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The global biogeography of tree leaf form 
and habit

Understanding what controls global leaf type variation in trees is crucial for 
comprehending their role in terrestrial ecosystems, including carbon, water 
and nutrient dynamics. Yet our understanding of the factors influencing 
forest leaf types remains incomplete, leaving us uncertain about the global 
proportions of needle-leaved, broadleaved, evergreen and deciduous 
trees. To address these gaps, we conducted a global, ground-sourced 
assessment of forest leaf-type variation by integrating forest inventory 
data with comprehensive leaf form (broadleaf vs needle-leaf) and habit 
(evergreen vs deciduous) records. We found that global variation in leaf 
habit is primarily driven by isothermality and soil characteristics, while leaf 
form is predominantly driven by temperature. Given these relationships, 
we estimate that 38% of global tree individuals are needle-leaved evergreen, 
29% are broadleaved evergreen, 27% are broadleaved deciduous and  
5% are needle-leaved deciduous. The aboveground biomass distribution 
among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% 
(136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending 
on future emissions pathways, 17–34% of forested areas will experience 
climate conditions by the end of the century that currently support a 
different forest type, highlighting the intensification of climatic stress on 
existing forests. By quantifying the distribution of tree leaf types and their 
corresponding biomass, and identifying regions where climate change will 
exert greatest pressure on current leaf types, our results can help improve 
predictions of future terrestrial ecosystem functioning and carbon cycling.

Forest ecosystems, which contain 80–90% of global terrestrial plant 
biomass1,2 and a large proportion of terrestrial biodiversity3, regulate 
global biogeochemical cycles, and provide critical ecosystem ser-
vices4. Leaves mediate forest energy and carbon inputs via photosyn-
thesis, respiration, transpiration5,6 and litterfall7,8, thereby regulating 
ecosystem structure and function, and water, nutrient and carbon 
cycles9–11. Leaves of trees are highly diverse but can be broadly clas-
sified into four major types on the basis of leaf habit (evergreen vs 
deciduous) and form (broadleaved vs needle-leaved). These char-
acteristics are linked to a vast array of functional traits associated 
with resource-use strategies and strongly depend on local growing 
conditions12–15. Therefore, understanding variation in leaf types along 

environmental gradients is critical to predicting global biogeochemi-
cal cycles and ecosystem functioning in a changing world. Yet, we 
still lack a global, quantitative understanding of forest leaf habit and 
form, informed by field-based observations.

Deciduous tree species evolved to tolerate seasonal climates and 
maximize the use of a short growing season16,17. They usually have higher 
photosynthetic rates18 than evergreen species and reduce transpiratory 
water loss due to respiration by shedding their leaves during unfavour-
able seasons11. Evergreen trees with longer leaf lifespans, by contrast, 
tend to have greater leaf construction costs19 and lower nutrient cycling 
rates20. Growing season water-use strategy commonly differs between 
broadleaved and needle-leaved species21, with needle-leaved species 
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trees, 7% contain exclusively broadleaved deciduous trees, 12% con-
tain exclusively needle-leaved evergreen trees, and the remaining 68% 
contain a mixture of leaf habits and forms (Fig. 1b).

Our random forest model predicted 75% of the global variation of 
forest leaf-type classes (10-fold cross-validation R2BC, see Methods). We 
also ran spatially buffered leave-one-out cross-validation (LOO-CV) to 
account for the potential effect of spatial autocorrelation on model 
evaluation statistics, which resulted in a coefficient of determination 
(R2) of 0.56 at a buffer radius of 300 km (see Methods and Supplemen-
tary Fig. 1). Within each class, our model explained 90%, 59%, 75% and 
29% (10-fold cross-validation R2) of the global variation in the propor-
tion of broadleaved evergreen, broadleaved deciduous, needle-leaved 
evergreen and needle-leaved deciduous trees within forests, respec-
tively. These predictive relationships were then used to upscale the 
observations across the global extent of forest coverage (Fig. 2).

To evaluate model robustness, we tested its performance on an 
independent validation dataset containing 3,895 sites across the 
globe40, resulting in an R2 of 0.47 (see Methods section 'Cross-validation 
using external data'). In addition, we compared our model output with 
annual land cover maps from the European Space Agency’s Climate 
Change Initiative (ESA CCI LC)41. Across all leaf types, our model showed 
high correlations with the ESA CCI LC outputs, with an R2BC of 0.61. 
Within each leaf type class, our model explained 78% of the variation 
in the proportion of broadleaved evergreen trees, 31% of broadleaved 
deciduous tree proportions, 64% of needle-leaved evergreen tree 
proportions and 19% of needle-leaved deciduous tree proportions (R2).

While considerable uncertainties exist for individual predictions 
at the pixel level, these uncertainties rapidly decrease as the model is 
projected to a larger area (<5% at 250 km2; Supplementary Fig. 2). Our 
model shows high confidence in tropical and boreal forests, whereas 
predictive confidence is lower in mixed forests and ecotones between 
different types of forest (Supplementary Figs. 3 and 4). For example, 
models for broadleaved evergreen and deciduous species share low 
predictive confidence in central African savanna regions. Similarly, low 
predictive confidence can be found across eastern Russian mixed for-
ests. The low predictive confidence for these regions can be attributed 
to low sample size and mixed occurrence of broadleaved evergreen 
and deciduous species, as well as differences in the year of observation 
across forest survey plots, which may lead to larger uncertainties in 
ecotones where forest types can shift in relatively short time periods.

Global environmental drivers of forest leaf-type 
variation
To assess the relative importance of environmental features on vari-
ation in leaf types, we ran random forest models including a range 
of environmental variables (see Methods). We combined these envi-
ronmental factors into three groups (climate, soil and topography). 

often showing conservative strategies22, such as lower stomatal con-
ductance23 and higher hydraulic safety margins24, resulting in low 
photosynthesis rates25. A spatially explicit understanding of tree leaf 
types is therefore critical for estimating the sensitivity and resilience 
of forests to future climate and soil conditions26–28, and understanding 
the ecological consequences of such changes.

Theoretical models29 and remote sensing observations30,31 have 
shown general trends in how climate and soil conditions affect the geo-
graphic occurrence of broadleaved and needle-leaved tree species at 
regional and global scales32. These relationships form the foundation of 
dynamic global vegetation models31,33–37. Yet, the relative importance of 
various environmental characteristics on leaf habit and form remains to 
be determined. Furthermore, until now, these vegetation models have 
lacked the ground data needed to build tree-density-based ‘bottom-up’ 
models. Such models are crucial for validating satellite-derived trends 
on a global scale and for providing a comprehensive, high-resolution 
depiction of forest leaf-type variation across environmental gradients.

Here we analyse the global distribution of needle-leaved, 
broadleaved, evergreen and deciduous tree species, by integrating 
ground-sourced information from 9,781 standardized forest inven-
tory plots in the Global Forest Biodiversity initiative (GFBi)38 database 
with species-level leaf habit (evergreen vs deciduous) and leaf form 
(broadleaf vs needle-leaf) information accessed from the TRY plant 
trait database39 (Fig. 1a). The 9,781 forest inventory plots represented a 
subsample of the full GFBi data of >1 million records to ensure an equal 
representation of different forest biomes across the globe and avoid 
modelling bias caused by uneven spatial sampling (see Methods). Using 
information on both the occurrences of individual trees per plot and 
the basal-area weighted occurrences of each individual, we calculated 
plot-level leaf-type proportions (1) on the basis of the leaf type of each 
individual tree (tree-based leaf type) and (2) by weighting each tree by 
its basal area (area-based leaf type) (see Methods section 'Tree leaf-type 
data'). The first estimate allowed us to map the tree densities of each 
leaf type, while the second estimate allowed us to map the leaf types 
represented by the largest trees in a plot. To interpolate patterns across 
the globe, we combined our plot-level forest leaf information with  
58 environmental variables, representing vegetation characteristics, 
climate, topography, vegetation, soil conditions and human-related 
features. We also tested the relative importance of 29 commonly stud-
ied variables on leaf-type variation and characterized the relationships 
between environmental features and leaf type.

Mapping global forest leaf types
To characterize the variation in forest leaf type, we first summarized the 
proportion of evergreen vs deciduous (leaf habit) and broadleaved vs 
needle-leaved (leaf form) individuals within each plot (Fig. 1a). Across 
all 9,781 forest plots, 13% contain exclusively broadleaved evergreen 
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To test for the relative importance of climate, soil and topographic 
characteristics, we ran a principal component analysis (PCA) for each of 
these variable groups and selected the first six principal components, 
which explained ≥90% of the total variation across all variables. Our 
analyses show that climate and soil characteristics jointly determine 
the global leaf-type distribution (Fig. 3a). With respect to variation in 
leaf habit, temperature fluctuations, that is, isothermality and tem-
perature seasonality, were the most important variables (Fig. 3c). Yet, 
the entire combination of soil features (first six principal components 
of soil variables) was as important as climate for predicting leaf habit 
in our random forest model (Fig. 3a), suggesting that soil character-
istics play an important role in the global distribution of evergreen 
‘vs’ deciduous species. Especially soil texture, in combination with 
pH, appears to affect global variation in tree leaf habit. Acidic soils, 
commonly found in tropical and boreal regions, inhibit nutrient  
(N and P) supply by reducing cation availability and limiting tree  

growth rates16. This might explain why broadleaved deciduous species 
that require high nutrient supply are less abundant in regions with 
acidic soil. Broadleaved evergreen species, by contrast, may better cope 
with nutrient poor, acidic soils42. Similarly, needle-leaved evergreen 
species that can maintain growth even under low nutrient supply are 
more abundant in regions with acidic soil16. The high tannin and phe-
nol contents of needle leaves further contribute to the acidification 
of soils16, probably creating a positive feedback towards coniferous 
dominance. Overall, our results point towards a feedback between tree 
leaf habits and soil conditions, highlighting the connection between 
physical soil features and soil water43 and nutrient44 availability.

Variation in leaf form was best predicted by climate variables 
(Fig. 3b), with the most important variable being temperature of the 
coldest quarter (Fig. 3d). By contrast to leaf habit, soil, topographic 
and vegetation features were less important in driving variation in 
leaf form, indicating adaptation to extreme climates, cold winters or 
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Fig. 2 | The global distribution of forest leaf types. a, The global distribution of 
tree leaf type as predicted by a random forest model built from area-based leaf-
type data (see Methods). Pixels are coloured in the red, green and blue spectrum 
according to the percentage of total tree basal area occupied by broadleaved 
evergreen, broadleaved deciduous and needle-leaved tree types, as indicated by 
the ternary plot. Needle-leaved evergreen and needle-leaved deciduous forests 

were combined due to the low global coverage of needle-leaved deciduous trees. 
b–e, Predicted relative coverage of each leaf type from random forest models. 
Ref. 81 was used to mask non-forest areas. b, Broadleaved evergreen coverage.  
c, Broadleaved deciduous coverage. d, Needle-leaved evergreen coverage.  
e, Needle-leaved deciduous coverage.
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extended dry seasons, as a major determinant of leaf form. This sup-
ports previous studies indicating that diverse leaf forms evolved to 
adapt to different climates45,46.

Computation of tree densities with different  
leaf types
To quantify the proportions of different leaf types across global for-
ests, we combined a global tree density distribution map47 with our 
individual-based leaf type models (see Methods and Supplementary  
Fig. 5). At the global scale, we estimate that of the ∼3 trillion adult 
trees presently existing, 29.1% (95% CI = 27.5–30.7%) are broadleaved 
evergreen, 27.1% (23.8–30.6%) are broadleaved deciduous, 38.4% 
(35.2–41.6%) are needle-leaved evergreen and 5.4% (4.3–6.6%) are 
needle-leaved deciduous (Fig. 4 and Supplementary Fig. 6). Even 
though needle-leaved tree species comprise less than 2% of the world’s 
estimated 73,000 tree species48, this small fraction of diversity repre-
sents around 44% of individual trees on Earth.

Of the 1.15 trillion needle-leaved evergreen trees growing world-
wide, the majority (64.7%) are found in boreal regions, while 23.1%,  
8.9%, 2.8% are found in temperate, arid and tropical regions, respec-
tively (Fig. 4). In contrast, of the 0.87 trillion broadleaved evergreen 
trees growing worldwide, the majority exists in tropical (57.2%) and arid 
(29.8%) regions, with 6.3% and 4.3% existing in temperate and boreal 
regions, respectively (Fig. 4). Broadleaved deciduous trees show the 
widest range of occurrences. Of the 0.81 trillion broadleaved deciduous 
trees, 34.5% are found in boreal regions, 28.8% in temperate regions, 

22.5% in arid regions and 11.5% in tropical regions (Fig. 4). We further 
estimate that there are 0.16 trillion needle-leaved deciduous trees 
across the globe, the vast majority of which grow in boreal regions.

Using our basal-area-based model of leaf types, we were able to 
estimate the biomass contribution of each leaf type within individ-
ual forest pixels by integrating our data with a recently published 
aboveground biomass map49. Our analysis revealed that broadleaved 
evergreen trees store the largest proportion of global forest biomass, 
accounting for 54.4% (335.7 Gt) out of the total biomass of 617 Gt. 
Broadleaved deciduous trees contribute 22.1% (136.2 Gt), needle-leaved 
evergreen trees contribute 20.5% (126.4 Gt) and needle-leaved decidu-
ous trees contribute 4% (18.7 Gt) (Supplementary Fig. 7). Interestingly, 
despite there being 42% more evergreen needle-leaved trees compared 
with broadleaved evergreen trees, their biomass contribution is 62% 
(209.3 Gt) lower. This distribution of biomass across different leaf 
types provides valuable insights into the carbon storage capacity of 
diverse forest ecosystems.

Climatic risk assessment of future leaf types
Climate change will strongly affect the functioning of terrestrial eco-
systems by altering growth, mortality and reproduction of trees and 
their interactions with leaf form and habit16. Our models allowed us 
to highlight areas of potential risk by identifying the regions where 
future climates will shift to conditions that currently support leaf 
types different from the prevailing ones. In these regions, trees are 
likely to experience more climatic stress in the future. To assess the 

0 0.2 0.4 0.6 0 0.2 0.4 0.6

0 0.1 0.2 0.3 0 0.1 0.2 0.3

Vegetation

Topography

Soil

Climate

Isothermality
Mean temperature of warmest quarter

Temperature annual range

Mean diurnal range

Annual precipitation

Annual mean temperature

Precipitation seasonality

Mean temperature of coldest quarter

Precipitation of wettest quarter

Precipitation of driest quarter
Silt content 0 to 100 cm

Clay content 0 to 100 cm

Coarse fragments volumetric 0 to 100 cm

Soil pH in H2O 0 to 100 cm
Sand content 0 to 100 cm

Absolute depth to bedrock
Mean soil nitrogen density

Soil C:N ratio
Elevation

Roughness

Profile curvature

Aspect sine
Aspect cosine

Northness
Eastness

Forest age
Tree stem density

Tree canopy height

Slope

a b

c d

Deciduous/evergreen Broadleaved/needle-leaved

Variable importance

Fig. 3 | Variable importance of environmental covariates on forest leaf-type 
variation. a,b, Cumulative importance of the first six principal components of 
climate, soil, topographic and vegetation covariates in the variation of leaf habit 
(a) and leaf form (b). c,d, Variable importance of selected environmental features 

on variation in leaf habit (c) and leaf form (d). Bars in c and d represent the 
mean ± 95% CI; relative importance based on the 10 best random forest models 
(n = 10; see Methods). Area-based leaf-type proportions were used to represent 
forest (plot-level) leaf-type variation.

http://www.nature.com/natureplants


Nature Plants | Volume 9 | November 2023 | 1795–1809 1799

Letter https://doi.org/10.1038/s41477-023-01543-5

extent and distribution of future changes in forest leaf-type climate 
envelopes, we projected our leaf-type models into the future using 
three climate change scenarios (low-emission scenario (SSP1–RCP2.6), 
business-as-usual scenario (SSP3–RCP7) and high-emission scenario 
(SSP5–RCP8.5))50. To do so, we used our random forest models of pre-
sent leaf type distributions and replaced all climate variables reflecting 
the 1979–2013 climate (see Supplementary Fig. 1) with climate model 
projections for 2071–2100 while keeping soil, topographic, vegetative 
and anthropogenic characteristics constant.

The results suggest that forests will experience substantial 
shifts in leaf-type climate conditions. Depending on future emis-
sions pathways, 17 to 34% of future forested regions are projected 
to experience a climate by the end of the century that currently 
supports leaf types different from the prevailing ones (Fig. 5 and 
Supplementary Fig. 8; see Supplementary Fig. 9 for an alterna-
tive definition of forest types). The climate conditions that have 
historically supported evergreen forests are declining as global 
conditions shift towards those that have historically supported 
more deciduous forests, and this appears to be the case for both 
broadleaved and needle-leaved species (Supplementary Fig. 10). 
Specifically, 7–20% of the broadleaved evergreen forests are likely 
to experience changes towards conditions that currently support 
deciduous species (Fig. 5). Similarly, 29–67% of the needle-leaved 
evergreen forests will experience changes towards climate condi-
tions that currently support mixed or deciduous forests (Fig. 5 and 
Supplementary Figs. 8–12). If these climate projections are realized, 
plants in those regions must either tolerate more stressful environ-
mental conditions or shift their distributions, causing changes in 
forest composition51. Previous studies predicting ecoregion shifts 
have also shown a heightened vulnerability to changing climate 
conditions, surpassing even the susceptibility of leaf types52.

It is important to acknowledge that linking forest leaf types 
to climate alone cannot fully capture the complex interactions of 

other influential factors, including CO2 concentration53,54 and nutri-
ent availability26. Consequently, the analysis presented in this study 
does not project actual changes in forest leaf types. Instead, its focus 
is on identifying regions where future climates will shift to condi-
tions that currently support different leaf types than what is currently 
observed. Different species may exhibit varying tolerance thresholds 
and responses to CO2 fertilization, leading to divergent outcomes. 
Moreover, it is possible that species sharing the same leaf habit or form 
but with broader climatic tolerance ranges could replace the present 
species, potentially mitigating leaf-type changes.

Our analysis serves as a risk assessment, highlighting regions 
where climate poses a potential threat to the existing forest composi-
tion. Further research is necessary to gain a deeper understanding of 
the intricate interactions between climatic changes, elevated atmos-
pheric CO2 concentrations and nutrient availability. These interactions 
play a pivotal role in determining essential aspects of forest ecology, 
such as germination rates, seedling survival, growth rates and tree 
mortality, which ultimately shape forest composition. Nonetheless, 
the analysis underscores the substantial and rapid changes in climatic 
conditions that forests are already experiencing and will continue to 
experience even more profoundly in the future, on timescales ranging 
from decades to centuries.

Methodological considerations
Our models successfully captured a substantial portion of the observed 
spatial variation in forest leaf types, with an overall explained variation 
of 75%. However, the accuracy of our predictions varied across differ-
ent leaf types. Among them, our model achieved the highest accuracy 
in predicting the spatial distribution of broadleaved evergreen tree 
species, with an explained variation of 90%. Conversely, our model 
explained only 29% of the variation in needle-leaved deciduous trees, 
which can be attributed to the limited availability of data from plots 
containing needle-leaved deciduous species.
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To address the uncertainties associated with our predictions, we 
employed a subsampling approach, running 100 independent models. 
This allowed us to assess the range of variability in our predictions and 
identify areas with lower predictive confidence. The resulting maps 
of model uncertainty (Supplementary Fig. 3) highlight regions where 
caution should be exercised when interpreting our predictions.

While our study supports many of the mechanisms identified in 
previous research, our correlative analyses do not necessarily establish 
causal relationships. To map leaf-ype variation across the globe on the 
basis of the relationships with environmental features, we used global 
layers. This approach was necessary as point-level predictor variables 
cannot be used to interpolate predictions across the globe. While the 
majority of these layers effectively capture local variations, soil layers 
may not fully reflect point-level soil observations due to the inherent 
spatial heterogeneity of soil conditions. In addition, soil layers are 
typically derived from interpolation methods using environmental 
information and may thus be correlated with climate variables. While 
our random forest model predictions are not affected by multicol-
linearity, this could impact the quantification of variable importance 
related to environmental, soil, topographic and vegetation features.

Incorporating local point observations into the model training was 
not feasible because the ground-based forest inventory data we used 
did not include field-measured environmental and soil characteristics. 

Although we examined additional point-level observations from the 
World Soil Information Service (WOSIS) dataset (see next paragraph), 
these observations often did not align spatially with the forest inven-
tory plots, resulting in a reduced sample size (>80% reduction) and geo-
graphic bias (Fig. 1 and Supplementary Fig. 14). Moreover, training the 
model using point observations while relying on soil layers for model 
prediction could introduce further uncertainties and biases. To avoid 
these limitations, we conducted both model training and predictions 
using the same soil layers.

Nevertheless, we conducted analyses to determine the agreement 
between results based on global soil layers and point-level soil observa-
tions. We matched our forest inventory dataset55 with the WOSIS data-
set56, which contains local point observations of soil features. These 
analyses indicated that: (1) model predictions remained consistent 
when using point observations instead of global layers of soil charac-
teristics (97–99% similarity in predictions), (2) the global soil layers 
exhibited good agreement with point observations for most soil vari-
ables, particularly the four most important variables (R2 = 0.42–0.62; 
Fig. 3c and Supplementary Fig. 13) and (3) the inferred importance of 
soil features in leaf type variation remained similar (<5% difference) 
when using point observations instead of soil layers as predictors 
(Supplementary Fig. 14). These analyses underscore the crucial role 
of soil features in determining global leaf-type variation.
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Conclusions
By characterizing the environmental controls of forest leaf-type varia-
tion and integrating this information with tree density data, our analysis 
reveals that 38% of global tree individuals are needle-leaved evergreen, 
29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% 
are needle-leaved deciduous. We further show predictable global pat-
terns in forest leaf varieties, with the relative abundance of leaf forms 
mainly correlating with temperature variation. In contrast, leaf habit 
is jointly controlled by climate and soil characteristics. These global 
relationships between environmental factors and forest leaf types 
largely agree with local experimental and modelling studies57–59, which 
also highlight the dual role of climate and soil conditions in driving 
variation in forest types.

Our analysis of the spatial variation of forest leaf types refines 
our understanding of forest composition and structure60,61 at a global 
scale. While satellite-derived approaches have been foundational for 
the characterization of spatial variation in canopy structure62, our 
bottom-up model, derived from empirical inventory data, allowed us 
to create models of forest leaf type at the individual tree level to pro-
vide novel insights into forest composition. This can help benchmark 
satellite-derived models of forest structure and inform ecological 
models of plant productivity, biogeochemical cycling, carbon storage 
and species distribution31,63,64. By identifying the main environmental 
characteristics that determine habitat suitability, such as annual mean 
temperature, climate seasonality and water and nutrient supplies, our 
baseline estimates of leaf-type densities are also critical for projecting 
population- and community-level tree demographics under current 
and future climate change. Ultimately, these insights can help make 
informed decisions to guide global efforts to conserve, restore and 
sustainably manage forest ecosystems that are so vital for the wellbe-
ing of all organisms on Earth.

Methods
Data collection
Forest inventory data. To obtain empirical information on tree occur-
rences, we extracted a total of 1.1 million forest inventory plots with 
more than 50 million individual occurrence records, covering all con-
tinents except Antarctica from the GFBi dataset38. To avoid modelling 
bias caused by uneven spatial sampling across biomes, we downsam-
pled the dataset so that the relative proportion of plots in each biome 
in the dataset approximately matched the proportion of forested area 
within each biome65. This was done by retaining all tropical forest plots 
in GFBi (n = 11,367) and randomly downsampling the remaining biomes 
in proportion to this number. Individuals with stem diameters <10 cm 
were excluded as the focus was on adult trees, and only plots with ≥10 
adult individuals were included in the final analysis. For each plot, the 
dataset contains information on the location (coordinates), the year(s) 
when the inventory took place, stem diameter at breast height (DBH) 
and species identity of each individual. For plots with time series data, 
only the most recent observation year was included in the analysis. The 
average year of observation across all plots was 2005. This resulted in 
a total of 9,781 plots with a median size of ∼500 m2 and 817,091 indi-
vidual tree records, with 20.3% of the plots in the boreal biome (vs 21% 
of forested land globally), 20.4% in temperate biomes (vs 22%), 54% in 
tropical biomes (vs 50%) and 3% in Mediterranean woodland, tundra, 
xeric shrubland or mangrove biomes (vs 7% globally).

Tree leaf-type data. Information on leaf habit (evergreen vs decidu-
ous) and leaf type (broadleaved vs needle-leaved) was extracted from 
the TRY plant trait database39. For each species and genus, we assigned 
the most common leaf habit across all TRY observations, treating leaf 
habit as a binary variable of whether it is evergreen or not. Species 
names were standardized using the Taxonstand R package66. We then 
assigned leaf-type information to the individuals included in the GFBi 
dataset using species-level information or genus-level information in 

case species-level information was not available. Plots in which <50% 
of all individuals had a leaf-type record in TRY were excluded. Out of 
10,274 species recorded globally in the GFBi dataset, leaf-type records 
could be assigned to 8,642 tropical tree species, 453 temperate tree 
species, 46 boreal tree species and 1,124 tree species in dry areas. Next, 
we calculated the proportion of each leaf-type combination (evergreen 
broadleaved, deciduous broadleaved, needle-leaved evergreen or 
needle-leaved deciduous) within a plot, either by dividing the sum of 
individuals featuring the respective leaf type by the total number of 
individuals within the plot (individual-based leaf type) or by dividing 
the basal area featuring the respective leaf type by the total basal area 
of all trees in the plot (area-based leaf type).

Environmental covariates. In total, 58 global environmental layers 
reflecting climate50, topography, vegetation, anthropogenic and soil67 
(at 0 cm to 100 cm depth) characteristics were used as covariates 
in our analyses (Supplementary Fig. 1). Climate variables reflect the 
average climate between 1979–2013. All layers were standardized to 
30-arc-second resolution (∼1 km2 at the equator).

Geospatial modelling
Random forest modelling. To predict the occurrence probabilities 
of the four forest leaf types (broadleaved evergreen, broadleaved 
deciduous, needle-leaved evergreen and needle-leaved deciduous), 
we ran random forest models in Google Earth Engine68. In random 
forest, unlike traditional regression, correlation among variables does 
not affect model accuracy. Indeed, the ability to use many correlated 
predictors is one of the key benefits of machine learning models69. 
When variables are correlated, the effect of these variables is ‘shared’ 
across the trees in the random forest. Because random forest does 
not estimate coefficients as in regression, this correlation does not 
hinder model fit or performance, but rather complicates efforts to 
quantify variable importance, which is also shared across correlated 
variables. Thus, by including numerous variables, even if correlated, we 
can improve our predictive power of the model to accurately quantify 
current carbon.

To run the models, we set the output mode to ‘MULTIPROBABIL-
ITY’ and randomly sampled 10 individuals from each plot 100 times, 
weighting individuals by their basal area to model area-based leaf 
types. The following equation was used to transform DBH to basal area: 

A = πDBH2

4
. To model individual-based leaf types, individuals were 

sampled without weighting them. This resulted in 100 training datasets, 
each containing 98,330 rows. After extracting pixel values from  
58 environmental covariates, we then modelled leaf types for each 
training dataset with a random forest model, using the 58 environ-
mental covariates. The correlation between our point-level response 
variable (leaf type) and spatially contiguous covariates then allowed 
us to map the global distribution of leaf types.

To train global models of forest leaf types, we first ran a grid-search 
procedure, exploring the results of a suite of random forest models 
with different hyperparameters. The hyperparameters that were 
allowed to vary were the number of random trees (10, 20, 50, 100 and 
250), the number of variables sampled at each split (1, 2, 4, 5, 8, 10, 15, 
20 and 30) and the minimum sample size at the end of the nodes  
(1, 2, 5, 10, 15, 20 and 30); subsampling rate was constant at 0.632. To 
quantify predictive accuracy, we used the Bhattacharyya coefficient 
to compare the predicted and observed probabilities for each pixel, as 
is commonly used in image processing and feature extraction70–73. 
Because four probability classes within a pixel are not independent, 
we cannot use standard loss functions to estimate predictive accuracy. 
Instead, we used the Bhattacharyya coefficient, given by ∑n

i=0√Oi × Pi , 
which quantifies the similarity between two vectors, O and P, with  
n categories. The Bhattacharyya coefficient falls within (0,1), equal-
ling one only when Pi = Oi  for all i within a pixel (that is, when the  
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predictions exactly match the observed) and zero when the vectors 
are completely disjoint. To evaluate overall model performance, we 
then adopted a similar approach to that of ref. 74 for multinomial data75, 
using the Bhattacharyya coefficients to calculate a pseudo-R2 (R2BC) 
(equations 1∼5) on the basis of 10-fold cross-validation:

R2BC = 1 −
MAEmodel
MAEmean

(1)

in which

MAEmodel =
∑ Ei
N (2)

Ei = 1 −
n
∑
i=1

√Oi × Pi (3)

and

MAEmean =
∑ Eimean

N (4)

Eimean = 1 −
n
∑
i=1

√Oi × Ōi (5)

where, MAE is the mean absolute error, Oi is the observed coverage of 
leaf type i, Pi is the predicted coverage of leaf type i (on out-of-fit data 
via cross-validation), ̄Oi is the average coverage of leaf type i across all 
the observations and n is the number of forest leaf types (here, n = 4). 
Note that the summation terms in equations (3) and (5) are the Bhat-
tacharyya coefficients between the observed multinomial distribution 
and the predicted distribution (equation 3) and the average distribu-
tion (equation 5). Thus, equation (3) is the predictive loss term for each 
pixel, with the MAEmodel in equation (2) giving the average across all 
pixels, which equals zero only when the predictions perfectly match 
the observations. Similarly, equation (5) is the loss term for each pixel 
when using group-level means, with MAEmean in equation (4) giving the 
average loss across all pixels. By comparing MAEmodel to MAEmean, we 
follow the standard approach for computing R2 by quantifying perfor-
mances relative to human predictions, with R2 = 1 −MAEmodel/MAEmean 
equalling 1 only when our predictions are perfect (MAEmodel = 0) and R2 
being ≤0 when our predictions are equal to or worse than the mean. 
Importantly, as suggested in ref. 74, equation (1) is estimated using 
out-of-fit cross-validated data, where the predicted values are esti-
mated by omitting the corresponding observed values from the train-
ing data, with the resulting pseudo-R2 used to assess our four-element 
model output.

To create the final maps (Fig. 2 and Supplementary Fig. 5), we used 
the random forest model for each training dataset with the optimal 
suite of hyperparameters based on the R2BC  from the grid search.  
Extrapolation of our predictions across global forest areas resulted in 
100 four-band global layers, with each band representing the global 
probability of one forest leaf type. We averaged the predictions from 
these 100 model outputs by taking the mean for the final map. We 
calculated the 95% confidence intervals across the 100 model layers76 
to represent sampling uncertainty.

As an alternative mapping approach, we used an independent 
tree-based classification and regression trees (CART) model77 (Sup-
plementary Fig. 15). This approach was used to test whether model 
performance depends on model type. If the two models (random 
forest and CART) show similar results, this indicates that predictions 
are not biased by model selection. Using the same independent ‘Tallo’ 
dataset40 used for testing the robustness of the random forest model, 
the CART model had an explanatory power of 0.46, which is similar 
to the R2BC of 0.47 of the random forest model. When directly compar-
ing both models, the CART model showed 87% similarity (R2BC) with 

the random forest model. This suggests that our maps and predic-
tions do not depend on the type of model, and we report the random 
forest model results throughout the main text since it showed slightly 
higher accuracy55.

Cross-validation using external data. We tested for the performance 
and correlation between the predictions of the area-based and 
individual-based random forest models. When using the same inde-
pendent ‘Tallo’ dataset40 for testing the robustness of the random forest 
models, the tree-based and area-based models had an explanatory 
power of 46% and 47%, respectively. When directly comparing both 
models, the area-based model showed 89% similarity (R2BC) with the 
individual-based model, showing that both metrics result in similar 
predictions of leaf-type variation.

To further evaluate the performance of our models, we addi-
tionally compared the model predictions with satellite-derived leaf 
type estimates from annual land cover maps from the ESA CCI LC41. 
We used land cover layers for the years 2000, 2005, 2010 and 2015, 
each with a spatial resolution of 300 m × 300 m. To assign each pixel 
to forest leaf-type classes, we recalculated the leaf-type proportions 
for each layer as these represented leaf-type proportions across all 
ecosystem types, including grasslands. For example, we recalculated 
forest leaf-type proportions for pixels with 30% broadleaf deciduous 
forest cover, 20% needle-leaf evergreen forest cover, 10% needle-leaf 
deciduous forest cover and 40% non-forest cover by dividing each 
forest cover percentage by the total area covered by forest, result-
ing in 50% broadleaved deciduous, 33.3% needle-leaved evergreen 
and 16.7% needle-leaved deciduous. We then calculated the average 
values across the four years for each pixel and compared the results 
with our model outputs. Our area-based models explained 61% of 
the spatial variation in the ESA CCI LC models, with an explanatory 
power of 78% for broadleaved evergreen leaf-type proportions, 31% 
for broadleaved deciduous, 64% for needle-leaved evergreen and 19% 
for needle-leaved deciduous.

To generate global layers of soil features, the Soil Grids dataset 
relies on machine learning models informed by global, spatially 
explicit information on various climate variables. This global interpo-
lation of soil information using climate data may thus lead to an over-
estimation of the covariation between climate and soil layers while 
reducing small-scale heterogeneity in soil features. To assess whether 
this potential caveat affects our results, we used point-level soil meas-
urements from the WOSIS dataset, including clay content, silt content, 
pH and sand content. To spatially match this dataset with the full GFBi 
dataset containing more than 1.1 million plots across the globe55, we 
used the ‘geosphere’78 R package. We then selected the nearest soil 
observation that fell within 250 m or 1,000 m of the centre of each 
forest plot. This resulted in a spatial match between soil measurements 
and forest plots in 146 cases for the 250 m radius and in 1,893 cases for 
the 1,000 m radius (Supplementary Fig. 14a). To test whether model 
performance and predictions change when using point observations 
of soil features instead of global layers, we then trained random forest 
models using either WOSIS or Soil Grids soil data along with informa-
tion on climate, topography, human and vegetation characteristics 
(Supplementary Fig. 14b–d). For both the 250 m and 1,000 m buffer 
radii, the models showed a high degree of agreement (R2BC = 0.99) 
between model predictions.

In a second step, we then tested whether the use of point observa-
tions vs global layers of soil features affects the estimated importance 
of variables in driving leaf-type variation. The analysis showed a slight 
reduction in the importance of soil variables of 5–6% when using point 
observations rather than Soil Grids data (Supplementary Fig. 13), 
which is probably driven by the slightly lower covariation of soil point 
data with climate variables (Supplementary Fig. 16). Nevertheless, the 
results remain similar, showing that this difference is unlikely to affect 
the conclusions of our study.
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Interpolation vs extrapolation in model predictions. To evaluate how 
well our training dataset represents the full multivariate environmental 
covariate space, we performed a principal-component-analysis-based 
approach following refs. 76,79. We projected the covariate composite 
into the same space using the centreing values, scaling values and 
eigenvectors from the principal component analysis of the training 
data. We created the convex hulls for each of the bivariate combina-
tions from the top principal components and classified whether each 
pixel falls in or outside each of these convex hulls. We used 24 principal 
components with 276 combinations for all covariates for the sampling 
dataset. This analysis showed that 99.2% of land pixels (778,975,911 of 
785,150,461) cover at least 90% of the environmental variables present 
in our training data locations (Supplementary Fig. 17).

LOO-CV. To account for the potential effect of spatial autocorrelation 
in model residuals on model validation statistics, we ran spatially 
buffered LOO-CV for a series of buffer radii from 10 m to 500 km. In 
LOO-CV, each observation is predicted on the basis of a model that 
includes all data outside the respective buffer radius. This results in 
9,781 (=total number of observations) separate models for each buffer 
radius. Model performance was evaluated on the basis of R2BC. To assess 
the range of spatial autocorrelation, we ran semi-variograms for ran-
dom cross-validation and LOO-CV model residuals in each forest type, 
showing that regardless of buffer radius or validation type, our residu-
als show weak spatial autocorrelation (Supplementary Fig. 1). Neverthe-
less, when eliminating any potential effects of spatial autocorrelation 
on model performance by applying large buffer radii of 300 km and 
500 km, the out-of-sample R2BC  remained high (0.56 and 0.53, 
respectively).

Global tree density and biomass calculation of leaf types
Tree leaf-type densities were estimated by integrating a map of the 
global tree density distribution47 with our individual-based forest 
leaf-type maps. For each pixel, we multiplied tree density values with 
modelled forest leaf-type proportions to obtain the pixel-level stem 
density of each leaf type. We then summed up these pixel-level abun-
dances across the globe to estimate the total abundances of each forest 
leaf type. To obtain the total number of trees of each leaf type for the 
major forest types, we defined tropical forests as pixels falling in the 
biomes tropical and subtropical moist broadleaf forest (WWF80 biome 
1), tropical and subtropical coniferous forest (biome 3) and mangroves 
(biome 14). Temperate forests were defined as pixels in the biomes tem-
perate broadleaf and mixed forest (biome 4) and temperate coniferous 
forest (biome 5). Boreal forests were defined as pixels in the biomes 
boreal forest or taiga (biome 6), montane grasslands and shrublands 
(biome 10) and tundra (biome 11). Dry forests were defined as pixels 
in the biomes tropical and subtropical dry broadleaf forest (biome 2), 
tropical and subtropical grasslands, savannas and shrubland (biome 
7), temperate grasslands, savannas and shrubland (biome 8), Mediter-
ranean forests, woodlands and scrub (biome 12), and deserts and xeric 
shrubland (biome 13).

Forest biomass for each leaf type was computed by incorporating 
a map of global forest biomass49 with our area-based leaf-type models. 
We calculated the absolute biomass by scaling biomass density with 
tree canopy cover81 and pixel area within each pixel. This absolute bio-
mass per pixel was then partitioned by leaf-type proportions, derived 
from our area-based models. By summing up the pixel-level biomass 
across the globe, we were able to approximate the total amount of 
biomass stored in each of the leaf types.

Environmental drivers of forest leaf-type variations
To evaluate the relative importance of environmental features on forest 
leaf-type variation, out of the total 58 environmental covariates, we 
tested the effects of 29 commonly used environmental characteristics 
using random forest models (see Supplementary Fig. 1). We separated 

the environmental features into four major groups: climate, soil, topog-
raphy and vegetation. To equally represent each of the three groups in 
the model and minimize collinearity, we selected the first six principal 
components from climate, soil and topography groups. These six 
principal components explained ≥90% of the total variation across all 
group variables. We included all the three vegetation characteristics, 
which are forest age, tree density and canopy height, into the analysis 
without computing the principal components. We then computed the 
variance inflation factors (VIFs) across all 21 principal components 
using the R package HH82. All VIFs were lower than 4, suggesting suf-
ficient independence among covariates. The principal components 
were then used as predictors in random forest models with different 
combinations of hyperparameters (that is, 1 to 12 samples per split 
and a minimum sample size at the end of the nodes of 1 to 10), and we 
selected the ten best models with the highest coefficient of determin-
ing variation (R2). Variable importance was determined by calculating 
the relative influence of each variable, expressed by the variable’s 
attributed reduction in squared error. To quantify the importance of 
individual environmental factors, we used the same combinations of 
hyperparameters. Based on R2, the ten best random forest models were 
again chosen to explore the relative importance of each factor. The 
random forest models were run via the R package h2o83.

Forest types and their future climate envelopes
To assess the extent and distribution of future changes in forest 
leaf-type climate envelopes, we projected our leaf-type models into 
the future using CMIP6 climate models for the time interval of 2071–
2100 and three emission scenarios (SSP1–RCP2.6, SSP3–RCP7 and 
SSP5–RCP8.5)50. The CMIP6 climate models were extracted following 
the ISIMIP3b protocol and included five models (gfdl-esm4, ukesm1-
0-II, mpi-esm1-2-hr, ipsl-cm6a-lr and mri-esm2-0). We projected the 
global forest leaf-type distribution for each emission scenario on 
the basis of each of the five climate models using our random forest 
models. To do so, we used our 100 random forest models of present 
leaf-type distributions and replaced the climate variables (‘bioclim’ 
variables from the CHELSA dataset, marked with hashtags in Supple-
mentary Fig. 1) with CMIP6 climate model projections while keeping 
soil, topographic, vegetative and anthropogenic characteristics 
constant. For each emission scenario and CMIP6 model, we aggre-
gated the 100 layers by taking the mean. We then aggregated the five 
CMIP6 model projections by taking the mean. For both evergreen vs 
deciduous and broadleaf vs needle-leaf proportions, we then sub-
tracted the present predictions by the averaged model projections 
for the three climate change scenarios. We then summarized the 
predictions for each of the three climate change scenarios across 
latitude, aggregating predictions for each half degree. This allowed 
us to identify areas where future climates will shift to conditions that 
currently support leaf types different from the prevailing ones (Fig. 
5 and Supplementary Fig. 9). To do so, we first obtained information 
on the forest type that currently is most abundant in each pixel (using 
area-based leaf-type proportions). Pixels in which > 60% of the forest 
area was covered by a single leaf type were assigned to that respective 
leaf type. Pixels in which none of the leaf types covered > 60% of the 
forest area were categorized as mixed forest (Fig. 5). The analysis was 
also conducted for a forest-area threshold of 80% to ensure that the 
results are not driven by the choice of the threshold (Supplementary 
Fig. 9). Following these definitions, we categorized forest pixels into 
groups using present and future climate scenarios. By scaling pixels 
by canopy cover, we could then calculate the total areas in which the 
climate is expected to shift to conditions that currently support a 
different forest type.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
Tree occurrence data from the Global Forest Biodiversity initiative 
(GFBi) is available upon request via Science-I (https://science-i.org) 
or the GFBi website (https://www.gfbiinitiative.org/). Information 
on leaf habit (evergreen vs deciduous) and leaf form (broadleaved 
vs needle-leaved) came from the TRY database (https://www.try-db. 
org). Additional, leaf-type data came from the Tallo dataset (https:// 
zenodo.org/record/6637599). Plot-level soil information came from 
the World Soil Information Service (WOSIS) dataset (https://www. 
isric.org/explore/wosis).

Code availability
All code is available at https://doi.org/10.5281/zenodo.7967245.
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