktonic cells. On top of that, 55 the microenvironment at the site of infection is an important driver for microbial physiology and 56 hence susceptibility, but this is poorly reflected in current AST methods. The goal of this review is to 57 provide an overview of the state-of-the-art concerning biofilm AST and highlight the knowledge gaps in this area. Subsequently, potential ways to improve biofilm-based AST will be discussed. Finally, 58 59 bottlenecks currently preventing the use of biofilm AST in clinical practice, as well as the steps 60 needed to get past these bottlenecks, will be discussed.

### 61 **INTRODUCTION**

Microbial biofilms are communities of one or more microorganisms (bacteria and/or fungi) embedded in an extracellular polymeric matrix (produced at least partially by the microorganisms themselves); biofilms can be surface-attached or occur as suspended aggregates (1-3). Although cells in surface-attached biofilms and suspended aggregates show the same phenotype (1), the molecular mechanisms underlying their formation are not necessarily identical (4). In line with previous work, microbial aggregates will be defined as biofilms in this text, regardless of whether they are attached to a biotic or abiotic surface (1).

69 Microbial biofilms are present in virtually every ecological niche on Earth and it has been estimated 70 that 40-80% of all microbial cells are biofilm-associated (5). An estimated 65-80% of all infections is 71 considered to be biofilm-related (6, 7) and although it is not always completely clear what criteria 72 are used to define an infection as biofilm-related, there is no doubt they have a considerable impact 73 on morbidity, mortality, and healthcare-related costs (8). Biofilms can be found in many types of 74 infections and while typically associated with chronic infections, recent data point to a role for 75 biofilms in acute infections as well (9, 10). Many biofilms are associated with the use of indwelling 76 medical devices, including (but not limited to) cardiovascular implants, intravascular devices, 77 orthopedic implants (mainly knees and hips), urinary catheters, endotracheal tubes, breast implants, 78 contact lenses, dental implants and intrauterine devices (8, 11-16). Risk factors for developing a 79 chronic-device related infection include immunomodulatory therapy, diabetes, smoking, and renal 80 disease, suggesting that a compromised innate immune response increases the risk for developing 81 these infections (17). However, not all biofilm infections are related to the use of medical devices, 82 and examples of native tissue biofilms include these identified in respiratory tract infections (e.g. in 83 patients with cystic fibrosis (CF) and chronic rhinosinusitis), chronic otitis media, native valve 84 endocarditis, the oral cavity and chronically infected wounds (14, 18-22).

85 While our knowledge about fundamental aspects of microbial biofilms (including knowledge 86 concerning the mechanisms behind their reduced antimicrobial susceptibility) has increased 87 tremendously over the past decades (1, 13, 23-26), the translation of this increased knowledge 88 about biofilm biology to clinical practice is lagging behind. That does not mean no progress was 89 made: for example guidelines for improved diagnosis of biofilm-associated infections have been 90 published (27, 28) and at least for prosthetic joint infections 'biofilm-active' antibiotics (e.g. 91 rifampicin, ciprofloxacin) have been identified (29-31). However, biofilm-based susceptibility testing, 92 i.e. antimicrobial susceptibility testing (AST) using biofilm-grown bacteria to select the antibiotic(s) 93 to treat a biofilm-related infection, has not yet found its way to the clinical microbiology laboratory, 94 although proposed technologies to do so have been around for over two decades (32). In the present review I outline the state-of-the-art concerning biofilm AST, highlight the knowledge gaps,
and propose solutions to improve biofilm-based AST. In addition, I will discuss what will likely be
needed for these biofilm AST methods to be implemented in the clinical microbiology laboratory.

98 99

# 100 CURRENT APPROACHES FOR ANTIMICROBIAL SUSCEPTIBILITY TESTING

### 101 Conventional approaches

102 In most cases (empirical therapy being the notable exception), the selection of antimicrobial therapy 103 is made based on the susceptibility profile of the infecting organism, as determined using phenotypic 104 tests in which susceptibility is quantified by measuring the effect of the antibiotic on bacterial or 105 fungal growth, using broth microdilution or gradient strip-based methods. Values obtained in these 106 tests (i.e. minimal inhibitory concentrations, MICs) are then compared to breakpoints established for 107 specific dosing regimens by international organizations like EUCAST and CLSI (33, 34): if the MIC is 108 below the breakpoint, the organism is considered susceptible to the antibiotic, and therapy with this 109 antibiotic is predicted to be successful. Alternatively, susceptibility can be assessed using disk 110 diffusion assays in which susceptibility is quantified based on the size of the inhibition zone (35, 36). 111 While there are automated systems for phenotypic susceptibility testing (37), the majority of these 112 also rely on growth of the bacterium and as a consequence it typically takes 1-2 days to complete 113 the test for rapidly growing microorganisms, and even more time is required for fastidious, slow-114 growing microorganisms.

115

### 116 Genomic detection of resistance mechanisms

117 A potential solution for the latter problem is to move beyond phenotypic (growth-based) 118 susceptibility testing, and to use bacterial whole genome sequences (WGS) to infer antimicrobial 119 susceptibility (38-42). However, most WGS-based approaches focus on finding known resistance 120 mechanisms and while they are successful in that, identifying (combinations of) mutations in one or 121 more genes not previously associated with reduced susceptibility, and incorporating these in a 122 prediction algorithm, remains a major challenge (43). In addition, information derived from WGS 123 cannot predict expression patterns of genes involved in antimicrobial susceptibility in specific 124 conditions (44). Indeed, the specific conditions in a biofilm and at the infection site lead to distinct 125 gene expression profiles that are different from those observed in vitro (45-47), complicating the 126 prediction of biofilm susceptibility based on WGS. For example, several biofilm-specific efflux 127 systems have been described (48, 49) as well as the biofilm-specific synthesis of cyclic- $\beta$ -1,3-glucans 128 that sequester antibiotics (50) and these mechanisms would be difficult to pick up with WGS alone.

129

### 130 Alternative Methods for Susceptibility Testing

131 An alternative approach potentially yielding faster results relies on mass spectrometry (more 132 specifically on matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-133 TOF MS). With MALDI-TOF MS, a spectrum can be obtained from a microbial sample that can be 134 used for rapid and accurate identification to the species level (51, 52) but also to predict 135 antimicrobial susceptibility (53-55). Discrimination between susceptible and resistant isolates can be 136 made based on presence/absence or change in intensity of certain peaks in the MALDI-TOF 137 spectrum (56, 57). More recently, advanced machine learning algorithms have been used to predict 138 antimicrobial susceptibility of various pathogens based on MALDI-TOF profiles (58-60).

139 Heat is a by-product of the majority of biological processes; the amount produced is directly related 140 to growth and the heat production rate is related to the metabolic fluxes; using microcalorimetric 141 devices, the energy released during metabolic processes in microorganisms can be measured (61). 142 Microcalorimetry has two major advantages, (i) it is label-free and can be applied in virtually all 143 conditions (e.g. also in turbid media containing blood) and (ii) it allows real-time measurements. 144 Microcalorimetry has been used to determine antimicrobial susceptibility in different organisms and 145 the results obtained so far look are overall in agreement with results obtained with conventional 146 susceptibility tests (62-68).

147 Alternative culture-based approaches for AST are also being developed. An example of such an 148 approach is the AtbFinder system, in which a medium is used that supports growth of many different 149 bacteria (TGV medium) (69, 70). The system is based on direct plating of clinical specimens on TGV 150 agar, with or without antibiotics added at a concentration that can be achieved at the infection site; 151 the approach claims to also consider polymicrobial interactions influencing antimicrobial 152 susceptibility. Case studies have suggested this approach leads to selection of antibiotics with better 153 efficacy for treating nosocomial pneumonia (71) and chronic relapsing urinary tract infections (72). A 154 recently-published clinical trial in which the AtbFinder system was used in the context of respiratory 155 tract infections in CF patients (35 patients, of which 33 were chronically colonized with 156 Pseudomonas aeruginosa) suggests that antibiotics selected with AtbFinder lead to clearance of P. 157 aeruginosa, a decrease in the number of pulmonary exacerbations, and an increase in lung function 158 (73).

Finally, various microscopy-based approaches for AST have been developed (74-77). For example the Accelerate Pheno system uses tracking of the size, shape, and division rate of growing cells exposed to antibiotics, to estimate susceptibility (74, 75); in a clinical trial use of this system led to faster changes in antibiotic therapy for bloodstream infections caused by Gram-negative bacteria (78).

However, despite the promising results obtained with some of the alternative AST methodsdiscussed above, additional validation will be required prior to their routine clinical use.

165

### 166 Shortcoming of Current Approaches

167 There is frequently a poor correlation between results obtained with *in vitro* susceptibility tests and 168 the effect *in vivo*, for example in respiratory tract infections in patients with CF (79-81). Indeed, both 169 pharmacodynamic parameters (determining the relationship between the concentration of the 170 antibiotic at the site of action, and its physiological effects) and pharmacokinetic parameters 171 (determining the relationship between the concentration of the antibiotic in body fluids and tissues, 172 and time) are crucial for the activity of antibiotics in vivo (82-84). However, the behavior of 173 microorganisms in vitro can be very different from that observed in vivo. An important factor 174 contributing to failure of antimicrobial therapy is that in vivo microorganisms form biofilms that 175 show reduced susceptibility towards antimicrobial agents (23, 25). Biofilm cells are phenotypically 176 very different from planktonic cells and the microenvironment in these surface-attached or 177 suspended biofilms (including gradients of  $O_2$ , nutrients and waste products) (85, 86), leads to an 178 altered metabolism linked to reduced susceptibility (24). In addition, the spatial heterogeneity of 179 biofilms may support diversification, i.e. the development of subpopulations with varying degrees of 180 susceptibility, within a patient (87-90). The presence of such subpopulations leads to intrasample 181 diversity in antibiotic susceptibility of isolates and raises questions about the validity of sampling 182 procedures and the common practice of performing susceptibility testing on a limited number of 183 isolates (91, 92). It is worth pointing out that this is not only the case for respiratory tract infections 184 in CF patients, as adaptation and diversification (also in terms of antimicrobial susceptibility) are also 185 observed in other diseases, including non-CF bronchiectasis and urinary tract infections (93-96). 186 Finally, interactions between different microorganisms during (chronic) infections (97-102), as well 187 as interactions between pathogens and the host (103, 104) play an important role in antimicrobial 188 susceptibility, but are difficult to mimick in vitro.

- 189
- 190

### 191 BIOFILM-BASED ANTIMICROBIAL SUSCEPTIBILITY TESTING

#### 192 Pharmacodynamic Parameters for the Assessment of Antimicrobial Activity in Biofilms

While the MIC and minimal bactericidal concentration (MBC, defined as the lowest concentration that kills all planktonic bacteria) are well-established parameters to assess antimicrobial activity and predict the success of a treatment, no such standardized parameters are available for biofilm susceptibility testing. Several parameters, including minimal biofilm inhibitory concentration (MBIC), 197 biofilm inhibitory concentration (BIC), minimal biofilm eradication concentration (MBEC), biofilm 198 prevention concentration (BPC), minimum biofilm bactericidal concentration (MBBC), minimum 199 antibiotic concentration for killing (MCK) and biofilm tolerance factor (BTF) have been introduced as 200 measures of biofilm susceptibility (105-111). However, their exact definition frequently varies 201 between different studies and may also depend on the method used to quantify biofilms (e.g. plate 202 counts, crystal violet staining, resazurin-based viability staining) (112, 113) (Table 1). On top of this 203 lack of unambiguously defined pharmacodynamic parameters, there is also an overall lack of 204 standardization in biofilm research that makes comparison between different studies difficult (114-205 116). Finally, no biofilm-specific breakpoints have been defined yet, complicating the interpretation 206 and clinical use of the above-mentioned parameters.

207

### 208 Tools for Biofilm-based Antimicrobial Susceptibility Testing

209 While most studies on biofilm susceptibility use microtiter plate (MTP) based systems, in principle 210 any biofilm model system can be used to determine biofilm susceptibility (12, 117-121). 211 Nevertheless, specific methods for biofilm susceptibility testing have been developed and the most 212 well-known in this context is the MBEC Assay Kit, also known as the Calgary Biofilm Device (32, 107). 213 In this MTP based assay, biofilms are formed on plastic pegs (uncoated or coated) that are attached 214 to the lid of a 96-well MTP and are immersed in a liquid; subsequently, the established biofilms are 215 transferred to a new 96-well plate for AST (122). Examples of recently described advanced model 216 systems for biofilm susceptibility testing include a microfluidic platform with an integrated sensor 217 (the BiofilmChip) (123), an ex vivo CF lung model comprised of pig bronchiolar tissue and synthetic 218 CF sputum (124), the BioFlux system (125, 126) and dissolvable alginate hydrogel-based biofilm 219 microreactors (127). Other innovative models for biofilm AST were recently reviewed (128).

220 An important part of biofilm-based AST is the quantification of the number of (remaining) viable 221 and/or culturable cells in treated and untreated biofilms. Quantification can be done using 222 detached/dispersed cells, either immediately (i.e. plating of detached cells and counting CFUs after a 223 suitably long incubation time) or after a re-growth phase. In the latter case, the presence or absence 224 of growth can be measured (spectrophotometrically or by plating) or the length of the lag phase can 225 be used to quantify the number of viable cells (129). Alternatively, quantification can be done 226 directly on the biofilm, using for example ATP measurements, crystal violet staining, resazurin-based 227 viability staining, microscopy, electrical impedance, or molecular methods (12, 123, 130-134). A 228 detailed description of biofilm quantification approaches is outside the scope of the present review 229 but it is important to reiterate that different quantification approaches often measure very different 230 things (e.g. measuring optical density after regrowth does not allow to determine the log reduction

231 in CFU, crystal violet stains more than only living cells etc), and that minor modifications to 232 procedures may lead to different outcomes, as documented for example with crystal violet staining 233 (115, 135). Crystal violet staining of surface-attached biofilms is arguable the most used technique, 234 but due to its limitations, it is insufficient as the only method to measure biofilm reduction and it is 235 recommended that results obtained with crystal violet staining are confirmed using other 236 approaches (e.g. CFU counts, microscopy). In addition, in many studies, important characteristics like 237 repeatability (i.e. the ability to obtain the same results when performing multiple tests in the same 238 laboratory), reproducibility (i.e. the ability to obtain the same results when performing multiple tests 239 across multiple laboratories) and responsiveness (i.e. the ability to differentiate between different 240 concentrations of the treatment) (116, 136) are not investigated. A thorough assessment of these 241 parameters is of course crucial prior to any clinical implementation. Examples of biofilm-based 242 antimicrobial susceptibility test for which this was done include the MBEC biofilm disinfectant 243 efficacy test (137) and several MTP based approaches (115).

244

### 245 Is There an Association Between Biofilm Formation and Antimicrobial Susceptibility?

If there would be an association between the biofilm formation *in vitro* (i.e. can an organism form a biofilm in a certain model system? how much biofilm is formed in a certain period of time?) and antimicrobial susceptibility (i.e. the MIC value), the capability and extent of biofilm formation could be used to predict susceptibility. Below I present a selection of the many studies in which this question has been addressed, organized per taxonomic group in order to facilitate comparisons between studies.

252 Staphylococcus spp. Biofilm formation was associated with amikacin resistance in a 253 collection of 49 methicillin-resistant Staphylococcus aureus (MRSA) isolates, but not with 254 susceptibility to 15 other antibiotics (138). In a collection of 300 S. aureus isolates, no associations 255 could be detected between methicillin-resistance and biofilm formation, while resistance to 256 erythromycin, clindamycin and rifampin was associated with increased biofilm formation (139). In a 257 collection of 111 staphylococci from prosthetic joint infections, no association was found between 258 MBEC/MIC ratios and biofilm formation for S. aureus, while for S. epidermidis increased biofilm 259 resistance (i.e. high MBEC/MIC ratio) to several antibiotics was observed in strong biofilm-producers 260 (140). No significant differences were observed between the biofilm-forming capacity of methicillin-261 susceptible and methicillin-resistant *Staphylococcus* spp. isolates, or between isolates susceptible or 262 resistant to most other tested antibiotics (total of 229 isolates investigated) (141). The exception 263 was rifampicin: on average rifampicin-resistant strains formed significantly more biofilm than 264 susceptible strains (141) (Fig. 1A). In a collection of 70 staphylococci from prosthetic joint infections,

265 MBEC/MIC ratios for ciprofloxacin (but not for seven other antibiotics tested) were significantly 266 higher for 'strong biofilm producers' than for 'non/weak producers' (142).

267 Acinetobacter baumannii. In a collection of 271 A. baumannii isolates, non-multidrug-268 resistant (MDR) A. baumannii isolates tended to form stronger biofilms than MDR and extensively 269 drug-resistant (XDR) strains. For 20/21 antibiotics tested (polymyxin being the exception), 270 susceptible isolates were stronger biofilm formers than intermediate and resistant ones (143). 271 However, in a study with 207 A. baumannii isolates, susceptible and less-susceptible strains were 272 found to be equally capable of biofilm formation (144). Likewise, in a collection of 309 A. baumannii 273 isolates, no difference was observed between MDR and non-MDR isolates in terms of their biofilm-274 forming capacity (145).

275 Escherichia coli and Klebsiella pneumoniae. In a meta-analysis of the link between biofilm 276 formation and antibiotic resistance in uropathogenic E. coli (17 studies included), 14 studies showed 277 a positive association between biofilm formation and antibiotic resistance, two studies did not show 278 any association and a single study reported a negative association between biofilm production and 279 antibiotic resistance (146). Two studies addressed this question in K. pneumoniae. In a first study 280 (120 isolates), XDR strains showed a higher ability to form biofilms than MDR and susceptible strains 281 (147). In a second study with 100 K. pneumoniae isolates, ciprofloxacin-susceptible isolates formed 282 stronger biofilms than resistant isolates; such a difference was however not observed for other 283 antibiotics (148).

284 Pseudomonas aeruginosa. Increased biofilm formation (as well as reduced motility) was 285 observed in MDR/XDR high-risk P. aeruginosa clones (ST-111, ST-175, and ST-235) (149). However, in 286 a collection of 302 P. aeruginosa isolates, the distribution of isolates with different biofilm-forming 287 capacities did not differ among the MDR and non-MDR groups (150). In contrast, in a study with 66 288 isolates (of which 40 were MDR), an inverse association between resistance and biofilm formation 289 was observed, with more biofilm formation in isolates categorized as non-MDR (151). Finally, a 290 meta-analysis (20 eligible studies published between 2000 and 2019, on isolates recovered in Iran) 291 found that overall biofilm formation was higher in MDR P. aeruginosa, although a significant 292 association between biofilm formation and antibiotic resistance was only observed in 10 studies 293 (50%) (152). The above-mentioned studies suggest that the interaction between antimicrobial 294 resistance mechanisms and biofilm formation in *P. aeruginosa* is complex. For example, inactivation 295 of the negative regulator NfxB leads to overexpression of the MexCD-OprJ efflux pump but also to 296 impaired constitutive AmpC overexpression and consequently to decreased periplasmic  $\beta$ -lactamase 297 activity (important for  $\beta$ -lactam resistance). While this leads to increased susceptibility to  $\beta$ -lactam

antibiotics in planktonic cells, AmpC secreted by *nfxB* mutants still protects biofilm cells, probably
due to the accumulation of AmpC in the biofilm matrix (153).

300 **Discussion.** The studies mentioned above clearly indicate that the question whether there is 301 an association between biofilm formation and antimicrobial susceptibility is difficult to answer, with 302 conclusions differing between different studies, even within the same taxonomic group. However, 303 closer inspection reveals that the setup of many studies is suboptimal in terms of including a 304 sufficiently diverse and large collection of isolates, the biofilm model system and quantification 305 approach used, as well as analysis and interpretation of data. In many cases the biomass of surface-306 attached biofilms is indirectly quantified (e.g. by using crystal violet) and the values obtained are 307 compared to that of a reference strain and/or arbitrary cut-offs. For example, in one study biofilms 308 yielding optical density (OD) read-outs (at 550 nm, OD<sub>550nm</sub>) after crystal violet staining that were higher than that of the negative control, but lower than that of a particular reference strain were 309 310 designated as 'weak biofilm formers', while those with OD<sub>550nm</sub> values higher than that of the 311 reference strain were considered 'strong biofilm formers' (143). In another study the mean of blank-312 corrected OD values was used to group isolates into the categories 'nonproducer' (OD < 0.120), 'weak producer' (0.120 < OD < 0.240) and 'strong producer' (OD > 0.240) (140). While these 313 314 approaches may work well within a single study, they will likely be difficult to reproduce between 315 different laboratories and the biological relevance of the (seemingly arbitrary) cut-offs established is 316 unclear. In addition, biofilm susceptibility is often defined based on the MIC of a particular antibiotic 317 for a given isolate, and as discussed in more detail below, using breakpoints established for 318 planktonic cells to categorize biofilms as 'susceptible' or 'resistant' may lead to misleading results. 319 Finally, the post hoc ergo propter hoc assumption (after this, therefore because of this) is frequently 320 made in studies in which a link between biofilm formation and antimicrobial susceptibility is 321 observed, but we need to be careful to accept such an assumption. Biofilm formation and 322 antimicrobial susceptibility (of planktonic and biofilm cells) are influenced by many factors, including 323 stochastic events (e.g. stochastic formation of dormant persister cells) (154), variability in microbial 324 populations (e.g. occurrence of heteroresistance in populations containing subpopulations of cells 325 with lower susceptibility than the majority of the population) (155, 156) and the microenvironment 326 (in vitro as well as in vivo at the site of infection, e.g. presence of certain nutrients) (26, 157, 158) 327 and it may very well be that there simply is no mechanistic link between biofilm formation and 328 planktonic susceptibility.

329

### 330 Can Biofilm Susceptibility Be Predicted Based on the MIC?

331 The question whether planktonic susceptibility can be used to predict biofilm susceptibility is an 332 important one, because if MIC values, determined according to highly standardized EUCAST or CLSI 333 procedures, would be a good proxy for biofilm susceptibility, dedicated biofilm AST would not be 334 needed. Although planktonic and biofilm susceptibility parameter values for the same 335 strain/antibiotic combinations have been determined in many studies, direct comparisons are again 336 difficult due to differences in methodology and/or the lack of reporting susceptibility data for 337 individual isolates. Below I focus on a selected set of studies that addressed this question for P. 338 aeruginosa clinical isolates.

339 Moskowitz et al. compared susceptibility of planktonic cultures (MIC, determined according to CLSI 340 guidelines) and biofilms (BIC, using the Calgary Biofilm Device) for 94 P. aeruginosa isolates towards 341 12 antibiotics (105). BICs were substantially higher than MICs for doxycycline and most of the  $\beta$ -342 lactam antibiotics investigated (aztreonam, ceftazidime, piperacillin-tazobactam and ticarcillin-343 clavulanate), while BICs of gentamicin and meropenem were only somewhat higher than the 344 corresponding MICs, and BICs and MICs were fairly similar for amikacin, tobramycin and 345 ciprofloxacin. Azithromycin showed fairly low BICs, although P. aeruginosa is considered as resistant 346 in standard susceptibility testing. In a study with 57 non-mucoid *P. aeruginosa* isolates, planktonic 347 (MIC) and biofilm (BPC, BIC) susceptibilities were determined for levofloxacin, ciprofloxacin, 348 imipenem, ceftazidime, tobramycin, colistin and azithromycin (106). Some antibiotics showed 349 median BPCs that were in the same range as MICs (fluoroquinolones, tobramycin, colistin), while 350 others (ceftazidime, imipenem) had BPCs that were much higher than MICs. The former antibiotics 351 also had relatively low BICs, indicating they may have activity against established biofilms. In a study 352 with 133 P. aeruginosa isolates, marked differences between MIC and 'biofilm active score' (BAS) 353 values (the latter determined based on microscopic assessment of the fraction of living cells after 354 treatment) were observed for aztreonam and tobramycin (159). For 19.4% and 30.0% of the isolates 355 that are resistant towards aztreonam and tobramycin, respectively, when grown planktonically, the biofilm biomass (as evaluated microscopically) was reduced with 50-75%. Vice versa, 63.6% of the 356 357 aztreonam-sensitive and 66.2% of the tobramycin-sensitive isolates were non-responsive when 358 grown as a biofilm. Using MIC, minimum antibiotic concentrations for killing (MCK, the concentration 359 that resulted in a certain reduction in number of CFU of biofilm-grown cells) and the biofilm 360 tolerance factor (BTF, the ratio of MCK and the MIC) (Table 1) as parameters for susceptibility to 361 tobramycin, ciprofloxacin and colistin, Thöming & Häussler (110) observed that in a large (n=352) 362 collection of clinical *P. aeruginosa* isolates, biofilm susceptibility values showed a wide distribution, 363 even among isolates for which MIC values were similar; in addition, among isolates with a similar 364 MCK value a wide spread in MIC values was observed (110). In a recent study, BPC values of 365 tobramycin, ciprofloxacin or colistin (obtained with a resazurin-based viability staining on P. 366 aeruginosa biofilms formed in a synthetic CF sputum medium) were at least four-fold higher than 367 the MIC values (160) (Fig. 1B). However, BPC/MIC ratios were antibiotic-dependent, with BPC/MIC 368 ratios for colistin being significantly higher than those for ciprofloxacin. Overall, a strong and 369 significant rank correlation was observed between the MIC and the BPC for all antibiotics (i.e. strains 370 showing higher MICs also show higher BPCs). Comparison of BPC with the MBC yielded a different 371 picture. BPC values could be higher, equal or lower than the MBC and overall differences between 372 BPC and MBC were smaller than differences between BPC and MIC. The BPC/MBC ratio was 373 significantly smaller for ciprofloxacin than for colistin or tobramycin and while strong and significant 374 correlations were observed between MBC and BPC for tobramycin and ciprofloxacin, this was not 375 the case for colistin (160).

376 The selected studies discussed above suggest that while there may be an overall positive correlation 377 between planktonic and biofilm susceptibility measurements, in many cases the reduced 378 susceptibility observed in biofilms is independent of resistance in planktonic cultures. In addition, 379 the relation between planktonic and biofilm susceptibility is antibiotic-dependent, and the impact of 380 the biofilm model used and the stage in which the biofilms are tested on this relation is likely 381 substantial (161-165). Finally, due to the lack of biofilm-specific antimicrobial susceptibility 382 breakpoints, in many studies BPC, MBIC or MBEC values that are above the MIC are taken as 383 evidence for 'biofilm resistance'. Considering the profound differences between planktonic cultures 384 and biofilms, it seems however ill-advised to use breakpoints established for planktonic cells to 385 categorize biofilms as 'susceptible' or 'resistant'.

386

### 387 Do Results of Biofilm-based Susceptibility Tests Correlate with Clinical Outcome?

While there are many *in vitro* studies in which planktonic and biofilm susceptibility towards different antibiotics are compared, there are few studies in which these data are linked to the clinical outcome of treatment with these particular antibiotics. Most of these pertain to prosthetic joint infections or respiratory tract infections in CF.

**Prosthetic joint infections.** In the context of prosthetic joint infections, biofilm-active antibiotics (defined as antibiotics that penetrate into the biofilm and are able to eradicate the bacteria in the biofilm) have been identified; these include rifampicin for staphylococci and ciprofloxacin for Gram-negative bacteria (31). A distinction is frequently made been 'difficult-totreat' infections that are caused by pathogens resistant to these biofilm-active antibiotics, and prosthetic joint infections caused by susceptible organisms (29). Using a prospective cohort of patients (n=163) treated with a two-stage prosthesis exchange according to a standardized 399 algorithm, Akgun et al. investigated whether the outcome of 'difficult-to-treat' prosthetic joint 400 infections (n=30, 18.4%) is worse than that of other prosthetic joint infections (n=133, 81.6%) (166). 401 While the infection-free survival rate at 2 years did not differ between both groups, hospital stay, 402 prosthesis-free interval and duration of treatment were significantly longer in the 'difficult-to-treat' 403 group than in the other group. This indicates that treatment with antibiotics that have activity 404 against biofilms improves outcome, suggesting that knowing which antibiotic has an such an anti-405 biofilm activity could be clinically relevant. In a prospective cohort study with 131 patients with a 406 prosthetic knee infection, outcome of treatment was compared between patients treated with 407 biofilm-active antibiotics (n=55, 42%) or other antibiotics (n=76, 58%) (30). The infection-free 408 survival after 1 year and 2 years was significantly higher for patients who received biofilm-active 409 antibiotics and treatment with biofilm-active antibiotics was associated with lower pain intensity 410 (30). In a group of 93 patients with infected spinal implants, treatment outcome was also compared 411 between patients receiving biofilm-active antibiotics (n=30, 32%) and those who received no biofilm-412 active antibiotics (n=63, 68%). The infection-free survival differed significantly between both groups: 413 for patients who received biofilm-active antibiotics it was 94% and 84% after 1 and 2 years, 414 respectively, while it was only 57% and 49% for patients who received no biofilm-active antibiotics. 415 In addition, patients receiving biofilm-active antimicrobial therapy reported lower intensity of 416 postoperative pain (167). In a retrospective, observational, multicenter study involving 203 cases, 417 treatment with biofilm-active antibiotics (rifampicin/fluoroquinolones) had a favorable impact on 418 infections caused by staphylococci and Gram-negative bacteria. For example, the combination 419 fluoroquinolone/rifampicin for staphylococcal infections significantly reduced implant failure (2% 420 compared to 11% in the control group) (168). However, despite these observations, no association 421 between MBEC values (for oxacillin, daptomycin, levofloxacin, rifampicin and levofloxacin/rifampicin 422 combinations) and clinical outcome was observed in a study with 88 patients with a S. aureus 423 prosthetic joint infection (169). This seems to contradict the evidence that the good in vitro anti-424 biofilm activity of antibiotic combinations containing rifampicin translates into high activity in animal 425 prosthetic joint infection models and in patients suffering from biofilm-associated staphylococcal 426 prosthetic joint infections (142, 170-176). It should be noted that the addition of rifampicin to the 427 standard treatment did not lead to better outcomes in a recent clinical trial (177), although the 428 setup of this trial was later criticized (31, 178). In two recent studies, MBEC/MIC ratios were 429 determined for staphylococci recovered from prosthetic joint infections and linked to clinical 430 outcome (140, 142). In both studies these ratios were lowest for rifampicin, again suggesting 431 rifampicin has good antibiofilm activity in vivo. For 70 strains recovered from 49 patients with a first-432 time prosthetic joint infection (monomicrobial infection caused by staphylococci or polymicrobial 433 infection caused by two different species of staphylococci), the oxacillin MBEC/MIC ratios were 434 significantly higher in recurrent infections compared to resolved infections; no significant differences 435 between the two patient groups were observed for MBEC/MIC ratios for other antibiotics (142). In a 436 subsequent study (111 staphylococcal strains from 66 patients), the increased oxacillin MBEC/MIC 437 ratios for S. aureus from unresolved prosthetic joint infections (median MBEC/MIC ratio of 1166 for 438 isolates from unresolved infections vs. median MBEC/MIC ratio of 808 for isolates from resolved 439 infections) was confirmed (140), suggesting that high relative MBEC values (compared to the MIC) 440 are associated with poorer treatment outcome after a staphylococcal prosthetic joint infection. 441 There are less data on the added value of using biofilm-active fluoroquinolones against prosthetic 442 joint infections caused by Gram-negatives. In a study with 47 patients with acute prosthetic joint 443 infections caused by a Gram-negative organism, treatment with a fluoroquinolone (when all the strains isolated were susceptible to this antibiotic) was associated with a good prognosis (179). In a 444 445 study on 160 patients with an early prosthetic joint infection, treatment failed in 43 patients (26.9%) 446 and the presence of a Gram-negative infection not treated with fluoroguinolones was identified as 447 an independent predictor of therapy failure (180). Finally, in patients with prosthetic joint infections 448 due to ciprofloxacin-susceptible Gram-negatives, the success rate of treatment was 79% (98/124 449 patients) in patients receiving ciprofloxacin; this was significantly lower in patients not treated with 450 ciprofloxacin (40%, 6/15 patients) (181).

451 Respiratory tract infections in CF. In a retrospective study involving 110 CF patients 452 (infected with different microorganisms), patients treated with antibiotics that were found to be 453 active against biofilm-grown bacteria in vitro showed a significant reduction in the sputum bacterial 454 density, a significant reduction in length of hospital stay and a non-significant decrease in treatment 455 failure (182). However, the only two randomized clinical studies addressing the added value of using 456 antibiotics with activity against biofilms yielded no evidence for choosing antibiotics based on 457 biofilm AST for the treatment of *P. aeruginosa* respiratory tract infections in people with CF (183). In 458 the first study (184), 39 patients were randomized to biofilm or conventional treatment groups, in 459 which antibiotics were selected based on biofilm susceptibility testing with the Calgary biofilm 460 device and broth susceptibility testing, respectively. However, no microbiological or clinical 461 differences were observed between both groups. In the second study (185), the effect of 14 days of 462 intravenous antibiotic treatment for pulmonary exacerbations due to P. aeruginosa was compared 463 between patients receiving treatment based on conventional or biofilm antimicrobial susceptibility 464 results. Also in this study no differences in microbiological (sputum density at day 14 of the 465 treatment and at the 1 month follow-up visit) or lung function parameters could be observed 466 between both groups.

Potential explanations for the lack of association between biofilm susceptibility and 467 468 clinical outcome. While large randomized clinical trials about the use of biofilm-active antibiotics in 469 prosthetic joint infections are lacking, the data summarized above seem to indicate an added value 470 of using biofilm-active antibiotics in this context, suggesting that predicting which antibiotics would 471 have activity against biofilms (especially in the context of 'difficult-to-treat' infections and/or 472 infections caused by less-frequently encountered pathogens) could lead to an improved outcome 473 (although the apparently conflicting data about biofilm-activity of rifampicin remains to be settled). 474 The situation is however different in the context of biofilm-related respiratory tract infections in CF, 475 where two randomized clinical trials could not find an added value of biofilm-based susceptibility 476 testing, despite promising data in a retrospective study (182). While it cannot be ruled out that the 477 very different etiology of prosthetic joint infections and respiratory tract infections in CF is behind this apparent discrepancy, it should be noted that in the two clinical trials in CF patients, biofilm 478 479 susceptibility was determined using the Calgary biofilm device and cation-adjusted Mueller-Hinton 480 broth as growth medium (105, 184, 185). In this model biofilms will develop as surface-attached 481 communities in a growth medium that is physico-chemically very different from CF sputum. 482 However, we know that the microenvironment plays an important role in various aspects of biofilm 483 biology (including metabolism) and likely has a profound impact on antimicrobial susceptibility (13, 484 26, 160, 186, 187). It should thus maybe not come as a surprise that biofilm susceptibility testing in 485 an in vitro model that is poorly representative of the in vivo situation, yields susceptibility data that 486 are poorly representative of the activity of the antibiotic against in vivo biofilms (114, 188); indeed, 487 such tests may not be a better predictor of *in vivo* anti-biofilm activity than planktonic susceptibility 488 tests.

489

490

# HOW CAN WE IMPROVE BIOFILM SUSCEPTIBILITY TESTING AND MAKE IT MORE RELEVANT FOR CLINICAL PRACTICE?

493

### 494 The Importance of Standardization and Use of Appropriate Parameters

In order for biofilm AST to find its way to clinical practice, substantial standardization will be required in order to obtain methods that are reproducible and repeatable, and yield susceptibility data that are in categorical agreement, regardless of the place where they were obtained (114). Standardization and reproducibility in biofilm research has been receiving increasing attention, especially (but not exclusively) in the context of developing products or devices with anti-biofilm activity (114-116, 120, 137, 188-192). The recent launch of an International Biofilm Standards Task 501 Group (https://www.biofilms.ac.uk/international-standards-task-group/) is in line with this increased 502 attention for standards. The challenge of developing standardized biofilm susceptibility tests should 503 not be underestimated. Biofilm-based assays are inherently more complex than assays based on 504 planktonic cells, and even results from these (technically less-demanding) conventional susceptibility 505 tests are influenced by minor deviations from the published reference methods, again highlighting 506 the need for standardization and adequate quality control (34, 193-196). While many factors 507 influence the outcome of a biofilm experiment, results from several studies suggest that how the 508 biofilm is grown and how the inoculum is prepared are crucial (115, 197-199), and that 509 reproducibility between laboratories improves when a common (standardized) protocol is used 510 (115).

511 However, prior to standardization, there needs to be a consensus on which pharmacodynamic 512 parameter(s) (Table 1; Fig. 2) is (are) the most important. It could be argued that in line with 513 planktonic susceptibility testing, we first and foremost want to know which antibiotic will affect the 514 development of a biofilm, but whether this pertains to the development starting from a planktonic 515 culture (i.e. prevention of biofilm formation, parameter: BPC) or from a young biofilm (i.e. inhibition 516 of progression of biofilm formation, parameter: MBIC) is open for discussion. It is currently unclear 517 whether biofilm-associated infections are initiated by the introduction of single cells, aggregates or 518 both (1), but regardless of this, it seems in most cases unlikely that antibiotic therapy would be 519 started so quickly after the introduction of the organisms that no aggregates would be present at the 520 start of the treatment (even if the infection was initiated by single cells), which would argue for the 521 use of MBIC as parameter. An exception to this would be antibiotic therapy started prior, during, or 522 immediately after surgery in which case the presence of single cells or very small aggregates is more 523 likely. In many cases, antibiotic therapy will only be started after the patient starts showing 524 symptoms, and this means that in most cases biofilm aggregates will already have formed. This 525 implies that it is also important to know which concentrations of an antibiotic will lead to partial 526 reduction (i.e. a reduction in biofilm, but not complete eradication) or full eradication. For the latter 527 the MBEC is an appropriate parameter, while the MCK-x (i.e. the concentration required to achieve 528 x-log reduction) can be used for the former. Finally, biofilm tolerance factors (BTF-I, BTF-E, BTF-x; 529 Table 1) could be used to quantify biofilm-related reduced susceptibility in comparison to 530 susceptibility of planktonic cells (110).

The proposed definitions in Table 1 are independent of the analysis method used and are (at least in theory) equally valid for different biofilm quantification approaches. However, in the context of biofilm AST, approaches that directly (e.g. plate counts) or indirectly (e.g. resazurin-based viability staining, ATP measurements) quantify the number of living and/or culturable cells will likely be

preferred over methods that only provide crude measurements of biofilm biomass (e.g. biofilmbiomass staining with crystal violet).

537

### 538 Setting of Biofilm Breakpoints

539 Breakpoints are used to distinguish between 'susceptible' organisms ('susceptible' implying that the 540 use of a particular antibiotic for this organism is associated with a high likelihood of therapeutic 541 success) and 'resistant' organisms ('resistance' implying that the use of this particular antibiotic for 542 an infection caused by this organism is typically associated with clinical failure) (33, 200). These breakpoints are set by organizations like EUCAST and CLSI and take into account a wide range of 543 544 parameters, including data from large-scale clinical studies, wild-type MIC distributions, and PK/PD 545 aspects (33, 35, 36, 201-203). As none of these data are currently available for biofilm infections, 546 setting biofilm breakpoints will be far from trivial and as already mentioned above, there is no 547 evidence for an added value of using planktonic breakpoints to categorize biofilms as 'susceptible' or 548 'resistant'. Recently a potential solution was proposed for the lack of biofilm breakpoints, i.e. 549 determining epidemiological cut-off (ECOFF) values (MBIC-ECOFF and MBEC-ECOFF) to distinguish 550 between strains belonging to the wild-type population and strains belonging to the population 551 possessing acquired mechanisms responsible for reduced antimicrobial susceptibility of biofilms 552 (204). This approach is in line with the EUCAST recommendations for setting breakpoints for the 553 topical use of antimicrobial agents and the use of inhaled antibiotics (205). Of course, establishing 554 such ECOFFs would only be the first step, and biofilm breakpoints should ultimately be based on 555 data from large clinical studies.

556

### 557 Increasing the Biological Relevance of In Vitro Tests

We know that the nutritional environment can influence results of conventional AST and several attempts have been made to increase the biological relevance of *in vitro* AST by re-creating the *in vivo* conditions *in vitro* (104, 158, 206-212). However, in the absence of a thorough validation it is unclear whether these modified test conditions really are more *in vivo*-like and it is often also unclear whether microorganisms grown in these systems reflect the *in vivo* biofilm phenotype.

563 Many different artificial or synthetic sputum media, mimicking the composition of CF sputum have 564 been developed (213-216) and it is also in this context that the *'in vivo*-likeness' of at least some 565 media has been evaluated to the greatest extent, both in terms of gene expression (45, 47) and in 566 terms of morphological similarity between *in vitro* and *in vivo P. aeruginosa* aggregates (217). 567 Likewise, substantial efforts have been made to develop growth media that better represent the *in* 568 *vivo* microenvironment of a prosthetic joint infection, mainly based on the addition of human or animal synovial fluid, or the development of synthetic synovial fluid (218-226) (Fig. 3). Most of the work done in these media so far has focused on studying the formation of biofilm aggregates in various staphylococci, but some of the media developed have been used to asses biofilm antimicrobial susceptibility as well (219, 220, 222). Finally, a range of relevant models for the study of infected wounds have been developed that allow to study antimicrobial treatments of these biofilm-related infections under *in vivo* or *in vivo*-like conditions (227-234).

- 575
- 576

# 577 The Need for Clinical Trials to Validate the Use of Biofilm-based Susceptibility Testing in Clinical 578 Practice

579 Even if we manage to develop standardized and physiologically relevant *in vivo*-like biofilm models 580 that can be incorporated in the workflow of a clinical microbiology lab, their success will ultimately 581 depend on whether using them improves the clinical outcome of a treatment.

582 The added value of biofilm-based AST for treating a specific biofilm-related infection could be 583 determined in a clinical trial in which patients are randomized to a 'conventional treatment group' 584 (in which antibiotic treatment is selected based on conventional susceptibility testing) and a 'biofilm 585 treatment group' (in which antibiotic treatment is selected based on biofilm-based susceptibility 586 testing), much like was done for CF (184, 185). A protocol of a proposed prospective randomized 587 clinical trial for selection of antibiotics in periprosthetic joint infections guided by MBEC and MIC 588 determinations was recently published (235). This trial aims to include patients with first-time 589 prosthetic joint (hip or knee) infections (monomicrobial infections with *Staphylococcus* spp.) and its 590 primary outcome measurement is the proportion of changes in antimicrobial regimen from first-line 591 treatment. The trial aims to recruit 64 patients that will be randomized to a standard of care arm 592 (choice of antibiotic guided by MIC) or a comparative arm (selection of antibiotics based on MIC and 593 MBEC) (235).

594 However, setting up such a randomized controlled trial, with a sufficiently-high number of patients 595 in each group and clearly-defined endpoints, will be challenging. Obtaining ethical approval might 596 also be difficult, either because it is accepted by many that a particular antibiotic is superior to 597 others, e.g. in the case of rifampicin for treating prosthetic joint infections (178), or because of the 598 disappointing outcomes in earlier trials, e.g. in CF (184, 185). Finally, for many biofilm-related 599 infection (including wound infections and prosthetic joint infections), administration of antibiotics is 600 only a part of the treatment and variations in other interventions (e.g. surgical debridement, one-or 601 two-stage revision surgery) will complicate recruitment, randomization and interpretation of the 602 outcome (236). Considering these difficulties, a more feasible alternative approach could be 603 envisaged in which the antibiofilm activity of antibiotics is determined in one or more optimized 604 models in order to devise treatment regimens with potential *in vivo* activity against biofilms. In a 605 second step, the clinical outcome of these biofilm-active regimens can then be compared to the 606 outcome observed with conventional therapy (i.e. therapy with antibiotics selected based on 607 conventional AST).

The results obtained such studies will allow to build a knowledge base for further research that could ultimately pave the way for a broader introduction of these approaches in the clinical microbiology laboratory.

611

### 612 Practical Aspects

613 The success of biofilm-based AST in the clinical laboratory will also depend on the development and 614 implementation of affordable, reproducible and high-throughput tools that yield results that are 615 easy to interpret, as it seems very unlikely that methods based on complex low-throughput biofilm 616 model systems, using expensive advanced approaches for readouts, and/or requiring extensive 617 hands-on time, will find their way to clinical practice. However, the highly successful introduction of 618 MALDI-TOF mass spectrometry for rapid and accurate identification of microorganisms in the clinical 619 microbiology laboratory (237-240) shows that the development and implementation of advanced 620 methodology is possible. While it is at this point difficult to predict what exactly will be needed, it 621 will likely involve the development of validated and standardized pre-made relevant media to grow 622 biofilms and the development and implementation of automated and high-throughput methods for 623 reading biofilm susceptibility. Regardless of what form biofilm-based AST ultimately will take, the 624 successful implementation will require collaboration between basic researchers, clinical 625 microbiology laboratories and (potentially new) companies involved in developing and marketing 626 diagnostic tools.

627 628

### 629 CONCLUDING REMARKS

The call for bringing biofilm AST to the clinic is not new. Already in 2006, Sandoe *et al* wrote that *Data from large numbers of clinical episodes would be required to define the relationship between MBIC and clinical outcome before any advantages over MIC could be assessed. We hope that this work will stimulate the investigation of susceptibility tests that have more relevance to biofilm infections than current methods.*' (241). Our profound knowledge about biofilm formation (1), our insights into mechanisms responsible for reduced susceptibility in biofilms (25, 86) and the realization that the infectious microenvironment plays a crucial role in antimicrobial susceptibility (26), will be essential to develop and validate relevant biofilm-based AST methods that can be used
in clinical microbiology laboratories. The crucial next step will be the evaluation of these methods in
well-designed clinical trials, with as ultimate goal to improve antibiotic treatment of patients
suffering from biofilm-related infections.

# **ACKNOWLEDGEMENTS**

I want to thank the Lundbeck Foundation (Denmark) and FWO-Vlaanderen (Belgium) for supporting
a stay at the Costerton Biofilm Center (Copenhagen, Denmark), during which most of his review was
written. I also thank Amber De Bleeckere (Laboratory of Pharmaceutical Microbiology, Ghent
University) for sharing unpublished data used in Figure 3.

651 TABLE 1. Proposed key pharmacodynamic parameters that could be used as measures for biofilm susceptibility and their definition. Information in this

table is partially based on (but not necessarily equal to) definitions proposed previously (107, 109-111, 113).

653

|                     | Parameter                                        | Abbreviation | Proposed definition/comment <sup>a</sup>                       |
|---------------------|--------------------------------------------------|--------------|----------------------------------------------------------------|
| Prevention          | Biofilm prevention concentration                 | BPC          | Lowest concentration of an antibiotic required to fully        |
|                     |                                                  |              | prevent formation of a biofilm (including biofilm              |
|                     |                                                  |              | aggregates) starting from planktonic cells                     |
| Inhibition          | Minimal biofilm inhibitory concentration         | MBIC         | Lowest concentration of an antibiotic required to fully        |
|                     |                                                  |              | prevent the further development of a biofilm                   |
| Eradication         | Minimal biofilm eradication concentration        | MBEC         | Lowest concentration of an antibiotic required to fully        |
|                     |                                                  |              | eradicate an established biofilm (i.e. resulting in a read-out |
|                     |                                                  |              | below the detection limit)                                     |
| Killing             | Minimum antibiotic concentration for biofilm     | MCBK-x       | Lowest concentration of an antibiotic required to achieve x-   |
|                     | killing to achieve x-log reduction <sup>b</sup>  |              | log reduction in an established biofilm <sup>c</sup>           |
| Relative parameters | Biofilm tolerance <sup>d</sup> factor-prevention | BTF-P        | The ratio of the BPC and the MIC                               |
|                     | Biofilm tolerance factor-inhibition              | BTF-I        | The ratio of the MBIC and the MIC                              |
|                     | Biofilm tolerance factor-eradication             | BTF-E        | The ratio of the MBEC and the MIC                              |
|                     | Biofilm tolerance factor-x                       | BTF-x        | The ratio of the MCBK-x and the MIC                            |

<sup>a</sup> The definitions are proposed in general terms, i.e. independent of a specific quantification method.

<sup>b</sup> The word 'biofilm' was added to the definition previously proposed (110) to avoid any confusion.

656 <sup>c</sup> The MCBK resulting in complete eradication is equal to the MBEC.

| 657 <sup>d</sup> | For | an | in-depth | discussion | and | definition | of | tolerance | see | references | (25, | 155, | 242-245). |
|------------------|-----|----|----------|------------|-----|------------|----|-----------|-----|------------|------|------|-----------|
|------------------|-----|----|----------|------------|-----|------------|----|-----------|-----|------------|------|------|-----------|

658 FIGURE 1. A. Association between biofilm-forming capacity and resistance to specific antibiotics in a 659 collection of 299 Staphylococcus spp. strains; \*: p< 0.05. Only for rifampicin a significant association 660 between increased biofilm formation (assessed by crystal violet staining) and resistance was 661 observed. Based on data reported in (141). Abbreviations: FOX, cefoxitin; ERY, erythromycin; CLI, 662 clindamycin; NOR, norfloxacin; GEN, gentamicin; SXT, sulfamethoxazole/trimethoprim; TIG, 663 tigecycline; LZD, linezolid; FUS, fusidic acid; RIF, rifampicin; VAN, vancomycin. B. Association 664 between planktonic (MIC) and biofilm (BPC) susceptibility towards three antibiotics for nine P. 665 aeruginosa isolates. The yellow line indicates the situation in which both parameters would be 666 identical. While the BPC is always higher than the MIC, exact BPC values cannot be predicted based 667 on MIC. Based on data reported in (160). Abbreviations: TOB, tobramycin; CIP, ciprofloxacin; COL, 668 colistin.

669

FIGURE 2. Illustration of key pharmacodynamic parameters that could be used as measures for
biofilm susceptibility. MIC, minimal inhibitory concentration; MBC, minimal bactericidal
concentration; BPC, biofilm prevention concentration; MBIC, minimal biofilm inhibitory
concentration; MBEC, minimal biofilm eradication concentration.

674

FIGURE 3. A. *P. aeruginosa* biofilm aggregate grown in SCFM2 medium. B. *S. aureus* biofilm
aggregate grown in synthetic synovial fluid medium. C. Biofilm prevention concentration of three
antibiotics against nine *P. aeruginosa* biofilms (A-I) determined in SCFM2 (based on data reported in
(160)).

679

### 681 **REFERENCES**

- Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmolle M, Stewart PS, Bjarnsholt T. 2022.
   The biofilm life cycle: expanding the conceptual model of biofilm formation. Nature reviews
   Microbiology 20:608-620.
- Flemming HC, Baveye P, Neu TR, Stoodley P, Szewzyk U, Wingender J, Wuertz S. 2021. Who
  put the film in biofilm? The migration of a term from wastewater engineering to medicine
  and beyond. NPJ biofilms and microbiomes 7:10.
- Flemming HC, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J,
   Wuertz S. 2023. The biofilm matrix: multitasking in a shared space. Nature reviews
   Microbiology 21:70-86.
- 4. Staudinger BJ, Muller JF, Halldorsson S, Boles B, Angermeyer A, Nguyen D, Rosen H,
  Baldursson O, Gottfreethsson M, Guethmundsson GH, Singh PK. 2014. Conditions associated
  with the cystic fibrosis defect promote chronic Pseudomonas aeruginosa infection. American
- journal of respiratory and critical care medicine 189:812-24.
  5. Flemming HC, Wuertz S. 2019. Bacteria and archaea on Earth and their abundance in biofilms. Nature reviews Microbiology 17:247-260.
- 697 6. Wolcott RD, Ehrlich GD. 2008. Biofilms and chronic infections. JAMA 299:2682-4.
- 6987.Lewis K. 2007. Persister cells, dormancy and infectious disease. Nature reviews Microbiology6995:48-56.
- Wolcott RD, Rhoads DD, Bennett ME, Wolcott BM, Gogokhia L, Costerton JW, Dowd SE.
   2010. Chronic wounds and the medical biofilm paradigm. Journal of wound care 19:45-6, 48 50, 52-3.
- 703 9. Kolpen M, Jensen PO, Faurholt-Jepsen D, Bjarnsholt T. 2022. Prevalence of biofilms in acute
  704 infections challenges a longstanding paradigm. Biofilm 4:100080.
- Kolpen M, Kragh KN, Enciso JB, Faurholt-Jepsen D, Lindegaard B, Egelund GB, Jensen AV,
   Ravn P, Mathiesen IHM, Gheorge AG, Hertz FB, Qvist T, Whiteley M, Jensen PO, Bjarnsholt T.
   2022. Bacterial biofilms predominate in both acute and chronic human lung infections.
   Thorax 77:1015-1022.
- Caldara M, Belgiovine C, Secchi E, Rusconi R. 2022. Environmental, Microbiological, and
  Immunological Features of Bacterial Biofilms Associated with Implanted Medical Devices.
  Clinical microbiology reviews 35:e0022120.
- Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S,
  Hamblin MR, Hadjifrangiskou M, Tegos GP. 2018. Options and Limitations in Clinical
  Investigation of Bacterial Biofilms. Clinical microbiology reviews 31.
- 715 13. Bjarnsholt T, Alhede M, Alhede M, Eickhardt-Sorensen SR, Moser C, Kuhl M, Jensen PO,
  716 Hoiby N. 2013. The in vivo biofilm. Trends in microbiology 21:466-74.
- 717
   14.
   Bjarnsholt T, Jensen PØ, Moser C, Høiby N. 2011. Biofilm Infections doi:10.1007/978-1-4419 

   718
   6084-9.
- 719 15. Shirtliff M, Leid JG. 2009. The Role of Biofilms in Device-Related Infections doi:10.1007/978720 3-540-68119-9.
- 72116.Donelli G. 2015. Biofilm-based Healthcare-associated Infections doi:10.1007/978-3-319-72211038-7.
- 17. Stewart PS, Bjarnsholt T. 2020. Risk factors for chronic biofilm-related infection associated
  with implanted medical devices. Clinical microbiology and infection : the official publication
  of the European Society of Clinical Microbiology and Infectious Diseases 26:1034-1038.
- 72618.Hajishengallis G, Lamont RJ, Koo H. 2023. Oral polymicrobial communities: Assembly,727function, and impact on diseases. Cell host & microbe 31:528-538.
- Kouijzer JJP, Noordermeer DJ, van Leeuwen WJ, Verkaik NJ, Lattwein KR. 2022. Native valve,
  prosthetic valve, and cardiac device-related infective endocarditis: A review and update on
  current innovative diagnostic and therapeutic strategies. Frontiers in cell and developmental
  biology 10:995508.

| 732        | 20. | Buch PJ, Chai Y, Goluch ED. 2019. Treating Polymicrobial Infections in Chronic Diabetic                                                                                                      |
|------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 733        |     | Wounds. Clinical microbiology reviews 32.                                                                                                                                                    |
| 734        | 21. | Welp AL, Bomberger JM. 2020. Bacterial Community Interactions During Chronic Respiratory                                                                                                     |
| 735        |     | Disease. Frontiers in cellular and infection microbiology 10:213.                                                                                                                            |
| 736        | 22. | Boisvert AA, Cheng MP, Sheppard DC, Nguyen D. 2016. Microbial Biofilms in Pulmonary and                                                                                                      |
| 737        |     | Critical Care Diseases. Annals of the American Thoracic Society 13:1615-23.                                                                                                                  |
| 738        | 23. | Van Acker H, Van Dijck P, Coenye T. 2014. Molecular mechanisms of antimicrobial tolerance                                                                                                    |
| 739        |     | and resistance in bacterial and fungal biofilms. Trends in microbiology 22:326-33.                                                                                                           |
| 740        | 24. | Crabbe A, Jensen PO, Bjarnsholt T, Coenye T. 2019. Antimicrobial Tolerance and Metabolic                                                                                                     |
| 741        |     | Adaptations in Microbial Biofilms. Trends in microbiology 27:850-863.                                                                                                                        |
| 742        | 25. | Ciofu O, Moser C, Jensen PO, Hoiby N. 2022. Tolerance and resistance of microbial biofilms.                                                                                                  |
| 743        | 26  | Nature reviews Microbiology 20:621-635.                                                                                                                                                      |
| 744        | 26. | Bjarnsholt T, Whiteley M, Rumbaugh KP, Stewart PS, Jensen PO, Frimodt-Moller N. 2022. The                                                                                                    |
| 745        |     | importance of understanding the infectious microenvironment. The Lancet Infectious                                                                                                           |
| 746        | 27  | diseases 22:e88-e92.                                                                                                                                                                         |
| 747        | 27. | Hall-Stoodley L, Stoodley P, Kathju S, Hoiby N, Moser C, Costerton JW, Moter A, Bjarnsholt T.                                                                                                |
| 748        |     | 2012. Towards diagnostic guidelines for biofilm-associated infections. FEMS immunology                                                                                                       |
| 749        | 20  | and medical microbiology 65:127-45.                                                                                                                                                          |
| 750<br>751 | 28. | Hoiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, Hall-Stoodley L, Hola V, Imbert                                                                                               |
| 751<br>752 |     | C, Kirketerp-Moller K, Lebeaux D, Oliver A, Ullmann AJ, Williams C, Biofilms ESGf, Consulting<br>External Expert Werner Z. 2015. ESCMID guideline for the diagnosis and treatment of biofilm |
| 752        |     | infections 2014. Clinical microbiology and infection : the official publication of the European                                                                                              |
| 755<br>754 |     | Society of Clinical Microbiology and Infectious Diseases 21 Suppl 1:S1-25.                                                                                                                   |
| 755        | 29. | Izakovicova P, Borens O, Trampuz A. 2019. Periprosthetic joint infection: current concepts                                                                                                   |
| 756        | 29. | and outlook. EFORT open reviews 4:482-494.                                                                                                                                                   |
| 757        | 30. | Gellert M, Hardt S, Koder K, Renz N, Perka C, Trampuz A. 2020. Biofilm-active antibiotic                                                                                                     |
| 758        | 50. | treatment improves the outcome of knee periprosthetic joint infection: Results from a 6-                                                                                                     |
| 759        |     | year prospective cohort study. International journal of antimicrobial agents 55:105904.                                                                                                      |
| 760        | 31. | Rottier W, Seidelman J, Wouthuyzen-Bakker M. 2023. Antimicrobial treatment of patients                                                                                                       |
| 761        | 01. | with a periprosthetic joint infection: basic principles. Arthroplasty (London, England) 5:10.                                                                                                |
| 762        | 32. | Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. 1999. The Calgary Biofilm Device:                                                                                                   |
| 763        |     | new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms.                                                                                                 |
| 764        |     | Journal of clinical microbiology 37:1771-6.                                                                                                                                                  |
| 765        | 33. | Mouton JW, Brown DF, Apfalter P, Canton R, Giske CG, Ivanova M, MacGowan AP, Rodloff A,                                                                                                      |
| 766        |     | Soussy CJ, Steinbakk M, Kahlmeter G. 2012. The role of                                                                                                                                       |
| 767        |     | pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST                                                                                                            |
| 768        |     | approach. Clinical microbiology and infection : the official publication of the European                                                                                                     |
| 769        |     | Society of Clinical Microbiology and Infectious Diseases 18:E37-45.                                                                                                                          |
| 770        | 34. | Humphries RM, Ambler J, Mitchell SL, Castanheira M, Dingle T, Hindler JA, Koeth L, Sei K,                                                                                                    |
| 771        |     | Development CM, Standardization Working Group of the Subcommittee on Antimicrobial                                                                                                           |
| 772        |     | Susceptibility T. 2018. CLSI Methods Development and Standardization Working Group Best                                                                                                      |
| 773        |     | Practices for Evaluation of Antimicrobial Susceptibility Tests. Journal of clinical microbiology                                                                                             |
| 774        |     | 56.                                                                                                                                                                                          |
| 775        | 35. | Bengtsson S, Bjelkenbrant C, Kahlmeter G. 2014. Validation of EUCAST zone diameter                                                                                                           |
| 776        |     | breakpoints against reference broth microdilution. Clinical microbiology and infection : the                                                                                                 |
| 777        |     | official publication of the European Society of Clinical Microbiology and Infectious Diseases                                                                                                |
| 778        |     | 20:0353-60.                                                                                                                                                                                  |
| 779        | 36. | Matuschek E, Brown DF, Kahlmeter G. 2014. Development of the EUCAST disk diffusion                                                                                                           |
| 780        |     | antimicrobial susceptibility testing method and its implementation in routine microbiology                                                                                                   |
| 781        |     | laboratories. Clinical microbiology and infection : the official publication of the European                                                                                                 |
| 782        |     | Society of Clinical Microbiology and Infectious Diseases 20:0255-66.                                                                                                                         |
|            |     |                                                                                                                                                                                              |

| 783        | 37. | Jorgensen JH, Ferraro MJ. 2009. Antimicrobial susceptibility testing: a review of general        |
|------------|-----|--------------------------------------------------------------------------------------------------|
| 784        | 57. | principles and contemporary practices. Clinical infectious diseases : an official publication of |
| 785        |     | the Infectious Diseases Society of America 49:1749-55.                                           |
| 786        | 38. | Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, Grundman H,                 |
| 787        | 50. | Hasman H, Holden MTG, Hopkins KL, Iredell J, Kahlmeter G, Koser CU, MacGowan A, Mevius           |
| 788        |     | D, Mulvey M, Naas T, Peto T, Rolain JM, Samuelsen O, Woodford N. 2017. The role of whole         |
| 789        |     | genome sequencing in antimicrobial susceptibility testing of bacteria: report from the           |
| 790        |     | EUCAST Subcommittee. Clinical microbiology and infection : the official publication of the       |
| 790<br>791 |     | European Society of Clinical Microbiology and Infectious Diseases 23:2-22.                       |
| 791        | 20  |                                                                                                  |
|            | 39. | Su M, Satola SW, Read TD. 2019. Genome-Based Prediction of Bacterial Antibiotic                  |
| 793        | 40  | Resistance. Journal of clinical microbiology 57.                                                 |
| 794<br>705 | 40. | Cortes-Lara S, Barrio-Tofino ED, Lopez-Causape C, Oliver A, Group G-SRPs. 2021. Predicting       |
| 795        |     | Pseudomonas aeruginosa susceptibility phenotypes from whole genome sequence                      |
| 796        |     | resistome analysis. Clinical microbiology and infection : the official publication of the        |
| 797        |     | European Society of Clinical Microbiology and Infectious Diseases 27:1631-1637.                  |
| 798        | 41. | Kim JI, Maguire F, Tsang KK, Gouliouris T, Peacock SJ, McAllister TA, McArthur AG, Beiko RG.     |
| 799        |     | 2022. Machine Learning for Antimicrobial Resistance Prediction: Current Practice,                |
| 800        |     | Limitations, and Clinical Perspective. Clinical microbiology reviews 35:e0017921.                |
| 801        | 42. | Biggel M, Johler S, Roloff T, Tschudin-Sutter S, Bassetti S, Siegemund M, Egli A, Stephan R,     |
| 802        |     | Seth-Smith HMB. 2023. PorinPredict: In Silico Identification of OprD Loss from WGS Data for      |
| 803        |     | Improved Genotype-Phenotype Predictions of P. aeruginosa Carbapenem Resistance.                  |
| 804        |     | Microbiology spectrum 11:e0358822.                                                               |
| 805        | 43. | Kavvas ES, Catoiu E, Mih N, Yurkovich JT, Seif Y, Dillon N, Heckmann D, Anand A, Yang L,         |
| 806        |     | Nizet V, Monk JM, Palsson BO. 2018. Machine learning and structural analysis of                  |
| 807        |     | Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic                |
| 808        |     | resistance. Nature communications 9:4306.                                                        |
| 809        | 44. | Jeukens J, Kukavica-Ibrulj I, Emond-Rheault JG, Freschi L, Levesque RC. 2017. Comparative        |
| 810        |     | genomics of a drug-resistant Pseudomonas aeruginosa panel and the challenges of                  |
| 811        |     | antimicrobial resistance prediction from genomes. FEMS microbiology letters 364.                 |
| 812        | 45. | Cornforth DM, Dees JL, Ibberson CB, Huse HK, Mathiesen IH, Kirketerp-Moller K, Wolcott RD,       |
| 813        |     | Rumbaugh KP, Bjarnsholt T, Whiteley M. 2018. Pseudomonas aeruginosa transcriptome                |
| 814        |     | during human infection. Proceedings of the National Academy of Sciences of the United            |
| 815        |     | States of America 115:E5125-E5134.                                                               |
| 816        | 46. | Ibberson CB, Whiteley M. 2019. The Staphylococcus aureus Transcriptome during Cystic             |
| 817        |     | Fibrosis Lung Infection. mBio 10.                                                                |
| 818        | 47. | Cornforth DM, Diggle FL, Melvin JA, Bomberger JM, Whiteley M. 2020. Quantitative                 |
| 819        |     | Framework for Model Evaluation in Microbiology Research Using Pseudomonas aeruginosa             |
| 820        |     | and Cystic Fibrosis Infection as a Test Case. mBio 11.                                           |
| 821        | 48. | Zhang L, Mah TF. 2008. Involvement of a novel efflux system in biofilm-specific resistance to    |
| 822        |     | antibiotics. Journal of bacteriology 190:4447-52.                                                |
| 823        | 49. | Coenye T, Van Acker H, Peeters E, Sass A, Buroni S, Riccardi G, Mahenthiralingam E. 2011.        |
| 824        |     | Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms.            |
| 825        |     | Antimicrobial agents and chemotherapy 55:1912-9.                                                 |
| 826        | 50. | Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O'Toole GA. 2003. A genetic basis for         |
| 827        |     | Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306-10.                         |
| 828        | 51. | Chen XF, Hou X, Xiao M, Zhang L, Cheng JW, Zhou ML, Huang JJ, Zhang JJ, Xu YC, Hsueh PR.         |
| 829        |     | 2021. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry               |
| 830        |     | (MALDI-TOF MS) Analysis for the Identification of Pathogenic Microorganisms: A Review.           |
| 831        |     | Microorganisms 9.                                                                                |
| 832        | 52. | Torres-Sangiao E, Leal Rodriguez C, Garcia-Riestra C. 2021. Application and Perspectives of      |
| 833        |     | MALDI-TOF Mass Spectrometry in Clinical Microbiology Laboratories. Microorganisms 9.             |
|            |     |                                                                                                  |

| 834 | 53. | Burckhardt I, Zimmermann S. 2018. Susceptibility Testing of Bacteria Using Maldi-Tof Mass       |
|-----|-----|-------------------------------------------------------------------------------------------------|
| 835 |     | Spectrometry. Frontiers in microbiology 9:1744.                                                 |
| 836 | 54. | Idelevich EA, Becker K. 2019. How to accelerate antimicrobial susceptibility testing. Clinical  |
| 837 |     | microbiology and infection : the official publication of the European Society of Clinical       |
| 838 |     | Microbiology and Infectious Diseases 25:1347-1355.                                              |
| 839 | 55. | Yoon EJ, Jeong SH. 2021. MALDI-TOF Mass Spectrometry Technology as a Tool for the Rapid         |
| 840 |     | Diagnosis of Antimicrobial Resistance in Bacteria. Antibiotics (Basel, Switzerland) 10.         |
| 841 | 56. | Maenchantrarath C, Khumdee P, Samosornsuk S, Mungkornkaew N, Samosornsuk W. 2022.               |
| 842 |     | Investigation of fluconazole susceptibility to Candida albicans by MALDI-TOF MS and real-       |
| 843 |     | time PCR for CDR1, CDR2, MDR1 and ERG11. BMC microbiology 22:153.                               |
| 844 | 57. | Kim JM, Kim I, Chung SH, Chung Y, Han M, Kim JS. 2019. Rapid Discrimination of Methicillin-     |
| 845 |     | Resistant Staphylococcus aureus by MALDI-TOF MS. Pathogens (Basel, Switzerland) 8.              |
| 846 | 58. | Liu X, Su T, Hsu YS, Yu H, Yang HS, Jiang L, Zhao Z. 2021. Rapid identification and             |
| 847 |     | discrimination of methicillin-resistant Staphylococcus aureus strains via matrix-assisted laser |
| 848 |     | desorption/ionization time-of-flight mass spectrometry. Rapid communications in mass            |
| 849 |     | spectrometry : RCM 35:e8972.                                                                    |
| 850 | 59. | Weis C, Cuenod A, Rieck B, Dubuis O, Graf S, Lang C, Oberle M, Brackmann M, Sogaard KK,         |
| 851 |     | Osthoff M, Borgwardt K, Egli A. 2022. Direct antimicrobial resistance prediction from clinical  |
| 852 |     | MALDI-TOF mass spectra using machine learning. Nature medicine 28:164-174.                      |
| 853 | 60. | Yu J, Lin YT, Chen WC, Tseng KH, Lin HH, Tien N, Cho CF, Huang JY, Liang SJ, Ho LC, Hsieh YW,   |
| 854 |     | Hsu KC, Ho MW, Hsueh PR, Cho DY. 2023. Direct prediction of carbapenem-resistant,               |
| 855 |     | carbapenemase-producing, and colistin-resistant Klebsiella pneumoniae isolates from             |
| 856 |     | routine MALDI-TOF mass spectra using machine learning and outcome evaluation.                   |
| 857 |     | International journal of antimicrobial agents 61:106799.                                        |
| 858 | 61. | Braissant O, Wirz D, Gopfert B, Daniels AU. 2010. Use of isothermal microcalorimetry to         |
| 859 |     | monitor microbial activities. FEMS microbiology letters 303:1-8.                                |
| 860 | 62. | Butini ME, Gonzalez Moreno M, Czuban M, Koliszak A, Tkhilaishvili T, Trampuz A, Di Luca M.      |
| 861 |     | 2019. Real-Time Antimicrobial Susceptibility Assay of Planktonic and Biofilm Bacteria by        |
| 862 |     | Isothermal Microcalorimetry. Advances in experimental medicine and biology 1214:61-77.          |
| 863 | 63. | Antonelli A, Coppi M, Tellapragada C, Hasan B, Maruri A, Gijon D, Morecchiato F, de Vogel C,    |
| 864 |     | Verbon A, van Wamel W, Kragh KN, Frimodt-Moller N, Canton R, Giske CG, Rossolini GM.            |
| 865 |     | 2022. Isothermal microcalorimetry vs checkerboard assay to evaluate in-vitro synergism of       |
| 866 |     | meropenem-amikacin and meropenem-colistin combinations against multi-drug-resistant             |
| 867 |     | Gram-negative pathogens. International journal of antimicrobial agents 60:106668.               |
| 868 | 64. | Kragh KN, Gijon D, Maruri A, Antonelli A, Coppi M, Kolpen M, Crone S, Tellapragada C, Hasan     |
| 869 |     | B, Radmer S, de Vogel C, van Wamel W, Verbon A, Giske CG, Rossolini GM, Canton R,               |
| 870 |     | Frimodt-Moller N. 2021. Effective antimicrobial combination in vivo treatment predicted         |
| 871 |     | with microcalorimetry screening. The Journal of antimicrobial chemotherapy 76:1001-1009.        |
| 872 | 65. | Tellapragada C, Hasan B, Antonelli A, Maruri A, de Vogel C, Gijon D, Coppi M, Verbon A, van     |
| 873 |     | Wamel W, Rossolini GM, Canton R, Giske CG. 2020. Isothermal microcalorimetry minimal            |
| 874 |     | inhibitory concentration testing in extensively drug resistant Gram-negative bacilli: a         |
| 875 |     | multicentre study. Clinical microbiology and infection : the official publication of the        |
| 876 |     | European Society of Clinical Microbiology and Infectious Diseases 26:1413 e1-1413 e7.           |
| 877 | 66. | Sultan AR, Tavakol M, Lemmens-den Toom NA, Croughs PD, Verkaik NJ, Verbon A, van                |
| 878 |     | Wamel WJB. 2022. Real time monitoring of Staphylococcus aureus biofilm sensitivity              |
| 879 |     | towards antibiotics with isothermal microcalorimetry. PloS one 17:e0260272.                     |
| 880 | 67. | Di Luca M, Koliszak A, Karbysheva S, Chowdhary A, Meis JF, Trampuz A. 2019. Thermogenic         |
| 881 |     | Characterization and Antifungal Susceptibility of Candida auris by Microcalorimetry. Journal    |
| 882 |     | of fungi (Basel, Switzerland) 5.                                                                |
|     |     |                                                                                                 |

| 883<br>884<br>885 | 68. | Grutter AE, Lafranca T, Sigg AP, Mariotti M, Bonkat G, Braissant O. 2021. Detection and Drug<br>Susceptibility Testing of Neisseria gonorrhoeae Using Isothermal Microcalorimetry.<br>Microorganisms 9. |
|-------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 886               | 69. | Tetz G, Tetz V. 2021. Evaluation of a New Culture-Based AtbFinder Test-System Employing a                                                                                                               |
| 887               |     | Novel Nutrient Medium for the Selection of Optimal Antibiotics for Critically III Patients with                                                                                                         |
| 888               |     | Polymicrobial Infections within 4 h. Microorganisms 9.                                                                                                                                                  |
| 889               | 70. | Tetz G, Tetz V. 2022. Overcoming Antibiotic Resistance with Novel Paradigms of Antibiotic                                                                                                               |
| 890               |     | Selection. Microorganisms 10.                                                                                                                                                                           |
| 891               | 71. | Tetz G, Vecherkovskaya M, Kardava K, Tetz V. 2022. Race for Life: Antibiotic Selection in                                                                                                               |
| 892               |     | Nosocomial Pneumonia. Chest 161.                                                                                                                                                                        |
| 893               | 72. | Tetz GV, Kardava KM, Vecherkovskaya MF, Tsifansky MD, Tetz VV. 2023. Treatment of                                                                                                                       |
| 894               |     | chronic relapsing urinary tract infection with antibiotics selected by AtbFinder. Urology case                                                                                                          |
| 895               |     | reports 46:102312.                                                                                                                                                                                      |
| 896               | 73. | Tetz G, Kardava K, Vecherkovskaya M, Hahn A, Tsifansky M, Koumbourlis A, Tetz V. 2023.                                                                                                                  |
| 897               |     | AtbFinder Diagnostic Test System Improves Optimal Selection of Antibiotic Therapy in                                                                                                                    |
| 898               |     | Persons with Cystic Fibrosis. Journal of clinical microbiology 61:e0155822.                                                                                                                             |
| 899               | 74. | Marschal M, Bachmaier J, Autenrieth I, Oberhettinger P, Willmann M, Peter S. 2017.                                                                                                                      |
| 900               |     | Evaluation of the Accelerate Pheno System for Fast Identification and Antimicrobial                                                                                                                     |
| 901               |     | Susceptibility Testing from Positive Blood Cultures in Bloodstream Infections Caused by                                                                                                                 |
| 902               |     | Gram-Negative Pathogens. Journal of clinical microbiology 55:2116-2126.                                                                                                                                 |
| 903               | 75. | Cenci E, Paggi R, Socio GV, Bozza S, Camilloni B, Pietrella D, Mencacci A. 2020. Accelerate                                                                                                             |
| 904               |     | Pheno blood culture detection system: a literature review. Future microbiology 15:1595-                                                                                                                 |
| 905               |     | 1605.                                                                                                                                                                                                   |
| 906               | 76. | Smith KP, Richmond DL, Brennan-Krohn T, Elliott HL, Kirby JE. 2017. Development of MAST:                                                                                                                |
| 907               |     | A Microscopy-Based Antimicrobial Susceptibility Testing Platform. SLAS technology 22:662-                                                                                                               |
| 908               |     | 674.                                                                                                                                                                                                    |
| 909<br>010        | 77. | Yu H, Jing W, Iriya R, Yang Y, Syal K, Mo M, Grys TE, Haydel SE, Wang S, Tao N. 2018.                                                                                                                   |
| 910<br>011        |     | Phenotypic Antimicrobial Susceptibility Testing with Deep Learning Video Microscopy.                                                                                                                    |
| 911<br>912        | 78. | Analytical chemistry 90:6314-6322.<br>Banerjee R, Komarow L, Virk A, Rajapakse N, Schuetz AN, Dylla B, Earley M, Lok J, Kohner P,                                                                       |
| 912<br>913        | 78. | Ihde S, Cole N, Hines L, Reed K, Garner OB, Chandrasekaran S, de St Maurice A, Kanatani M,                                                                                                              |
| 913<br>914        |     | Curello J, Arias R, Swearingen W, Doernberg SB, Patel R. 2021. Randomized Trial Evaluating                                                                                                              |
| 914<br>915        |     | Clinical Impact of RAPid IDentification and Susceptibility Testing for Gram-negative                                                                                                                    |
| 915<br>916        |     | Bacteremia: RAPIDS-GN. Clinical infectious diseases : an official publication of the Infectious                                                                                                         |
| 910<br>917        |     | Diseases Society of America 73:e39-e46.                                                                                                                                                                 |
| 918               | 79. | Somayaji R, Parkins MD, Shah A, Martiniano SL, Tunney MM, Kahle JS, Waters VJ, Elborn JS,                                                                                                               |
| 919               | 75. | Bell SC, Flume PA, VanDevanter DR, Antimicrobial Resistance in Cystic Fibrosis                                                                                                                          |
| 920               |     | InternationalWorking G. 2019. Antimicrobial susceptibility testing (AST) and associated                                                                                                                 |
| 921               |     | clinical outcomes in individuals with cystic fibrosis: A systematic review. Journal of cystic                                                                                                           |
| 922               |     | fibrosis : official journal of the European Cystic Fibrosis Society 18:236-243.                                                                                                                         |
| 923               | 80. | Waters VJ, Kidd TJ, Canton R, Ekkelenkamp MB, Johansen HK, LiPuma JJ, Bell SC, Elborn JS,                                                                                                               |
| 924               |     | Flume PA, VanDevanter DR, Gilligan P, Antimicrobial Resistance International Working Group                                                                                                              |
| 925               |     | in Cystic F. 2019. Reconciling Antimicrobial Susceptibility Testing and Clinical Response in                                                                                                            |
| 926               |     | Antimicrobial Treatment of Chronic Cystic Fibrosis Lung Infections. Clinical infectious                                                                                                                 |
| 927               |     | diseases : an official publication of the Infectious Diseases Society of America 69:1812-1816.                                                                                                          |
| 928               | 81. | LiPuma JJ. 2022. The Sense and Nonsense of Antimicrobial Susceptibility Testing in Cystic                                                                                                               |
| 929               |     | Fibrosis. Journal of the Pediatric Infectious Diseases Society 11:S46-S52.                                                                                                                              |
| 930               | 82. | Van Bambeke F, Barcia-Macay M, Lemaire S, Tulkens PM. 2006. Cellular pharmacodynamics                                                                                                                   |
| 931               |     | and pharmacokinetics of antibiotics: current views and perspectives. Current opinion in drug                                                                                                            |
| 932               |     | discovery & development 9:218-30.                                                                                                                                                                       |
|                   |     |                                                                                                                                                                                                         |

| 022        | 02   | Stratton CW 2006 In vitre succentibility testing versus in vive offectiveness. The Medical                                                                                         |
|------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 933        | 83.  | Stratton CW. 2006. In vitro susceptibility testing versus in vivo effectiveness. The Medical                                                                                       |
| 934<br>025 | 04   | clinics of North America 90:1077-88.                                                                                                                                               |
| 935<br>936 | 84.  | Rathi C, Lee RE, Meibohm B. 2016. Translational PK/PD of anti-infective therapeutics. Drug discovery today Technologies 21-22:41-49.                                               |
| 930<br>937 | 85.  | Stewart PS, Franklin MJ. 2008. Physiological heterogeneity in biofilms. Nature reviews                                                                                             |
| 937<br>938 | 65.  | Microbiology 6:199-210.                                                                                                                                                            |
| 939        | 86.  | Stewart PS, White B, Boegli L, Hamerly T, Williamson KS, Franklin MJ, Bothner B, James GA,                                                                                         |
| 940        | 80.  | Fisher S, Vital-Lopez FG, Wallqvist A. 2019. Conceptual Model of Biofilm Antibiotic Tolerance                                                                                      |
| 941        |      | That Integrates Phenomena of Diffusion, Metabolism, Gene Expression, and Physiology.                                                                                               |
| 942        |      | Journal of bacteriology 201.                                                                                                                                                       |
| 943        | 87.  | Lieberman TD, Flett KB, Yelin I, Martin TR, McAdam AJ, Priebe GP, Kishony R. 2014. Genetic                                                                                         |
| 944        | •••• | variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of                                                                                     |
| 945        |      | selective pressures. Nature genetics 46:82-7.                                                                                                                                      |
| 946        | 88.  | Diaz Caballero J, Clark ST, Coburn B, Zhang Y, Wang PW, Donaldson SL, Tullis DE, Yau YC,                                                                                           |
| 947        |      | Waters VJ, Hwang DM, Guttman DS. 2015. Selective Sweeps and Parallel Pathoadaptation                                                                                               |
| 948        |      | Drive Pseudomonas aeruginosa Evolution in the Cystic Fibrosis Lung. mBio 6:e00981-15.                                                                                              |
| 949        | 89.  | Jorth P, Staudinger BJ, Wu X, Hisert KB, Hayden H, Garudathri J, Harding CL, Radey MC,                                                                                             |
| 950        |      | Rezayat A, Bautista G, Berrington WR, Goddard AF, Zheng C, Angermeyer A, Brittnacher MJ,                                                                                           |
| 951        |      | Kitzman J, Shendure J, Fligner CL, Mittler J, Aitken ML, Manoil C, Bruce JE, Yahr TL, Singh PK.                                                                                    |
| 952        |      | 2015. Regional Isolation Drives Bacterial Diversification within Cystic Fibrosis Lungs. Cell host                                                                                  |
| 953        |      | & microbe 18:307-19.                                                                                                                                                               |
| 954        | 90.  | Markussen T, Marvig RL, Gomez-Lozano M, Aanaes K, Burleigh AE, Hoiby N, Johansen HK,                                                                                               |
| 955        |      | Molin S, Jelsbak L. 2014. Environmental heterogeneity drives within-host diversification and                                                                                       |
| 956        |      | evolution of Pseudomonas aeruginosa. mBio 5:e01592-14.                                                                                                                             |
| 957        | 91.  | Foweraker JE, Laughton CR, Brown DF, Bilton D. 2005. Phenotypic variability of                                                                                                     |
| 958        |      | Pseudomonas aeruginosa in sputa from patients with acute infective exacerbation of cystic                                                                                          |
| 959        |      | fibrosis and its impact on the validity of antimicrobial susceptibility testing. The Journal of                                                                                    |
| 960        |      | antimicrobial chemotherapy 55:921-7.                                                                                                                                               |
| 961        | 92.  | Rojas LJ, Yasmin M, Benjamino J, Marshall SM, DeRonde KJ, Krishnan NP, Perez F, Colin AA,                                                                                          |
| 962        |      | Cardenas M, Martinez O, Perez-Cardona A, Rhoads DD, Jacobs MR, LiPuma JJ, Konstan MW,                                                                                              |
| 963        |      | Vila AJ, Smania A, Mack AR, Scott JG, Adams MD, Abbo LM, Bonomo RA. 2022. Genomic                                                                                                  |
| 964        |      | heterogeneity underlies multidrug resistance in Pseudomonas aeruginosa: A population-                                                                                              |
| 965        | 0.2  | level analysis beyond susceptibility testing. PloS one 17:e0265129.                                                                                                                |
| 966        | 93.  | Gillham MI, Sundaram S, Laughton CR, Haworth CS, Bilton D, Foweraker JE. 2009. Variable                                                                                            |
| 967<br>068 |      | antibiotic susceptibility in populations of Pseudomonas aeruginosa infecting patients with                                                                                         |
| 968<br>969 | 94.  | bronchiectasis. The Journal of antimicrobial chemotherapy 63:728-32.                                                                                                               |
| 969<br>970 | 94.  | Hilliam Y, Moore MP, Lamont IL, Bilton D, Haworth CS, Foweraker J, Walshaw MJ, Williams D,<br>Fothergill JL, De Soyza A, Winstanley C. 2017. Pseudomonas aeruginosa adaptation and |
| 970<br>971 |      | diversification in the non-cystic fibrosis bronchiectasis lung. The European respiratory                                                                                           |
| 971<br>972 |      | journal 49.                                                                                                                                                                        |
| 973        | 95.  | Kock R, Schuler F, Idelevich EA, Schaumburg F. 2021. Variability of antibiograms: how often                                                                                        |
| 974        | 55.  | do changes in the antimicrobial susceptibility pattern occur in isolates from one patient?                                                                                         |
| 975        |      | Clinical microbiology and infection : the official publication of the European Society of                                                                                          |
| 976        |      | Clinical Microbiology and Infectious Diseases 27:1638-1643.                                                                                                                        |
| 977        | 96.  | Cottalorda A, Dahyot S, Soares A, Alexandre K, Zorgniotti I, Etienne M, Jumas-Bilak E, Pestel-                                                                                     |
| 978        |      | Caron M. 2022. Phenotypic and genotypic within-host diversity of Pseudomonas aeruginosa                                                                                            |
| 979        |      | urinary isolates. Scientific reports 12:5421.                                                                                                                                      |
| 980        | 97.  | Kart D, Tavernier S, Van Acker H, Nelis HJ, Coenye T. 2014. Activity of disinfectants against                                                                                      |
| 981        |      | multispecies biofilms formed by Staphylococcus aureus, Candida albicans and Pseudomonas                                                                                            |
| 982        |      | aeruginosa. Biofouling 30:377-83.                                                                                                                                                  |
|            |      |                                                                                                                                                                                    |

| 002        | 00   | Tevension C. Cashka A. Useisely M. Churn I. Users, C. Disela D. Dhandt I. Cossue T. 2017          |
|------------|------|---------------------------------------------------------------------------------------------------|
| 983        | 98.  | Tavernier S, Crabbe A, Hacioglu M, Stuer L, Henry S, Rigole P, Dhondt I, Coenye T. 2017.          |
| 984        |      | Community Composition Determines Activity of Antibiotics against Multispecies Biofilms.           |
| 985        |      | Antimicrobial agents and chemotherapy 61.                                                         |
| 986        | 99.  | Vandeplassche E, Tavernier S, Coenye T, Crabbe A. 2019. Influence of the lung microbiome          |
| 987        |      | on antibiotic susceptibility of cystic fibrosis pathogens. European respiratory review : an       |
| 988        | 400  | official journal of the European Respiratory Society 28.                                          |
| 989        | 100. | Orazi G, O'Toole GA. 2019. "It Takes a Village": Mechanisms Underlying Antimicrobial              |
| 990        | 4.04 | Recalcitrance of Polymicrobial Biofilms. Journal of bacteriology 202.                             |
| 991        | 101. | Orazi G, Jean-Pierre F, O'Toole GA. 2020. Pseudomonas aeruginosa PA14 Enhances the                |
| 992        |      | Efficacy of Norfloxacin against Staphylococcus aureus Newman Biofilms. Journal of                 |
| 993        | 102  | bacteriology 202.                                                                                 |
| 994<br>005 | 102. | Ibberson CB, Barraza JP, Holmes AL, Cao P, Whiteley M. 2022. Precise spatial structure            |
| 995<br>00C |      | impacts antimicrobial susceptibility of S. aureus in polymicrobial wound infections.              |
| 996<br>997 |      | Proceedings of the National Academy of Sciences of the United States of America 119:e2212340119.  |
| 997<br>998 | 103. | Pan X, Dong Y, Fan Z, Liu C, Xia B, Shi J, Bai F, Jin Y, Cheng Z, Jin S, Wu W. 2017. In vivo Host |
| 999        | 105. | Environment Alters Pseudomonas aeruginosa Susceptibility to Aminoglycoside Antibiotics.           |
| 1000       |      | Frontiers in cellular and infection microbiology 7:83.                                            |
| 1000       | 104. | Crabbe A, Ostyn L, Staelens S, Rigauts C, Risseeuw M, Dhaenens M, Daled S, Van Acker H,           |
| 1001       | 104. | Deforce D, Van Calenbergh S, Coenye T. 2019. Host metabolites stimulate the bacterial             |
| 1002       |      | proton motive force to enhance the activity of aminoglycoside antibiotics. PLoS pathogens         |
| 1005       |      | 15:e1007697.                                                                                      |
| 1005       | 105. | Moskowitz SM, Foster JM, Emerson J, Burns JL. 2004. Clinically feasible biofilm susceptibility    |
| 1006       | 105. | assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. Journal of       |
| 1007       |      | clinical microbiology 42:1915-22.                                                                 |
| 1008       | 106. | Fernandez-Olmos A, Garcia-Castillo M, Maiz L, Lamas A, Baquero F, Canton R. 2012. In vitro        |
| 1009       |      | prevention of Pseudomonas aeruginosa early biofilm formation with antibiotics used in             |
| 1010       |      | cystic fibrosis patients. International journal of antimicrobial agents 40:173-6.                 |
| 1011       | 107. | Macia MD, Rojo-Molinero E, Oliver A. 2014. Antimicrobial susceptibility testing in biofilm-       |
| 1012       |      | growing bacteria. Clinical microbiology and infection : the official publication of the           |
| 1013       |      | European Society of Clinical Microbiology and Infectious Diseases 20:981-90.                      |
| 1014       | 108. | Velez Perez AL, Schmidt-Malan SM, Kohner PC, Karau MJ, Greenwood-Quaintance KE, Patel             |
| 1015       |      | R. 2016. In vitro activity of ceftolozane/tazobactam against clinical isolates of Pseudomonas     |
| 1016       |      | aeruginosa in the planktonic and biofilm states. Diagnostic microbiology and infectious           |
| 1017       |      | disease 85:356-359.                                                                               |
| 1018       | 109. | Brady AJ, Laverty G, Gilpin DF, Kearney P, Tunney M. 2017. Antibiotic susceptibility of           |
| 1019       |      | planktonic- and biofilm-grown staphylococci isolated from implant-associated infections:          |
| 1020       |      | should MBEC and nature of biofilm formation replace MIC? Journal of medical microbiology          |
| 1021       |      | 66:461-469.                                                                                       |
| 1022       | 110. | Thoming JG, Haussler S. 2022. Pseudomonas aeruginosa Is More Tolerant Under Biofilm               |
| 1023       |      | Than Under Planktonic Growth Conditions: A Multi-Isolate Survey. Frontiers in cellular and        |
| 1024       |      | infection microbiology 12:851784.                                                                 |
| 1025       | 111. | Drevinek P, Canton R, Johansen HK, Hoffman L, Coenye T, Burgel PR, Davies JC. 2022. New           |
| 1026       |      | concepts in antimicrobial resistance in cystic fibrosis respiratory infections. Journal of cystic |
| 1027       |      | fibrosis : official journal of the European Cystic Fibrosis Society 21:937-945.                   |
| 1028       | 112. | Cruz CD, Shah S, Tammela P. 2018. Defining conditions for biofilm inhibition and eradication      |
| 1029       |      | assays for Gram-positive clinical reference strains. BMC microbiology 18:173.                     |
| 1030       | 113. | Thieme L, Hartung A, Tramm K, Klinger-Strobel M, Jandt KD, Makarewicz O, Pletz MW. 2019.          |
| 1031       |      | MBEC Versus MBIC: the Lack of Differentiation between Biofilm Reducing and Inhibitory             |
| 1032       |      | Effects as a Current Problem in Biofilm Methodology. Biological procedures online 21:18.          |
|            |      |                                                                                                   |

| 1033<br>1034 | 114.  | Malone M, Goeres DM, Gosbell I, Vickery K, Jensen S, Stoodley P. 2017. Approaches to<br>biofilm-associated infections: the need for standardized and relevant biofilm methods for |
|--------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1035         |       | clinical applications. Expert review of anti-infective therapy 15:147-156.                                                                                                        |
| 1036         | 115.  | Allkja J, van Charante F, Aizawa J, Reigada I, Guarch-Perez C, Vazquez-Rodriguez JA, Cos P,                                                                                       |
| 1037         |       | Coenye T, Fallarero A, Zaat SAJ, Felici A, Ferrari L, Azevedo NF, Parker AE, Goeres DM. 2021.                                                                                     |
| 1038         |       | Interlaboratory study for the evaluation of three microtiter plate-based biofilm                                                                                                  |
| 1039         |       | quantification methods. Scientific reports 11:13779.                                                                                                                              |
| 1040         | 116.  | Azevedo NF, Allkja J, Goeres DM. 2021. Biofilms vs. cities and humans vs. aliens - a tale of                                                                                      |
| 1041         |       | reproducibility in biofilms. Trends in microbiology 29:1062-1071.                                                                                                                 |
| 1042         | 117.  | Coenye T, Nelis HJ. 2010. In vitro and in vivo model systems to study microbial biofilm                                                                                           |
| 1043         |       | formation. Journal of microbiological methods 83:89-105.                                                                                                                          |
| 1044         | 118.  | Lebeaux D, Chauhan A, Rendueles O, Beloin C. 2013. From in vitro to in vivo Models of                                                                                             |
| 1045         |       | Bacterial Biofilm-Related Infections. Pathogens (Basel, Switzerland) 2:288-356.                                                                                                   |
| 1046         | 119.  | Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura                                                                                         |
| 1047         |       | G, Hebraud M, Jaglic Z, Kacaniova M, Knochel S, Lourenco A, Mergulhao F, Meyer RL, Nychas                                                                                         |
| 1048         |       | G, Simoes M, Tresse O, Sternberg C. 2017. Critical review on biofilm methods. Critical                                                                                            |
| 1049         |       | reviews in microbiology 43:313-351.                                                                                                                                               |
| 1050         | 120.  | Gomes IB, Meireles A, Goncalves AL, Goeres DM, Sjollema J, Simoes LC, Simoes M. 2018.                                                                                             |
| 1051         |       | Standardized reactors for the study of medical biofilms: a review of the principles and latest                                                                                    |
| 1052         | 121   | modifications. Critical reviews in biotechnology 38:657-670.                                                                                                                      |
| 1053         | 121.  | Vyas HKN, Xia B, Mai-Prochnow A. 2022. Clinically relevant in vitro biofilm models: A need to                                                                                     |
| 1054<br>1055 | 177   | mimic and recapitulate the host environment. Biofilm 4:100069.                                                                                                                    |
| 1055<br>1056 | 122.  | Harrison JJ, Stremick CA, Turner RJ, Allan ND, Olson ME, Ceri H. 2010. Microtiter                                                                                                 |
| 1056<br>1057 |       | susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-<br>throughput screening. Nature protocols 5:1236-54.                               |
| 1057         | 123.  | Blanco-Cabra N, Lopez-Martinez MJ, Arevalo-Jaimes BV, Martin-Gomez MT, Samitier J,                                                                                                |
| 1058         | 125.  | Torrents E. 2021. A new BiofilmChip device for testing biofilm formation and antibiotic                                                                                           |
| 1055         |       | susceptibility. NPJ biofilms and microbiomes 7:62.                                                                                                                                |
| 1060         | 124.  | Harrington NE, Sweeney E, Alav I, Allen F, Moat J, Harrison F. 2021. Antibiotic Efficacy                                                                                          |
| 1062         | 12-1. | Testing in an Ex vivo Model of Pseudomonas aeruginosa and Staphylococcus aureus Biofilms                                                                                          |
| 1063         |       | in the Cystic Fibrosis Lung. Journal of visualized experiments : JoVE doi:10.3791/62187.                                                                                          |
| 1064         | 125.  | Pouget C, Pantel A, Dunyach-Remy C, Magnan C, Sotto A, Lavigne JP. 2023. Antimicrobial                                                                                            |
| 1065         |       | activity of antibiotics on biofilm formed by Staphylococcus aureus and Pseudomonas                                                                                                |
| 1066         |       | aeruginosa in an open microfluidic model mimicking the diabetic foot environment. The                                                                                             |
| 1067         |       | Journal of antimicrobial chemotherapy 78:540-545.                                                                                                                                 |
| 1068         | 126.  | Diez-Aguilar M, Morosini MI, Koksal E, Oliver A, Ekkelenkamp M, Canton R. 2018. Use of                                                                                            |
| 1069         |       | Calgary and Microfluidic BioFlux Systems To Test the Activity of Fosfomycin and Tobramycin                                                                                        |
| 1070         |       | Alone and in Combination against Cystic Fibrosis Pseudomonas aeruginosa Biofilms.                                                                                                 |
| 1071         |       | Antimicrobial agents and chemotherapy 62.                                                                                                                                         |
| 1072         | 127.  | Pham LHP, Ly KL, Colon-Ascanio M, Ou J, Wang H, Lee SW, Wang Y, Choy JS, Phillips KS, Luo                                                                                         |
| 1073         |       | X. 2023. Dissolvable alginate hydrogel-based biofilm microreactors for antibiotic                                                                                                 |
| 1074         |       | susceptibility assays. Biofilm 5:100103.                                                                                                                                          |
| 1075         | 128.  | Di Bonaventura G, Pompilio A. 2022. In Vitro Antimicrobial Susceptibility Testing of Biofilm-                                                                                     |
| 1076         |       | Growing Bacteria: Current and Emerging Methods. Advances in experimental medicine and                                                                                             |
| 1077         |       | biology 1369:33-51.                                                                                                                                                               |
| 1078         | 129.  | Thieme L, Hartung A, Tramm K, Graf J, Spott R, Makarewicz O, Pletz MW. 2021. Adaptation                                                                                           |
| 1079         |       | of the Start-Growth-Time Method for High-Throughput Biofilm Quantification. Frontiers in                                                                                          |
| 1080         |       | microbiology 12:631248.                                                                                                                                                           |
| 1081         | 130.  | Monzon M, Oteiza C, Leiva J, Lamata M, Amorena B. 2002. Biofilm testing of Staphylococcus                                                                                         |
| 1082         |       | epidermidis clinical isolates: low performance of vancomycin in relation to other antibiotics.                                                                                    |
| 1083         |       | Diagnostic microbiology and infectious disease 44:319-24.                                                                                                                         |
|              |       |                                                                                                                                                                                   |

| 1084<br>1085<br>1086         | 131. | Pettit RK, Weber CA, Kean MJ, Hoffmann H, Pettit GR, Tan R, Franks KS, Horton ML. 2005.<br>Microplate Alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing.<br>Antimicrobial agents and chemotherapy 49:2612-7.                                                                      |
|------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1080<br>1087<br>1088         | 132. | Peeters E, Nelis HJ, Coenye T. 2008. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. Journal of microbiological methods 72:157-65.                                                                                                                          |
| 1088<br>1089<br>1090<br>1091 | 133. | Ravi NS, Aslam RF, Veeraraghavan B. 2019. A New Method for Determination of Minimum<br>Biofilm Eradication Concentration for Accurate Antimicrobial Therapy. Methods in molecular<br>biology (Clifton, NJ) 1946:61-67.                                                                                          |
| 1092<br>1093                 | 134. | Ziemyte M, Rodriguez-Diaz JC, Ventero-Martin MP, Mira A, Ferrer MD. 2023. Real-time monitoring of biofilm growth identifies andrographolide as a potent antifungal compound                                                                                                                                     |
| 1094<br>1095<br>1096         | 135. | eradicating Candida biofilms. Biofilm 5:100134.<br>Kragh KN, Alhede M, Kvich L, Bjarnsholt T. 2019. Into the well-A close look at the complex<br>structures of a microtiter biofilm and the crystal violet assay. Biofilm 1:100006.                                                                             |
| 1097<br>1098<br>1099         | 136. | Goeres DM, Loetterle LR, Hamilton MA, Murga R, Kirby DW, Donlan RM. 2005. Statistical assessment of a laboratory method for growing biofilms. Microbiology (Reading, England) 151:757-762.                                                                                                                      |
| 1100<br>1101                 | 137. | Parker AE, Walker DK, Goeres DM, Allan N, Olson ME, Omar A. 2014. Ruggedness and<br>reproducibility of the MBEC biofilm disinfectant efficacy test. Journal of microbiological                                                                                                                                  |
| 1102<br>1103<br>1104<br>1105 | 138. | methods 102:55-64.<br>Nour El-Din HT, Yassin AS, Ragab YM, Hashem AM. 2021. Phenotype-Genotype<br>Characterization and Antibiotic-Resistance Correlations Among Colonizing and Infectious<br>Methicillin-Resistant Staphylococcus aureus Recovered from Intensive Care Units. Infection                         |
| 1106<br>1107<br>1108         | 139. | and drug resistance 14:1557-1571.<br>Senobar Tahaei SA, Stajer A, Barrak I, Ostorhazi E, Szabo D, Gajdacs M. 2021. Correlation<br>Between Biofilm-Formation and the Antibiotic Resistant Phenotype in Staphylococcus                                                                                            |
| 1109<br>1110<br>1111         | 140. | aureus Isolates: A Laboratory-Based Study in Hungary and a Review of the Literature.<br>Infection and drug resistance 14:1155-1168.<br>Trobos M, Firdaus R, Svensson Malchau K, Tillander J, Arnellos D, Rolfson O, Thomsen P, Lasa                                                                             |
| 1112<br>1113<br>1114         |      | I. 2022. Genomics of Staphylococcus aureus and Staphylococcus epidermidis from<br>Periprosthetic Joint Infections and Correlation to Clinical Outcome. Microbiology spectrum<br>10:e0218121.                                                                                                                    |
| 1115<br>1116<br>1117<br>1118 | 141. | Donadu MG, Ferrari M, Mazzarello V, Zanetti S, Kushkevych I, Rittmann SKR, Stajer A, Barath<br>Z, Szabo D, Urban E, Gajdacs M. 2022. No Correlation between Biofilm-Forming Capacity and<br>Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results. Pathogens<br>(Basel, Switzerland) 11. |
| 1119<br>1120<br>1121<br>1122 | 142. | Svensson Malchau K, Tillander J, Zaborowska M, Hoffman M, Lasa I, Thomsen P, Malchau H,<br>Rolfson O, Trobos M. 2021. Biofilm properties in relation to treatment outcome in patients<br>with first-time periprosthetic hip or knee joint infection. Journal of orthopaedic translation<br>30:31-40.            |
| 1123<br>1124                 | 143. | Qi L, Li H, Zhang C, Liang B, Li J, Wang L, Du X, Liu X, Qiu S, Song H. 2016. Relationship<br>between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in                                                                                                                              |
| 1125<br>1126<br>1127<br>1128 | 144. | Acinetobacter baumannii. Frontiers in microbiology 7:483.<br>Alamri AM, Alsultan AA, Ansari MA, Alnimr AM. 2020. Biofilm-Formation in Clonally<br>Unrelated Multidrug-Resistant Acinetobacter baumannii Isolates. Pathogens (Basel,<br>Switzerland) 9.                                                          |
| 1129<br>1130<br>1131         | 145. | Donadu MG, Mazzarello V, Cappuccinelli P, Zanetti S, Madlena M, Nagy AL, Stajer A, Burian<br>K, Gajdacs M. 2021. Relationship between the Biofilm-Forming Capacity and Antimicrobial<br>Resistance in Clinical Acinetobacter baumannii Isolates: Results from a Laboratory-Based In                             |
| 1132<br>1133<br>1134         | 146. | Vitro Study. Microorganisms 9.<br>Garousi M, Monazami Tabar S, Mirazi H, Asgari P, Sabeghi P, Salehi A, Khaledi A, Ghenaat<br>Pisheh Sanani M, Mirzahosseini HK. 2022. A global systematic review and meta-analysis on                                                                                          |

| 1135 |      | correlation between biofilm producers and non-biofilm producers with antibiotic resistance       |
|------|------|--------------------------------------------------------------------------------------------------|
| 1136 |      | in Uropathogenic Escherichiacoli. Microbial pathogenesis 164:105412.                             |
| 1137 | 147. | Vuotto C, Longo F, Pascolini C, Donelli G, Balice MP, Libori MF, Tiracchia V, Salvia A, Varaldo  |
| 1138 |      | PE. 2017. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary           |
| 1139 |      | strains. Journal of applied microbiology 123:1003-1018.                                          |
| 1140 | 148. | Turkel I, Yildirim T, Yazgan B, Bilgin M, Basbulut E. 2018. Relationship between antibiotic      |
| 1141 |      | resistance, efflux pumps, and biofilm formation in extended-spectrum beta-lactamase              |
| 1142 |      | producing Klebsiella pneumoniae. Journal of chemotherapy (Florence, Italy) 30:354-363.           |
| 1143 | 149. | Mulet X, Cabot G, Ocampo-Sosa AA, Dominguez MA, Zamorano L, Juan C, Tubau F, Rodriguez           |
| 1144 |      | C, Moya B, Pena C, Martinez-Martinez L, Oliver A, Spanish Network for Research in Infectious     |
| 1145 |      | D. 2013. Biological markers of Pseudomonas aeruginosa epidemic high-risk clones.                 |
| 1146 |      | Antimicrobial agents and chemotherapy 57:5527-35.                                                |
| 1147 | 150. | Gajdacs M, Barath Z, Karpati K, Szabo D, Usai D, Zanetti S, Donadu MG. 2021. No Correlation      |
| 1148 |      | between Biofilm Formation, Virulence Factors, and Antibiotic Resistance in Pseudomonas           |
| 1149 |      | aeruginosa: Results from a Laboratory-Based In Vitro Study. Antibiotics (Basel, Switzerland)     |
| 1150 |      | 10.                                                                                              |
| 1151 | 151. | Yamani L, Alamri A, Alsultan A, Alfifi S, Ansari MA, Alnimr A. 2021. Inverse correlation         |
| 1152 |      | between biofilm production efficiency and antimicrobial resistance in clinical isolates of       |
| 1153 |      | Pseudomonas aeruginosa. Microbial pathogenesis 157:104989.                                       |
| 1154 | 152. | Karballaei Mirzahosseini H, Hadadi-Fishani M, Morshedi K, Khaledi A. 2020. Meta-Analysis of      |
| 1155 |      | Biofilm Formation, Antibiotic Resistance Pattern, and Biofilm-Related Genes in Pseudomonas       |
| 1156 |      | aeruginosa Isolated from Clinical Samples. Microbial drug resistance (Larchmont, NY)             |
| 1157 |      | 26:815-824.                                                                                      |
| 1158 | 153. | Mulet X, Moya B, Juan C, Macia MD, Perez JL, Blazquez J, Oliver A. 2011. Antagonistic            |
| 1159 |      | interactions of Pseudomonas aeruginosa antibiotic resistance mechanisms in planktonic but        |
| 1160 |      | not biofilm growth. Antimicrobial agents and chemotherapy 55:4560-8.                             |
| 1161 | 154. | Harms A, Maisonneuve E, Gerdes K. 2016. Mechanisms of bacterial persistence during stress        |
| 1162 |      | and antibiotic exposure. Science (New York, NY) 354.                                             |
| 1163 | 155. | Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, Brynildsen MP,            |
| 1164 |      | Bumann D, Camilli A, Collins JJ, Dehio C, Fortune S, Ghigo JM, Hardt WD, Harms A,                |
| 1165 |      | Heinemann M, Hung DT, Jenal U, Levin BR, Michiels J, Storz G, Tan MW, Tenson T, Van              |
| 1166 |      | Melderen L, Zinkernagel A. 2019. Definitions and guidelines for research on antibiotic           |
| 1167 |      | persistence. Nature reviews Microbiology 17:441-448.                                             |
| 1168 | 156. | Lopes SP, Jorge P, Sousa AM, Pereira MO. 2021. Discerning the role of polymicrobial biofilms     |
| 1169 |      | in the ascent, prevalence, and extent of heteroresistance in clinical practice. Critical reviews |
| 1170 |      | in microbiology 47:162-191.                                                                      |
| 1171 | 157. | Ersoy SC, Heithoff DM, Barnes Lt, Tripp GK, House JK, Marth JD, Smith JW, Mahan MJ. 2017.        |
| 1172 |      | Correcting a Fundamental Flaw in the Paradigm for Antimicrobial Susceptibility Testing.          |
| 1173 |      | EBioMedicine 20:173-181.                                                                         |
| 1174 | 158. | Belanger CR, Hancock REW. 2021. Testing physiologically relevant conditions in minimal           |
| 1175 | 450  | inhibitory concentration assays. Nature protocols 16:3761-3774.                                  |
| 1176 | 159. | Musken M, Klimmek K, Sauer-Heilborn A, Donnert M, Sedlacek L, Suerbaum S, Haussler S.            |
| 1177 |      | 2017. Towards individualized diagnostics of biofilm-associated infections: a case study. NPJ     |
| 1178 | 100  | biofilms and microbiomes 3:22.                                                                   |
| 1179 | 160. | De Bleeckere A, Van den Bossche S, De Sutter PJ, Beirens T, Crabbe A, Coenye T. 2023. High       |
| 1180 |      | throughput determination of the biofilm prevention concentration for Pseudomonas                 |
| 1181 | 101  | aeruginosa biofilms using a synthetic cystic fibrosis sputum medium. Biofilm 5:100106.           |
| 1182 | 161. | Stewart PS. 2015. Antimicrobial Tolerance in Biofilms. Microbiology spectrum 3.                  |
| 1183 | 162. | Tre-Hardy M, Mace C, El Manssouri N, Vanderbist F, Traore H, Devleeschouwer MJ. 2009.            |
| 1184 |      | Effect of antibiotic co-administration on young and mature biofilms of cystic fibrosis clinical  |
|      |      |                                                                                                  |

| 1185 |      | isolates: the importance of the biofilm model. International journal of antimicrobial agents      |
|------|------|---------------------------------------------------------------------------------------------------|
| 1186 |      | 33:40-5.                                                                                          |
| 1187 | 163. | Singla S, Harjai K, Chhibber S. 2013. Susceptibility of different phases of biofilm of Klebsiella |
| 1188 |      | pneumoniae to three different antibiotics. The Journal of antibiotics 66:61-6.                    |
| 1189 | 164. | Wolcott RD, Rumbaugh KP, James G, Schultz G, Phillips P, Yang Q, Watters C, Stewart PS,           |
| 1190 |      | Dowd SE. 2010. Biofilm maturity studies indicate sharp debridement opens a time-                  |
| 1191 |      | dependent therapeutic window. Journal of wound care 19:320-8.                                     |
| 1192 | 165. | Swimberghe RCD, Crabbe A, De Moor RJG, Coenye T, Meire MA. 2021. Model system                     |
| 1193 |      | parameters influence the sodium hypochlorite susceptibility of endodontic biofilms.               |
| 1194 |      | International endodontic journal 54:1557-1570.                                                    |
| 1195 | 166. | Akgun D, Perka C, Trampuz A, Renz N. 2018. Outcome of hip and knee periprosthetic joint           |
| 1196 |      | infections caused by pathogens resistant to biofilm-active antibiotics: results from a            |
| 1197 |      | prospective cohort study. Archives of orthopaedic and trauma surgery 138:635-642.                 |
| 1198 | 167. | Koder K, Hardt S, Gellert MS, Haupenthal J, Renz N, Putzier M, Perka C, Trampuz A. 2020.          |
| 1199 |      | Outcome of spinal implant-associated infections treated with or without biofilm-active            |
| 1200 |      | antibiotics: results from a 10-year cohort study. Infection 48:559-568.                           |
| 1201 | 168. | Mancheno-Losa M, Lora-Tamayo J, Fernandez-Sampedro M, Rodriguez-Pardo D, Munoz-                   |
| 1202 |      | Mahamud E, Soldevila L, Palou M, Barbero JM, Del Toro MD, Iribarren JA, Sobrino B, Rico-          |
| 1203 |      | Nieto A, Guio-Carrion L, Gomez L, Escudero-Sanchez R, Garcia-Pais MJ, Jover-Saenz A, Praena       |
| 1204 |      | J, Baraia-Etxaburu JM, Aunon A, Munez-Rubio E, Murillo O, List of study c. 2021. Prognosis of     |
| 1205 |      | unexpected positive intraoperative cultures in arthroplasty revision: A large multicenter         |
| 1206 |      | cohort. The Journal of infection 83:542-549.                                                      |
| 1207 | 169. | Munoz-Gallego I, Viedma E, Esteban J, Mancheno-Losa M, Garcia-Canete J, Blanco-Garcia A,          |
| 1208 |      | Rico A, Garcia-Perea A, Ruiz Garbajosa P, Escudero-Sanchez R, Sanchez Somolinos M, Marin          |
| 1209 |      | Arriaza M, Romanyk J, Barbero JM, Arribi Vilela A, Gonzalez Romo F, Perez-Jorge C, D MA,          |
| 1210 |      | Monereo A, Domingo D, Cordero J, Sanchez Romero MI, Garcia Viejo MA, Lora-Tamayo J,               |
| 1211 |      | Chaves F, Grupo de Infeccion Osteoarticular de la Comunidad de M. 2020. Genotypic and             |
| 1212 |      | Phenotypic Characteristics of Staphylococcus aureus Prosthetic Joint Infections: Insight on       |
| 1213 |      | the Pathogenesis and Prognosis of a Multicenter Prospective Cohort. Open forum infectious         |
| 1214 |      | diseases 7:ofaa344.                                                                               |
| 1215 | 170. | Widmer AF, Frei R, Rajacic Z, Zimmerli W. 1990. Correlation between in vivo and in vitro          |
| 1216 |      | efficacy of antimicrobial agents against foreign body infections. The Journal of infectious       |
| 1217 |      | diseases 162:96-102.                                                                              |
| 1218 | 171. | Zimmerli W, Frei R, Widmer AF, Rajacic Z. 1994. Microbiological tests to predict treatment        |
| 1219 |      | outcome in experimental device-related infections due to Staphylococcus aureus. The               |
| 1220 |      | Journal of antimicrobial chemotherapy 33:959-67.                                                  |
| 1221 | 172. | Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE. 1998. Role of rifampin for treatment        |
| 1222 |      | of orthopedic implant-related staphylococcal infections: a randomized controlled trial.           |
| 1223 |      | Foreign-Body Infection (FBI) Study Group. JAMA 279:1537-41.                                       |
| 1224 | 173. | Schierholz JM, Beuth J, Konig D, Nurnberger A, Pulverer G. 1999. Antimicrobial substances         |
| 1225 |      | and effects on sessile bacteria. Zentralblatt fur Bakteriologie : international journal of        |
| 1226 |      | medical microbiology 289:165-77.                                                                  |
| 1227 | 174. | Konig DP, Schierholz JM, Munnich U, Rutt J. 2001. Treatment of staphylococcal implant             |
| 1228 |      | infection with rifampicin-ciprofloxacin in stable implants. Archives of orthopaedic and           |
| 1229 |      | trauma surgery 121:297-9.                                                                         |
| 1230 | 175. | Saginur R, Stdenis M, Ferris W, Aaron SD, Chan F, Lee C, Ramotar K. 2006. Multiple                |
| 1231 |      | combination bactericidal testing of staphylococcal biofilms from implant-associated               |
| 1232 |      | infections. Antimicrobial agents and chemotherapy 50:55-61.                                       |
| 1233 | 176. | Zimmerli W, Sendi P. 2019. Role of Rifampin against Staphylococcal Biofilm Infections In          |
| 1234 |      | Vitro, in Animal Models, and in Orthopedic-Device-Related Infections. Antimicrobial agents        |
| 1235 |      | and chemotherapy 63.                                                                              |
|      |      |                                                                                                   |

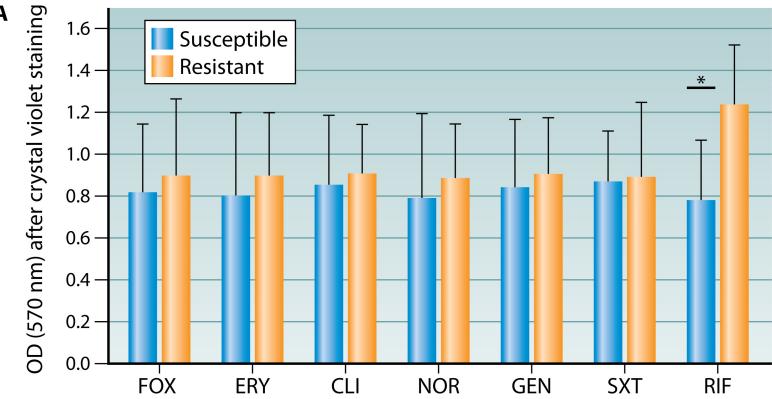
1236 177. Karlsen OE, Borgen P, Bragnes B, Figved W, Grogaard B, Rydinge J, Sandberg L, Snorrason F, 1237 Wangen H, Witsoe E, Westberg M. 2020. Rifampin combination therapy in staphylococcal 1238 prosthetic joint infections: a randomized controlled trial. Journal of orthopaedic surgery and 1239 research 15:365. 1240 178. Renz N, Trampuz A, Zimmerli W. 2021. Controversy about the Role of Rifampin in Biofilm 1241 Infections: Is It Justified? Antibiotics (Basel, Switzerland) 10. 1242 179. Martinez-Pastor JC, Munoz-Mahamud E, Vilchez F, Garcia-Ramiro S, Bori G, Sierra J, Martinez 1243 JA, Font L, Mensa J, Soriano A. 2009. Outcome of acute prosthetic joint infections due to 1244 gram-negative bacilli treated with open debridement and retention of the prosthesis. 1245 Antimicrobial agents and chemotherapy 53:4772-7. 1246 180. Tornero E, Martinez-Pastor JC, Bori G, Garcia-Ramiro S, Morata L, Bosch J, Mensa J, Soriano 1247 A. 2014. Risk factors for failure in early prosthetic joint infection treated with debridement. 1248 Influence of etiology and antibiotic treatment. Journal of applied biomaterials & functional 1249 materials 12:129-34. 1250 181. Rodriguez-Pardo D, Pigrau C, Lora-Tamayo J, Soriano A, del Toro MD, Cobo J, Palomino J, 1251 Euba G, Riera M, Sanchez-Somolinos M, Benito N, Fernandez-Sampedro M, Sorli L, Guio L, 1252 Iribarren JA, Baraia-Etxaburu JM, Ramos A, Bahamonde A, Flores-Sanchez X, Corona PS, Ariza 1253 J, Infection RGftSoP. 2014. Gram-negative prosthetic joint infection: outcome of a 1254 debridement, antibiotics and implant retention approach. A large multicentre study. Clinical 1255 microbiology and infection : the official publication of the European Society of Clinical 1256 Microbiology and Infectious Diseases 20:0911-9. 1257 182. Keays T, Ferris W, Vandemheen KL, Chan F, Yeung SW, Mah TF, Ramotar K, Saginur R, Aaron 1258 SD. 2009. A retrospective analysis of biofilm antibiotic susceptibility testing: a better 1259 predictor of clinical response in cystic fibrosis exacerbations. Journal of cystic fibrosis : 1260 official journal of the European Cystic Fibrosis Society 8:122-7. 1261 183. Smith S, Waters V, Jahnke N, Ratjen F. 2020. Standard versus biofilm antimicrobial susceptibility testing to guide antibiotic therapy in cystic fibrosis. The Cochrane database of 1262 1263 systematic reviews 6:CD009528. 1264 184. Moskowitz SM, Emerson JC, McNamara S, Shell RD, Orenstein DM, Rosenbluth D, Katz MF, 1265 Ahrens R, Hornick D, Joseph PM, Gibson RL, Aitken ML, Benton WW, Burns JL. 2011. 1266 Randomized trial of biofilm testing to select antibiotics for cystic fibrosis airway infection. 1267 Pediatric pulmonology 46:184-92. 1268 185. Yau YC, Ratjen F, Tullis E, Wilcox P, Freitag A, Chilvers M, Grasemann H, Zlosnik J, Speert D, 1269 Corey M, Stanojevic S, Matukas L, Leahy TR, Shih S, Waters V. 2015. Randomized controlled 1270 trial of biofilm antimicrobial susceptibility testing in cystic fibrosis patients. Journal of cystic 1271 fibrosis : official journal of the European Cystic Fibrosis Society 14:262-6. 186. 1272 Sonderholm M, Bjarnsholt T, Alhede M, Kolpen M, Jensen PO, Kuhl M, Kragh KN. 2017. The 1273 Consequences of Being in an Infectious Biofilm: Microenvironmental Conditions Governing 1274 Antibiotic Tolerance. International journal of molecular sciences 18. 1275 187. Lichtenberg M, Jakobsen TH, Kuhl M, Kolpen M, Jensen PO, Bjarnsholt T. 2022. The 1276 structure-function relationship of Pseudomonas aeruginosa in infections and its influence on 1277 the microenvironment. FEMS microbiology reviews 46. 1278 Coenye T, Goeres D, Van Bambeke F, Bjarnsholt T. 2018. Should standardized susceptibility 188. 1279 testing for microbial biofilms be introduced in clinical practice? Clinical microbiology and 1280 infection : the official publication of the European Society of Clinical Microbiology and 1281 Infectious Diseases 24:570-572. 1282 189. Lourenco A, Coenye T, Goeres DM, Donelli G, Azevedo AS, Ceri H, Coelho FL, Flemming HC, 1283 Juhna T, Lopes SP, Oliveira R, Oliver A, Shirtliff ME, Sousa AM, Stoodley P, Pereira MO, 1284 Azevedo NF. 2014. Minimum information about a biofilm experiment (MIABIE): standards 1285 for reporting experiments and data on sessile microbial communities living at interfaces. 1286 Pathogens and disease 70:250-6.

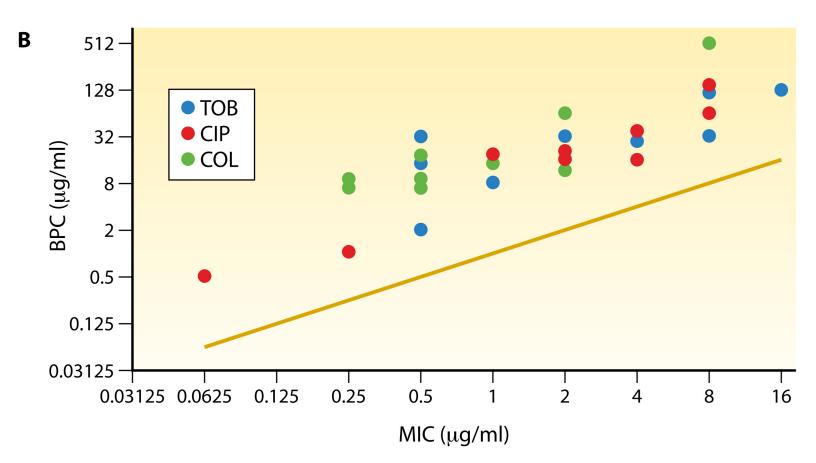
| 1287         | 190. | Goeres DM, Walker DK, Buckingham-Meyer K, Lorenz L, Summers J, Fritz B, Goveia D,                             |
|--------------|------|---------------------------------------------------------------------------------------------------------------|
| 1288         |      | Dickerman G, Schultz J, Parker AE. 2019. Development, standardization, and validation of a                    |
| 1289<br>1290 |      | biofilm efficacy test: The single tube method. Journal of microbiological methods                             |
| 1290         | 191. | 165:105694.<br>Allkja J, Bjarnsholt T, Coenye T, Cos P, Fallarero A, Harrison JJ, Lopes SP, Oliver A, Pereira |
| 1291         | 191. | MO, Ramage G, Shirtliff ME, Stoodley P, Webb JS, Zaat SAJ, Goeres DM, Azevedo NF. 2020.                       |
| 1292         |      | Minimum information guideline for spectrophotometric and fluorometric methods to assess                       |
| 1293         |      | biofilm formation in microplates. Biofilm 2:100010.                                                           |
| 1294         | 192. | Goeres DM, Parker AE, Walker DK, Meier K, Lorenz LA, Buckingham-Meyer K. 2020. Drip flow                      |
| 1295         | 192. | reactor method exhibits excellent reproducibility based on a 10-laboratory collaborative                      |
| 1297         |      | study. Journal of microbiological methods 174:105963.                                                         |
| 1298         | 193. | Ahman J, Matuschek E, Kahlmeter G. 2019. The quality of antimicrobial discs from nine                         |
| 1299         | 199. | manufacturers-EUCAST evaluations in 2014 and 2017. Clinical microbiology and infection :                      |
| 1300         |      | the official publication of the European Society of Clinical Microbiology and Infectious                      |
| 1301         |      | Diseases 25:346-352.                                                                                          |
| 1302         | 194. | Ahman J, Matuschek E, Kahlmeter G. 2020. EUCAST evaluation of 21 brands of Mueller-                           |
| 1303         | 20   | Hinton dehydrated media for disc diffusion testing. Clinical microbiology and infection : the                 |
| 1304         |      | official publication of the European Society of Clinical Microbiology and Infectious Diseases                 |
| 1305         |      | 26:1412 e1-1412 e5.                                                                                           |
| 1306         | 195. | Ahman J, Matuschek E, Kahlmeter G. 2022. Evaluation of ten brands of pre-poured Mueller-                      |
| 1307         |      | Hinton agar plates for EUCAST disc diffusion testing. Clinical microbiology and infection : the               |
| 1308         |      | official publication of the European Society of Clinical Microbiology and Infectious Diseases                 |
| 1309         |      | 28:1499 e1-1499 e5.                                                                                           |
| 1310         | 196. | Humphries RM, Kircher S, Ferrell A, Krause KM, Malherbe R, Hsiung A, Burnham CA. 2018.                        |
| 1311         |      | The Continued Value of Disk Diffusion for Assessing Antimicrobial Susceptibility in Clinical                  |
| 1312         |      | Laboratories: Report from the Clinical and Laboratory Standards Institute Methods                             |
| 1313         |      | Development and Standardization Working Group. Journal of clinical microbiology 56.                           |
| 1314         | 197. | Seneviratne CJ, Jin LJ, Samaranayake YH, Samaranayake LP. 2008. Cell density and cell aging                   |
| 1315         |      | as factors modulating antifungal resistance of Candida albicans biofilms. Antimicrobial                       |
| 1316         |      | agents and chemotherapy 52:3259-66.                                                                           |
| 1317         | 198. | Obaid NA, Tristram S, Narkowicz CK, Jacobson GA. 2016. Reliability of Haemophilus                             |
| 1318         |      | influenzae biofilm measurement via static method, and determinants of in vitro biofilm                        |
| 1319         |      | production. Canadian journal of microbiology 62:1013-1020.                                                    |
| 1320         | 199. | Kragh KN, Alhede M, Rybtke M, Stavnsberg C, Jensen PO, Tolker-Nielsen T, Whiteley M,                          |
| 1321         |      | Bjarnsholt T. 2018. The Inoculation Method Could Impact the Outcome of Microbiological                        |
| 1322         |      | Experiments. Applied and environmental microbiology 84.                                                       |
| 1323         | 200. | Kahlmeter G, Brown DF, Goldstein FW, MacGowan AP, Mouton JW, Osterlund A, Rodloff A,                          |
| 1324         |      | Steinbakk M, Urbaskova P, Vatopoulos A. 2003. European harmonization of MIC breakpoints                       |
| 1325         |      | for antimicrobial susceptibility testing of bacteria. The Journal of antimicrobial                            |
| 1326         |      | chemotherapy 52:145-8.                                                                                        |
| 1327         | 201. | Kahlmeter G, Turnidge J. 2022. How to: ECOFFs-the why, the how, and the don'ts of EUCAST                      |
| 1328         |      | epidemiological cutoff values. Clinical microbiology and infection : the official publication of              |
| 1329         |      | the European Society of Clinical Microbiology and Infectious Diseases 28:952-954.                             |
| 1330         | 202. | Pierce VM, Mathers AJ. 2022. Setting Antimicrobial Susceptibility Testing Breakpoints: A                      |
| 1331         |      | Primer for Pediatric Infectious Diseases Specialists on the Clinical and Laboratory Standards                 |
| 1332         | 262  | Institute Approach. Journal of the Pediatric Infectious Diseases Society 11:73-80.                            |
| 1333         | 203. | Giske CG, Turnidge J, Canton R, Kahlmeter G, Committee ES. 2022. Update from the                              |
| 1334         |      | European Committee on Antimicrobial Susceptibility Testing (EUCAST). Journal of clinical                      |
| 1335         | 204  | microbiology 60:e0027621.                                                                                     |
| 1336         | 204. | Diez-Aguilar M, Ekkelenkamp M, Morosini MI, Huertas N, Del Campo R, Zamora J, Fluit AC,                       |
| 1337         |      | Tunney MM, Obrecht D, Bernardini F, Canton R. 2021. Anti-biofilm activity of murepavadin                      |

| 1338         |      | against cystic fibrosis Pseudomonas aeruginosa isolates. The Journal of antimicrobial                              |
|--------------|------|--------------------------------------------------------------------------------------------------------------------|
| 1339         |      | chemotherapy 76:2578-2585.                                                                                         |
| 1340         | 205. | Ekkelenkamp MB, Diez-Aguilar M, Tunney MM, Elborn JS, Fluit AC, Canton R. 2022.                                    |
| 1340         | 205. | Establishing Antimicrobial Susceptibility Testing Methods and Clinical Breakpoints for                             |
| 1341         |      | Inhaled Antibiotic Therapy. Open forum infectious diseases 9:ofac082.                                              |
| 1342         | 206. | Yeaman MR, Gank KD, Bayer AS, Brass EP. 2002. Synthetic peptides that exert antimicrobial                          |
| 1345<br>1344 | 200. |                                                                                                                    |
|              |      | activities in whole blood and blood-derived matrices. Antimicrobial agents and                                     |
| 1345         | 207  | chemotherapy 46:3883-91.<br>Colguhoun JM, Wozniak RA, Dunman PM. 2015. Clinically Relevant Growth Conditions Alter |
| 1346         | 207. |                                                                                                                    |
| 1347         |      | Acinetobacter baumannii Antibiotic Susceptibility and Promote Identification of Novel                              |
| 1348         | 200  | Antibacterial Agents. PloS one 10:e0143033.                                                                        |
| 1349         | 208. | Lin L, Nonejuie P, Munguia J, Hollands A, Olson J, Dam Q, Kumaraswamy M, Rivera H, Jr.,                            |
| 1350         |      | Corriden R, Rohde M, Hensler ME, Burkart MD, Pogliano J, Sakoulas G, Nizet V. 2015.                                |
| 1351         |      | Azithromycin Synergizes with Cationic Antimicrobial Peptides to Exert Bactericidal and                             |
| 1352         |      | Therapeutic Activity Against Highly Multidrug-Resistant Gram-Negative Bacterial Pathogens.                         |
| 1353         |      | EBioMedicine 2:690-8.                                                                                              |
| 1354         | 209. | Belanger CR, Lee AH, Pletzer D, Dhillon BK, Falsafi R, Hancock REW. 2020. Identification of                        |
| 1355         |      | novel targets of azithromycin activity against Pseudomonas aeruginosa grown in                                     |
| 1356         |      | physiologically relevant media. Proceedings of the National Academy of Sciences of the                             |
| 1357         |      | United States of America 117:33519-33529.                                                                          |
| 1358         | 210. | Weber BS, De Jong AM, Guo ABY, Dharavath S, French S, Fiebig-Comyn AA, Coombes BK,                                 |
| 1359         |      | Magolan J, Brown ED. 2020. Genetic and Chemical Screening in Human Blood Serum Reveals                             |
| 1360         |      | Unique Antibacterial Targets and Compounds against Klebsiella pneumoniae. Cell reports                             |
| 1361         |      | 32:107927.                                                                                                         |
| 1362         | 211. | Tasse J, Dieppois G, Peyrane F, Tesse N. 2021. Improving the ability of antimicrobial                              |
| 1363         |      | susceptibility tests to predict clinical outcome accurately: Adding metabolic evasion to the                       |
| 1364         |      | equation. Drug discovery today 26:2182-2189.                                                                       |
| 1365         | 212. | Hinnu M, Putrins M, Kogermann K, Bumann D, Tenson T. 2022. Making Antimicrobial                                    |
| 1366         |      | Susceptibility Testing More Physiologically Relevant with Bicarbonate? Antimicrobial agents                        |
| 1367         |      | and chemotherapy 66:e0241221.                                                                                      |
| 1368         | 213. | Palmer KL, Mashburn LM, Singh PK, Whiteley M. 2005. Cystic fibrosis sputum supports                                |
| 1369         |      | growth and cues key aspects of Pseudomonas aeruginosa physiology. Journal of bacteriology                          |
| 1370         |      | 187:5267-77.                                                                                                       |
| 1371         | 214. | Palmer KL, Aye LM, Whiteley M. 2007. Nutritional cues control Pseudomonas aeruginosa                               |
| 1372         |      | multicellular behavior in cystic fibrosis sputum. Journal of bacteriology 189:8079-87.                             |
| 1373         | 215. | Neve RL, Carrillo BD, Phelan VV. 2021. Impact of Artificial Sputum Medium Formulation on                           |
| 1374         |      | Pseudomonas aeruginosa Secondary Metabolite Production. Journal of bacteriology                                    |
| 1375         |      | 203:e0025021.                                                                                                      |
| 1376         | 216. | Aiyer A, Manos J. 2022. The Use of Artificial Sputum Media to Enhance Investigation and                            |
| 1377         |      | Subsequent Treatment of Cystic Fibrosis Bacterial Infections. Microorganisms 10.                                   |
| 1378         | 217. | Darch SE, Kragh KN, Abbott EA, Bjarnsholt T, Bull JJ, Whiteley M. 2017. Phage Inhibit                              |
| 1379         |      | Pathogen Dissemination by Targeting Bacterial Migrants in a Chronic Infection Model. mBio                          |
| 1380         |      | 8.                                                                                                                 |
| 1381         | 218. | Chen P, Abercrombie JJ, Jeffrey NR, Leung KP. 2012. An improved medium for growing                                 |
| 1382         |      | Staphylococcus aureus biofilm. Journal of microbiological methods 90:115-8.                                        |
| 1383         | 219. | Dastgheyb S, Parvizi J, Shapiro IM, Hickok NJ, Otto M. 2015. Effect of biofilms on                                 |
| 1384         |      | recalcitrance of staphylococcal joint infection to antibiotic treatment. The Journal of                            |
| 1385         |      | infectious diseases 211:641-50.                                                                                    |
| 1386         | 220. | Gilbertie JM, Schnabel LV, Hickok NJ, Jacob ME, Conlon BP, Shapiro IM, Parvizi J, Schaer TP.                       |
| 1387         |      | 2019. Equine or porcine synovial fluid as a novel ex vivo model for the study of bacterial                         |
| 1388         |      | free-floating biofilms that form in human joint infections. PloS one 14:e0221012.                                  |
|              |      |                                                                                                                    |

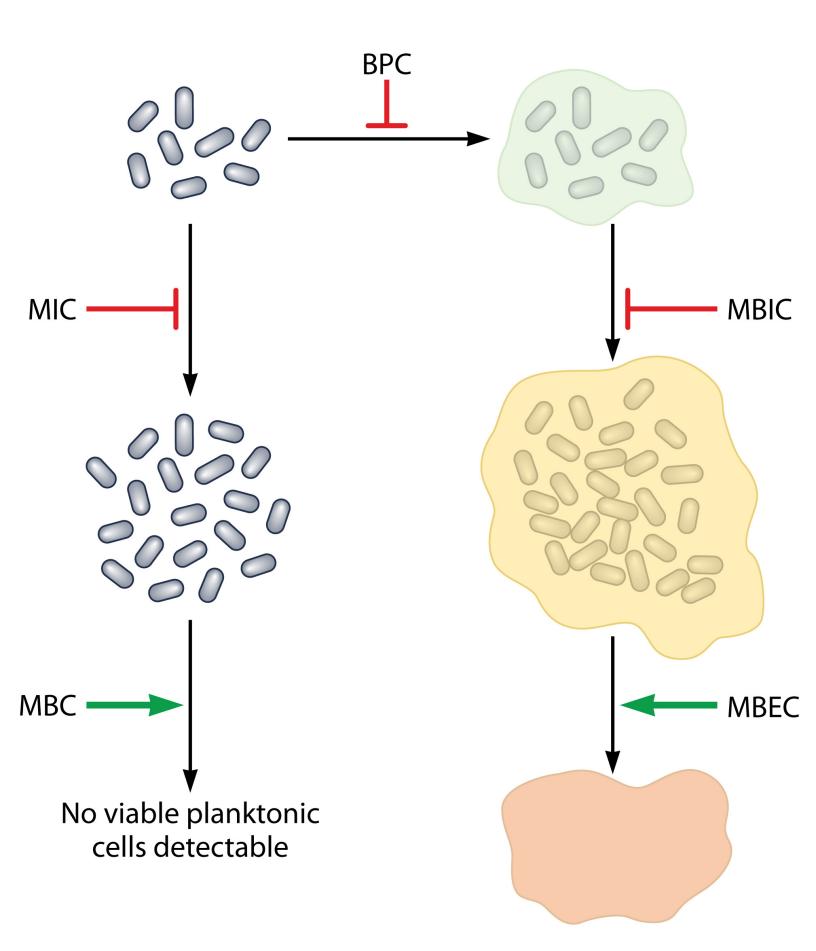
| 1389         | 221. | Pestrak MJ, Gupta TT, Dusane DH, Guzior DV, Staats A, Harro J, Horswill AR, Stoodley P.                                                                     |
|--------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1390         | 221. | 2020. Investigation of synovial fluid induced Staphylococcus aureus aggregate development                                                                   |
| 1391         |      | and its impact on surface attachment and biofilm formation. PloS one 15:e0231791.                                                                           |
| 1392         | 222. | Gupta TT, Gupta NK, Burback P, Stoodley P. 2021. Free-Floating Aggregate and Single-Cell-                                                                   |
| 1393         |      | Initiated Biofilms of Staphylococcus aureus. Antibiotics (Basel, Switzerland) 10.                                                                           |
| 1394         | 223. | Macias-Valcayo A, Staats A, Aguilera-Correa JJ, Brooks J, Gupta T, Dusane D, Stoodley P,                                                                    |
| 1395         |      | Esteban J. 2021. Synovial Fluid Mediated Aggregation of Clinical Strains of Four                                                                            |
| 1396         |      | Enterobacterial Species. Advances in experimental medicine and biology 1323:81-90.                                                                          |
| 1397         | 224. | Staats A, Burback PW, Eltobgy M, Parker DM, Amer AO, Wozniak DJ, Wang SH, Stevenson                                                                         |
| 1398         |      | KB, Urish KL, Stoodley P. 2021. Synovial Fluid-Induced Aggregation Occurs across                                                                            |
| 1399         |      | Staphylococcus aureus Clinical Isolates and is Mechanistically Independent of Attached                                                                      |
| 1400         |      | Biofilm Formation. Microbiology spectrum 9:e0026721.                                                                                                        |
| 1401         | 225. | Staats A, Burback PW, Schwieters A, Li D, Sullivan A, Horswill AR, Stoodley P. 2022. Rapid                                                                  |
| 1402         |      | Aggregation of Staphylococcus aureus in Synovial Fluid Is Influenced by Synovial Fluid                                                                      |
| 1403         |      | Concentration, Viscosity, and Fluid Dynamics, with Evidence of Polymer Bridging. mBio                                                                       |
| 1404         |      | 13:e0023622.                                                                                                                                                |
| 1405         | 226. | Stamm J, Weisselberg S, Both A, Failla AV, Nordholt G, Buttner H, Linder S, Aepfelbacher M,                                                                 |
| 1406         |      | Rohde H. 2022. Development of an artificial synovial fluid useful for studying Staphylococcus                                                               |
| 1407         |      | epidermidis joint infections. Frontiers in cellular and infection microbiology 12:948151.                                                                   |
| 1408         | 227. | Brackman G, Coenye T. 2016. In Vitro and In Vivo Biofilm Wound Models and Their                                                                             |
| 1409         |      | Application. Advances in experimental medicine and biology 897:15-32.                                                                                       |
| 1410         | 228. | Brackman G, Garcia-Fernandez MJ, Lenoir J, De Meyer L, Remon JP, De Beer T, Concheiro A,                                                                    |
| 1411         |      | Alvarez-Lorenzo C, Coenye T. 2016. Dressings Loaded with Cyclodextrin-Hamamelitannin                                                                        |
| 1412         |      | Complexes Increase Staphylococcus aureus Susceptibility Toward Antibiotics Both in Single                                                                   |
| 1413         |      | as well as in Mixed Biofilm Communities. Macromolecular bioscience 16:859-69.                                                                               |
| 1414         | 229. | Thaarup IC, Bjarnsholt T. 2021. Current In Vitro Biofilm-Infected Chronic Wound Models for                                                                  |
| 1415         | 220  | Developing New Treatment Possibilities. Advances in wound care 10:91-102.                                                                                   |
| 1416         | 230. | Kadam S, Madhusoodhanan V, Dhekane R, Bhide D, Ugale R, Tikhole U, Kaushik KS. 2021.                                                                        |
| 1417         |      | Milieu matters: An in vitro wound milieu to recapitulate key features of, and probe new                                                                     |
| 1418<br>1419 | 231. | insights into, mixed-species bacterial biofilms. Biofilm 3:100047.<br>Trivedi U, Madsen JS, Rumbaugh KP, Wolcott RD, Burmolle M, Sorensen SJ. 2017. A post- |
| 1419         | 251. | planktonic era of in vitro infectious models: issues and changes addressed by a clinically                                                                  |
| 1420         |      | relevant wound like media. Critical reviews in microbiology 43:453-465.                                                                                     |
| 1422         | 232. | de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, Ravensbergen E,                                                                       |
| 1423         | 252. | Franken M, van der Heijde T, Boekema BK, Kwakman PHS, Kamp N, El Ghalbzouri A, Lohner                                                                       |
| 1424         |      | K, Zaat SAJ, Drijfhout JW, Nibbering PH. 2018. The antimicrobial peptide SAAP-148 combats                                                                   |
| 1425         |      | drug-resistant bacteria and biofilms. Science translational medicine 10.                                                                                    |
| 1426         | 233. | Pestrak MJ, Baker P, Dellos-Nolan S, Hill PJ, Passos da Silva D, Silver H, Lacdao I, Raju D,                                                                |
| 1427         |      | Parsek MR, Wozniak DJ, Howell PL. 2019. Treatment with the Pseudomonas aeruginosa                                                                           |
| 1428         |      | Glycoside Hydrolase PslG Combats Wound Infection by Improving Antibiotic Efficacy and                                                                       |
| 1429         |      | Host Innate Immune Activity. Antimicrobial agents and chemotherapy 63.                                                                                      |
| 1430         | 234. | Redman WK, Welch GS, Williams AC, Damron AJ, Northcut WO, Rumbaugh KP. 2021. Efficacy                                                                       |
| 1431         |      | and safety of biofilm dispersal by glycoside hydrolases in wounds. Biofilm 3:100061.                                                                        |
| 1432         | 235. | Tillander JAN, Rilby K, Svensson Malchau K, Skovbjerg S, Lindberg E, Rolfson O, Trobos M.                                                                   |
| 1433         |      | 2022. Treatment of periprosthetic joint infections guided by minimum biofilm eradication                                                                    |
| 1434         |      | concentration (MBEC) in addition to minimum inhibitory concentration (MIC): protocol for a                                                                  |
| 1435         |      | prospective randomised clinical trial. BMJ open 12:e058168.                                                                                                 |
| 1436         | 236. | Zimmerli W, Trebse R. 2023. Which trial do we need? Rational therapeutic management of                                                                      |
| 1437         |      | periprosthetic joint infection. Clinical microbiology and infection : the official publication of                                                           |
| 1438         |      | the European Society of Clinical Microbiology and Infectious Diseases 29:820-822.                                                                           |
|              |      |                                                                                                                                                             |

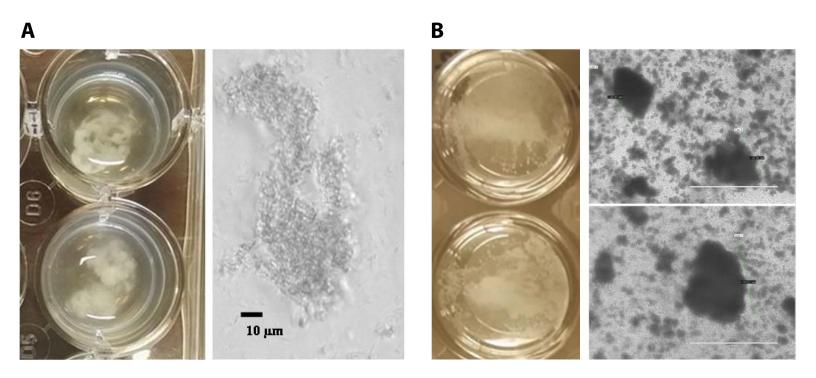
1439 237. Bizzini A, Greub G. 2010. Matrix-assisted laser desorption ionization time-of-flight mass 1440 spectrometry, a revolution in clinical microbial identification. Clinical microbiology and 1441 infection : the official publication of the European Society of Clinical Microbiology and 1442 Infectious Diseases 16:1614-9. 1443 238. Croxatto A, Prod'hom G, Greub G. 2012. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS microbiology reviews 36:380-407. 1444 239. 1445 Clark AE, Kaleta EJ, Arora A, Wolk DM. 2013. Matrix-assisted laser desorption ionization-time 1446 of flight mass spectrometry: a fundamental shift in the routine practice of clinical 1447 microbiology. Clinical microbiology reviews 26:547-603. 240. 1448 Patel R. 2015. MALDI-TOF MS for the diagnosis of infectious diseases. Clinical chemistry 1449 61:100-11. 1450 241. Sandoe JA, Wysome J, West AP, Heritage J, Wilcox MH. 2006. Measurement of ampicillin, 1451 vancomycin, linezolid and gentamicin activity against enterococcal biofilms. The Journal of 1452 antimicrobial chemotherapy 57:767-70. 1453 242. Lebeaux D, Ghigo JM, Beloin C. 2014. Biofilm-related infections: bridging the gap between 1454 clinical management and fundamental aspects of recalcitrance toward antibiotics. 1455 Microbiology and molecular biology reviews : MMBR 78:510-43. 1456 243. Brauner A, Fridman O, Gefen O, Balaban NQ. 2016. Distinguishing between resistance, 1457 tolerance and persistence to antibiotic treatment. Nature reviews Microbiology 14:320-30. 1458 244. Ciofu O, Tolker-Nielsen T. 2019. Tolerance and Resistance of Pseudomonas aeruginosa 1459 Biofilms to Antimicrobial Agents-How P. aeruginosa Can Escape Antibiotics. Frontiers in 1460 microbiology 10:913. 1461 245. Coenye T, Bove M, Bjarnsholt T. 2022. Biofilm antimicrobial susceptibility through an 1462 experimental evolutionary lens. NPJ biofilms and microbiomes 8:82. 1463

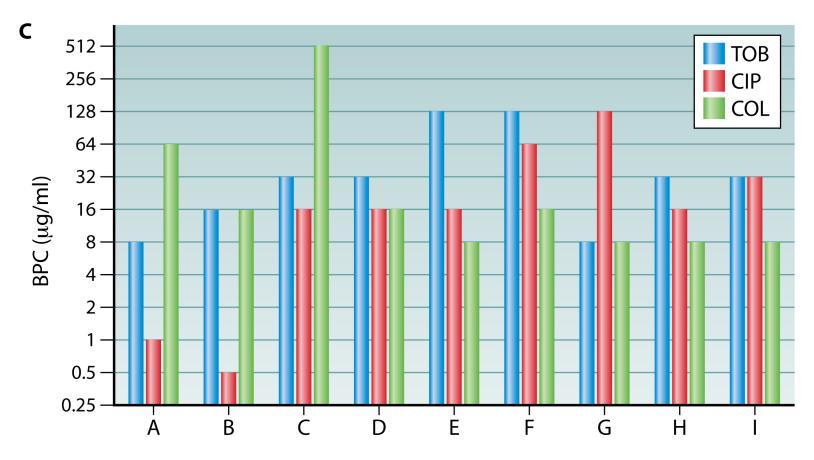

# 1465 Tom Coenye


# 1466 https://orcid.org/0000-0002-6407-0601

## 1467 Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium


1468


Tom Coenye is a Professor of Microbiology at the Faculty of Pharmaceutical Sciences, Ghent 1469 1470 University, Ghent, Belgium where he leads the Laboratory of Pharmaceutical Microbiology. He obtained a master's degree (in 1996) and a PhD (in 2000) in Biochemistry from Ghent 1471 1472 University (Belgium) and then joined the University of Michigan (United States) for a 1473 postdoctoral fellowship (2001-2022). He has been working on microbial biofilms for almost 20 years and his current research is focused on the identification of molecular mechanisms 1474 1475 of reduced susceptibility in microbial biofilms and the translation of novel insights in 1476 fundamental biofilm biology to innovative approaches for diagnosis, susceptibility testing 1477 and treatment (mainly in the context of biofilm-related respiratory tract and prosthetic joint infections). He was vice-chair (2013-2016) and chair (2017-2021) of the European Society for 1478 1479 Clinical Microbiology and Infectious Diseases Study Group on Biofilms and is Senior Editor of 1480 the journal Biofilm since 2018.






A





