10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Effect of malate on the activity of ciprofloxacin against
Pseudomonas aeruginosa in different in vivo and in vivo-like

infection models

Xuerui Bao?, Ellen Goeteyn®, Aurélie Crabbé?, Tom Coenye™#

*Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium

Running title: In vivo (or -like) effects of malate on ciprofloxacin

#Address correspondence to: Tom Coenye, Tom.Coenye@UGent.be



mailto:Tom.Coenye@UGent.be

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

ABSTRACT

The clinical significance of Pseudomonas aeruginosa infections and the tolerance of this
opportunistic pathogen to antibiotic therapy makes the development of novel
antimicrobial strategies an urgent need. We previously found that D,L-malic acid
potentiates the activity of ciprofloxacin against P. aeruginosa biofilms grown in a synthetic
cystic fibrosis sputum medium by increasing metabolic activity and TCA cycle activity.
This suggested a potential new strategy to improve antibiotic therapy in P aeruginosa
infections. Considering the importance of the microenvironment on microbial antibiotic
susceptibility, the present study aims to further investigate the effect of D,L-malate on
ciprofloxacin activity against P. aeruginosa in physiologically relevant infection models,
aiming to mimic the infection environment more closely. We used Caenorhabditis elegans
nematodes, Galleria mellonella larvae, and a 3-D lung epithelial cell model to assess the
effect of D,L.-malate on ciprofloxacin activity against P. aeruginosa. D,L-malate was able
to significantly enhance ciprofloxacin activity against P. aeruginosa in both G. mellonella
larvae and the 3-D lung epithelial cell model. In addition, ciprofloxacin combined with
D,L-malate significantly improved the survival of infected 3-D cells compared to
ciprofloxacin alone. No significant effect of D,L.-malate on ciprofloxacin activity against P.
aeruginosa in C. elegans nematodes was observed. Overall, these data indicate that the
outcome of the experiment is influenced by the model system used which emphasizes the
importance of using models that reflect the in vivo environment as closely as possible.
Nevertheless, this study confirms the potential of D,L-malate to enhance ciprofloxacin

activity against P aeruginosa-associated infections.
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INTRODUCTION

Pseudomonas aeruginosa is an opportunistic pathogen that is a common cause of (nosocomial)
infections, especially in immunocompromised patients (1-4). Pneumonia due to P. aeruginosa
is associated with high mortality (2, 3, 5) and in cystic fibrosis (CF) patients, colonization of
the lungs by P. aeruginosa is a leading cause of morbidity and mortality (6). P. aeruginosa
infections are difficult to treat with antibiotics because of the low outer membrane permeability
and the numerous intrinsic and acquired resistance mechanisms (7-9). The growing prevalence
of multidrug-resistant and extensively drug-resistant P. aeruginosa is of increasing concern
worldwide, leading to its designation by the World Health Organization (WHO) as a high-risk
organism (10, 11). Besides resistance, also antimicrobial tolerance linked to a biofilm lifestyle
contributes to difficulties in finding an effective treatment (12, 13). Treatment options for
infections caused by P. aeruginosa are limited, and include colistin and aminoglycosides (14,
15). However, the use of these antibiotics is frequently associated with side effects (5, 11, 16,
17) and more effective/less toxic antimicrobial strategies are urgently needed to combat P.
aeruginosa infections.

Various compounds, including carbohydrates, amino acids, and organic acids, are able to
enhance the antimicrobial activity of antibiotics by modulating bacterial metabolism (6, 18, 27,
19-26). For instance, lower tricarboxylic acid cycle (TCA) metabolites, such as fumarate,
succinate, a-ketoglutarate, as well as pyruvate, can sensitize stationary phase P. aeruginosa
cells to tobramycin (24). For fumarate it was shown that this potentiating activity was due to
activating the electron transport chain (ETC), leading to an increased proton motive force (PMF)
and enhanced cellular respiration (24). Previously we showed that D,L-malic acid and sodium
acetate could potentiate the activity of ciprofloxacin and ceftazidime, respectively, against P
aeruginosa biofilms in a synthetic sputum medium by modulating bacterial metabolism (26).
The infectious microenvironment, comprising host cells, microorganisms and their
extracellular polymeric substances, and host polymers, plays an important role in bacterial
physiology and contributes to reduced antibiotic susceptibility in chronic infections (28-30).
Consequently, it is important to use physiologically relevant models to study the potentiation
of antibiotic activity to narrow the gap between in vitro studies and the in vivo situation. In the

present study, we further investigated the ciprofloxacin-potentiating activity of D,L-malate
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against P. aeruginosa using several in vivo and in vivo-like infection models.

Caenorhabditis elegans has been widely used as a model organism to study bacterial virulence
and to evaluate various antimicrobial treatments; C. elegans has been used in studies with
different fungal and bacterial pathogens, including P. aeruginosa (31-37). Larvae of the greater
wax moth Galleria mellonella are also frequently used as an invertebrate infection model; in
contrast to C. elegans, G. mellonella has an innate immune system and can grow at 37°C (38).
G. mellonella has been used to study virulence and antimicrobial treatment of a wide range of
microorganisms, including P. aeruginosa (39—43). Three-dimensional (3-D) in vivo-like lung
epithelial cell cultures better mimic physiological characteristics of in vivo lung epithelium
(including 3-D architecture, barrier function, apical-basolateral polarity, and multicellular
complexity) than conventional monolayers (44, 45). In addition, P. aeruginosa adhesion and
subsequent host-secreted cytokine profiles in 3-D lung epithelial cell culture model are more

similar to those found in vivo than in 2-D monolayers grown on plastic (46, 47).

MATERIALS AND METHODS

Bacterial strains and culture conditions

Pure cultures of P. aeruginosa PAO1, LES B58, AA2, AA44, and DK2 (48) were maintained
on tryptic soy agar (TSA; Lab M). For imaging purposes, GFP-expressing P. aeruginosa PAO1
was used (47). Overnight cultures were grown statically in Luria Bertani broth (LB; Lab M) at
37°C under aerobic conditions. Serial dilutions of P. aeruginosa were plated on two different
media types: Difco Pseudomonas Isolation Agar (PIA; BD Diagnostics) for the C. elegans

infection assay, and TSA for the quantification of P. aeruginosa adhering to 3-D cell models.

Chemicals

Stock solutions of 24 mg/mL ciprofloxacin (Sigma-Aldrich) were prepared in 0.1 M HCI
(Sigma-Aldrich) and stored at —20°C. Stock solutions of D,L-malate (Sigma-Aldrich) were
stored at 4°C at a concentration of 600 mM. The final pH value of all media was adjusted to

6.8 using 1M NaOH (Merck Life Sciences).

C. elegans nematode infection assay
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The C. elegans nematode infection assay was done as previously described (49). C. elegans
strain AU37 (glp-4, sek-1) (a temperature-sensitive sterile mutant) was propagated on
nematode-growth media (NGM) plates seeded with Escherichia coli OP50 at 13°C. Stocks of
C. elegans were maintained by transferring approx. 1 cm?> NGM agar pieces with nematodes to
fresh NGM plates with E. coli OP50 every seven days. Eggs were isolated from adult worms
by hypochlorite bleaching, leading to a synchronized C. elegans population. The harvested eggs
were transferred to NGM seeded with E. coli OP50 and were incubated at 25°C for at least 3
days to generate stage L4 sterile animals for further experiments. Synchronized L4 stage worms
were suspended in OGM medium, containing 95% M9 buffer, 5% brain heart infusion broth
(Oxoid) and 10 pg/ml cholesterol (Sigma-Aldrich); this nematode suspension was transferred
to wells of 96-well microtiter plates (approx. 20 worms/well) (49). Bacterial overnight cultures
were centrifuged, resuspended and standardized to 10° CFU/mL in OGM medium and
nematodes were infected with 25 pL of this suspension. D,L-malate (60 mM) and/or
ciprofloxacin (0.6, 0.075, or 0.0375 ug/mL) was added to the test wells. Nematodes that were
not infected and/or not treated served as controls. The microtiter plates were incubated at 25°C
for 3 days and the number of living and dead worms in each well was determined every 24h
using an EVOS FL Auto microscope (Life Technologies) at a final magnification of 40x. Worms
were considered dead when they were straight and immobile. For each condition, at least five
biological replicates were performed and each experiment consisted of three technical
replicates. The number of CFU per worm was determined after 72 h incubation. To this end,
nematodes were collected and rinsed with M9 buffer, containing 1 mM of sodium azide to
prevent the nematodes from vomiting. Subsequently, the nematodes were washed with
physiological saline (PS, 0.9% NaCl solution) before counting. The bacteria were released from
the nematodes by disrupting the latter by vortexing in microtubes containing 1.0 mm silicon
carbide beads (BioSpec Products) for 10 min. Serial dilutions of the supernatants were plated

on TSA agar plates and incubated at 37°C for 15 h.

G. mellonella infection assay
G. mellonella (greater wax moth) larvae (Hengelsport De Poorter, Ghent, Belgium) were

randomly assigned to five groups (10 larvae/group); four groups were infected by injecting 10
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uL of a P. aeruginosa PAO1 suspension (containing 2 x 10* CFUs per milliliter) at the left
posterior gastropod while the uninfected control group was injected with 10 puL of PS. 30 min
post-infection, the infected larvae were treated (by injecting 10 uL at the right posterior
gastropoda) with PS, ciprofloxacin (1.2 pg/mL), D,L-malate (60 mM), or a combination of
ciprofloxacin (1.2 pg/mL) and D,L-malate (60 mM). The uninfected larvae were injected with
10 uL of PS at the right posterior gastropoda. Larvae were incubated at 37°C and survival was
monitored after O h, 15 h, 16 h, 17 h, 20 h, 24 h, and 48 h. Larvae were considered dead when
they failed to respond to external stimuli and when they showed dark pigmentation caused by
melanisation. Kaplan-Meier survival curves were plotted using data pooled from six biological

replicates (49).

Determination of bacterial growth curves in cell culture medium

Prior to assessing the effect of D,L-malate on ciprofloxacin activity against P. aeruginosa in 3-
D lung epithelial cell cultures, we evaluated the growth of P. aeruginosa PAO1, AA2, and AA44
in GTSF-2 cell culture medium without FBS (47, 50, 51) with or without ciprofloxacin (final
concentration: 0, 0.25 or 0.5 pg/mL) and/or 60 mM D,L-malate. Growth was quantified for 50
h at 37°C by measuring the optical density at 600 nm (ODeo) using an EnVision
spectrophotometer (Perkin Elmer). GTSF-2 medium (HyClone) was supplemented with 1.5 g/LL
sodium bicarbonate (Sigma-Aldrich), and 2.5 mg/L insulin transferring sodium selenite (ITS,
Lonza) (47, 50, 51). All experiments were performed in three biological replicates (with three

technical replicates in each biological replicate, i.e. n =3 x 3).

3-D lung epithelial cell culture

The 3-D in vivo-like lung model was generated from the human adenocarcinomic alveolar
epithelial cell line A549 (ATCC CCL-185) using the Rotating Wall Vessel (RWYV) as described
previously (27, 47). On the day of the infection, the 3-D aggregates were transferred to 96-well

plates at a concentration of 2.5 x 10° cells/well containing the above-described GTSF-2 medium.

3-D lung epithelial model infection assay

The 3-D lung epithelial model was infected with P. aeruginosa biofilms as described previously
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(47, 51), with some modifications. A targeted multiplicity of infection (MOI) of 30:1 was used
for P. aeruginosa. The prepared ciprofloxacin and D,L-malate solutions in GTSF-2 medium
were added together with P aeruginosa or separately to the 3-D A549 cells at final
concentrations of 0.5 or 0.25 pg/mL (ciprofloxacin) and 60 mM (D,L-malate). The uninfected
as well as untreated cells were considered as controls. For all infection experiments, plates were
incubated for 24 h statically at 37 °C under 5% CO> conditions. After 24 h incubation, cells in
each well were rinsed with pre-warmed GTSF-2 medium three times. Next, fresh GTSF-2
medium and the same treatments as described above were added to the corresponding wells.
Following the addition of fresh medium with different treatments, the test plates were incubated
for another 24 h at 37 °C under 5% CO, conditions, after which biofilm formation on 3-D cell
model and cytotoxicity were determined as described below. At least five biological replicates

were performed and in each experiment three technical replicates were performed.

Quantification of P. aeruginosa in the 3-D cell model and cytotoxicity assay

For in vitro host-pathogen interaction studies, the viability of mammalian cells is often
measured using the conventional (“extracellular”) lactate dehydrogenase (LDH) assay.
However, a recent study indicated P. aeruginosa could interfere with the extracellular LDH
activity through protease production and therefore developed a modified (“intracellular”) LDH
assay to avoid this interference (50). Thus, to assess the viability of 3-D lung epithelial cells in
this study, the “intracellular” LDH assay was applied as previously described (50). Briefly, after
48-hour infection, 3-D cells were rinsed with pre-warmed HBSS (Hank’s Balanced Salt
Solution, Life Technologies, Thermo Fisher Scientific). The content of each well was
transferred to new 96-well plates without touching the plates’ bottom using the wide bore
pipette tips. After rinsing three more times with HBSS, the attached 3-D cells were lysed using
0.1% Triton-X100 (Sigma-Aldrich) through vigorously pipetting up and down 30x. To remove
cell debris and bacteria, the rest of the resulting mixture was centrifuged. Intracellular LDH
release was then quantified using an LDH activity assay kit (Sigma-Aldrich) following the
manufacturer’s instructions. A standard curve was determined using NADH. The completely
lysed uninfected 3-D cells were used as the positive control. Survival of 3-D cells in infected

cultures was calculated as a percentage of the positive control. In addition, to determine the
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number of P. aeruginosa in the 3-D model, the lysate was serially diluted and plated on TSA
agar (at 37°C for 15 h)
All experiments were performed at least in five replicates, each containing three technical

replicates.

Light- and fluorescence microscopy

The overall morphology and integrity of 3-D epithelial cells after 48 h infection with P.
aeruginosa PAO1, AA2, AA44, and GFP-expressing P. aeruginosa PAO1 was imaged with an
EVOS FL Auto Microscope (Life Technologies) equipped with a 10x and 20x objective and
appropriate filter cubes (final magnification: 200x or 400x) (47). Two images were taken per
condition and fluorescence microscopy images were processed using the image processing
application ImagelJ software (National Institutes of Health, USA). For each experiment at least
five biological replicates were included, with each biological replicate consisting of three
technical replicates. For each biological and technical replicate per condition, at least two

representative images were taken.

Statistical analysis

Statistical analysis was performed using SPSS version 27 (IBM). The normal distribution of
the data was verified by the Shapiro-Wilk test. When the data were normally distributed, an
independent sample t-test or one-way ANOVA with Bonferroni correction was used. Data that
were not normally distributed were analyzed by nonparametric Mann-Whitney U tests. Kaplan-
Meier survival curves of infected G. mellonella were analyzed by using the log-rank (Mantel-

Cox) test and the significance was Bonferroni corrected for multiple comparisons.

RESULTS

D,L-malate has no effect on ciprofloxacin activity against P. aeruginosa in C. elegans

The effect of D,L-malate on ciprofloxacin antimicrobial activity was assessed using a C.
elegans infection model. Ciprofloxacin concentrations were optimized for each P. aeruginosa
strain (Fig. S1). Concentrations of ciprofloxacin causing the largest difference in survival

between infected C. elegans treated with ciprofloxacin alone and infected C. elegans treated
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with the combination after 72 h-incubation were selected for further in depth studies; the
selected ciprofloxacin concentrations for P. aeruginosa PAO1, AA44, DK2, and LES B58 were
0.0375, 0.6, 0.075, and 0.075 pg/mL respectively (Fig. S1), which were much lower than the
final maximum concentration of 33.0 pg/mL in sputum after aerosolized administration of 50
mg dry powder ciprofloxacin (52, 53). The selected concentrations aimed to partially affect P.
aeruginosa without complete inhibition, thus allowing room for malate to enhance the efficacy
of ciprofloxacin.

At the concentrations selected, neither D,L-malate nor ciprofloxacin alone affected the survival
of uninfected nematodes (Fig. S2A, F). In the absence of treatment, the survival of nematodes
infected with P. aeruginosa PAO1, AA44, DK2, or LES B58 began to decrease at 24 h post-
infection (Fig. S2B-E).

Compared to the untreated control, the addition of D,L-malate (60 mM) alone caused a
significant increase in the survival of nematodes infected with P. aeruginosa PAO1 (p = 0.003),
AA44 (p = 0.00002), DK2 (p = 0.004), or LES B58 (p = 0.008) (Fig. 1). Ciprofloxacin alone
(at the selected concentrations, Fig. 1) did not significantly increase the survival of nematodes
infected with P. aeruginosa PAO1, AA44 or LES B58; a small (16.6%) but significant (p=0.041)
increase was observed after ciprofloxacin treatment of nematodes infected with DK2. The
combination of ciprofloxacin + D,L-malate significantly increased the survival of nematodes
infected with P. aeruginosa PAO1 (p = 0.0007), AA44 (p = 0.00003), DK2 (p = 0.004), or LES
B58 (p = 0.008) compared to the untreated control. However, no significant difference in
survival was observed between treatment with D,L-malate alone or treatment with D,L-malate
+ ciprofloxacin, suggesting D,L-malate affected C. elegans survival without potentiating
ciprofloxacin activity. To further confirm the effect of D,L-malate, higher concentrations of
ciprofloxacin (1.2 pg/mL for P. aeruginosa PAO1, DK2, and LES B58; 9.6 pg/mL for P
aeruginosa AA44) were also tested. There was no significant difference in survival between
infected C. elegans treated with D,L-malate alone or those treated with the combination of D,L-
malate and ciprofloxacin (p = 0.909, 0.286, 0.571 and 0.073 for P. aeruginosa PAO1, DK2,
LES B58 and AA44, respectively).

No significant difference in the number of P. aeruginosa recovered from nematodes was

observed between groups of infected nematodes without treatment and with the treatment of
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D,L-malate alone, ciprofloxacin alone, or the combination (Fig. S3), except for P. aeruginosa
AA44 for which treatment with ciprofloxacin (alone or in combination with D,L-malate) led to
a lower microbial load. Combined these data indicated that the addition of D,L-malate did not
significantly increase ciprofloxacin antimicrobial activity in C. elegans. A possible explanation
for this observation is that D,L-malate affected the nematodes directly, as this compound has
been reported to extend the lifespan in C. elegans by increasing oxygen consumption, and
decreasing ATP levels and mitochondrial membrane potential (54). While it is possible that
malate influences the virulence of P. aeruginosa in nematodes (potentially leading to an

increased survival of infected nematodes), this needs to be investigated further.

D,L-malate potentiates ciprofloxacin activity against P aeruginosa PAO1 in the G.
mellonella infection model

Subsequently, we assessed the effect of D,L-malate on ciprofloxacin activity in the G.
mellonella infection model. Neither D,L-malate nor ciprofloxacin was toxic for larvae at the
concentration used (Fig. S4). Infection with P. aeruginosa PAOL significantly decreased the
survival of larvae (p < 0.0001), while D,L-malate alone did not lead to a significant change in
the survival of infected larvae (Fig. 2). In contrast, treatment with ciprofloxacin alone
significantly increased the percentage of survival (p = 0.001) and the combination of
ciprofloxacin + D,L-malate further improved survival of infected larvae significantly compared
to treatment with ciprofloxacin alone (p = 0.001). These data demonstrate D,L-malate possesses
the ability to potentiate the activity of ciprofloxacin against P. aeruginosa PAO1 in G.

mellonella.

D,L-malate increases ciprofloxacin activity against P. aeruginosa biofilms in a 3-D lung
epithelial cell model

To further explore the effect of D,L-malate on ciprofloxacin against P. aeruginosa biofilms in
a 3-D lung epithelial cell model, we determined the number of CFU in P. aeruginosa biofilms
that attached to cells and microcarrier bead scaffolds after rinsing (to remove unattached cells
and P. aeruginosa in the cell supernatant) (Fig. 3). For each strain, ciprofloxacin concentrations

were selected that did not completely inhibit bacterial growth in the cell culture medium (Fig.
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S5). These selected ciprofloxacin concentrations for P. aeruginosa PAO1 (0.25 pg/mL), AA2
(0.25 and 0.5 pg/mL), and AA44 (0.25 and 0.5 pg/mL) were then used in further studies with
infected 3-D epithelial cell cultures. D,L-malate alone did not significantly affect the number
of attached P. aeruginosa cells. Likewise, treatment with 0.25 pg/mL ciprofloxacin alone did
not significantly reduce the number of attached PAO1 or AA44 cells, while for P. aeruginosa
AA?2 a reduction of approx. 1 log (p = 0.008) was observed. Treatment with 0.5 pg/mL
ciprofloxacin alone significantly reduced the number of attached P. aeruginosa cells for strain
AA44 (approx. 0.96 log, p = 0.0006) but not for strain AA2 (approx. 0.51 log, p = 0.235)
compared to the untreated control. Combined treatment with D,L-malate and either 0.25 or 0.5
ug/mL ciprofloxacin significantly decreased the number of attached P. aeruginosa PAO1, AA2,
and AA44 cells compared to untreated controls (Fig. 3). The combination of D,L-malate and
0.25 ng/mL ciprofloxacin significantly increased the anti-biofilm effect for strain PAO1 only
(approx. 3.7 log reduction compared to 0.25 pg/mL ciprofloxacin alone, p <0.0001). Compared
to 0.5 png/mL ciprofloxacin alone, the combination of D,L-malate and 0.5 pg/mL ciprofloxacin
significantly increased the anti-biofilm effect for P. aeruginosa AA2 ( approx. 5.3 log, p <
0.0001) and AA44 (by approx. 2.5 log, p < 0.0001). Fluorescence microscopy of 3-D cultures
infected with GFP-expressing P. aeruginosa PAO1 confirmed the potentiating effect of D,L-

malate on ciprofloxacin anti-biofilm activity (Fig. S6).

The combination of ciprofloxacin and D,L-malate increases the viability of infected 3-D
epithelial cells compared to ciprofloxacin alone

We used light microscopy and LDH measurements to assess the effect of the combined
treatment D,L-malate and ciprofloxacin treatment on the viability of 3-D epithelial cells. In the
absence of treatment, P. aeruginosa PAO1, AA2, and AA44 infection of 3-D lung epithelial
cells caused 90.2, 98.1, and 83.2% cell death, respectively (Fig. 4). The effect of D,L-malate
alone on the viability of 3-D lung epithelial cells was minor, and was only significant for P
aeruginosa PAO1 (p = 0.008) (Fig. 4). Treatment with ciprofloxacin alone did not significantly
increase the viability of cells, except for P. aeruginosa PAO1 (p = 0.008). The combination of
0.25 pg/mL ciprofloxacin and D,L-malate significantly increased the viability of cells infected

with P. aeruginosa PAO1 (p = 0.008) and AA2 (p = 0.0001), but not of cells infected with P,
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aeruginosa AA44 (p = 0.6) compared to the untreated control. The combination of 0.5 pg/mL
ciprofloxacin and D,L-malate significantly improved the viability of cells after infection of P
aeruginosa AA2 (p = 0.0004) and AA44 (p = 0.002) compared to the untreated control.
Compared to treatment with 0.25 pg/mL ciprofloxacin alone, the combination of 0.25 pg/mL
ciprofloxacin and D,L-malate significantly increased the viability of cells by 73% (PAO1, p =
0.0002), 39% (AA2, p=0.008), and 12% (AA44, p = 0.041) (Fig. 4). Similarly, when infected
cells were treated with the higher concentration of ciprofloxacin (0.5 pg/mL; not tested with
PAOL1), the addition of D,L-malate was able to significantly enhance the viability of cells by
57% (AA2, p = 0.007) or 54% (AA44, p = 0.002). These data show that the addition of D,L-
malate could increase the viability of infected cells treated with ciprofloxacin and demonstrate
that the higher concentration of ciprofloxacin led to significantly higher viability of infected
cells when used in combination with D,L-malate.

These results were supported by light microscopy observation (Fig. S7). We observed that the
overall integrity of the uninfected 3-D epithelial cells was maintained during the 48 h incubation
period, during which a limited amount of cells detached from the microcarrier bead scaffolds.
A large amount of the cells detached from the microcarrier bead scaffolds after infection with
all three strains of P. aeruginosa for 48 h. The addition of D,L-malate, or ciprofloxacin alone
did not reduce the detachment of infected cells compared to the untreated control. However,
overall we observed higher integrity of 3-D aggregates for P. aeruginosa-infected cultures
treated with combined treatment ciprofloxacin and D,L-malate compared to either treatment
alone. This observation was most pronounced for 3-D cultures treated with the highest
concentration of ciprofloxacin used (0.5 pug/ml). Hence, these observations are consistent with

the results of the viability assay.

DISCUSSION

The increasing prevalence of infections with antibiotic resistant organisms, together with the
limited pipeline of novel antibiotics, is contributing to a severe worldwide public health crisis
(55). Consequently, it is crucial and urgent to explore innovative strategies for alternative
therapies. Recent studies have shown that the combination of antibiotics with other compounds

has the potential to enhance the effectiveness of current antibiotic treatments (21, 23, 24, 26,
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27, 56-60). Previously, we found that D,L-malic acid (ciprofloxacin) and sodium acetate
(ceftazidime) potentiate antibiotic activity against P. aeruginosa biofilms in a synthetic sputum
medium (26). Here, we showed that the addition of D,L-malate increased the activity of
ciprofloxacin against P. aeruginosa in G. mellonella larvae and a 3-D lung epithelial cell model,
but not in C. elegans. Given the potential differences in concentrations between C. elegans and
G. mellonella models (e.g. due to variations in animal size and mode of administration), further
research is needed to explore the effect of different concentrations of malate in these infection
models.

Our findings show that the model system used can greatly influence the experimental outcomes
when evaluating the activity of antibiotic potentiators. In the C. elegans nematode model, no
potentiating effect of D,L-malate on ciprofloxacin activity was observed, neither on the survival
of nematodes nor on bacterial load. Surprisingly, D,L-malate alone was sufficient to
significantly increase the survival of infected nematodes. However, results obtained in G.
mellonella larvae and in the 3-D lung cell epithelial model indicate that D,L.-malate could work
as a potentiator of ciprofloxacin against P. aeruginosa to increase the survival of larvae or
cellular viability.

A previous study has shown that antifungal imidazoles econazole and miconazole could
potentiate tobramycin activity against Burkholderia cenocepacia biofilms formed in 96-well
microtiter plates, but not in 3-D lung epithelial cell cultures, G. mellonella larvae, or mice
models (61). Besides, thioridazine, which belongs to phenothiazines drug class, was shown to
potentiate the activity of tobramycin, linezolid and flucloxacillin against S. aureus biofilms in
96-well microtiter plates, while this potentiation effect was lost in a chronic wound model of
biofilm infection (62). In another study, the outer membrane-acting peptide L6 showed little or
no synergistic activity with vancomycin against the tested Gram-negative pathogens in vitro
(96 well plates), while another outer membrane-acting peptide L8 showed synergistic effect
against Acinetobacter baumannii and Klebsiella pneumoniae. However, in A. baumannii
infected zebrafish larvae, L6 showed an additive effect on the antimicrobial activity of
vancomycin while L8 showed an antagonistic effect (63). The addition of CdTe-2.4, which can
produce reactive oxygen species after illumination, potentiated the effect of ciprofloxacin

against Salmonella enterica serovar Typhimurium in infected HeLa cells grown as 2-D
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monolayers and significantly reduced the number of intracellular bacteria compared to
ciprofloxacin treatment alone (64). However, this potentiating effect was no longer significant
in the C. elegans model (64). These examples confirm that model system selection significantly
impacts experimental outcomes.

The effect of D,L-malate on the activity of ciprofloxacin in the 3-D lung epithelial model also
seems to be antibiotic-concentration dependent. While D,L-malate did not potentiate
ciprofloxacin activity at a concentration of 0.25 pg/mL ciprofloxacin, a significant difference
was observed when the concentration of ciprofloxacin was increased to 0.5 pg/mL. This
suggests that higher concentrations of ciprofloxacin may be more effectively potentiated by
D,L-malate.

In conclusion, D,L-malate showed a significant effect on increasing ciprofloxacin activity
against P. aeruginosa in two out of three models used in the present study. Hence, D,L-malate
may be a promising, effective, and easy-to-obtain potentiator of ciprofloxacin to combat P.
aeruginosa-related infections. In addition, this study highlights the importance of using models

that mimic the in vivo environment as close as possible as it can affect experimental outcomes.
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Figure 1. Percentage survival of C. elegans nematodes infected with strains PAO1 (A,
n=11), AA44 (B, n=7), DK2 (C, n=6) and LESB58 (D, n=5) after 72 h incubation (n
represents the number of biological replicates, each biological replicate consisted of three
technical replicates). Results are displayed as mean + standard error; *p < 0.05, **p <

0.01, ***p < 0.001, ****p < 0.0001.

Figure 2. Kaplan-Meier survival curves of G. mellonella larvae infected with P. aeruginosa
PAO1 and treated with malate, ciprofloxacin, or the combination. Uninfected and
untreated G. mellonella served as controls. Data shown are average of 3-6 independent
experiments. **p < 0.01, ***p = 0.001, ****p < 0.0001, log-rank test with Bonferroni
correction for multiple comparisons was applied for significance analysis between

different groups.

Figure 3. The number of P. aeruginosa cells recovered from 3-D lung epithelial cells. Data
are presented as the log value of the number of bacteria (CFU/mL). The results are

displayed as mean =+ standard error (n =5 — 6). **p <0.01, ***p < 0.001, ****p < (0.0001.

Figure 4. Viability of 3-D lung epithelial cells based on the intracellular LDH assay after
incubation with different P. aeruginosa strains and subsequent treatment, expressed as a
percentage compared to uninfected cells. Cells infected with P. aeruginosa without any
treatment served as control. The results are displayed as mean + standard error (n =5 —

6). *p <0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.



