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A comprehensive metabolite 
fingerprint of fibrostenosis 
in patients with Crohn’s disease
Simon Bos 1,2, Triana Lobatón 1,3, Martine De Vos 1,3, Sophie Van Welden 1,2, Vera Plekhova 4, 
Ellen De Paepe 4, Lynn Vanhaecke 4,5,6 & Debby Laukens 1,2,6*

Intestinal fibrostenosis in patients with Crohn’s disease (CD) is a common and untreatable comorbidity 
that is notoriously difficult to monitor. We aimed to find metabolites associated with the presence of 
fibrostenosis in patients with CD using targeted and untargeted metabolomics analyses of serum and 
primary cell cultures using hyphenated ultra-high performance liquid chromatography high-resolution 
mass spectrometry. Targeted metabolomics revealed 11 discriminating metabolites in serum, 
which were enriched within the arginine and proline metabolism pathway. Based on untargeted 
metabolomics and discriminant analysis, 166 components showed a high predictive value. In addition, 
human intestinal fibroblasts isolated from stenotic tissue were characterized by differential levels of 
medium-chain dicarboxylic acids, which are proposed as an energy source through beta-oxidation, 
when oxidative phosphorylation is insufficient. Another energy providing pathway in such situations 
is anaerobic glycolysis, a theory supported by increased expression of hexokinase 2 and solute carrier 
family 16 member 1 in stenotic fibroblasts. Of interest, four (unannotated) metabolic components 
showed a negative correlation with hexokinase 2 gene expression. Together, this study provides a 
discriminative metabolic fingerprint in the serum and in intestinal fibroblasts of stenotic and non-
stenotic patients with CD suggestive for increased production of building blocks for collagen synthesis 
and increased glycolysis.

Crohn’s disease (CD) is an idiopathic inflammatory bowel disease (IBD) defined by transmural inflammation 
of the intestinal tract, usually limited to the terminal ileum and/or the colon. Although the number of therapies 
controlling the inflammatory process in CD has increased tremendously over the past decades, loss of response 
to these drugs complicates therapeutic management. The typical disease course of CD is characterized by peri-
ods of symptoms alternating with periods of therapeutic control of disease symptoms, which inevitably leads to 
damage to the bowel and the accumulation of fibrotic  tissue1. Consequently, more than 50% of patients with CD 
develop stricturing complications within the first ten years of diagnosis, ultimately leading to bowel  obstruction2.

The standard treatment for bowel obstruction is surgery; however, recurrence rates are high. Despite advances 
in anti-inflammatory therapeutic strategies for CD, the incidence of fibrostenosis has not decreased, indicating 
that controlling inflammation alone is not sufficient to prevent fibrosis. Together with the lack of drugs to pre-
vent the accumulation of fibrotic tissue in CD patients, the management of intestinal tissue damage is a major 
clinical challenge. Because fibrostenosis coincides with inflammatory tissue swelling, it is extremely difficult to 
adequately detect and/or quantify fibrosis in the gut using traditional techniques such as imaging or  endoscopy3. 
In addition, the search for biomarkers of intestinal fibrosis has been unsuccessful, which was also concluded in 
a recent meta-analysis4. Not surprisingly, clinical trials for antifibrotic drugs are severely hampered by the lack 
of clinical or surrogate endpoints, further highlighting the need for biomarkers of intestinal fibrosis.

Metabolomics analysis represents an attractive and unexplored strategy for the discovery of circulating mark-
ers of fibrosis in serum or plasma. A key feature of fibrosis is the transition and accumulation of activated fibro-
blasts in the intestinal mucosa, which produce the collagens found in fibrotic tissue. During this activated cell 
state, the metabolic machinery of the fibroblast requires increased nutrients and  energy5. Although knowledge 
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of fibroblast phenotypes in the fibrotic gut is limited, we can draw parallels from other fibrotic diseases in 
which modulation of fatty acid metabolism and increased glutaminolysis have been shown to be critical for 
maintaining adequate collagen production in  fibroblasts6. Several papers have reported that the Warburg effect, 
a well-known process in cancer biology that switches the energy production from oxidative phosphorylation 
to glycolysis despite the presence of oxygen, also occurs in fibroblasts found in fibrotic  tissue7–9. Since many of 
the metabolites implicated in these processes are secreted from the fibroblasts, it can be expected that the local 
changes in cellular metabolism will also be reflected in the blood.

The state-of-the-art technique for performing metabolomics is (liquid) chromatography hyphenated to high-
resolution mass spectrometry (HRMS). Due to its high resolving power and mass accuracy, HRMS can detect 
a wide range of low abundant metabolites, ensuring high  sensitivity10,11. This mass spectrometric approach has 
been shown to be relevant for the detection of metabolic changes between IBD and healthy controls. For example, 
differences in branched chain amino acids have been reported in patients with CD and ulcerative colitis. Other 
divergent metabolites discovered by metabolomics in IBD include 3-hydroxybutyrate, glutamine, histidine, 
tryptophan, secondary bile acids, arachidonic acid, and  leukotrienes12. While untargeted metabolomics analysis 
can generate (biomarker) fingerprints, such approach does not allow exact identification of all signals observed. 
Targeted approaches, during which typically in-house and functionally diverse metabolites are analysed together 
with the unknown samples, represent a valuable addition to the untargeted approach.

In this study, we applied targeted and untargeted UHPLC-HRMS metabolomics analyses to discover dis-
criminating markers in the serum of CD patients with stenosis or uncomplicated disease at the time of sampling. 
In addition, untargeted metabolomics was used to screen for metabolite changes in patient-derived intestinal 
fibroblasts collected from stenotic versus non-stenotic regions, and to screen for overlap with the serum meta-
bolic profile.

Results
Method validation for serum samples proves the method is fit-for-purpose
This research utilized a serum methodology derived from our previously developed and extensively validated 
in-house UHPLC-HRMS method for plasma  analysis13. Since this method had already undergone comprehensive 
validation for plasma, the validation for serum specifically focused on assessing instrumental precision, as well as 
intra-assay and interday precision. For the targeted analysis, 144 standard reference metabolites were evaluated 
(Supplementary Table 1), of which 104 were accurately (mass deviation < 5 ppm) detected in serum, represent-
ing diverse chemical classes. For the targeted validation, instrumental precision was considered good as 76.92% 
(80/104) of the metabolites showed a coefficient of variance (CV) ≤ 20%. Similarly, 74.04% (77/104) had a CV 
≤ 20% for intra-assay precision. For inter-day precision, this percentage was 68.27% (71/104). For the untargeted 
validation, a total of 4164 components were identified with an intensity > 500,000 a.u., of which 2616 in positive 
mode and 1548 in negative mode. In positive ionization, respectively 92.47% (n = 2419), 89.11% (n = 2331) and 
84.37% (n = 2207) of the components displayed a CV value ≤ 30% for the instrumental, intra-assay and inter-day 
precision. In negative ionization, CV values ≤ 30% were achieved for 92.70% (n = 1435), 92.05% (n = 1425) and 
79.26% (n = 1227) components for instrumental, intra-day and inter-day precision, respectively. Overall, these 
analyses demonstrated accurate performance and acceptable metabolite coverage, ensuring that the extraction 
and analysis method is fit-for-purpose for both targeted and untargeted serum metabolomics.

Targeted serum metabolomics reveals modulation of the arginine and proline metabolism in 
fibrostenotic Crohn’s disease
A total of 66 patients were included in the study, 28 in the stenotic group and 38 in the non-stenotic group 
(Supplementary Table 2). Groups were matched for age at CD diagnosis, gender, anti-TNF use, Montreal clas-
sification and symptomatology (defined by the presence of inflammation on endoscopy, CT or MRI and/or 
CRP > 10 mg/L). Targeted metabolomics analysis on 104 analytes yielded 11 differential metabolites (Table 1) 
with a p-value < 0.05, of which one signal represented the combined abundance of deoxycholic acid (DCA), 

Table 1.  Targeted serum metabolomics analysis of patients with stenotic (n = 28) vs. without stenotic (n = 38) 
regions. RT, retention time. Wilcoxon rank sum test was applied, with continuity correction when required.

Metabolite m/z (Da) RT Ionisation Group p-value

l-Proline 116.07061 1.0 [M+H]+ Stenosis 6.00e−4

trans-4-Hydroxy-l-proline 132.06552 0.9 [M+H]+ Stenosis 1.20e−2

Deoxycholic acid or chenodeoxycholic acid 391.28534 13.0 [M−H]− Stenosis 1.50e−2

2-Phenylethylamine 122.09643 6.6 [M+H]+ Stenosis 2.00e−2

2-Piperidinone 100.07569 5.0 [M+H]+ Stenosis 2.20e−2

l-Ornithine 133.09715 0.8 [M+H]+ Stenosis 2.40e−2

Allantoin 159.05127 1.0 [M+H]+ Stenosis 3.40e−2

3-Indoleacetic acid 176.07061 10.8 [M+H]+ Stenosis 3.80e−2

Glycolitocholic acid 434.32649 13.0 [M−H]− Stenosis 3.80e−2

Lysophosphatidylcholine C18:1 522.35542 13.7 [M+H]+ Stenosis 4.30e−2

Hexanoic acid 117.09101 11.8 [M+H]+ Stenosis 4.90e−2
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and/or chenodeoxycholic acid (CDCA) as they have similar m/z-values and retention times. All 11 metabolites 
were increased in the stenotic group compared to the non-stenotic group. Pathway enrichment analysis based 
on the KEGG human pathway database, revealed that the arginine and proline metabolism was significantly 
affected (Fig. 1A, p = 2.58e−4, FDR = 0.022) as three of the 11 targeted metabolites (l-proline, l-ornithine, and 
trans-4-hydroxy-l-proline) occurred in this pathway, with a total pathway impact of 0.249 (Fig. 1B).

Serum metabolic fingerprint of Crohn’s disease patients discriminate between patients with 
and without fibrostenosis
Untargeted metabolomics of the serum samples yielded a total of 5,959 components. Notably, the subsequent 
quality control (QC) samples exhibited clustering in the unsupervised principal component analysis (PCA) plot, 
therefore providing robust confirmation of the instrument’s precision (Supplementary Fig. 1).

Of the 5959 detected components, 166 met the predetermined criteria (fold change >|2|, p-value < 0.05) as 
they were differentially abundant between the stenotic vs. non-stenotic patient samples (Fig. 2A, Supplementary 
Table 3). Ninety-two components increased in the serum of stenotic patients, whereas 74 decreased. Using these 
166 components, an OPLS-DA model was built that showed high predictive accuracy and could be validated 
(Fig. 2A), with the following model parameters:  R2(Y) = 0.78,  Q2(Y) = 0.55, CV-ANOVA p-value 1.48e−8 and a 
valid permutation test (n = 100). Eleven components with a variable importance in projection > 1, a Jack-knifed 
confidence interval not across 0, and an S-plot covariance >|0.05| were considered most discriminative, of which 
one was identified at MSI1 according to Schymanski et al.14, by matching with an authentical chemical standard 
present in our reference in-house database, i.e., ursodeoxycholic acid (UDCA) (Table 2, Fig. 2 and Supplementary 
Fig. 3). Although both patient groups were matched for symptomatology (Supplementary Table 2), we questioned 
if untargeted metabolomics could distinguish between the patients’ inflammatory status, i.e., remission (n = 26) 

Figure 1.  Enrichment analysis of the differential metabolites in the sera of stenotic (n = 28) vs. non-stenotic 
(n = 38) Crohn’s Disease (CD) patients based on targeted analysis. (A) Overview of the pathways enriched in 
11 differential metabolites, colored by p-value and sized by enrichment ratio. (B) The arginine and proline 
metabolic pathways generated three differential metabolites (green), i.e., l-ornithine, l-proline, and trans-4-
hydroxy-l-proline (created with MetScape in Cytoscape).
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vs. active disease (n = 40), by unsupervised modelling with PCA. As no discernable clustering was observed 
(Supplementary Fig. 2), no matching based on inflammatory state was considered for subsequent data analysis.

Metabolic fingerprinting of stenotic intestinal fibroblasts identifies differential expression of 
medium-chain dicarboxylic acids
To provide more mechanistic insights, untargeted metabolomics was performed on human intestinal fibroblasts. 
For this purpose, primary intestinal fibroblasts were isolated from stenotic and non-stenotic regions of the same 
resection specimen (n = 7 donors; Supplementary Table 4) and cultured until reaching confluence. A total of 
respectively 830 and 463 components were extracted from supernatant and the corresponding lysate, which were 
all retained for further statistical analysis. Unsupervised PCA modelling showed acceptable clustering of subse-
quent QC samples, thereby confirming good instrumental precision (Supplementary Figs. 4 and 5). Considering 
the small number of components retained, only univariate statistical analysis was performed. The latter revealed 
eight components significantly discriminating the cell lysate of stenotic vs. non-stenotic regions (Table 3 and 
Supplementary Fig. 6). Similar analysis of the supernatant data revealed 19 discriminating components between 
stenotic and non-stenotic fibroblasts (Table 4 and Supplementary Fig. 7a and b). The m/z and retention time of 
these components were compared to our in-house standard database, and, upon match, the mass spectrometric 
data was benchmarked against the reference standard data. This approach resulted in two components with 

Figure 2.  Untargeted metabolomics analysis of serum of stenotic (n = 28) and non-stenotic (n = 38) Crohn’s 
Disease (CD) patients. (A) Volcano plot of 5959 components, showing a total of 166 components that where 
up or down regulated (red and blue dots, respectively) with a p-value < 0.05 and an absolute fold change of 
more than |2| (left), and the score plot of the OPLS-DA model built with the 166 components retained from the 
volcano plot (right). (B) Chromatogram and MS/MS spectrum of ursodeoxycholic acid (UDCA) as analytical 
standard. (C) Chromatogram and MS/MS mass spectrum of UDCA in a serum sample. FC, fold change, 
OPLS-DA, orthogonal partial least squares discriminant analysis.
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identification confidence MSI1, namely suberic acid in cell lysate and adipic acid in supernatants (Supplementary 
Figs. 8 and 9). Both compounds are medium-chain, even numbered dicarboxylic acids, that can serve as energy 
supply, representing an alternative source of succinate in gluconeogenesis/glucose  metabolism15. An additional 
seven components in supernatant received putative identifications, based on ChemSpider and m/zCloud database 
searches by Compound Discoverer (Table 4).

Metabolic fingerprinting of serum, fibroblast supernatant and cell lysate reveals nearly 30% 
overlap
In general, serum emerged as the biofluid containing the highest number of metabolic components under exami-
nation, comprising 99.88% of all detected components. Among these, 48.73% were shared with supernatants 
of cultured stenotic fibroblasts, and 32% were present in their cell lysates as well. Specifically, 48.86%, 0.11% 
and 0.00% of components were exclusive to serum, supernatant and cell lysate, respectively, whereas 29.71% of 
metabolites were observed in all three matrices (Fig. 3).

Stenotic intestinal fibroblasts exhibit characteristics of increased glycolysis
As our untargeted analysis of fibroblast supernatant and cell lysate identified multiple metabolites related to 
the energy metabolism, and considering that switches in energy production from oxidative phosphorylation to 
glycolysis have been documented in fibroblasts within fibrotic tissue, despite the presence of  oxygen7–9, we fur-
ther sought to validate the hypothesized glycolytic switch in intestinal fibroblasts collected from a stenosis. The 
latter was evaluated by quantifying the transcript levels of the key enzyme regulating the first step of glycolysis, 
hexokinase 2 (HK2) and of the transporter regulating the efflux of excess lactate, solute carrier family 16 member 
1 (SLC16A1). Both HK2 and SLC16A1 showed significantly higher expression in stenotic fibroblasts compared 
to the non-stenotic fibroblasts from the same donor (p = 0.042 and p = 0.016, respectively, Fig. 4A,B).

We next aimed to correlate the expression of HK2 and SLC16A1 with components found in the superna-
tant and lysate of these cells. No significant correlations were observed for SLC16A1, nor for the cell lysates, 
whereas for supernatant, 4 components, i.e. ID 427 (r = − 0.621, p = 0.031), ID 56 (r = − 0.586, p = 0.045), ID 809 
(r = − 0.582, p = 0.047) and ID 818 (r = − 0.822, p = 0.001) showed a significant negative correlation with HK2 
transcript levels (Tables 3 and 4, Fig. 5).

Table 2.  Untargeted metabolomics analysis of serum samples of patients with stenotic (n = 28) vs. non-stenotic 
(n = 38) Crohn’s Disease . Comp ID: component identification number; RT: retention time. T-test was applied 
on log-transformed and pareto-scaled data. aMatched with authentical chemical standard (MSI1); UDCA, 
ursodeoxycholic acid; + increased in stenotic group.

Comp ID m/z (Da) RT (min) Ionisation Fold Change Group p-value Metabolite name

937 242.21135 14.8 [M−H]− − 2.10 No stenosis 8.92e−3 ND

1274 471.24197 11.6 [M−H]− + 0.17 Stenosis 2.40e−3 SO3 adduct of UDCA

3037 512.40344 15.5 [M−H]− − 2.17 No stenosis 4.00e−3 13C isotope ID 3561

3561 511.40009 15.3 [M−H]− − 2.12 No stenosis 2.08e−2 ND

4072 465.35846 15.1 [M−H]− + 2.25 No stenosis 1.88e−2 Component 4073

4073 465.35840 14.9 [M−H]− + 2.03 No stenosis 6.20e−3 Component 4072

4311 391.28571 12.0 [M−H]− + 0.19 Stenosis 1.38e−3 UDCAa

4766 391.28540 15.1 [M−H]− − 2.09 No stenosis 2.00e−3 ND

4841 409.29590 14.8 [M−H]− − 2.26 No stenosis 1.82e−2 ND

4946 678.40460 11.8 [M−H]− − 2.89 No stenosis 1.02e−2 ND

4996 441.35867 14.9 [M−H]− − 2.28 No stenosis 1.50e−3 ND

Table 3.  Untargeted metabolomics analysis of stenotic versus non-stenotic fibroblast cell lysates. Comp ID: 
component identification number; RT: retention time. aMatched with authentical chemical standard (MSI1). 
(−) tstat: increased in stenotic group.

Comp ID m/z (Da) RT (min) Ionization t.stat Group p-value Metabolite ID Pcorr. HK2 Pcorr. SLC16A1

103 141.95859 0.72 [M+H]+ − 2.18 Stenosis 4.96e−2 ND − 0.060 − 0.016

139 384.93527 0.86 [M−H]− − 2.90 Stenosis 1.33e−2 ND 0.25 0.40

158 150.88542 1.10 [M−H]− − 2.77 Stenosis 1.70e−2 ND 0.12 0.34

164 452.92252 0.89 [M−H]− − 2.75 Stenosis 1.76e−2 ND 0.24 0.40

201 142.94810 0.90 [M+H]+ − 2.71 Stenosis 1.88e−2 ND 0.11 0.42

289 164.94647 1.42 [M−H]− − 2.22 Stenosis 4.61e−2 ND − 0.084 0.065

517 175.09645 10.04 [M+H]+ − 2.58 Stenosis 2.43e−2 Suberic  acida 0.19 − 0.24

754 197.88908 0.71 [M−H]− − 2.70 Stenosis 1.94e−2 ND 0.21 0.057
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Discussion
Metabolomics analysis of serum provided a fingerprint with 11 and 166 components (of which 11 with high 
discriminating value), respectively, that effectively discriminated CD patients with concomitant stenosis from 
those without stenosis. Most striking for the targeted metabolomics analysis of serum was the differential expres-
sion in the arginine and proline metabolism between patients with and without stenosis. In addition, untargeted 
metabolomics data of fibroblasts, including analysis of cell lysate and supernatant, isolated from the stenotic 
and non-stenotic regions of the intestine of patients with CD exhibited signs of an altered energy metabolism.

The pathway-enriched discriminating metabolites identified through targeted analysis of serum included 
increased l-proline, trans-4-hydroxy-l-proline and l-ornithine abundances in patients with stenotic CD. l-pro-
line is a typical building block of collagen, and its abundance may reflect the intensity of collagen biosynthesis. 
In this regard, l-ornithine, combined with l-glutamate, is a precursor for the de novo synthesis of l-proline16. 
In addition, TGF-β, which is a potent fibroblast activator, induces mitochondrial redox stress by upregulating 

Table 4.  Untargeted metabolomics analysis of stenotic versus non-stenotic fibroblast supernatant. Comp ID: 
component identification number; RT, retention time. aMatched with authentical chemical standard (MSI1); 
bmatched with Compound Discoverer (MSI4). **p-value < 0.05; *p-value < 0.10. (+) tstat: increased in non-
stenotic group; (−) tstat: increased in stenotic group.

Comp ID m/z (Da) RT (min) Ionizat-ion t.stat Group p-value Metabolite ID Pcorr. HK2
Pcorr. 
SLC16A1

2 239.1058 1.28 [M+H]+  + 3.52 No stenosis 4.25e−3 ND − 0.032 − 0.47

56 159.06509 8.56 [M−H]−  + 2.37 No stenosis 3.50e−2 ND − 0.59** 0.36

98 145.04933 7.00 [M−H]−  + 2.66 No stenosis 2.09e−2 Adipic  acida − 0.31 0.39

113 137.02307 7.86 [M−H]−  + 3.09 No stenosis 9.29e−3 3/4-Hydroxy-ben-
zoic  acidb − 0.56* 0.11

152 113.96394 0.65 [M+H]+  + 2.27 No stenosis 4.23e−2 ND − 0.17 0.082

309 171.06519 8.09 [M+H]+  + 2.28 No stenosis 4.18e−2 3,4-Dihydroxy-
phenylglycolb − 0.036 − 0.21

370 111.04433 7.01 [M+H]+  + 3.23 No stenosis 7.24e−3 Hydroquinoneb − 0.31 0.21

427 129.05467 7.00 [M+H]+  + 2.74 No stenosis 1.79e−2 2,5-bis-(Hydroxy-
methyl)furanb − 0.62** 0.34

461 115.0392 3.96 [M+H]+  + 2.83 No stenosis 1.51e−2 cis-Acetyl-acrylic 
 acidb − 0.55* 0.075

476 173.02094 1.08 [M+H]+  + 4.40 No stenosis 8.70e−4 Glycerol-3-phos-
phateb − 0.52* − 0.30

510 145.04953 0.61 [M+H]+  + 2.51 No stenosis 2.75e−2 Dimethyl  fumarateb 0.010 − 0.46

533 204.12297 7.98 [M+H]+  + 2.39 No stenosis 3.38e−2 ND − 0.24 − 0.41

541 152.0706 3.57 [M+H]+  + 2.43 No stenosis 3.20e−2 ND 0.14 − 0.034

558 207.91809 0.63 [M−H]− − 2.31 Stenosis 3.95e−2 ND − 0.022 − 0.020

709 143.03371 4.19 [M−H]−  + 2.48 No stenosis 2.87e−2 ND − 0.38 − 0.53*

739 165.01825 8.48 [M−H]−  + 2.25 No stenosis 4.41e−2 ND 0.056 0.18

789 276.18021 11.01 [M+H]+  + 2.44 No stenosis 3.11e−2 ND − 0.19 0.18

809 204.12302 8.56 [M+H]+  + 2.35 No stenosis 3.70e−2 ND − 0.58** − 0.26

818 556.44092 14.91 [M+H]+  + 2.34 No stenosis 3.70e−2 ND − 0.82** 0.17

Figure 3.  Venn diagram displaying the percentages of unique and overlapping metabolic components between 
serum, cell lysate and supernatant based on untargeted analysis.
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glucose and glutamine consuming energy metabolism to meet the bioenergetic cost of matrix protein production. 
In response to this increased energy metabolism, fibroblasts attempt to vent intermediate metabolites to other 
pathways before they can form damaging reactive oxygen species once anaerobic glycolysis takes over. Indeed, it 
has been shown that l-proline synthesis is an efficient way to vent these potentially harmful intermediates while 
also supporting the production of matrix proteins, another process induced by TGF-β17. In addition, the increased 
levels of trans-4-hydroxy-l-proline may indicate that remodeling of the extracellular matrix is ongoing, given that 
this metabolite is almost exclusively found in collagen, as it is formed upon hydroxylation of the collagen proline 
moiety. Of interest, trans-4-hydroxy-l-proline has been reported as a biomarker for liver and lung  fibrosis18,19.

Untargeted serum metabolomics revealed an interesting fingerprint for stenosis as well. Next to a MIS1 
level identification for UDCA, we can infer from the late retention times, high molecular masses, and negative 
ionization of the discriminative components that these are likely large, non-polar, lipid or apolipoprotein-like 
components. These findings would be consistent with the identification of lysophosphatidylcholine C18:1 from 
the targeted approach, and the recent recognition that lipid metabolism plays a critical role in the development 
of fibrotic tissue, as demonstrated by occurrence of creeping fat surrounding stenotic lesions in the  gut6,20,21. 
These data also indicate that the search for new biomarkers may benefit from a more lipid-oriented approach, 
such as lipidomics.

We had anticipated to find overlapping discriminating metabolites in serum and the cell lysates and super-
natant of intestinal fibroblasts from patients with stenotic disease, which would have added to the functional 
understanding of the identified fingerprints. Although we could not observe such overlap, the metabolomics 
analysis of the fibroblasts suggested a role for altered energy supply in the stenotic fibroblast compared to its 
non-stenotic counterpart. In the cell lysates of these fibroblasts, one of the distinguishing components was with 
high prediction (MSI1) identified as suberic acid, which was present in higher concentrations in the stenotic 
regions. This compound is a degradation product of oleic acid and has recently been shown to be involved in 
the increased collagen production in dermal fibroblasts after activation of the cAMP-Akt  pathway22. In cell 
supernatant of stenotic regions, lower levels of adipic acid were identified with MSI1 confidence. Indeed, adipic 
acid is known to be involved in the biodegradation degree of  collagen23. In addition, suberic acid and adipic acid 
are both dicarboxylic acids, that are also present in the urine of patients with fatty acid oxidation  disorders24,25. 

Figure 4.  Increased glycolysis in intestinal fibroblasts isolated from the stenotic intestine. (A) expression of 
hexokinase 2 and (B) the solute carrier family 16 member 1 in fibroblasts isolated from the stenotic and non-
stenotic area of the same donor patients. A paired t-test was performed; error bars represent the standard error 
of the mean. RQ, relative quantification.

Figure 5.  Differential components (ID 427, ID 56, ID 809, and ID 818) found in the supernatant of intestinal 
fibroblasts, show a significant negative correlation with hexokinase 2 (HK2) gene expression. Pearson correlation 
test performed with the resulting Pearson correlation coefficient. ID, identification; AUC, area under the curve; 
RQ, relative quantification.
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Indeed, both dicarboxylic acids can serve as a source of succinate, implicating their participation in cellular 
energy  metabolism15. In addition, a glycolytic switch was also confirmed by an increased gene transcription of 
HK2, a key enzyme involved in glycolysis, in the stenotic compared to the non-stenotic fibroblasts. In addition, 
we identified four discriminatory components that correlated with HK2 transcription, suggesting an increased 
uptake of these metabolites associated with an increase in the glycolytic pathway.

Unfortunately, today’s molecular network suspect libraries can only annotate up to 20% of the fragmenta-
tion data of metabolites, which hampers the identification of  metabolites26. Thus, further identification of the 
unidentified components will provide more mechanistic insight in intestinal fibrostenotic disease. While waiting 
for the number of annotated components to increase, the presented metabolic fingerprints for fibrostenosis in 
patients with CD is a good starting point for biomarker validation studies.

Overall, this study provided new insights into the metabolic changes occurring in CD patients with fibrosteno-
sis, suggesting the facilitation of the production of building blocks for extracellular matrix expansion and a shift 
in energy production pathways in the fibroblasts found in the stenotic intestine. Once validated, the metabolite 
markers highlighted in this study could play a diagnostic role in identifying intestinal fibrosis in CD patients. 
This advancement would significantly aid in tailoring individualized treatment strategies. Furthermore, these 
biomarkers hold promise for the development and implementation of anti-fibrotic trials, marking a substantial 
step forward in the management of CD.

Materials and methods
Ethics
All studies were approved by the Ethics Committee of Ghent University Hospital (EC/2018/1123 with Belgian 
registration number B670201837383 and EC/2018/0952 with Belgian registration number B670201837001), and 
written informed consent was obtained from all participants. Experiments were performed in accordance with 
relevant guidelines and regulations.

Patient selection
Serum samples were selected from a biobank of CD patients (Belgian reference number BB190100) with ileal or 
ileocolonic disease (Montreal L1 or L3). Samples were included in the ‘stenotic’ group based on luminal narrow-
ing and pre-stenotic dilatation on MRI/CT at the time of sampling (n = 28). Patients in the ‘non-stenotic’ group 
were included if they were within 5 years of diagnosis and had no evidence of luminal narrowing on MRI/CT 
(n = 38). Active symptomatology was assessed by the presence of inflammation on endoscopy, CT or MRI and/
or CRP > 10 mg/L. Exclusion criteria were liver disease or complications, infectious disease, human immuno-
deficiency virus infection, colorectal cancer, hormonal disorders and pregnancy. The selection of patients based 
on the criteria was agreed upon by two independent gastroenterologists (MDV and TL).

Isolation and culture of fibroblasts from resection specimens
Primary human intestinal fibroblasts were isolated as  described27. Briefly, mucosal samples were dissected from 
the stenotic and non-stenotic regions of freshly resected bowel segments from 7 donors (Supplementary Table 4) 
and washed in RPMI 1640 medium supplemented with 10% FBS, 10,000 U/mL penicillin, 10,000 µg/mL strep-
tomycin, 25 µg/mL Fungizone, and 200 µg/mL gentamycin (Thermo Fisher, Waltham, MA, USA). Mucus and 
epithelial cells were removed by incubation of samples with DTT and EDTA for 30 min at room temperature 
and 37 °C, respectively, followed by enzymatic digestion with 25,000 U of collagenase type 2 (Worthington 
Biochemical, Lakewood, NJ, USA) and 30 µg/mL Dnase I (Roche, Mannheim, Germany) for 1 h at 37 °C. Cells 
were filtered sequentially through 100-µm and 70-µm filters (Greiner Bio-One, Vilvoorde, Belgium) and cultured 
in fibronectin-coated flasks in medium 106 supplemented with low-serum growth supplement (Thermo Fisher, 
Waltham, MA, USA), 10,000 U/mL penicillin, 10 µg/mL streptomycin and 50 µg/mL gentamycin. Primary 
fibroblasts (passage 2) were cultured until reaching 80% confluency.

UHPLC-Q-Orbitrap-HRMS
Serum sample extraction was based on the validated plasma protocol of De Paepe et al.13, and was performed 
as follows: 150 µL serum sample was extracted with a mixture of 600 µL acetone/ethanol/ACN (1:1:1) and 
supplemented with 8 µL internal standard (25 ng/µL d-valine-d8). After vortexing and protein precipitation 
(30 min, 4 °C), followed by centrifugation (4 min, 15,000×g, 4 °C), the supernatant was evaporated to dryness 
using a GyroVap centrifugal evaporator (35 °C, vacuum conditions) (HOWE, Banbury, UK). The residue was 
reconstituted by addition of 200 µL ultrapure water and transferred to a glass HPLC-vial.

Cell lysates were extracted following Rombouts et al.28. Briefly, medium was aspirated and stored for super-
natant analysis. Cells were washed with 0.9% NaCl on ice and a 1 mL 50:50 (%v/v) methanol:ultrapure water 
mixture was added along with 27 µL of internal standard (25 ng µL−1 d-valine-d8), after which the cells were 
scraped and transferred to Eppendorf tubes for sonication of the cells. After spin-down of the cell debris, 100 µL 
of the lysate was vacuum dried and dissolved in 1.5 mL of a solvent mixture. Generic extraction of the fibroblast 
supernatant was performed according to Wang et al.29. As such, the supernatant was centrifuged (15 min at 
15,000×g) and diluted with a 50:50 (%v/v) methanol:ultrapure water extraction solvent mixture in a ratio of 2 
parts supernatant to 8 parts extraction solvent, after which 3 µL of internal standard (25 ng/µL of d-valine-d8) 
was added. The extract mixture was then vacuum dried as previously described and reconstituted in 100 µL of 
ultrapure water.
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Method validation
Precision parameters including instrumental, intra- and inter-day precision for both targeted and untargeted 
analysis were evaluated. The parameters were evaluated based on the CV performance. Instrumental precision 
was measured by repeated injection (n = 10) of a QC sample. Intra-assay precision was assessed by extracting 
multiple QC samples (n = 10) in parallel, with inter-day precision including the laboratory variation introduced 
by extractions (n = 20) performed by different analysts on different  days30. The Food and Drug Administration 
recommends a CV of 20% for tests operating near the limit of detection with targeted approaches, while a CV 
of 30% is considered acceptable for untargeted fingerprinting, as ions with higher CVs are not considered as 
potential  biomarkers31,32.

Reagents and chemicals
Internal (d-valine-d8) and analytical standards (Supplementary Table 1) were purchased from ICN Biomedicals 
(Ohio, USA), TLC Pharmchem (Vaughan, Ontario, Canada), Sigma-Aldrich (St. Louis, Missouri, USA), and 
Cambridge Isotope Laboratories (Tewksbury, Massachusetts, USA), respectively. Solvents were purchased from 
Fisher Scientific (Loughborough, UK) and VWR (Merck, Darmstadt, Germany). Ultrapure water was obtained 
using a water purification system from Millipore (Brussels, Belgium).

Instrumentation
Ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS) 
analysis was based on the in-house developed protocol described by Vanden Bussche et al.33 Chromatographic 
separation was performed on a Dionex UltiMate 3000 XRS UHPLC system (Thermo Fisher Scientific, San José, 
CA, USA) using an Acquity HSS T3 C18 column (1.8 mm, 150 × 2.1 mm) (Waters, Manchester, UK) conditioned 
at a set temperature of 45 °C. The solvent system was run at a fixed flow rate of 400 µL  min−1 and consisted of 
ultrapure water (A) and acetonitrile (B), both acidified with 0.1% formic acid. For the separation, a gradient 
flow was used with the following percentages (v/v) of solvent A: 0–1.5 min at 98%, 1.5–7.0 min from 98 to 75%, 
7.0–8.0 min from 75 to 40%, 8.0–12.0 min from 40 to 5%, 12.0–14.0 min at 5%, 14.0–14.1 min from 5 to 98%, 
followed by 4.0 min of re-equilibration to 98%. Samples were injected per volume of 10 µL. After injection, the 
sample was ionized for both polarities by heated electrospray ionization (HESI-II source). Following ionization, 
detection was performed on the Q-Exactive™ stand-alone quadrupole Orbitrap high-resolution bench-top mass 
spectrometer (Thermo Fisher Scientific, San José, CA, USA). Instrument settings were auxiliary, sheath and 
sweep gas flow rates of 25, 50, and 3 a.u.; capillary and heather temperature of 250 °C and 350 °C; a spray voltage 
of ± 4.0 kV; an S-lens RF level of 50 V; an m/z scan range of 53.4 to 800 Da; and an automatic gain control target 
of  1e6 ions. The mass resolution and maximum injection time settings were 140,000 full width at half maximum 
and 70 ms. The mass spectrometer was calibrated prior to use by injecting ready-to-use calibration mixtures 
(Thermo Fisher Scientific, San José, CA, USA) to ensure proper instrument calibration. The first and last sample 
injected for analysis was a standard mixture of 144 target analytes plus internal standard (Supplementary Table 1), 
at a concentration of 5 ng µL−1 to verify the correct instrument operating parameter settings and for possible 
compound identification. Since instrumental variation can occur during the run, quality control (QC) samples 
(a pool of all test samples analyzed) were included at the beginning of the analysis to stabilize the column and 
instrument and to check for signal deviation after every 10 samples analyzed.

Data analysis
Xcalibur 3.0 software (Thermo Fisher Scientific, San José, CA, USA) was used for the targeted analysis of the data, 
with compounds identified by m/z-values, retention time, and C-isotope profile. Univariate statistical analysis 
of the serum samples on the QC-normalized targeted data was performed through R version 3.4.3 integrated 
into our in-house data analysis pipeline (https:// github. com/ UGent- LIMET). Model validity of the pairwise 
comparisons was evaluated by Wilcoxon rank-sum test or Welsh Two-Sample t-testing for non-parametric and 
parametric data, respectively.

For untargeted data analysis, automated peak extraction, peak alignment, noise removal and deconvolution 
were performed using Compound Discoverer™ (Thermo Fisher Scientific, San José, CA, USA). The key parameter 
settings for peak extraction were a retention time width of 0.3 min, a minimum peak intensity of 500,000 a.u., 
and a mass window of 6 ppm. The output of cell lysates and supernatant was normalized by internal standard to 
account for cell harvest efficiency. Prior to univariate statistical analysis, all untargeted metabolomics data were 
normalized by total-ion current, log transformed, and Pareto scaled to induce normality. Simca 17 (Umetrics AB, 
Umea, Sweden) was used for multivariate statistical analysis on serum samples. This was initiated by Principal 
Component Analysis for exploration of the data, which allowed for the removal of outliers (via Hotelling’s  T2 
test) and the search for unbiased clustering of samples. Following these first initial explorations, Orthogonal 
Partial Least Squares Discriminant Analysis (OPLS-DA) models were built to test the predictive power of the 
and robustness of the components included in the model, which can be validated using the accompanying qual-
ity parameters, being  R2(Y),  Q2(Y), a validated permutation test (n = 100) and a significant CV-ANOVA test, 
respectively. For untargeted discriminative component selection of serum metabolomics, volcano plots were used 
with the following cut-off values: fold change >|2|, p-value < 0.05. Univariate statistical analysis of the untargeted 
data of the cell supernatant and lysates was again performed on pareto scaled and log transformed data, after 
which differentiating components between groups, with a t-test p-value < 0.05, were retained.

qPCR data were analyzed by paired t-tests, and correlations were evaluated using the Pearson coefficient.
General statistical analysis and data visualization were performed using MetaboAnalyst 5.0 (Xia Lab, McGill 

University, Quebec, Canada), Prism 9 (GraphPad Software, San Diego, CA, USA), SPSS statistics 27 (IBM Corp., 
Armonk, NY, USA).

https://github.com/UGent-LIMET
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RNA extraction
Total RNA was extracted using the BioRad Aurum kit (Bio-Rad Laboratories, Hercules, CA, USA) with on-
column DNase I treatment. RNA concentration and purity were determined using NanoDrop technology (Eppen-
dorf, Rotselaar, Belgium). All samples showed high purity with OD260/OD280 ratios between 1.8 and 2.2.

Quantitative real-time PCR
One microgram of total RNA was reverse transcribed into single-stranded cDNA using the SensiFAST cDNA 
synthesis kit (Bioline, Cincinnati, OH, USA) according to the manufacturer’s instructions. Fifteen ng was used 
for quantitative real-time PCR (qRT-PCR) using SYBR Green (GC biotech, Alphen a/d Rijn, The Netherlands) 
and 250 nM forward and reverse primers. A two-step program was performed on a LightCycler 480 II system 
(Roche, Vilvoorde, Belgium). Cycling conditions were 95 °C for 10 min, 45 cycles of 95 °C for 10 s and 60 °C for 
1 min. Primer specificity was confirmed by melting curve analysis. All reactions were performed in duplicate, 
and data were normalized to the expression of housekeeping genes succinate dehydrogenase complex A subunit 
(SDHA) and hydroxymethylbilane synthase (HMBS). The PCR efficiency of each primer pair was evaluated using a 
reference cDNA standard curve. Amplification efficiency was determined using the formula  10–1/slope, and primer 
pairs were selected based on an efficiency of 90–110%. Expression levels were calculated using the ΔΔCt method. 
The sequences of the primer pairs and their efficiencies are listed in Supplementary Table 5.

Data availability
Data is maintained at servers of Ghent University and include the .RAW files associated with each serum and 
supernatant samples generated from Xcalibur 3.0, Compound Discover and SIMCA-P 17.0 programs. Metadata 
of included patients (anonymized) and normalized real-time PCR values are available in .csv files. Data will be 
made available upon request via the corresponding author.
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