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Abstract 20 

Carp polyculture is the planet's most widely practiced fish production system, using multiple fish species 21 

living in diverse trophic and spatial niches of a pond to maximize productivity. Increases in farm 22 

productivity can be supported by using healthy stock, more effective use of inputs (e.g., feed, probiotics, 23 

fertilizers), and improved disease management. However, there is a lack of understanding on how 24 

microbial–host interactions can help avoid or manage dysbiosis in carp aquaculture systems to improve 25 

productivity. The availability of literature data derived from both traditional and new molecular 26 

techniques enables a comprehensive understanding of the diversity and functionality of the microbiota in 27 

carp polyculture systems. To support the development of improved best management practices for carp 28 

polyculture, we reviewed the current knowledge of microbiota in carp polyculture systems with a focus 29 

on bacteria and microalgae communities. This review highlights the link between the host microbiota and 30 

the rearing environment microbiota, thereby emphasizing its importance in steering the rearing water 31 

microbiota to reduce microbial dysbiosis in both the water and the gut. Strong evidence implies that 32 

factors such as probiotics, prebiotics, feed, fertilizers, and manipulation of environmental parameters 33 

have a significant effect on carp microbiota. Development of management strategies towards three key 34 

areas (microbiome health assessment, technological improvements, and product management) are 35 

essential for the health of carp polyculture and will likely be critical for the industry’s expansion. 36 

KEYWORDS: Microbiomes, microbial management, microbial regulation, dysbiosis, fish health. 37 
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1. Introduction 42 

Carp is the most widely cultivated fish species in aquaculture worldwide (FAO, 2022).  Growing different 43 

carp species with partially or completely different feed spectrums and feeding habits in the same pond 44 

helps to use the available resources more efficiently (Hao-Ren, 1982a; Kestemont, 1995). Carp polyculture 45 

began in China during the Tang dynasty (618-907 A.D.)(Hao-Ren, 1982b). It was dramatically improved in 46 

the 1960s when Chinese major carps (silver carp Hypophthalmichthys molitrix (Valenciennes, 1844), 47 

bighead carp Aristichthys nobilis (Richardson, 1845), grass carp Ctenopharyngodon idella (Valenciennes, 48 

1844), and black carp Mylopharyngodon piceus (Richardson, 1846)) were widely introduced to most 49 

countries of Europe and Asia such as Poland (Opuszyński, 1981), Bulgaria (Dimitrov, 1987), and Hungary 50 

(Horvath et al., 1984), India and Israel (Milstein, 2005).  51 

Carp farming practices are being intensified to meet the increasing demand for aquatic products, 52 

particularly in countries such as Bangladesh, where space for ponds is very limited. However, maintaining 53 

good water quality in intensive cultivation systems is challenging due to the high load of inorganic 54 

nutrients, fish feces, overfeeding, and the often limited opportunities for water exchange (Bentzon-Tilia 55 

et al., 2016a). The shifting from extensive to semi-intensive and intensive practices is often accompanied 56 

by an increase in the occurrence of infectious diseases, which poses one of the main impediments to the 57 

sustainable growth of the aquaculture industry (Shinn et al., 2018; Stentiford et al., 2017). Therefore, 58 

diseases in aquaculture have been widely studied, particularly in identifying causative agents and 59 

preventing disease outbreaks using risk assessments and biosecurity protocols (Bouwmeester et al., 60 

2021). 61 

Modifying fish microbial communities has the potential to significantly influence health and disease 62 

outcomes in farming operations (de Bruijn et al., 2018; Gilbert et al., 2016). However, disentangling 63 

interactions and identifying keystone species for specific functions in microbial communities has proven 64 
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difficult because of the complex structure of these communities, especially when environmental impacts 65 

on population dynamics and activities are considered (de Bruijn et al., 2018). Most of the existing 66 

investigations have focused on the gut microbiota because of its intricate role in maximizing feed 67 

conversion, growth, and overall aquaculture productivity (Perry et al., 2020). Nevertheless, microbiota 68 

on/in the skin, gills, and water is expected to be equally important in disease resistance and susceptibility 69 

(McMurtrie et al., 2022) (Figure 1). To completely comprehend the effect of microbiota on fish health, we 70 

must have a deeper understanding of the interactions between microbial diversity and community 71 

variation associated with organs, including the gills, skin, and gut, but also in the rearing water. In addition, 72 

nutrient enrichment in fishponds produced by fertilizer and supplemental feeding causes eutrophication, 73 

commonly resulting in heavy algal blooms. These blooms can cause poor growth and even mass fish 74 

mortality due to deteriorating water quality, mainly dissolved oxygen depletion (Padmavathi & Durga 75 

Prasad, 2017). A greater understanding of the relationship between bacteria, microalgae, and fish could 76 

prevent disease, improve yields, and create aquaculture expansion and improvement strategies (Bentzon-77 

Tilia et al., 2016b; Dittmann et al., 2017). This review describes the current state-of-the-art research on 78 

carp microbial communities, particularly determining the dynamics of bacterial and microalgal 79 

populations in the different compartments of the aquaculture infrastructure of carp (polyculture) 80 

systems. In addition, the effects of inputs such as probiotics, antibiotics, fertilizer, feed, and water quality 81 

on microbial communities are also discussed. Finally, further perspectives will be indicated. 82 

2. Bacteria in carp polyculture systems 83 
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2.1.  Bacteria in rearing environments 84 

Bacterial biomass is one of the most significant trophic levels in an aquatic environment. The organic 85 

matter in manure or fertilizers provides bacteria with dissolved and particulate substrates, and the 86 

bacteria-laden particles provide feed for filter-feeding and detritus-consuming carp (e.g., common carp 87 

Cyprinus carpio (Linnaeus, 1758)  and mud carp Cirrhinus molitorella (Valenciennes, 1844) ). Besides, 88 

the mineralized fraction of manure stimulates phytoplankton production, which can serve as feed for 89 

herbivorous carp (e.g., silver carp Hypophthalmichthys molitrix, grass carp Ctenopharyngodon idella) 90 

(Kalcheva et al., 2010). 91 

In rearing water, the dominant bacterial phyla were Bacteroidetes, Actinobacteria, and Proteobacteria. 92 

However, the proportion of each bacterial taxon varied mainly depending on geography, system, and fish 93 

species composition (Table 1). Li et al. (2021) investigated the microbiological composition of water in 94 

black carp (Mylopharyngodon piceus) polyculture ponds using 16S rRNA gene amplicon sequencing. They 95 

found that bacterial diversity increased throughout the mid-culture phase and declined during the late 96 

culture period due to lesser nutrient availability in the late culture period and that Proteobacteria (43.7%), 97 

Actinobacteria (24.9%), and Bacteroidetes (12.1%) were the most abundant phyla in the water column. 98 

Similarly, in silver carp and bighead carp cultivations, Actinobacteria (32.04%), Cyanobacteria (27.65%), 99 

Proteobacteria (22.64%), and Bacteroidetes (16.2%) are the most abundant bacterial taxa (Meng et al., 100 

2021). In freshwater ecosystems like carp polyculture systems, Actinobacteria have a beneficial effect and 101 

play an essential role in the recycling of organic matter (Ghai et al., 2014; Shijila Rani et al., 2022) and are 102 

well-known producers of bioactive products (e.g., novonestmycins A, 19-methoxybafilomycin C1 amide, 103 

21-deoxybafilomycin A1,0) (Berna et al., 2015; Jose et al., 2021; van Keulen & Dyson, 2014). 104 

Flavobacterium can be associated with fish disease (e.g., koi, longfin eels, rainbow trout) (Loch & Faisal, 105 

2015). It can show a high abundance following the senescence and decline of freshwater cyanobacterial 106 

bloom (Newton et al., 2011). Cyanobacteria in pond water can fix atmospheric nitrogen and produce 107 

dissolved organic compounds that heterotrophic bacteria can use as a nutrient source (Louati et al., 2015). 108 

https://www.fao.org/figis/pdf/fishery/culturedspecies/Cirrhinus_molitorella/en%3Ftitle%3DFAO%2520Fisheries%2520%2526amp%253B%2520Aquaculture%2520-%2520Cultured%2520Aquatic%2520Species%2520Information%2520Programme%2520-%2520Cirrhinus%2520molitorella%2520(Valenciennes%252C%25201844)
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Limnohabitans transport carbon from primary producers to higher trophic levels (Wang et al., 2017). 109 

Proteobacteria have been shown to participate in various biochemical processes (e.g., carbon and 110 

nitrogen cycling) in aquatic environments (Klase et al., 2019). 111 

In response to the severe effects produced by pathogens, recent studies have revealed the need for 112 

commensal microbiota for the normal functioning of organs in the vertebrate host (Castejón et al., 2021).  113 

Commensal microbes from the aquatic environment can trigger the hatching stage, thereby modulating 114 

the development of the immune system which may confer disease resistance.  They can also stimulate 115 

the fish innate immunity by eliciting a temporary inflammatory response, which, combined with 116 

constitutively produced antimicrobial effectors, increases the resistance of fish larvae to an infectious 117 

disease after hatching (Villegas et al., 2012). 118 

There is likely a large variation in the bacterial population amongst different carp polyculture systems due 119 

to several influencing factors. The microbiota in carp ponds is affected by nutrient availability (a bottom-120 

up control) and predatory pressure (a top-down control) (Pace & Cole, 1994). Nutrient levels in pond 121 

water have been shown to correlate significantly with microbial populations. For instance, dominant pond 122 

water bacteria Betaproteobacteria, Alphaproteobacter, Cyanobacteria, Roseiflexaceae, Dinghuibacter, 123 

Cryomorphaceae, and Actinobacteria prefer nutrient-rich environments with a strong positive correlation 124 

with TN, NO2
-, and NO3

- (Dai et al., 2021a). In contrast, bacterial populations were found to have a negative 125 

correlation with NH4+ because it may inhibit on microorganisms when at high concentrations (Parker et 126 

al., 2012). High volumes of ammonia nitrogen are often enhanced in aquaculture ponds due to massive 127 

organic matter decomposition (Dai et al., 2021b).  Kalcheva et al. (2010) determined bacterioplankton 128 

communities in seven carp polyculture ponds of common carp (Cyprinus carpio), bighead carp 129 

(Aristichthys nobilis) and grass carp (Ctenopharyngodon idella) in a two-year experiment in 2007-2008. 130 

The results showed that the total number and biomass of bacteria were twice higher in 2008 (2.93 x 105 131 

cells/ml) than in 2007 (1.58 x 105 cells/ml) due to the richer organic manure applied in 2008. Using 132 



7 

Spearman correlation (Rs), they found that most abiotic factors negatively impacted bacterioplankton 133 

(e.g., transparency and pH). The highest negative correlation was found with the number of bacteria and 134 

NO3-N (Rs =–0.64), while the relation with PO4-P was positive (Rs =0.35). For top-down control, predators 135 

such as viruses (Middelboe et al., 2008), nano-flagellates (Jürgens & Matz, 2002), ciliates (Sherr & Sherr, 136 

1987), rotifers (Bonecker & Aoyagui, 2006), and some Cladocera species, like Daphnia (Zöllner et al., 2003), 137 

can contribute to the grazing on bacteria in carp production systems. 138 

2.2.  Bacteria in/on carp organs 139 

The mucosal tissues, which include the skin, gills, and gut, are in direct contact with the environment and 140 

serve as the initial interaction sites between bacteria and the host (de Bruijn et al., 2018). Understanding 141 

the dynamics of the microbial communities in these tissues is critical for health management. 142 

Comprehensive examinations of the bacterial load and species composition in healthy and diseased fish 143 

organs will be required to develop predictive tools for disease outbreaks and guide preventive measures. 144 

Several studies have been conducted on the bacterial composition in the intestine, gills, and skin of carp 145 

in polyculture systems (Table 2). Bacterial composition differs in distinct ecological niches (e.g., different 146 

parts of the gastrointestinal tract, gill, skin) and is influenced by fish species and rearing system. Previous 147 

research primarily relied on classic culture-based approaches to explore gut microbial diversity in carp 148 

species (Ichthyologica & Piscatoria, 2016; Mandal & Ghosh, 2013; Mukherjee et al., 2016; Ray et al., 2010; 149 

Uddin & Al-Harbi, 2012). However, recent advances in sequencing technology have made it simpler to 150 

examine the microbial diversity in fish (Foysal, Fotedar et al., 2019). 151 

Bacterial communities in the carp gut 152 

Bacteria in the digestive tracts of carp serve critical roles in maintaining normal gut functions, including 153 

digestion of complex molecules, production of secondary metabolites, and defense against pathogens 154 

(Bird et al., 2010; X. Li et al., 2018; H. Liu et al., 2016). The gut is the most extensively studied organ in 155 
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microbial ecology, especially with the advance of high-throughput sequencing (Foysal, Fotedar, et al., 2019; 156 

Tyagi & Singh, 2017). Mukherjee et al. (2020) indicated that Proteobacteria (15-40%), Firmicutes (16-21%), 157 

Actinobacteria (18-34%), and Bacteroidetes (6-19%) were the main bacterial phyla in the guts of three 158 

Indian major carps (IMCs). However, the abundance of each phylum is different for each species of fish. 159 

For example, Bacteroidetes and Actinobacteria were more abundant in mrigal Cirrhinus cirrhosis (Bloch 160 

1795) and rohu Labeo rohita (Hamilton, 1822), whereas Proteobacteria and Firmicutes were more 161 

abundant in catla Catla catla (Hamilton, 1822). Bacteroidetes and Actinobacteria might be associated with 162 

the digestion of complex polysaccharides in the diets of rohu and mrigal, which consume phytoplankton, 163 

additional feeds, and plant detritus (Thomas et al., 2011). Proteobacteria and Firmicutes in catla are 164 

involved in fermentative peptide and carbohydrate metabolism and vitamin B12 production (Larsen et al., 165 

2014), reflecting the feeding behavior of catla, which includes consumption of zooplankton and 166 

omnivorous feeding. Under a polyculture system, the composition of the intestinal microbiota may co-167 

evolve with its host in response to feeding habits. Indian major carp utilize different ecological niches due 168 

to differences in their feeding habits and preferences, so their varied diets might influence the composition 169 

of the fish's symbiotic gut microbiota. The difference in the gut microbiota composition across species may 170 

also indicate that particular endogenous variables may interact with environmental factors and diet 171 

composition to shape the gut microbiota composition (Li et al., 2015). In addition, it is believed that various 172 

sections of the gastrointestinal tract harbor different microbiota (Ni et al., 2014) and that the genotype of 173 

the host influences the microbiota of the gastrointestinal tract (Navarrete et al., 2012; L. Zhao et al., 2013). 174 

We think that additional investigation is necessary to clarify this.  175 

Furthermore, the prevalence of a particular bacterial composition in the core gut microbiota of carp may 176 

be partly attributed to various selective pressures within the host gut habitat (for instance, the selection 177 

of Actinobacteria) that occupy a specific ecological niche. However, it may also be related to Actinobacteria 178 

in the surrounding freshwater habitat and is available to colonize carp hosts. We believe it is critical to 179 
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identify the selection pressures influencing the development of microbial communities in the intestinal 180 

tract of various carp species. 181 

In general, the fish gut also acts as a reservoir for various opportunistic pathogens (Li et al., 2015; Wu et 182 

al., 2012a). Uddin & Al-Harbi (2012) found that A. hydrophila (25.7%), S. putrefaciens (21.43%), and V. 183 

cholerae (19.29%), which are known as opportunistic pathogens, were abundant bacterial species in 184 

common carp intestines. Mahmoud et al. (2004) found diverse bacteria in the intestines of common carp, 185 

with the most common ones being Vibrionaceae, Enterobacteriaceae, and Flavobacterium. In addition, 186 

Aeromonas has been found to be dominant in the intestine of grass and crucian carp in polyculture(Li et 187 

al., 2015), while Klebsiella has been found in IMCs (Foysal, Fotedar et al., 2019; Mukherjee et al., 2020). 188 

Aeromonas and Klebsiella are both involved in opportunistic infections of freshwater fish aquaculture 189 

(Austin & Austin, 2016).   190 

In general, any dysbiosis event in gut microbiota may significantly affect local and general physiology and 191 

metabolism (Patterson et al., 2014). Therefore, a change in the microbial load of the host can cause 192 

problems at different levels, mainly in the immune system, which can lead to disease (Montalban-Arques 193 

et al., 2015). Understanding the drivers of disease caused by opportunistic pathogens is essential for 194 

preventing outbreaks. On a broader scale, it is crucial to comprehend host/microbiota/environment 195 

interactions in opportunistic infections of carp. Moreover, bacterial disease can be reduced by taking 196 

preventative steps to minimize host stress and by actively intervening to increase the protective impact of 197 

the microbiota (i.e., prebiotics, probiotics, and symbiotics) (Derome et al., 2016). 198 

Bacterial communities on carp gills  199 

Compared to fish guts, fish gills are in direct contact with the surrounding water and, therefore, subject 200 

to environmental changes (Croft et al., 2005; Tarnecki et al., 2019).  A study in Saudi Arabia identified the 201 

bacterial composition in pond water, sediments, the gills, and the intestines of common carp (Al-Harbi & 202 
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Uddin, 2008). The authors found that aerobic heterotrophic bacteria colonized fish gills in lower numbers 203 

than those in the fish intestine, and the bacterial flora of pond water and sediment reflect the bacterial 204 

composition of the gills and intestine of carp. Zhou et al. (2022) revealed that the diversity of bacteria in 205 

the gills was greater than that in the guts, and there was more Actinobacteria and Bacteroidetes 206 

abundance in the gills than in the guts. These bacterial phyla are also abundant in the surrounding water. 207 

It could imply that these bacteria originated in water but did not enter the gut in large quantities. Similarly, 208 

Uddin & Al-Harbi (2012) found that pond water bacteria influence the bacterial composition of fish gills 209 

and intestines, and bacteria in the carp intestine have a lower species diversity than bacteria on the gills. 210 

It should be noted that gill disease can be caused by opportunistic bacteria already present on the gill 211 

surface. Potential disease-causing bacteria include A. hydrophila and Pseudomonas spp. (Austin & Austin, 212 

2016), S. putrefaciens (Koziñska & Pekala, 2004), and Streptococcus spp. (Al-Harbi, 1994).. Zhou et al. 213 

(2022) discovered that the abundance of potentially pathogenic Pseudomonas bacteria was higher in the 214 

grass carp gills than in the guts. In addition, they utilized LEfSe analysis (Linear discriminant analysis effect 215 

size) to identify many conditional pathogen (Cheng K. et al., 2019; Dabadé et al., 2016) indicator genera 216 

in gill, including Flavobacterium, Clostridium_sensu_stricto_1, Arcobacter, Neorickettsia, and Bacteroides. 217 

The abundance of these pathogens in the gill suggests that this organ might be a barrier for pathogens 218 

and can protect the intestines from potential infections.  219 

 220 

Bacterial communities on carp skin 221 

In an aquatic environment, the external surfaces of fish are directly exposed to the surrounding bacteria. 222 

However, there is currently a dearth of interest in investigating the microbiota on fish skin, with only a few 223 

studies on different species being conducted (Kapetanović et al., 2006; Liu et al., 2008; Ringø & Holzapfel, 224 

2000). The microbial population attached to the gills and skin of gibel carp Carassius auratus gibelio (Bloch, 225 
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1782) and bluntnose black bream Megalobrama amblycephala (Yih, 1955)  in polyculture was analyzed by 226 

Wang et al. (2010) using PCR-denaturing gradient gel electrophoresis (DGGE). This study indicated that the 227 

bacterial, actinomycetal, and fungal diversities on fish skins were higher than those on the gills of the gibel 228 

carp. 229 

The main interface between a fish and its environment is the mucosal surface of the skin. The mucus 230 

performs various functions, including ionic and osmotic control and defense against microbial diseases 231 

(Shephard, 1994). Mucus secretion is considered an essential factor in protecting against pathogen 232 

invasion. According to Marel et al. (2010), exposure to water with a high bacterial load did not cause clinical 233 

symptoms in carp. Still, the skin of exposed carp responded quickly with increased mucus production. 234 

Hypersecretion of mucus would wash adhering bacteria away, which helps fish defend against pathogens. 235 

Furthermore, Chiarello et al. (2015) revealed that the bacteria on the skin of European seabass and gilthead 236 

seabream were more diverse than those in the aquatic environment. It might be related to the nutritional 237 

conditions present on the fish's surface. The mucus on the skin comprises a wide range of gel-forming 238 

glycoproteins, glycosaminoglycans, and proteins that can serve as food sources for epibiotic bacteria 239 

(Bordas et al., 1998; Shephard, 1994). 240 

3. Microalgae in carp polyculture systems 241 

3.1.  The impact of microalgae on carp polyculture systems 242 

Beneficial impact on carp polyculture systems 243 

So far, studies on the diversity of microalgae in carp polyculture ponds are limited (Table 3). Microalgae 244 

are important primary producers in aquatic ecosystems (Nozaki, 1999). During the day, microalgae are a 245 

significant oxygen source in fishponds and consume nitrogenous waste products (Jia & Yuan, 2016). In 246 

addition to the bacteria consumed by carp, microalgae are also nutritious for the different carp species 247 

that grow together in polyculture (Hepher, 1988; Silva & Anderson, 1994). According to Wang et al. (2023), 248 
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the biofortified system with bacteria-microalgae associations in crucian carp Carassius auratus gibelio 249 

(Bloch, 1782)  ponds might promote intestinal health by enhancing digestive enzyme activity, villus length, 250 

villus width, muscle thickness, and intestinal microbiota diversity.  251 

The filtration physiology of carp is often described as follows: the water containing microalgal particles is 252 

pushed into the oropharyngeal cavity by the rhythmic expansion and contraction of the opercula and 253 

buccal chamber. Gill rakers filter suitable feed particles, with the filtered feed particles' size dependent 254 

on the gill raker's gap size (Liu & Huang, 2008). While the water runs through the gill rakers, the filtered 255 

feed particles are retained, reach the pharynx, and are ingested by the coordinated action of the filtering 256 

organs (Sun & Meng, 1992; Zhao et al., 2014). Through this process, filtered feed particles are expected 257 

to be larger than the gill raker gaps. However, microalgal particles smaller than the gill raker gaps were 258 

regularly found in the foreguts of silver carp caught in lakes, rivers, reservoirs, and ponds (Ke et al., 2007; 259 

Tucker, 2006; Xie & Liu, 2001; Yan et al., 2009), demonstrating that these tiny microalgal particles might 260 

also be filtered. Thus, silver carp may have evolved additional feeding mechanisms to entrap microscopic 261 

microalgal particles. It was discovered that there are large mucus cells in filter organs and adhered pollen 262 

blocks in gill raker ditches and gill raker tubes of silver carp (Li & Dong, 1996). This mechanism is known 263 

as the “food-sinking effect”. Therefore, when silver carp filter microalgal particles smaller than their gill 264 

raker gaps, the “food sinking effect” may work as an additional feeding mechanism. It is supported by the 265 

study of Görgényi et al. (2016) that found nanoplankton less than 10 µm in size in the foregut and hindgut 266 

of Asian carp in Lake Balaton, Hungary.  267 

Harmful microalgal blooms (Cyanobacteria) 268 

It is widely known that the productivity of microalgae is determined by the ecological balance of several 269 

physicochemical and biological parameters. The occurrence and abundance of microalgae in polyculture 270 

ponds are influenced by various environmental parameters, including temperature, light, dissolved 271 
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oxygen, pH, nutrient composition, and soil condition. Certain microalgal blooms (cyanobacterial blooms) 272 

have been linked to water quality problems in aquaculture ponds and the enrichment of nutrients from 273 

unused feed and carp metabolic wastes. When cyanobacteria blooms occur, they can cause the death of 274 

fish (Carbis et al., 1995; Negri et al., 1995). Larger cyanobacteria, such as Anabaena, Aphanizomenon, 275 

Microcystis, Oscillatoria, can create off-flavor and form surface scum, which often causes algal die-off and 276 

water quality deterioration (Kim et al., 2018). Several cyanobacterial species from the genera Anabaena, 277 

Oscillatoria, Lyngbya, and Phormidium have been found to produce musty and earthy tastes in farmed 278 

fish (Tucker, 2000). In addition, cyanobacterial blooms can modify the composition of fish gut microbiota 279 

and holobiont functions, resulting in suboptimal states that could threaten host health (Gallet et al., 2023). 280 

A study investigated the effect of blue-green algal blooms (Microcystis, Oscillatoria, and Anabaena 281 

blooms) on the nutritional composition of the water, the plankton diversity and density, and fish 282 

production of three carp polyculture ponds located in the West Godavari district, Andhra Pradesh, India 283 

(Padmavathi et al., 2017). The research showed that M. aeruginosa is the most harmful, causing the 284 

highest mortality in carp, followed by Anabaena and Oscillatoria. In addition, blue-green algae decreased 285 

the diversity and density of other plankton. Plankton diversity was lowest in the ponds with Microcystis 286 

bloom, followed by the ponds of Anabaena sp. and Oscillatoria sp. It indicates that Microcystis has the 287 

most potent inhibitory effect on other algae. Blue-green algal species grow out to become dominant, 288 

eliminating most other species in the ecosystem via excretions until they are only found sporadically 289 

(hetero-antagonism). As a result, the phytoplankton during blue-green algal blooms is abundant but not 290 

diverse (Lefèvre et al., 1952). Additionally, nitrogen-deficient waters are more favorable for Anabaena 291 

bloom formation than Microcystis and Oscillatoria blooms.  292 

3.2.  The impact of carp species on microalgal abundance 293 
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Many carp species, each with their own eating habits, can control the algal density in pond water. Silver 294 

carp have even been demonstrated to efficiently minimize the development of harmful algae and 295 

excessive blooms of other species (Zhang et al., 2006). In Shanghai, Tang et al. (2021) assessed the ability 296 

of carp to control cyanobacterial blooms in polycultures of silver carp and bighead carp with the 297 

freshwater pearl mussel Hyriopsis cumingii (I.Lea, 1852). They found that cyanobacterial blooms occurred 298 

in all ponds without silver and bighead carps but not in the ponds with the two carps, demonstrating that 299 

silver and bighead carps could suppress the occurrence of cyanobacterial blooms. Moreover, combining 300 

silver and bighead carp polycultures could increase microalgal diversity.  301 

An enclosure experiment carried out in the Three Gorges Reservoir in China discovered that decreasing 302 

the level of certain zooplankton species, such as rotifers and copepods, results in a trophic cascade, 303 

releasing phytoplankton from herbivory and enabling it to develop (Zhou et al., 2011). Similarly, Ke et al. 304 

(2008) conducted an experiment in a Chinese lake by stocking bighead carp and silver carp. They found 305 

that silver and bighead carp shift to feeding mainly on zooplankton at low stocking densities, which may 306 

decrease the efficiency of controlling cyanobacterial blooms. According to Xie & Liu (2001) density of silver 307 

and bighead carps should be kept at or above 50g/m3 for effective biomanipulation of Microcystis colonies 308 

in Lake Donghu, China. Therefore, a suitably high density of filter-feeding fish like silver and bighead carp 309 

is critical for effectively managing toxic algae blooms. In addition, Wang et al. (2008) studied 45 shallow 310 

lakes in China and found that lakes with higher bighead carp and silver carp yields had higher chlorophyll-311 

a concentrations. It could be because smaller phytoplankton species that bigheaded carp do not consume 312 

have increased in abundance or because bighead carp feeding, and excretion boosted nutrient cycling and 313 

the development of phytoplankton. 314 
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4. Factors affecting the microbiota in carp systems. 315 

4.1.  Probiotics and prebiotics 316 

Interest in applying probiotics to improve the survival, growth, and feed utilization of stocked animals and 317 

improve water quality has been growing in aquaculture (Farzanfar, 2006; Gatesoupe, 1999; Qi et al., 318 

2009). Table 4 summarizes studies on the effects of probiotics on carp microbiota. Probiotics have been 319 

associated with the benefits of decreased intestinal pathogens (Abid et al., 2013) by colonizing the 320 

gastrointestinal mucosal epithelium in the digestive tracts of several fish species (Merrifield et al., 2010; 321 

Nakandakare et al., 2013; Sharifuzzaman & Austin, 2010) and may inhibit pathogens by producing 322 

inhibitory molecules and/or directly competing for space, nutrients, and oxygen (Addo et al., 2017; Chen 323 

et al., 2010; Nandi et al., 2017). However, to our knowledge, little research has been conducted on the 324 

impact of supplemental probiotics on the microbiota community in freshwater polyculture systems. 325 

Adding probiotics may not significantly impact water quality and the microbial community of polyculture 326 

systems because fish with various feeding behaviors may increase the system's stability to prevent 327 

bacterial colonization (Zhou et al., 2017). One study has shown that adding probiotics to carp polyculture 328 

systems has no significant impact on the bacterial community in the rearing water (Zhou et al., 2017). 329 

Recent interest has increased in producing live microalgae with probiotics because interactions between 330 

species may increase the value of the end product. Several studies have demonstrated that introducing 331 

algae and probiotics may impact the microbiota and boost gut health and total production in fish, shrimp, 332 

and mussel aquaculture (Perković et al., 2022). Therefore, more research is needed on using a 333 

combination of bacterial and algal species that may enhance the beneficial effect on microbiota in carp 334 

polyculture systems. 335 

It is crucial to understand which factors influence the impacts of probiotics on microbiota in carp 336 

polyculture. There are two main factors: the ability of the probiotic to colonize the system and its relative 337 

dominant relationship with the existing bacterial community in the pond under cultivation (Zhou et al., 338 
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2017). The availability of ecological niches also plays a vital role in adapting introduced microorganisms 339 

to an environment (Kassen & Rainey, 2004). Tang et al. (2016) examined the effects of three commercial 340 

microbial products (Novozymes pond plus, Zhongshui BIO-AQUA, and Effective Microorganisms) on 341 

production performance and water quality in a polyculture system of grass carp, gibel carp, and silver carp 342 

with low nutrient loading in a short-term experiment. The findings revealed that adding the three 343 

commercial microbial products did not substantially enhance production performance or water quality.  344 

Thus, long-term experiments should be conducted to investigate the function of microbial products in 345 

freshwater polyculture systems with different nutrient loadings and species compositions.  346 

The effectiveness of probiotic supplementation has been demonstrated to be higher in Biofloc technology 347 

(BFT) aquaculture systems compared to conventional systems. According to Haraz et al. (2023), the BFT 348 

system, probiotic enrichment, and symbiosis efficiently increase the overall bacterial count and enhance 349 

the water quality conditions for hazardous nitrogen species. It has been found that a number of Bacillus 350 

and Lactobacillus strains greatly accelerate the removal of TAN, NO2, and NO3 (Bahnasawy et al., 2020). 351 

This may be because fish with probiotic supplementation have better rates of protein assimilation and 352 

digestion, which means that less ammonia or nitrogen from feces enters the water (Green et al., 2019). 353 

Similarity, Mohammadi et al. (2021) found that beneficial bacteria reduced toxic inorganic nitrogen 354 

compound concentrations and increased electrical conductivity in water, showing improving water quality 355 

and mineralization. 356 

Besides probiotics, prebiotics are also a dietary supplement that may help with growth, digestive enzyme 357 

activity, immune response, stress resistance, and improving water quality (Dawood & Koshio, 2015). 358 

Common prebiotics used in carp culture are Mannanoligosaccharide, β-Glucan, Xylooligosaccharide, 359 

Inulin, and Chitosan (Dawood & Koshio, 2015). Prebiotics are non-digestible materials for fish that can be 360 

metabolized by gut microbiota (Ringø et al., 2014). Dietary prebiotic supplementation can change or alter 361 

gut morphology and enhance commensal microbiota growth, thereby affecting diversity and density 362 
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(Hoseinifar et al., 2016a; Jung-Schroers et al., 2016a; Kühlwein et al., 2013). However, to our knowledge, 363 

there is little study on the impact of prebiotics on carp polyculture systems.  364 

4.2.  Antibiotics 365 

Antibiotics can act as an ecological factor that drives the evolution of community structure (Aminov & 366 

Mackie, 2007). In the micro-ecosystem, the impacts of antibiotics include phylogenetic structure change 367 

and resistance acquisition (Ding & He, 2010). 368 

Antibiotics have the potential to alter the composition of bacterial communities. Each bacterial taxon has 369 

a particular sensitivity to each antibiotic. It implies that at any given antibiotic concentration, the 370 

community's most vulnerable members will be suppressed while the rest will increase in relative 371 

abundance, and as such may result in dysbiosis in the aquaculture system (Martínez, 2017).  According to 372 

a study by Sun et al. (2021), an antibiotic cocktail (vancomycin, enrofloxacin, florfenicol, and 373 

metronidazole) altered the microbial community structure within the intestinal mucosal and luminal 374 

niches in grass carp. 375 

In addition, antibiotics have been shown to select for antibiotic-resistant microbes. The ability of bacteria 376 

to spread antibiotic resistance via mobile genetic agents (plasmids, transposons, insertion sequence 377 

elements, gene cassettes, and class 1 integrons) is responsible for the rapid increase in the number of 378 

resistant and multiresistant bacteria (Patil et al., 2016; Piotrowska et al., 2017). The fish gut environment 379 

favors horizontal gene transfer and is a significant reservoir for antimicrobial resistance genes (Yuan et 380 

al., 2019). In a study by Yuan et al. (2019), the abundance of antimicrobial resistance genes in the guts of 381 

Chinese freshwater carp collected from four retail marketplaces in Hefei, China, was quantified. The 382 

findings suggested that the relative abundances of ARGs (sulI, sulII, blaTEM-1, tetA, tetO, tetQ, and tetW) 383 

were quantified in the range of 10−6 - 10−1 gene copies per 16S rRNA gene, suggesting potential risks to 384 

human health. Besides, Zdanowicz et al. (2020) found that planktonic Aeromonas in three carp ponds in 385 
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Poland differed in their resistance to antibiotics, with 96–99% Aeromonas strains being resistant to 386 

amoxicillin, ampicillin, clindamycin, and penicillin, 60% of isolates being resistant to erythromycin and only 387 

5–6% being resistant to chloramphenicol and ciprofloxacin. However, all Aeromonas isolates were 388 

susceptible to gentamycin and streptomycin. Therefore, there is an urgent need for increased 389 

antimicrobial consumption surveillance and a better understanding of the risk of antimicrobial resistance 390 

transmission across the microbiome-aquatic animal-human interface.  391 

Nowadays, there is a growing interest in utilizing plants or their metabolites as antibiotic alternatives.  For 392 

example, mint acts as an antibacterial agent and stress alleviator to the immune system of fish (Kate et 393 

al., 2023), demonstrating potential applications in  environmental and health management. 394 

4.3. Fertilization 395 

Fertilization is a cost-effective and ecologically friendly approach to increasing fish production by 396 

stimulating the trophic chain components from the bottom (Woynarovich et al., 2010). The precise 397 

application of inorganic and organic fertilizers can increase fish production in a carp polyculture system. 398 

Fresh manure (a type of organic fertilizer) can provide fishponds with some of the necessary mineral 399 

nutrients and carbon for the growth of heterotrophic bacteria. They also stimulate the microbiota in carp 400 

polyculture systems by providing organic matter, macronutrients, and micronutrients (Minich et al., 401 

2018). The oxygen demand, total nitrogen and phosphorus content, and freshness of manure are essential 402 

nutrients for phytoplankton production (including autotrophic and heterotrophic microorganisms) 403 

(Wohlfarth & Schroeder, 1979). Also, manure and the bacteria that grow on it are good microscopic food 404 

sources for zooplankton due to their high protein content (Woynarovich et al., 2010). 405 

Numerous types of manure have been used in carp polyculture, where cow, poultry, and semi-liquid pig 406 

manure are of the highest interest (Wohlfarth & Schroeder, 1979).  Jha et al. (2008) compared four 407 

fishpond management regimes: poultry manure, live zooplankton, cow dung, and a commercial pellet 408 
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diet. They discovered that the average numbers of heterotrophic bacteria in pond water receiving poultry 409 

manure or cow dung were substantially higher than in other treatments. The composition of the livestock 410 

manure microbiota and its effect on the water microbiota varied depending on the producing species. 411 

However, the presence of pathogens in manure is considered one of the most critical factors in disease 412 

transmission. Pathogens in manure have been reported to survive for up to four months in aquatic 413 

environments, depending on the type of manure, temperature, pH, oxygen level, ammonia concentration, 414 

and competing organisms (Guan & Holley, 2003).  415 

Inorganic fertilizers may supply additional carbon sources (Cole, 1999) and boost the availability of mineral 416 

nutrients in the rearing environment (Jana et al., 2001). Dissolved organic carbon is an essential source of 417 

nutrients for bacteria (Kosolapov et al., 2017). On the other hand, mineral nutrients (phosphorus) are 418 

often the growth-limiting factors for bacteria (Matz & Jürgens, 2003). Excessive nutrient loading when 419 

using inorganic fertilizer may result in a decrease in gross primary productivity as a result of algae shading 420 

the pond surface. On the contrary, nutrients in organic manure are released more gradually and 421 

consistently. The more regulated the nutrition release rate, the more efficiently phytoplankton consumes 422 

nutrients and the higher the fish output. Furthermore, the excreta of grass carp can be utilized to fertilize 423 

the water and produce plankton for filter-feeding fish to consume (Kumar et al., 2005). The use of a 424 

combination of grass carp and organic fertilizer resulted in the highest net fish yield, followed by using 425 

only organic fertilizers and then inorganic fertilizers (Kumar et al., 2005). 426 

4.4. Feeding 427 

In semi-intensive systems, supplemental feeding benefits the fish both directly as feed and indirectly as 428 

fertilizer (Milstein, 1992). When carp are fed only cereals, the proportion of nutritional supply driving the 429 

bacterial–detrital food chain may reach over 95%, with just 5% being used directly for fish biomass growth 430 

(Olah, 1986). Natural feeds (phytoplankton and zooplankton) can still contribute up to 40–68% of the 431 

output in ponds when supplemental feeding is used (Burford et al., 2002, 2004; Cam et al., 1991; Porchas-432 
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Cornejo et al., 2012).  Energy for natural feed production is often provided through carbohydrate 433 

administration in dry feed to increase the C:N ratio to 15–20 (Asaduzzaman et al., 2008; Avnimelech & 434 

Kochba, 2009; Crab et al., 2007). When the C:N ratio of nutrient input exceeds 10, significant quantities 435 

of bacterial biomass are found in the food web, in which heterotrophic bacteria become dominant (Boyd, 436 

1990; Lancelot & Billen, 1985). Organic and inorganic nitrogen is taken up by heterotrophic bacteria, which 437 

keep ammonia and nitrite levels in the pond low (Avnimelech, 1999; Hari et al., 2004, 2006). Heterotrophic 438 

bacteria also provide a protein source, promoting nutrient flow through the food web and producing fish 439 

graze on natural feeds (Asaduzzaman et al., 2008). An increase in stocking density and dry feed use is 440 

believed to decrease the relative contribution of natural feed to carp production (Kabir et al., 2019). In 441 

addition, the increase in supplementary feed and unconsumed feed increases ammonia concentration, 442 

which is expected to be critical in determining the structure of the ammonia-oxidizer community in the 443 

rearing environment (Koops et al., 2003). 444 

When selecting dietary ingredients for artificial diets, it is vital to consider the response of the bacterial 445 

population in the rearing environment. Some ingredients may promote the growth of bacteria that are 446 

harmful to fish health, while others may inhibit the growth of bacteria that are beneficial to fish health 447 

(Rimoldi et al., 2018). For example, the gut microbiota and fish health are negatively impacted by soybean 448 

meal (the main fish meal substitute in aquafeeds) as it contains anti-nutritional factors that can cause 449 

intestinal damage. On the other hand, ingredients like fructooligosaccharides, mannan-oligosaccharide, 450 

and sodium butyrate benefit the related bacterial microbiota (Infante-Villamil et al., 2021a).  In the gibel 451 

carp, growth and survival rates were unaffected by a commercial feed mixed with terrestrial plants used 452 

in Chinese medicine (Pastinaca sativa, Astragalus membranaceus, and Atractylodes macrocephala Koidz). 453 

However, bacterial (alpha-)diversity measures in the fish gut were improved, and the abundance of 454 

potential fish pathogens such as Aeromonas spp., Acinetobacter spp., and Shewanella spp. subsequently 455 

decreased (Wu et al., 2018). Therefore, diet selection is important for animal performance and bacterial 456 
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community in carp ponds. Future microbiota research should focus on establishing methods for 457 

determining whether or not a specific diet is appropriate to elicit beneficial changes in bacterial 458 

communities that may impact carp's health and production.  459 

Live feed, like zooplankton, is rich in protein but poor in carbohydrates (Ruttkay, 1975). The major 460 

zooplankton groups in earthen carp ponds are protozoans, rotifers, and two crustacean groups, copepods, 461 

and cladocerans (Anton-Pardo & Adámek, 2015). As a live feed, zooplankton is a protein source and is 462 

essential as a natural feed for juveniles, adults, and marketable-sized carp. However, live feed consumed 463 

by carp may contain diverse bacteria, including pathogens like Flavobacterium (Skjermo & Vadstein, 464 

1993). Therefore, live feed ingestion is one of the possible mechanisms of pathogen acquisition by carp 465 

(Snoussi et al., 2006). Until now, there have been few studies on the effects of dry and live feed on the 466 

microbiota of carp polyculture systems. From our literature review, we can conclude that more studies 467 

need to be conducted to assess the mechanisms through which dry feed and live feed modulate the 468 

microbiota and productivity in the rearing system in its broadest sense (e.g., water, gut, skin, etc.). 469 

4.5. Abiotic parameters of the rearing environment  470 

Pathogens such as bacteria, viruses, protozoans, and other biotic stressors, when combine with abiotic 471 

stressors, worsen aquaculture activity (Abisha et al., 2022). The abiotic environment influences the 472 

structure and dynamics of communities via the networks of species interacting in a carp polyculture pond. 473 

Dissolved oxygen and temperature were shown to be strongly linked with changes in microbial community 474 

composition, and they are also claimed to have an impact on bacterial growth (Guan et al., 2020). 475 

Dissolved oxygen (DO) levels in non-aerated carp ponds are mainly determined by the relative magnitudes 476 

of photosynthetic oxygen production and total plankton respiration (Steel, 1980). Fishponds with low 477 

levels of DO may promote the growth of waterborne microorganisms by encouraging nutrient 478 

regeneration from anoxic sediments (Testa & Michael Kemp, 2012). Dissolved oxygen depletion inhibits 479 
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nitrification and the coupled nitrification–denitrification process (Kemp et al., 1990), lowering inorganic 480 

nitrogen removal and increasing the buildup of ammoniacal nitrogen. In freshwater fishponds in India, 481 

nitrifier abundance was highest during the rainy season, followed by winter, and was lowest during the 482 

summer, when oxygen levels were lowest (Kumari et al., 2011). In other words, during the summer, 483 

heterotrophic bacteria compete more for oxygen with other microorganisms (autotrophic bacteria, 484 

zooplankton, protozoa) than during the rainy and winter seasons (Donderski & Kalwasinska, 2003). 485 

Furthermore, hydrogen sulfide gases, which are considered toxic, can formed during anaerobic 486 

decomposition and cause severe mortalities in aquaculture ponds (Chien, 1992). Sulfur oxidizing bacteria 487 

(SOB) can, under aerobic conditions, metabolize sulfide to nontoxic sulfate. SOB can be detected and 488 

characterized by using molecular techniques based on the soxB functional gene  (Krishnani, Gopikrishna, 489 

et al., 2010; Krishnani, Kathiravan, et al., 2010). 490 

Several studies have shown that the abundance of species in the core microbiota of pond sediments is 491 

highly correlated with water temperature (Hu et al., 2022; Tas et al., 2009; Tian et al., 2009; Z. Zhao et al., 492 

2020). Li et al. (2021) demonstrated that temperature is the primary environmental factor shaping the 493 

dominant microbial genera, including Prochlorococcus, Chryseobacterium, Acinetobacter, Rheinheimera, 494 

Polynucleobacter, and Janthinobacterium in the water column. Jana et al. (2019) discovered that a 5°C 495 

increase in water temperature during winter resulted in a 36% yield increase for tropical fishes in 496 

polyculture (rohu, mrigal, bata, Japanese punti, grass carp, common carp, magur, and freshwater prawn) 497 

through microbial-driven augmented manure mineralization. In addition, carp gut microbial composition 498 

is also influenced by temperature variations (Nayak, 2010; Ringø et al., 2016). Changes in the overall 499 

bacterial abundance (high in the summer and low in the winter) have been reported between the summer 500 

and fall seasons (Al-Harbi & Uddin, 2004). Elevated temperatures may also harm the culture system by 501 

promoting harmful algal blooms and altering the structure of the plankton community (Abisha et al., 502 

2022). 503 



23 

The optimum temperature for the growth of nitrifying bacteria is between 20oC to 28oC (Verstraete & 504 

Focht, 1977). During the summer, carp ponds' nitrification rate typically decreases due to increased 505 

respiration of heterotrophic bacteria in both soil and water, leading to lower dissolved oxygen levels 506 

(Kumari et al., 2011). This explains the decrease in the nitrifying bacterial population in sediment and 507 

water throughout the summer (Gundersen & Mountain, 1973). Carlucci & Strickland (1968) discovered 508 

that when ammonia concentrations rose, the ammonia-oxidizer activity increased. During the summer, 509 

the nitrification potential rate and number of nitrifiers were lowest in the bottom and surface water of 510 

the carp pond because heterotrophic bacteria and autotrophic algae are more successful at competing 511 

for ammonia than nitrifiers. Rising temperatures in summer also accelerate the mineralization of organic 512 

waste (feeds and feces), which increases the concentration of inorganic nitrogen compounds and 513 

decreases dissolved oxygen and pH in the water. These environmental changes influence bacterial 514 

communities in the rearing system, such as increasing the abundance of Cyanobacteria in the water and 515 

potential pathogens (e.g., the genera Vibrio, Aeromonas, and Shewanella) in fish guts, which may result 516 

in the occurrence of red-operculum disease in crucian carp (Infante-Villamil et al., 2021b; Li et al., 2017). 517 

During the rainy and winter seasons, nitrifying bacteria may be able to utilize ammonia even at low 518 

concentrations due to decreased competition (Yoshifumi et al., 2009). The presence of nitrifying and 519 

denitrifying organisms can be quantified by the abundance of functional marker genes such as ammonia 520 

monooxygenase (amoA), nitrite-oxido-reductase (norB), nitrite reductase (nirS) and nitrous oxide 521 

reductase (nosZ)  (Kathiravan & Krishnani, 2014; Krishnani, 2010; Krishnani et al., 2009; Krishnani & 522 

Kathiravan, 2010; Velusamy & Krishnani, 2013). 523 

5. Conclusion and further perspectives 524 

Studies on bacterial and microalgal communities in carp polyculture systems have shown a link between 525 

the host microbiota and the rearing environment microbiota, illustrating the importance of steering this 526 

rearing water microbiota to reduce the emergence of diseases and improve carp health. 527 
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Microbial diversity was significantly higher in water than in the fish gill and gut and was significantly higher 528 

in the gills than in the gut (Kuang et al., 2020). The dominant bacterial phyla in rearing water and carp 529 

organs are Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria. However, fish 530 

microbiota diversity varies even in the same fish species when reared in different environments. It is 531 

influenced by many, not independent, factors. The dominant microbial taxa are formed by the 532 

composition of the microbial community in the rearing environment and by selective feeding by carp 533 

species affecting the internal and external microbiota. The microbial composition also depends on diets, 534 

fish species, rearing conditions, and geography (Tran et al., 2018). At the organ level, distinct ecological 535 

niches (e.g., different parts of the gastrointestinal tract, gill, and skin) harbor diverse microbiota, and the 536 

microbial community is influenced by the host's genetics.  537 

Moreover, many species in carp polyculture systems, each with their own eating habits, can control the 538 

microalgal size and composition in the pond. The variation in microalgal populations might be caused by 539 

variations in mixing conditions, carp species composition, and nutrition availability.  The farming of carp 540 

polyculture can be hampered by the formation of microalgal blooms owing to water quality problems and 541 

the enrichment of nutrients caused by the microbial decomposition of unused feed and fish metabolic 542 

wastes. Elevated N:P ratios can induce the P-limitation of bacteria in eutrophic environments because 543 

phytoplankton is a better competitor for P than bacteria (Heath et al., 2003). Moreover, the increased 544 

bacterial biomass produces carbon dioxide via respiration, which increases the amount of dissolved 545 

inorganic carbon available to phytoplankton (Green, 2015). 546 

In general, Vibrio, Enterobacter, Aeromonas, and Flavobacterium are the main genera involved in 547 

opportunistic carp infections. Besides, Cyanobacteria Microcystis, Oscillatoria, and Anabaena blooms are 548 

commonly found in carp polyculture. Understanding the drivers of disease/bloom caused by these species 549 

is essential for preventing outbreaks.  Additionally, strong evidence suggests that factors such as 550 
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probiotics, prebiotics, feed, fertilizers, and manipulation of environmental parameters can strongly 551 

influence carp microbiota. 552 

The microbial composition differences between studies with the same fish species could be due to the 553 

animal life stage, sample size, and techniques, such as differences in the analyzed genome region and the 554 

sequencing platform used (Foysal, Fotedar et al., 2019). A significant problem with the available carp 555 

microbiota data is the large differences in findings from different laboratories using different experimental 556 

designs and methodologies. 557 

We have identified three areas that show promise to impact carp polyculture management: 558 

Microbiome health assessment. It is critical to examine the external and internal microbiota of more 559 

species in the carp polyculture systems to understand microbiome-associated host species in conjunction 560 

with the characterization of metabolic specialization and disease resistance. More research into the 561 

composition, diversity, and manipulation of carp polyculture microbiota will assist farmers in steering the 562 

system, leading to more resilient farming systems and enhanced fish health. It will also be extremely 563 

useful to get insights into the microbiota of broodstock, eggs, larvae, and water microbiota in 564 

hatchery/nursery systems and their relationship with fish health. This knowledge is essential for shaping 565 

the rearing water microbiota of a system and understanding its influences on the fish microbiota. 566 

Technological improvements. Notably, most microbiota research in carp polyculture systems has relied 567 

on data from older, less precise techniques (e.g., DGGE, plate counting) or, more recently, semi-568 

quantitative next-generation sequencing techniques. In recent years, it has been shown that combining 569 

data from this technology with quantitative methods can yield surprisingly different insights into the 570 

compositional dynamics occurring in microbial ecosystems (Props et al., 2016). In the next years, using 571 

new tools (such as single-cell technologies) to conduct extensive high-resolution sampling campaigns will 572 
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result in a better knowledge of the microbial community and the interactions between species and their 573 

environments. 574 

Product management. Little research has been done on the impact of probiotics and prebiotics on the 575 

microbiota composition and diversity in carp polyculture systems. The low inoculation rate of exogenous 576 

bacteria derived from microbial products may limit their dominance in competition with native bacteria.  577 

Therefore, more research is needed to evaluate the effect of commercial probiotics and prebiotic products 578 

in improving beneficial bacteria in carp polyculture and their appropriate dosage. Besides, the use of 579 

antibiotics nowadays is driven by the pressure exerted on farms by disease outbreaks due to microbes. 580 

Thus, it is crucial to understand how they affect the overall physiology and composition of the microbiome 581 

by selecting a particular set of microbes and genes.  582 
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Tables 

Table 1. Some studies on bacterial microbiota in rearing water of carp polyculture systems 

County Culture system Bacterial identification 

technology 

Dominant bacterial taxa in pond rearing water Ref. 

India Indian major carps 

(rohu, catla and 

mrigal) polyculture 

ponds 

16S rRNA gene amplicon 

sequencing  

Genera: Actinomyces, Pseudonocardia, Sediminibacterium, 

Bacteroides, Exiguobacterium, Brochothrix Macrococcus, 

Alkalibacterium, Leuconostoc, Lactococcus, Shewanella, Trabulsiella, 

Acinetobacter, Psychrobacter, Luteolibacter 

Families: Coriobacteriaceae, Planococcaceae, Planococcaceae, 

Halomonadaceae 

(Mukherjee 

et al., 2020) 

 Indian major carps 

(rohu, catla and 

mrigal), Silver carp , 

Morphological tests, staining 

procedures and bio-chemical 

and physiological tests. 

Species: Corynebacterium spp., Pseudomonas aeruginosa, P. 

fluorescens, P. aureofasciens, Aeromonas hydrophila, Flavobacter 

devorans, Proteus sp., Micrococcus sp., 

(Yogesh	 et	

al.,	2014)	
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Grass carp and 

Common carp  

China Black carp 

polyculture ponds 

16S rRNA gene amplicon 

sequencing. 

Major phyla: Proteobacteria, Actinobacteria, Bacteroidetes.  

Genera: Prochlorococcus, Bacillus, Polynucleobacter, 

Chryseobacterium, Novosphingobium, Acinetobacter, Flavobacterium, 

Oscillospira, Ruminococcaceae, Agrobacterium, Comamonas, 

Janthinobacterium, Rheinheimera 

(Li et al., 

2021) 

Grass carp, Crucian 

carp and bighead 

carp polyculture 

 Major phyla: Bacteroidetes, Proteobacteria, Actinobacteria, 

Fusobacteria and Verrucomicrobia  

(Li et al., 

2015) 

Silver, bighead carp 

polyculture ponds 

16S rRNA gene amplicon 

sequencing       

Major phyla: Beta Proteobacteria, Alpha Proteobacteria, Gamma 

Proteobacteria, Acidobacteria, Planctomycetes  

(Tang et al., 

2021) 
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 Grass carp, gibel 

carp and bluntnose 

black bream  

16S rDNA gene sequences Major phyla: Proteobacteria, Bacteroidetes, Firmicutes,	 (Han et al., 

2010) 

 Silver carp and 

bighead carp pond 

16S rRNA gene amplicon 

sequencing  

 

Major phyla: Actinobacteria, Cyanobacteria , Proteobacteria and 

Bacteroidetes 

(Meng et 

al., 2021) 

 Polyculture with 

grass carp as the 

main species 

16S rRNA gene amplicon 

sequencing  

Major phyla: Actinobacteria, Cyanobacteria , Proteobacteria and 

Bacteroidetes 

(Qin et al., 

2016) 

Saudi Arabia Common carp Morphological observation, 

Gram staining, biochemical 

testing 

Species: Aeromonas hydrophila, Bacillus sp., Corynebacterium 

urealyticum, Edwardsiella sp., Micrococcus sp., Pseudomonas sp., 

Shewanella putrefaciens, Staphylococcus sp., Streptococcus sp., Vibrio 

sp., Unidentified Gram-negative rods, Cellulomonas cellulans, Gordona 

sp. 

(Al-Harbi & 

Uddin, 

2008) 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cyanobacteria
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cyanobacteria
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 Common carp and 

African catfish 

polyculture 

Morphological observation, 

Gram staining, biochemical 

testing 

Species: A. hydrophila, Corynebacterium sp., C. Urealyticum, 

Edwardsiella sp., Micrococcus sp., S. putrefaciens, Staphylococcus sp., 

Streptococcus sp., Vibrio sp., Unidentified Gram−negative rods 

(Uddin & 

Al-Harbi, 

2012) 
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Table 2. Bacterial diversity in/on carp organs. 

Carp species Organ System Bacterial 

identification 

technology 

Bacterial diversity Ref. 

Common 

carp 

(Cyprinus 

carpio) 

Gills  Common carp monoculture Aerobic plate counts, 

Gram's stain, 

motility, 

morphology, 

biochemical tests, 

thiosulphate-citrate-

bile sucrose (TCBS) 

agar, vibriostatic 

agent, commercial 

API 20E, API 20 

STREP (bioMerieux, 

Species: A. hydrophila, C. urealyticum, Micrococcus sp., S. 

putrefaciens, Staphylococcus sp., Vibrio sp., Unidentified 

Gram-negative rods 

(Al-Harbi 

& Uddin, 

2008) 

Gut Common carp monoculture Species: A. hydrophila, Bacillus sp., C. urealyticum, 

Edwardsiella sp., Micrococcus sp., Pseudomonas sp., S. 

putrefaciens, Staphylococcus sp., Streptococcus sp., Vibrio 

sp., Unidentified Gram-negative rods 

(Al-Harbi 

& Uddin, 

2008) 

Gills  Common carp -African 

catfish polyculture 

Species: A. hydrophila, Corynebacterium sp., Micrococcus 

sp., Staphylococcus sp., S. putrefaciens., Vibrio 

alginolyticus, V. cholerae, Vibrio sp., V. vulnificus, 

Unidentified Gram-negative rods 

(Uddin & 

Al-Harbi, 

2012) 
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 Gut Common carp -African 

catfish polyculture 

Marcy l’Etoile, 

France), and BIOLOG 

(BIOLOG, Inc., 

Hayward, California) 

methods 

Species: A. hydrophila, Corynebacterium sp., Micrococcus 

sp., Bacillus sp., Edwardsiella sp., Pantoea sp., S. 

putrefaciens, Staphylococcus sp., Pseudomonas sp., 

Streptococcus sp., V. alginolyticus, V. cholerae, Vibrio sp., 

V. vulnificus, Unidentified Gram-negative rods 

(Uddin & 

Al-Harbi, 

2012) 

 

 Gut Indian major carps (rohu, 

catla and mrigal), Silver 

carp, Grass carp and 

Common carp 

Morphological test, 

staining procedures 

and bio-chemical 

and physiological 

tests. 

Species: Corynebacterium spp., Aeromonas hydrophila, 

Flavobacter devorans, Pseudomonas aeruginosa, Vibrio 

sp., Achromobacter sp. 

(Yogesh et 

al., 2014) 

 Skin Indian major carps (rohu, 

catla and mrigal), Silver 

carp, Grass carp and 

Common carp 

Morphological test, 

staining procedures 

and bio-chemical 

and physiological 

tests. 

Species: Corynebacterium spp., Aeromonas hydrophila, 

Flavobacter devorans, Achromobacter sp., Pseudomonas 

aeruginosa, Vibrio sp., Proteus sp. 

(Yogesh et 

al., 2014) 
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 Gut Common carp from Floating 

nets cage 

16S rRNA gene 

amplicon sequencing      

Major phyla: Proteobacteria and Firmicutes (Mulyani 

et al., 

2018) 

Transgenic 

common 

carp 

(Cyprinus 

carpio) 

Gut Monoculture 16S rRNA gene 

amplicon sequencing      

Major phyla: Proteobacteria, Fusobacteria, Bacteroidetes 

and Firmicutes 

(Li et al., 

2013) 

Indian major 

carps - rohu 

(Labeo 

rohita), catla 

(Labeo catla) 

and mrigal 

(Cirrhinus 

cirrhosus) 

Gut Indian major carp 

polyculture 

High-throughput 

sequencing of 16S 

rRNA gene 

 

Major phyla: Proteobacteria, Firmicutes, Actinobacteria 

and Bacteroidetes  

 

(Mukherje

e et al., 

2020) 

Gut Indian major carp 

polyculture 

16S rRNA gene 

amplicon sequencing      

Major phyla: (Proteobacteria and Fusobacteria are the 

most abundant), 51 classes, and 374 genera (Aeromonas 

and Cetobacterium are the most abundance) 

(Foysal, 

Momtaz, 

et al., 

2019) 



55 

Grass carp 

(Ctenophary

ngodon 

idella) 

Gut Grass carp, Gibel carp and 

bluntnose black bream 

polyculture 

16S rRNA gene 

amplicon sequencing 

Major phyla: Proteobacteria, Firmicutes and 

Actinobacteria 

(Han et 

al., 2010) 

Gut Grass carp monoculture 16S rRNA gene 

amplicon sequencing      

Major phyla: Proteobacteria, Firmicutes, Cyanobacteria, 

and Actinobacteria. 

(Wu et al., 

2012b) 

Gut Grass carp, Crucian carp 

and bighead carp 

polyculture 

16S rRNA gene 

amplicon sequencing      

Major phyla: Fusobacteria, Firmicutes, Proteobacteria, 

and Bacteroidetes 

(Li et al., 

2015) 

Bighead carp 

(Hypophthal

michthys 

nobilis) 

Gut Bighead carp - tilapia 

polyculture 

Bighead carp- common carp 

polyculture 

16S rRNA gene 

amplicon sequencing      

Major phyla: Proteobacteria, Firmicutes, Fusobacteria and 

Cyanobacteria 

(Luo et al., 

2022) 

Gut Grass carp, Crucian carp 

and bighead carp 

polyculture 

16S rRNA gene 

amplicon sequencing      

Major phyla: Fusobacteria, Firmicutes, Proteobacteria, 

and Bacteroidetes 

(Li et al., 

2015) 
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 Gut Silver carp and bighead 

carp pond 

16S rRNA gene 

amplicon sequencing 

Major phyla: 

Proteobacteria, Actinobacteria , Firmicutes and Bacteroid

etes  

(Meng et 

al., 2021) 

Crucian carp 

(Carassius 

carassius) 

Gut Grass carp, Crucian carp 

and bighead carp 

polyculture 

16S rRNA gene 

amplicon sequencing      

Major genera: Cetobacterium and Aeromonas (Li et al., 

2015) 

Gibel carp 

(Carassius 

gibelio) 

Gill and 

Skin 

Gibel carp and bluntnose 

black bream polyculture 

16S rRNA gene 

amplicon sequencing  

Major phyla: Proteobacteria, Firmicutes (Wang et 

al., 2010) 

Silver carp 

(Hypophthal

michthys 

molitrix) 

 

Gut Silver carp and bighead 

carp pond 

16S rRNA gene 

amplicon sequencing 

Major phyla: Proteobacteria and Chloroflexi   (Meng et 

al., 2021) 

 

 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/actinobacteria
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/firmicutes
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/bacteroidetes
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/bacteroidetes
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/chloroflexus
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Table 3. Summarized diversity of microalgae in the rearing water and the carp gut in polyculture systems  

Polyculture 

systems 

Microalgae diversity Notes Ref. 

Carp - pangasius 

polyculture ponds 

Chlorophyceae, Cyanophyceae, Bacillariophyceae and 

Euglenophyceae 

- The highest microalgal cell density corresponded with 

high nutrient concentrations (NO3-N and PO4-P). 

- Chlorophyceae was the most dominant group followed by 

Cyanophyceae, Bacillariophyceae and Euglenophyceae. 

(Hossa

in et 

al., 

2008) 

Common carp, 

hybrid bighead carp 

and 

grass carp 

polyculture 

Total 259 taxa of planktonic algae were identified during 

a two-year study (2018-2019) 

First year: 216 taxa 

Second year (reduce stocking density of grass carp 

twice): 150 taxa 

- High stocking density of grass carp can disturb the 

functioning of the aquatic ecosystem. 

- Cyanoprokaryotes from genera Aphanizomenon, 

Dolichospermum, and Microcystis, which are potent 

cyanotoxin producers affecting the ecosystem and human 

health, were found in the system.  

(Dochi

n, 

2020) 

Filter-feeding Asian 

carps (hybrids of 

silver carp and 

In water: A total of 100 phytoplankton species with 

Cyclotella ocellata had the highest relative abundance. 

- There are viable cells of several phytoplankton taxa (e.g., 

diatoms, blue-greens, desmids, volvocalean and 

(Görgé

nyi et 
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bighead carp) 

polyculture 

In foregut fish: 138 phytoplankton species with the most 

frequent was Cyclotella ocellata. 

In hindgut fish: 149 viable phytoplankton species.  

chlorococcalean green algae), which managed to survive 

the physical and chemical digestion. 

- Cryptophytes, dinoflagellates, and euglenophytes were 

observed in both the lake water and foregut samples but 

were absent in the hindgut samples. 

al., 

2016) 
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Table 4. Examples of studies investigating the effects of probiotics and prebiotics on carp microbiota 

Probiotic/prebiotic Fish species Effects Ref. 

Probiotics    

Paenibacillus polymyxa, 

Lactobacillus fermentum, ferulic 

acid, Lactobacillus, Saccharomyces 

cerevisiae, Bacillus amyloliquefaciens 

 

Common carp (Cyprinus 

carpio) 

Improved fish survival after A. hydrophila challenge (Ahmadifar et 

al., 2019; Gupta 

et al., 2016; 

Harikrishnan et 

al., 2010; Huang 

et al., 2015) 

Bacillus amyloliquefaciens BaX030 Grass carp 

(Ctenopharyngodon 

idella) 

Increased abundance of beneficial bacteria 

(Fusobacterium, Proteobacteria, Gemmobacter) in the 

intestine 

Decreased abundance of potential pathogenic bacteria 

(Planctomycetes, Aeromonas)  

(Zhou et al., 

2022) 
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Bacillus subtilis Ch9 Grass carp 

(Ctenopharyngodon 

idella) 

Increased abundance of total aerobic and facultative 

anaerobic bacteria 

Increased abundance of Bifidobacterium and Lactobacillus 

(Wu et al., 

2012) 

Streptomyces amritsarensis N1-32 Grass carp 

(Ctenopharyngodon 

idella) 

Improved fish survival after Aeromonas veronii challenge  (Li et al., 2020) 

Enterococcus faecalis Javanese carp (Puntius 

gonionotus) 

Improved fish survival after A. hydrophila challenge (Allameh et al., 

2017) 

Enterococcus faecalis, Lactobacillus 

fermentum and Leuconostoc 

mesenteroides 

Javanese carp (Puntius 

gonionotus) 

Increased abundance of lactic acid bacteria in gut  

Decreased abundance of Gram -negative bacteria in gut 

(Allameh et al., 

2016) 

Bacillus amyloliquefaciens Catla (Catla catla) Inhibited A. hydrophila, Edwardsiella tarda, Vibrio harveyi 

and Vibrio parahaemolyticus 

(Das et al., 

2013) 
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Lactic acid bacteria Rohu (Labeo rohita) Increased survival of fish challenged with A. hydrophila (Maji et al., 

2017) 

B. subtilis, Lactococcus lactis and S. 

cerevisiae 

Rohu (Labeo rohita) Increased abundance of total heterotrophic bacterial 

population 

(Mohapatra et 

al., 2012) 

Lactic acid bacteria Crucian carp (Carassius 

carassius) 

Increased abundance of Firmicutes and Proteobacteria in 

gut  

Decreased abundance of Actinobacteria in gut 

(Liu et al., 2022) 

Lactobacillus plantarum C20015 Koi carp (Cyprinus 

carpio) 

Increase in survival of fish challenged with A. veronii (Zhang et al., 

2020) 

Prebiotics    

β-1,3/1,6-glucan Common carp (Cyprinus 

carpio) 

Higher number of bacterial operational taxonomic units 

(OTUs) in gut carp 

(Jung-Schroers 

et al., 2016b) 
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Decreased abundance of S. putrefaciens and Vibrio sp. in 

gut 

Short chain fructo-oligosaccharide Common carp (Cyprinus 

carpio) 

No effect on total viable counts of heterotrophic aerobic 

bacteria in gut 

Increased abundance of lactic acid bacteria 

(Hoseinifar et 

al., 2016b) 

Fructo-oligosaccharide (FOS) Common carp (Cyprinus 

carpio) 

Increased abundance of total heterotrophic bacterial 

population and lactic acid bacteria  

(Hoseinifar et 

al., 2014) 

Chitosan Gibel carp (Carassius 

gibelio) 

Decreased abundance of pathogen bacteria A. veronii  

Improved Cellulomonas hominis, Bacillus oceanisediminis 

and two uncultured bacterium species 

(Chen et al., 

2014) 
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Figure 

 

Figure 1. Illustration of bacterial composition of pond water and sediment as well as skin and intestine of common carp, cultured under polyculture (consisting 
of Catla (Catla catla), Rohu (Labeo rohita), Mrigal (Cirrhinus mrigala), Silver carp (Hypophthalmichthys molitrix), Grass carp (Ctenopharyngodon idella) and 
Common carp (Cyprinus carpio)) and factors affecting them. 


