
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Explainable Deep Learning to Classify
Royal Navy Ships
BART BAESENS1,4, AMY ADAMS3, RODRIGO PACHECO-RUIZ3, ANN-SOPHIE BAESENS1,
and SEPPE VANDEN BROUCKE.2
1Research Centre for Information Systems Engineering (LIRIS), KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium (e-mail: Bart.Baesens@kuleuven.be;
AnnSophie.Baesens@yahoo.com)
2Department of Business Informatics and Operations Management, UGent, Tweekerkenstraat 2, 9000 Gent, Belgium (e-mail: Seppe.vandenBroucke@UGent.be)
3National Museum of the Royal Navy, HM Naval Base (PP66), Portsmouth, PO1 3NH, UK (e-mail: Amy.Adams@NMRN.org.uk;
Rodrigo.Pacheco-Ruiz@NMRN.org.uk)
4School of Management, University of Southampton, 2 University Road, Highfield, Southampton, SO17 1BJ, UK

Corresponding author: Bart Baesens(e-mail: Bart.Baesens@kuleuven.be).

ABSTRACT We research how deep learning convolutional neural networks can be used to to automatically
classify the unique data set of black-and-white naval ships images from the Wright and Logan photographic
collection held by the National Museum of the Royal Navy. We contrast various types of deep learning meth-
ods: pretrained models such as ConvNeXt, ResNet and EfficientNet, and ConvMixer. We also thoroughly
investigate the impact of data preprocessing and externally obtained images on model performance. Finally,
we research how the models estimated can be made transparent using visually appealing interpretability
techniques such as Grad-CAM. We find that ConvNeXt has the best performance for our data set achieving
an accuracy of 79.62% for 0-notch classification and an impressive 94.86% for 1-notch classification. The
results indicate the importance of appropriate image preprocessing. Image segmentation combined with soft
augmentation significantly contributes to model performance. We consider this research to be original in
several aspects. Notably, it distinguishes itself through the uniqueness of the acquired dataset. Additionally,
its distinctiveness extends to the analytical modeling pipeline, which encompasses a comprehensive range
of modeling steps, including data preprocessing (incorporating external data, image segmentation, and
image augmentation) and the use of deep learning techniques such as ConvNeXt, ResNet, EfficientNet,
and ConvMixer. Furthermore, the research employs explanatory tools like Grad-CAM to enhance model
interpretability and usability. We believe the proposed methodology offers lots of potential for documenting
historic image collections.

INDEX TERMS Convolutional Neural Networks; Deep Learning; Explainability; Digitised Archives;
Image Classification; Royal Navy

I. INTRODUCTION

THE documentation and management of extensive digital
or digitised archives pose a significant challenge for

museums, archives, and historical collections worldwide.
The field of Artificial Intelligence (AI) presents numerous
novel applications that have the potential to revolutionise
practices in digital archiving and collection documentation
[1], [2]. In particular, as highlighted by [3], AI offers archival
practitioners a framework to redefine, advocate, and delineate
their expertise in digital archiving. The advent of deep learn-
ing (DL) techniques, coupled with advancements in graphical
processing unit (GPU) acceleration has ushered in various
innovative approaches for digital documentation.

DL techniques represent mathematical models inspired

by the functioning of the human brain, designed to learn
intricate, generalisable patterns from data. This understand-
ing aims to unearth semantic meanings and reveal latent,
intriguing connections among data elements [4]–[6]. The
insights gained can be effectively leveraged for improved
documentation, cataloging, clustering, classification, enrich-
ment, labeling, or augmentation of structured and unstruc-
tured information, including digitised or digitally born texts,
images, audio, and video materials.

This paper is based on the analysis of a unique dataset of
digitised images of British Royal Naval ships obtained from
the National Museum of the Royal Navy, and complemented
with publicly available images. Each image was subjected
to meticulous manual labeling into various predefined ship
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types or categories, such as submarines, cruisers, destroyers,
carriers, and more. Subsequently, deep learning convolu-
tional neural networks (CNNs) were trained to autonomously
recognise these classifications based on image attributes [7],
[8].

The goal of the trained CNNs is to assist the National
Museum in documenting, labeling, and organising more ef-
ficiently their extensive and ever-expanding archive of his-
toric ships images. As such, and to enhance performance,
various preprocessing techniques were explored, including
image segmentation for automated removal of non-essential
image components and image augmentation to generate new
synthetic images from existing ones, thus enhancing general-
isation performance. Recognising that CNNs are inherently
complex, mathematical black-box models, we also shed light
on their internal workings through explanatory tools. These
visual explanations help clarify why a ship image was cat-
egorised into a particular class (e.g., cruiser or destroyer),
aiding researchers on validation and labeling tasks, especially
when the DL system exhibits uncertainty. This newfound
clarity is also expected to contribute to more efficient image
searches within the colossal image databases maintained by
the National Museum, where many search queries are concise
and often relate to a ship’s categorisation (e.g., destroyer or
cruiser).

From a scientific perspective, this paper makes several
noteworthy contributions. First, utilising a unique set of
labeled digital ship images, it introduces a robust and repro-
ducible empirical methodology that combines cutting-edge
image preprocessing with deep learning CNNs, enhanced by
explanatory facilities for improved interpretation. Second, it
empirically evaluates the interplay between image segmenta-
tion and augmentation as critical preprocessing activities to
enhance the performance of the estimated deep learning im-
age classification models. Lastly, the paper offers its Python
and TensorFlow Keras-based code as open-source, with the
potential for utilisation by collection, archive, or document
managers in other digital collections settings. The insights
gained are easily transferable to other image classification
settings and digital collections.

The structure of this paper is as follows: Section II pro-
vides a comprehensive literature review of DL applications
in documentation and ship classification. Section III details
the origin of our ship image dataset, while Section IV covers
data preprocessing activities. In Section V, we elaborate on
the configuration and training of the deep learning models.
Section VI presents the empirical findings, and in Section
VII, we discuss methods to enhance the transparency and
comprehensibility of the estimated deep learning models.
Finally, Section VIII wraps up the paper.

II. LITERATURE REVIEW
Since deep learning is a relatively recent research discipline,
with new techniques being continuously developed and/or
perfected, some preliminary research has already been re-
ported in the literature for documentation purposes. It’s worth

noting that deep learning techniques have demonstrated their
prowess in handling substantial volumes of unstructured data.
In what follows, we give some examples of previous research
on using DL for classifying text, image, and/or audio data.
Special emphasis is placed on convolutional neural networks
(CNNs) and their application in ship image classification, as
this forms the core focus of our study.

In the realm of text data, commonly applied deep learning
(DL) techniques include transformers and bidirectional long
short-term memory (Bi-LSTM) neural networks. [9] lever-
aged a Bi-LSTM deep learning neural network for annotating
a dataset drawn from tourism and cultural heritage docu-
ments, including sources like Booking.com and TripAdvisor.
In a comprehensive and unbiased evaluation of deep learning
methods for text classification, [10] established that, on the
whole, Bi-LSTMs were ranked as the top-performing ap-
proach, although their superiority over simpler methods like
logistic regression was not statistically significant.

Convolutional Neural Networks (CNNs) represent the pre-
dominant deep learning (DL) technique for image analysis
[8], [11]. A CNN operates as a feedforward neural network
designed to extract image features by applying filters, also
referred to as kernels or feature detectors, to the image. More
specifically, each filter represents a particular image pattern,
which is systematically traversed over the image’s pixels,
while convolution operations amalgamate the image input
and the filter to generate a set of acquired features. As the net-
work advances through its layers, the features evolve, becom-
ing progressively more intricate and meaningful. Essentially,
CNNs execute a hierarchical decomposition of the image,
commencing with fundamental features such as lines, edges,
contours, corners, and colors, before progressing to more
complex elements like shapes (rectangles, circles, ellipses,
etc.), and ultimately recognizing high-level concepts such as
a submarine’s fin, a destroyer’s gun turret, or a carrier’s flight
deck in the deepest layers. Popular CNN implementations,
listed in reverse chronological order, include ConvNeXt [12],
ConvMixer [13], EfficientNet [14], DenseNet [15], ResNet
[16], GoogLeNet [17], VGG [18], and AlexNet [19]. These
CNN architectures typically vary in terms of their network
architecture, such as the number of processing layers, the
types of filters employed, the convolution operations, the
training methods, and the estimated number of parameters,
which can often extend into the millions.

All the previously mentioned CNN variants have under-
gone pretraining using publicly accessible datasets, such as
the ImageNet database, which boasts a vast repository of
14,197,122 annotated images spanning 1000 distinct classes,
each aligned with the WordNet hierarchy (e.g., goldfish,
cowboy boot, broom, container ship, etc.) [20]. These learned
representations or image features can subsequently be har-
nessed in a transfer learning framework for diverse image
classification tasks, mirroring our approach in this paper.
In other words, this entails the construction of a new CNN
model by capitalizing on the pre-trained features from, for
instance, a ConvNeXt or EfficientNet model, which was
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originally trained on the ImageNet database. The model is
then fine-tuned to adapt to the specific classification task
at hand by incorporating additional network layers. With
regards to our study, we opt for the most recent CNN variant,
ConvNeXt, given its empirically demonstrated superior per-
formance, as evidenced in [14]. In our subsequent analysis,
we compare it against EfficientNet, ResNet and ConvMixer,
all of which have also showcased commendable performance
in prior research.

Ships can be categorised based on diverse sources of input
data. One such example is acoustic signals captured through
hydrophones, which record the radiated noise emitted by
ships. These signals or audio streams can be readily trans-
formed into spectrogram images, presenting a time-varying
visual depiction of the frequency spectrum. Subsequently,
CNNs can be employed for the analysis of these spectro-
gram images. [21] adopted this approach, utilizing CNNs
including AlexNet, ResNet, and DenseNet, to classify ships
as inbound or outbound based on audio signals collected from
hydrophones. Another option involves the use of Synthetic
Aperture Radar (SAR) data obtained from emitted radio
waves. This data source was leveraged by [22], who em-
ployed CNNs to predict ship presence, position, length, and
type. The utilization of optical remote sensing data for ship
detection and classification has been explored and surveyed
by [23]. In addition, [24] used satellite imagery data sourced
from Kaggle to classify images as either containing ships or
not, encompassing scenarios like open sea, clouds, or land.
This task was tackled using both traditional AI methods and
CNNs, including ResNet and DenseNet.

Images are a key source in the study of contemporary and
historic naval ships, including in the study of shipwrecks
as archaeological sites. In maritime archaeology the doc-
umentation of shipwreck sites currently relies heavily on
the production and documentation of high definition (HD)
and ultra high definition (UHD) imagery, including the use
of 3D and 4D photogrammetry [25]. In some cases, the
documentation of deep sea sites depends exclusively on the
use of robotic generated imagery where conventional diving
methods, such as diver based photography or acoustic 3D
surveys from hull mounted survey vessels, cannot be utilised
[26]. The use of automation and computational analysis has
proven to be a significant driving force in the development
of new research on such sites and opens another new door
for the implementation of AI technologies in the research of
these sites as described in [27] and [28].

With regards to contemporary ships and vessels [29] em-
ployed ResNet and AlexNet to analyse the publicly acces-
sible Maritime Vessel (MARVEL) dataset. This extensive
collection comprises 140,000 distinctly labeled maritime ves-
sel images, spanning 26 diverse classes that encompass both
civilian and military ships. In a comparative exploration, [30]
introduced a ResNet extension and demonstrated its superior
performance when contrasted with AlexNet, VGG, ResNet,
and GoogLeNet. Their analysis encompassed a dataset com-
prising 8,932 images, categorizing ships into five classes, en-

compassing both civilian and non-civilian categories, along-
side the MARVEL dataset. [31] also adopted CNNs for ship
classification. Their approach commenced with the training
of an AlexNet model, distinguishing between three classes:
aircraft carriers, warships, and civilian ships. The dataset
used for this phase comprised 250 images per class. Subse-
quently, a GoogLeNet model was trained to classify warships
into subcategories, including coastal combat ships, shipyard
transport ships, amphibious assault ships, submarines, and
destroyers using a second data set containing 240 images for
each class. The authors effectively showcased the efficacy
of their method for ship image classification. [32] utilized
a VGG model for a dataset of 2,400 images, classifying
ships into four categories, encompassing both military and
civilian vessels. They highlighted how data augmentation and
fine-tuning of the VGG architecture contributed to improved
model performance. [33] leveraged VGG, ResNet, DenseNet,
AlexNet, and various other CNN variants for ship classifi-
cation. Their self-collected dataset comprised 2,635 internet
images, categorised into eight target categories, covering
both civilian and non-civilian ships. Finally, [34] achieved
success with AlexNet, VGG, and ResNet on a dataset consist-
ing of 867 images, focusing on the classification of civilian
ships into three categories.

Our study makes several contributions to the existing
body of literature. Firstly, we adopt the recently introduced
ConvNeXt method for the classification of military ships
and provide a comparative analysis against a plain vanilla
CNN, ResNet, EfficientNet and a ConvMixer model. Next,
we conduct an in-depth exploration of the effects and in-
terplay of data pre-processing techniques, including image
segmentation and augmentation, on the performance of the
CNN models under examination. Finally, our study goes
beyond mere performance benchmarking by incorporating a
visual explanation that elucidates the specific image elements
upon which the estimated CNNs concentrate to make their
classifications.

III. DATA COLLECTION
The bulk of the data set originated from the Wright and
Logan collection held by the National Museum of the Royal
Navy. Wright and Logan was a Portsmouth based photog-
rapher, who specialised in portraits of British Royal Naval or
HMS (Her/His Majesty’s ship) warships entering and leaving
the key naval base in Portsmouth Harbour. All 3,533 images
were black and white and taken between 1924 and 1998.
Some example images are shown in Figure 1.

We enriched the data with 786 images scraped from https://
www.naval-history.net/ and 1,324 images scraped from https:
//uboat.net/ using Python’s Beautiful Soup package [35].

The unique image collection underwent a meticulous man-
ual labeling process, facilitated by human input. Specifically,
we engaged four labellers, who collectively dedicated ap-
proximately one man-month to the task by adding the ship
name into the filename. During this process, images falling
under certain criteria were excluded from the dataset. These
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FIGURE 1: Example images of Wright and Logan collection (1924-1998). Top Left: HMS Daring destroyer (1932); Top Right:
HMS Perseus submarine (1932); Bottom Left: HMS Hood battlecruiser (1918); Bottom Right: HMS Hermes carrier (1953).

included unclear images, those featuring multiple ships,
images with intricate backgrounds (such as depictions of
harbors, zeppelins, flying helicopters or jets, dense smoke
clouds emanating from ship funnels, or images with ex-
tensive textual elements, like postcards), images portraying
heavily damaged ships (such as HMS Vindictive following
the Zeebrugge raid), and images offering glimpses of ship
interiors. To facilitate the labeling procedure, we developed
a Python web application, as illustrated in Figure 2. The
labeling itself drew upon insights and guidance from curators
at the National Museum, along with reference sources such
as "Jane’s Fighting Ships" [36], "Conway’s All the Fighting
Ships" books, and Wikipedia, as needed.

The data collection process presented a couple of notewor-
thy challenges. Firstly, ship names are reused in the Royal
Navy. For instance, HMS Churchill served as a destroyer
during the Second World War, but the same name was later
also used for a nuclear submarine commissioned in 1970.
Secondly, certain ship classifications, such as submarines and
aircraft carriers, are relatively recognisable; however, early
developments of these classes are more complicated. For
example, the earliest carriers were typically just battleships
with small runways constructed above the ship’s forecastle
as illustrated for HMS Barham in Figure 3. Furthermore,
some ship types are subject to change, often being refitted
for alternative purposes. An example of this transformation
is the conversion of approximately 23 destroyers into type 15

frigates between 1949 and 1957 (e.g., HMS Relentless, HMS
Ulster, and HMS Wakeful). The Wright and Logan collection
includes pictures of the same ship both before and after refit-
ting. Pennant numbers typically serve as a reliable indicator
of a ship’s type, with designations like "F" for frigates, "M"
and "J" for minesweepers, "D," "H," and "R" for destroyers
and "C" for cruisers. However, it’s worth noting that their
reliability is not perfect. For instance, HMS Ashanti was a
destroyer with pennant number F51. Additionally, pennant
numbers starting with "L" may indicate both a landing ship,
like HMS Parapet L4039, and a destroyer, as exemplified by
HMS Cossack L03, which also held the designations F03 and
G03 at different points in time. Moreover, many ships lacked
visible pennant numbers, making their identification a more
intricate process.

In what follows, we elaborate on the data prepro-
cessing, DL model configuration and training, and re-
sults. We note that the code and sample data for all
experiments are publicly available on https://github.com/
Macuyiko/royal-navy-ship-identification.

IV. DATA PREPROCESSING

To facilitate the training of deep learning models, we uni-
formly resized all images to a maximum width and height
of 720 pixels, a resource-intensive task, using Python’s
PIL imaging library (https://pypi.org/project/Pillow/). This
resizing was particularly demanding due to some of the
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FIGURE 2: Illustration of Python labelling app picturing HMS Ark Royal (1990) being labelled as a carrier.

FIGURE 3: Plane flying off turret of HMS Barham (∼ 1918)
(Courtesy National Museum of the Royal Navy).

original TIFF files being quite large, with sizes reaching
up to 35 megabytes, and occasionally, not well-formatted.
Following a thorough examination of the class distribution
and in consultation with the National Museum’s curators,
we devised deep learning models for classifying images into
the following categories: battleship, carrier, corvette, cruiser,
destroyer, frigate, minesweeper, submarine, and a residual
category which was left out during training. The residual
category included, among others, landing ships, repair ships,
amphibious assault ships, sloops, survey vessels, trawlers,
and depot ships. This category was omitted from the training
due to the scarcity of observations, making any meaningful
analytical discrimination unfeasible. The distribution of tar-
get classes for both the internal and external data is illustrated
in the histogram presented in Figure 4, with destroyer being
the most prevalent class and corvette the least represented.

In the process of training DL models, it is imperative to
allocate a distinct, independent test set to facilitate model
validation. This step is vital as it ensures that we obtain

FIGURE 4: Histogram of target class distribution for internal
and external data.

an impartial and fair assessment of model performance. In
essence, all DL models undergo estimation on a training set,
where various forms of data preprocessing can be explored.
Subsequently, these models are evaluated using an entirely
separate test set. In our case, we created our test set by
randomly selecting 20% of the images obtained from the
National Museum. As for the training set, we estimated
models using the original remaining 80%. Additionally, we
investigated the influence of augmenting the training set with
externally obtained images on model performance.

To enhance the performance of the DL models, we
implemented two image preprocessing techniques. The
first involved the utilization of the Segment Anything
(SAM) model, developed by Meta AI, accessible at https:
//segment-anything.com/, as introduced by [37]. SAM is
an AI model renowned for its ability to efficiently remove
irrelevant objects from images using a simple point-and-click
mechanism. It stands as a fully pretrained and promptable
AI model, offering zero-shot generalisation capabilities to

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3346061

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://segment-anything.com/
https://segment-anything.com/


Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

previously unseen images, making it a valuable asset for
image classification. We harnessed SAM to automatically
eliminate elements like the skyline, water, and harbor objects
by applying click-based masks at the top, middle, and bottom
portions of each image. This additional preprocessing step
was designed to encourage the deep learning model to con-
centrate solely on ship characteristics during its classification
process. The outcomes of applying SAM to images of HMS
Agincourt, HMS Acasta, and HMS Repulse are portrayed in
Figure 5. It’s essential to note that while SAM filtering is ben-
eficial, it may not always deliver perfect results, and traces of
the background could persist in the processed images as can
be seen in the figure.

Another preprocessing technique we explored was im-
age augmentation. The fundamental concept behind this ap-
proach is to generate synthetic images derived from existing
ones, thereby expanding the training dataset and affording
convolutional neural networks more opportunities to discern
and generalize meaningful patterns from a relatively limited
set of labeled images. A variety of image augmentation op-
erations can be considered, including but not limited to hori-
zontal flipping, cropping, blurring, sharpening, and resizing.
Other popular augmentation techniques involve introducing
elements such as spatter, Gaussian noise, Gaussian blur,
or even simulating fog within the image. It’s worth noting
that these augmentation operations are typically applied in
combination to create a new, augmented image.

In our research, we used the well-established Albumenta-
tions Python library, accessible at https://albumentations.ai/,
to facilitate fast and versatile image augmentation during the
training process. Figure 6 presents an illustrative example
using the destroyer HMS Capel. On the left, you can ob-
serve the original image, while on the right, there are four
augmented images generated through these operations.

In our initial experiments, we observed that augmenting
the segmented images often led to a degradation in perfor-
mance. A closer examination unveiled that this decline was
primarily attributable to several augmentations introducing
additional non-white pixels, such as spatter, fog, blur, noise,
within the previously masked or white areas resulting from
the segmentation. To address this issue, two potential solu-
tions were considered. The first approach involved applying
augmentations to the images before performing the image
segmentation during the model training process. Regrettably,
this method proved to be excessively resource-intensive and
non-scalable. Consequently, we adopted an alternative strat-
egy, where we exclusively considered safe augmentations,
such as horizontal flipping, sharpening, rotation, and image
resizing. These augmentations were chosen for their non-
interference with the white masks, ensuring that only the
ship’s structure underwent alterations. Figure 7 presents a
clear example of these safe augmentations as applied to the
battleship HMS Agamemnon. You can clearly see that the
white masks remain and only the ship’s corpus is undergoing
changes.

V. DEEP LEARNING MODEL CONFIGURATION AND
TRAINING
For our analysis, we employed a range of CNN variants,
including a plain vanilla CNN model built from scratch,
ConvNeXt, ResNet, and EfficientNet. The latter three mod-
els were employed within a transfer learning framework,
wherein their filters and feature maps were pre-trained on
the ImageNet dataset. Subsequently, additional layers were
introduced, which were initially trained independently and
fine-tuned on our ship image classification dataset. In the
case of ResNet, we augmented the learned features with a
fully connected output layer, often referred to as a dense
head, which played a pivotal role in the final classification
task. The classification was achieved through the utilisation
of a softmax activation function [4]. For EfficientNet and
ConvNeXt, we introduced a two-dimensional global average
pooling layer, which calculated the average values of each
feature map. These values were then channeled into a dense
head, a structure illustrated in Figure 8.

Due to the highly parameterised nature of DL techniques,
there’s a susceptibility to fitting noise or idiosyncrasies
within the data, a phenomenon often referred to as overfitting.
To mitigate this issue, a commonly employed approach is the
utilisation of dropout, which involves randomly deactivating
specific network nodes during training, determined by a
predefined dropout probability, as outlined in Table 1. Given
the multiclass classification nature of our task, with eight
distinct targets, all networks are inherently trained to max-
imize the log likelihood of the data, technically referred to
as minimising a cross-entropy error objective [4]. However,
it’s worth noting that this objective function sometimes falls
short in prioritising challenging-to-classify examples. This
challenge becomes particularly evident in imbalanced class
settings, as observed here with a notably dominant destroyer
class and a rare corvette class. To address this concern,
alternative objective functions like focal loss have been intro-
duced in the literature [38]. In our preliminary experiments,
we explored both the traditional cross-entropy loss and focal
loss, employing default parameter settings for each of the DL
techniques. The outcomes of these experiments are detailed
in Table 1, highlighting the configurations that delivered the
best performance.

All CNN models in our experiments were trained with the
Adam (Adaptive Moment Estimation) optimiser responsible
for determining the DL model parameters, such as filters
and feature maps, by means of a gradient descent procedure.
This process involves multiple sweeps, often referred to
as epochs, through the training data. During each epoch,
the optimiser takes downward steps on the error surface
according to a predefined learning rate. Our chosen learn-
ing regime encompassed three distinct phases: three epochs
with a learning rate of 0.01, followed by ten epochs with
a learning rate of 0.0001, and concluding with 30 epochs
using a learning rate of 0.000001. The rationale behind
this schedule was to initiate the training with larger steps,
promoting substantial error reduction in the early stages, and
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FIGURE 5: Removing skyline, water and harbour objects from ship images using SAM. From left to right: HMS Agincourt
(1913), HMS Acasta (∼ 1912) and HMS Repulse (∼ 1968).

FIGURE 6: Illustration of augmentation for HMS Capel (1942).

FIGURE 7: Illustration of safe augmentation for HMS Agamemnon (1906).

FIGURE 8: Illustration of pretraining (HMS Vanguard, 1913).
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then gradually decrease the step size to avoid overshooting
good (local) minima on the error surface. In scenarios where
a pre-trained backbone model, such as ConvNeXt, ResNet,
or EfficientNet, was incorporated, the initial three epochs
involved freezing the backbone model. Only the dense head
or fully connected output layer was actively trained during
this period. Subsequently, the complete model was unfrozen,
allowing for further fine-tuning to align with the specifics of
the dataset at hand.

To evaluate the potential contribution of external images
during training, we conducted experiments wherein the initial
15 epochs out of the last 30 included the external images,
while the subsequent 15 epochs exclusively involved the
National Museum’s dataset. The outcome of this investi-
gation, revealing the optimal configuration, is presented in
Table 1. Notably, in most instances, the inclusion of external
images did not confer any discernible performance benefits.
This outcome is likely attributed to factors such as lower
resolution and specific subject composition in the external
images.

Table 1 summarises the optimal parameterisation options
for each of the DL techniques considered.

VI. RESULTS
Figure 9 provides a visual representation of the performance
of the various DL techniques outlined in Table 1. The 0-notch
performance accuracy represents the model’s accuracy when
its prediction corresponds to the class with the highest output
probability, a principle commonly known in the machine
learning literature as ’winner-takes-all.’ The 1-notch and 2-
notch accuracies, on the other hand, measure whether the true
target lies within the top two or three most likely predictions
generated by the DL model. As expected, the plain vanilla
CNN model yields the lowest performance across all accu-
racy metrics closely followed by the ConvMixer model. The
ConvNeXt model emerges as the top performer, achieving
impressive results with a 0-notch accuracy of 79.62%, a
1-notch accuracy of 94.86%, and a 2-notch accuracy of
97.77%. These results are particularly noteworthy, especially
when considering the challenge of classifying images into
eight distinct categories.

Table 2 displays the confusion matrix of the trained Con-
vNeXt model on the test set. Correct classifications appear
on the diagonal and are depicted in bold face. Off diag-
onal elements correspond to misclassification errors. Let’s
now summarize the confusion matrix in terms of precision
and recall. Precision assesses the accuracy of a prediction,
while recall gauges its completeness. For instance, we can
calculate the precision for cruisers by dividing the correct
predictions by the corresponding column sum, which results
in 92/(23+2+2+92+18+2+4) = 64.34%. This means that we
can have 64.34% confidence that when the model predicts
a cruiser, it is correct. The recall for cruisers is calculated
by dividing the correct predictions by the corresponding row
sum, yielding 92/(5+1+92+2) = 92%. This figure indicates
that 92% of the actual cruisers are correctly classified as

FIGURE 9: 0-, 1-, 2-notch accuracies of DL models.

cruisers.
It’s not surprising that submarines and carriers exhibit the

highest precision and recall, as they are relatively easy to
identify due to their distinctive architectural features. In fact,
we discovered that only one submarine was misclassified
as a carrier. Further examination revealed that this was the
HMS Truculent, as depicted in Figure 10. Its somewhat
unconventional design, characterized by an unusual fin and
armament, likely led the ConvNeXt model to misclassify it as
a carrier. Corvettes, on the other hand, rank among the lowest
in terms of both precision and recall, as they are challenging
to differentiate from other vessel types, such as frigates.

FIGURE 10: Submarine HMS Truculent (1946) erroneously
classified as a carrier.

VII. INTERPRETING DEEP LEARNING MODELS
Deep learning models are widely recognised for their inher-
ent complexity and opacity, rendering them challenging to
interpret due to the intricate mathematical transformations
they employ to map input data (such as ship images) to
output results (like ship classification). The integration of
explanatory mechanisms into artificial intelligence models,
particularly deep learning, falls within the realm of Explain-
able AI (XAI) [39]–[41]. The incorporation of XAI tech-
niques into image classification models offers a multitude of
advantages. Foremost among these benefits is the cultivation
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Technique Transfer External Focal Key Parameters
Learning Data Loss

Basic CNN No Yes Yes 2 convolution layers, 2 dense layers, dropout=40%, dense head
ConvNeXt Yes No No 2D global average pooling layer, dropout=40%, dense head
EfficientNet Yes No Yes 2D global average pooling layer, dropout=40%, dense head
ResNet Yes No No dropout=40%, dense head
ConvMixer No Yes Yes 2D global average pooling layer, dropout=40%, dense head

TABLE 1: Optimal DL method configurations.

Predicted
BS CAR CORV CRUIS DEST FRIG MINE SUB

Actual

BS 54 0 0 23 0 1 0 0
CAR 0 41 0 2 0 0 0 0
CORV 0 0 4 2 0 3 0 0
CRUIS 5 1 0 92 0 2 0 0
DEST 0 0 2 18 134 26 7 0
FRIG 2 0 0 2 8 63 8 0
MINE 0 0 0 4 1 1 45 0
SUB 0 1 0 0 0 0 0 32

TABLE 2: Confusion matrix contrasting actual versus predicted classes. Note: BS = Battleship, CAR = Carrier, CORV =
Corvette, CRUIS = Cruiser; DEST = Destroyer, FRIG = Frigate, MINE = Minesweeper, SUB = submarine.

Precision Recall
Battleship 88,52% 69,23%
Carrier 95,35% 95,35%
Corvette 66,67% 44,44%
Cruiser 64,34% 92,00%
Destroyer 93,71% 71,66%
Frigate 65,63% 75,90%
Minesweeper 75,00% 88,24%
Submarine 100,00% 96,97%

TABLE 3: Precision and Recall.

of trust among decision-makers, in this case curators and
archivists, within our application. Moreover, it equips them
with valuable guidance when verifying classifications, espe-
cially in situations where the deep learning model exhibits
uncertainty, possibly due to factors like image distortion
or low resolution. By drawing upon prior explanations of
images, XAI informs decision-makers about the key elements
the model focused on, clarifying its decision-making process.

Various techniques have been proposed to shed light on
the internal functioning of a DL model trained for image
classification. For instance, [42] and [43] introduced model-
agnostic methods for understanding image classifications
using counterfactual explanations. [44] introduced an uncer-
tainty quantification-based framework to interpret DL deci-
sions for image classification. [45] surveyed more than 200
papers using XAI methods for deep learning-based medical
image analysis. In this study, we use Gradient-weighted
Class Activation Mapping (Grad-CAM) [46] to explain the
ConvNeXt classifications since it yields very intuitive visual
explanations of the classifications made which largely con-
tribute its success. Grad-CAM uses the gradients of any target
class (e.g., cruiser, submarine, carrier, etc), flowing into the
final convolutional feature map to produce a coarse locali-
sation map highlighting the important image regions which

are key to predict the target. In other words, large gradients
correspond to image segments which highly contribute to the
final classification. Besides its attractive visualisation, one of
its key benefits is that it’s applicable to a wide variety of
CNN architectures, such as our ConvNeXt models. Figure 11
displays some examples of Grad-CAM heatmaps for some
of the ships in our data set made using Python’s grad-cam
package.

The Grad-CAM heatmap for HMS E11, a submarine
with a pivotal role in the Dardanelles battle (1915-1916),
clearly highlights the essential parts of the sub. Notably, the
emphasized regions align seamlessly with the submarine’s
fin and sections of its casing, which are the standard visi-
ble areas of a submarine when it is surfaced. Adjacent to
this, the heatmap for the HMS Ark Royal aircraft carrier
highlights its distinctive ski-jump ramp. The bottom left
of Figure 11 showcases the plot for the HMS Gavinton
minesweeper, where the conspicuous highlights clearly de-
marcate the ship’s minesweeping equipment, positioned at
the stern. On the bottom right, we observe the heatmap for
the HMS Dreadnought battleship, presenting a discernible
edge detection filter extending up to the ship’s top antenna.
These visual representations vividly underscore the enhanced
explanatory capacity of Grad-CAM heatmaps in demysti-
fying intricate image classifications achieved through deep
learning. They offer a visually intuitive and accessible means
of comprehension for human decision-makers, in this case
curators and archivists.

VIII. CONCLUSION
In this paper, we conducted a comprehensive exploration of
deep learning techniques for warship classification, utilising
a distinct and exclusively obtained dataset from the National
Museum of the Royal Navy. Specifically, our investigation
involved the development of an image classification sys-
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FIGURE 11: Example Grad-CAM images. Top Left: HMS E11 submarine (∼ 1914); Top Right: HMS Ark Royal carrier (1993);
Bottom Left: HMS Gavington minesweeper (∼ 1952); Bottom Right: HMS Dreadnought battleship (1906).

tem using pre-trained convolutional neural networks such
as ConvNeXt, ResNet, and EfficientNet, juxtaposed with
traditional CNNs and ConvMixer models. Our findings, in
terms of classification performance, revealed ConvNeXt as
the standout performer, achieving an accuracy of 79.62% for
0-notch classification and an impressive 94.86% for 1-notch
classification.

We delved into various data preprocessing strategies to en-
hance performance. Interestingly, the inclusion of externally
acquired images did not yield discernible benefits, while
image segmentation, by effectively eliminating irrelevant
image components, yielded positive effects. Additionally,
the application of safe augmentations, such as horizontal
image flipping, sharpening, rotation, and resizing, proved
to be advantageous. Furthermore, we employed Grad-CAM
to demonstrate how ConvNeXt’s complex, opaque models
could be rendered more interpretable for archivists, curators
and documentation managers, offering visually appealing
insights which can be nicely deployed into a decision support
system.

Our study presents a myriad of avenues for future research.

We aim to expand our dataset further through ongoing digiti-
sation efforts at the National Museum of the Royal Navy. Ad-
ditionally, a more fine-grained classification, encompassing
more diverse ship types, such as landing ships, repair ships,
amphibious assault ships, sloops, survey vessels, trawlers,
and depot ships, is a promising area for exploration. While
involving more resources, human labellers may contribute
to improved image segmentation. Beyond Grad-CAM, we
encourage research into other explanatory methods, such as
counterfactuals. Ultimately, we believe that our proposed
methodology can readily find applications in various other
image classification domains.
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