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Integrated global assessment of the natural 
forest carbon potential

 
Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land 
use and climate have considerably reduced the scale of this system1. Remote-sensing 
estimates to quantify carbon losses from global forests2–5 are characterized by 
considerable uncertainty and we lack a comprehensive ground-sourced evaluation to 
benchmark these estimates. Here we combine several ground-sourced6 and satellite- 
derived approaches2,7,8 to evaluate the scale of the global forest carbon potential 
outside agricultural and urban lands. Despite regional variation, the predictions 
demonstrated remarkable consistency at a global scale, with only a 12% difference 
between the ground-sourced and satellite-derived estimates. At present, global forest 
carbon storage is markedly under the natural potential, with a total deficit of 226 Gt 
(model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C)  
of this potential is in areas with existing forests, in which ecosystem protection can 
allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in 
regions in which forests have been removed or fragmented. Although forests cannot 
be a substitute for emissions reductions, our results support the idea2,3,9 that the 
conservation, restoration and sustainable management of diverse forests offer 
valuable contributions to meeting global climate and biodiversity targets.

The continuing climate and biodiversity crises threaten ecosystems and 
human society10,11. Representing 80–90% of the global plant biomass1 
and much of Earth’s terrestrial biodiversity12, forests play a key role in 
both climate-change mitigation and adaptation. So far, humans have 
removed almost half of Earth’s natural forests13,14, and we continue to 
lose a further 0.9–2.3 Gt C each year (about 15% of annual human carbon 
emissions) through deforestation15. In response to these pressing chal-
lenges, international environmental initiatives such as the UN Decade 
on Ecosystem Restoration16, the Kunming-Montreal Global Biodiversity 
Framework17 and the Glasgow Leaders’ Declaration on Forests and Land 
Use18 have been established to reduce deforestation and revitalize eco-
systems. A key step in guiding such environmental targets is gaining 
a comprehensive understanding of the global distribution of existing 
forest carbon stocks, as well as the potential for carbon recapture if 
healthy ecosystems are allowed to recover3,19.

Remote-sensing observations have been central to the development 
of spatially continuous models of global forest biomass2,7,8. Building 
on these satellite-derived observations, a growing body of research 
has begun to use statistical extrapolations to estimate the potential 
extent of forest carbon stocks under natural conditions2–4. In recent 
years, refs. 3,4 combined remote-sensing forest-area estimates with 
coarse (ecoregion-level or country-level) carbon-storage estimates to 
approximate the global carbon potential. More recently, Walker et al.2 
used satellite-derived biomass estimates from natural forested regions 
to statistically extrapolate potential forest biomass in the absence of 
human disturbance. Despite yielding carbon potential estimates rang-
ing from 200 to 300 Gt C, inherent strengths and weaknesses of each 
approach have given rise to uncertainty across studies, with sugges-
tions that these estimates may be up to 4–5 times too high5,9,20,21. As a 
result, confidence in the carbon potential of forest ecosystems remains 
low. Without an independent, bottom-up assessment of global forest 

carbon potential built directly from ground-sourced data, evaluating 
and benchmarking these satellite-derived trends remains challeng-
ing. Overcoming this controversy requires consideration of various 
independent approaches to identify the extent of confidence and 
uncertainty across different land uses around the world.

Another key challenge in the development of potential biomass esti-
mates is how to approximate the ‘natural’ state of vegetation stocks. 
To do this, recent extrapolations of forest potential have been built 
from data collected in protected land3 or areas with minimal human 
disturbance2. However, a limitation of such approaches is that the 
focus on undisturbed areas restricts data to a few regions, which can 
bias results towards environments systematically avoided by humans. 
Protected areas may, for example, often exist in regions of marginal 
agricultural value or that possess unique ecological features22. An alter-
native approach to avoid such biases is to use observations across the 
full gradient of human disturbance and then use statistical techniques 
to remove the human footprint23. This method has proved successful 
in assessing the impact of historical human land use on soil carbon 
storage23. By allowing the inclusion of larger datasets across a broader 
range of environmental conditions, this approach has the potential 
to improve the statistical strength of biomass potential estimates. 
Consideration of the results from these different modelling datasets 
and approaches will be necessary to develop a comprehensive under-
standing of the global forest carbon potential.

Here we used a combination of independent modelling approaches 
to generate spatially explicit estimates of potential forest biomass 
worldwide. The first set of analyses was based on ‘bottom-up’ models  
built directly from ground-sourced (denoted GS) aboveground live 
biomass estimates from forest inventory data of the Global Forest  
Biodiversity initiative (GFBI)6. This was contrasted with three 
‘top-down’ models built from the latest satellite-derived (denoted SD),  

https://doi.org/10.1038/s41586-023-06723-z

Received: 15 July 2022

Accepted: 6 October 2023

Published online: 13 November 2023

Open access

 Check for updates

A list of authors and their affiliations appears at the end of the paper.

https://doi.org/10.1038/s41586-023-06723-z
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06723-z&domain=pdf


Nature | Vol 624 | 7 December 2023 | 93

high-resolution aboveground forest biomass maps, namely, the Euro-
pean Space Agency’ Climate Change Initiative (ESA-CCI)7, Walker et al.2 
and harmonized8 products. As our GS model operates independently 
from satellite information, it serves as a benchmark for evaluating the 
satellite-driven approaches. For all four datasets, we then approxi-
mated forest biomass under hypothetical natural conditions through 
two distinct methods: (1) representing human-disturbance indices as 
independent variables (model type 1) and (2) building models exclu-
sively using data from undisturbed areas (model type 2). We define 
‘natural’ forest potential as that which might exist in the absence of 
extensive anthropogenic degradation. Using each of these databases, 
we then scaled to total forest carbon potential using spatially explicit 
global estimates of root mass fraction24, soil carbon potential23 and 
biome-level estimates of dead wood and litter19. By contrasting these 
diverse approaches and comparing the results against previous evalu-
ations using a meta-analysis, we aimed to provide an integrated assess-
ment of the natural forest carbon potential.

Mapping the human impact on tree biomass
The underlying goal of our analysis was to investigate the impact of 
human land-use change on forest carbon stocks globally. Of course, 
many indigenous populations and local communities live in sustain-
able harmony with natural forests, often with beneficial impacts 
on ecosystem structure. However, we aimed to isolate the effects 
of extensive land-use change and anthropogenic degradation. To 
achieve this, we used a partial-regression approach in the first step, 
testing for the relationship between aboveground forest biomass 
and anthropogenic degradation, while controlling for the effects of  
climate, topography and soil conditions (Fig. 1d,g and Methods). This 
analysis revealed a consistent decline in tree carbon density along the 
anthropogenic degradation gradient across all biomes, evident in both 
the ground-sourced and the satellite-derived biomass observations  
(Fig. 1e,h).

Our GS models of potential forest biomass combine plot-level 
aboveground forest carbon measurements with spatially explicit 
data reflecting climate, soil conditions, topography, forest canopy 
cover and human disturbance, using random-forest machine-learning 
models to interpolate our biomass measurements across the globe 
(see Methods). In the first set of models (GS1), we estimated the global 
forest carbon potential in the absence of human activity by statisti-
cally accounting for the impact of human disturbance23, setting all 
variables directly reflecting human disturbance to zero. By contrast, 
the second set of GS models (GS2) extrapolated the global forest car-
bon potential from data derived from protected areas with minimal 
human disturbance2,3. To account for uncertainties in canopy-cover 
estimates from the forest inventory plots, we incorporated upper and 
lower boundaries of canopy cover in each pixel, resulting in a total of 
four GS models: GS1Upper, GS1Lower, GS2Upper and GS2Lower. We extended this 
combination of approaches to evaluate the biomass potential for each 
of the three satellite-derived biomass products (ESA-CCI, Walker et al. 
and harmonized). The models included either all terrestrial regions 
(SD1) or only regions with minimal human disturbance (SD2), using 
the same set of predictor variables as covariates included in the GS 
models. This resulted in a total of six SD models: SD1ESA-CCI, SD1Walker, 
SD1Harmonized, SD2ESA-CCI, SD2Walker and SD2Harmonized.

The full combination of models allowed us to disentangle the effects 
of deforestation and forest degradation on tree carbon losses while rep-
resenting data and model uncertainties. The total tree carbon potential 
was determined by summing the forest carbon that would naturally 
exist (1) outside existing forests (restoration potential) and (2) in exist-
ing, degraded forests (conservation potential). The resulting maps 
provide models of tree carbon potential under current (1979–2013) 
climate conditions in the hypothetical absence of human disturbance 
(Fig. 2a).

The coefficients of variation from a bootstrapping procedure showed 
that existing and potential carbon stocks were estimated with confi-
dence across all models. For 90–100% of the pixels inside the existing 
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Fig. 1 | The global distribution of tree carbon observations and the impact 
of human disturbances. a, Map of ground-sourced aboveground tree  
carbon observations (GFBI data; aggregated to 30-arcsec (1-km2) resolution). 
b, Satellite-derived ESA-CCI map of current aboveground tree carbon stocks 
(1-km resolution). c,f, Observed biome-level tree carbon densities in existing 
forests based on ground-sourced (c) and satellite-derived (f) data. d,g, Principal 
component analysis (top two principal components shown) of the eight human- 
activity variables either directly or indirectly reflecting human-caused forest 
disturbances or the lack thereof, such as land-use change, human modification, 
cultivated and managed vegetation and wilderness area, to detect the effect of 
human disturbance on tree carbon densities for the ground-sourced (d) and 
satellite-derived data (g). e,h, Partial regression of the global variation in forest 
carbon density along the human-disturbance gradient (represented by the first 
principal component of the eight human-activity variables; see panels d and g) 
for the ground-sourced (e) and satellite-derived data (h), controlling for 40 
environmental covariates. Relative carbon density is the observed carbon 
density divided by the global average.
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and potential forest area, the coefficients of variation were below 20% 
(Supplementary Figs. 1 and 2). A spatial-validation procedure (spatially 
buffered leave-one-out cross-validation (LOO-CV)), accounting for 
the potential effects of spatial autocorrelation on model-validation 
statistics, showed that the GS and SD models explained 70–77% or 
82–87% of the spatial variation in tree biomass, respectively (Sup-
plementary Table 1 and Supplementary Fig. 3). Furthermore, when 
specifically considering disturbed regions with human-disturbance 
levels ranging from 10% to 60%, the explained variation in tree biomass 
remained high (>60%), showing that our models effectively captured 

the variation of carbon stocks in regions with high human footprint 
(Supplementary Fig. 4).

Comparison between models
Despite discrepancies in certain regions, there was high overall agree-
ment between the ground-sourced and satellite-derived biomass esti-
mations at the global scale (average R2 of 0.72 at a spatial resolution 
of approximately 1 km2; Supplementary Figs. 5–9). This agreement 
translated to similar estimates of existing live tree biomass: 367 Gt C 
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in the absence of humans. a,b, The total living tree carbon potential of 600 Gt C 
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between current and potential tree carbon stocks, totalling 217 Gt C. e,f, The 
difference of tree carbon potential between the GS and SD models, subtracting 
the mean values of the six SD models from the mean values of the four GS 
models. Blue colours indicate that the GS models predict higher potential than 
the SD models, whereas red colours indicate the opposite. b,d,f, Latitudinal 
distributions (mean ± standard deviation) of the total tree carbon potential for 

the GS1, GS2, SD1 and SD2 models (b), the difference between current and 
potential tree carbon (d) and the difference of tree carbon potential between 
the GS and SD models (f). Maps represent the average estimates across all GS 
and SD models and are projected at 30-arcsec (about 1-km2) resolution. We 
show dryland and savannah biomes with stripes to denote that many of these 
areas are not appropriate for forest restoration. Where trees would naturally 
exist, they often exist far below 100% canopy cover, and restoration of forest 
cover should be limited to natural conditions.
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(model range = 334–400 Gt C) for the GS models and 394 Gt C (model 
range 355–445 Gt C) for the SD models (<7% difference). A compari-
son of existing biomass estimates across the latitudinal gradient also 
showed high inter-model consistency, with the GS model predicting 
slightly higher biomass values than the SD model for the equatorial 
zone and lower biomass values at high-latitude regions of the Southern 
Hemisphere (>40 °S) (Supplementary Fig. 6). On average, the models 
predicted that 69% of live tree biomass is stored in tropical regions, 
with temperate, boreal and dryland regions accounting for 18%, 11% 
and 1%, respectively (Supplementary Table 3).

Using all sets of GS and SD models, we could estimate the total 
potential living tree carbon that would exist in the absence of 
human influence. Our models projected considerable gains in 
the hypothetical natural forest biomass, with a mean estimate 
for total potential living tree carbon of 600 Gt C (model range =  
487–712 Gt C). The individual model estimates were as follows: GS1Upper =  
487 Gt C, GS1Lower = 595 Gt C, GS2Upper = 517 Gt C, GS2Lower = 647 Gt C,  
SD1Harmonized = 552 Gt C, SD1ESA-CCI = 578 Gt C, SD1Walker = 669 Gt C,  
SD2Harmonized = 596 Gt C, SD2ESA-CCI = 645 Gt C and SD2Walker = 712 Gt C 
(Figs. 3 and 4 and Supplementary Tables 2 and 3). The highest estimates 

were derived from the Walker et al.2 map, with the GS, harmonized 
biomass and ESA-CCI estimates being 19%, 17% and 11% lower, respec-
tively. Overall, we predict that, under current climate conditions, a 
further 217 Gt (model range = 153–267 Gt) of living tree carbon could 
potentially exist in the absence of humans (Fig. 5b). Of this potential, 
123 Gt C (99–153 Gt C) can be attributed to tropical regions, 55 Gt C 
(40–66 Gt C) to temperate regions, 14 Gt C (5–25 Gt C) to boreal 
regions and 25 Gt C (9–41 Gt C) to dryland regions (Supplementary  
Table 3).

Despite the broad consensus on the global top-down and bottom-up 
carbon potential estimates, considerable spatial variations were 
observed in the models. The SD models tended to predict higher 
potential carbon stocks than the GS models across 82% of pixels, par-
ticularly in South American tropical forests (Fig. 2e,f), suggesting pos-
sible overestimation of satellite-derived biomass potential in these 
regions. More ground-sourced data are needed from tropical areas 
to improve accuracy and balance the high sample sizes available for 
temperate regions7,25. On the other hand, the GS models predicted 
slightly higher potential than the SD models in subtropical regions 
and temperate forests of Europe.
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Fig. 3 | The living tree carbon potential estimated from the ground-sourced 
(GS1 and GS2) and satellite-derived (SD1 and SD2) models. a, Total estimated 
living tree biomass potential of the GS1, GS2, SD1 and SD2 models. Error bars 
represent the lower and upper boundaries based on the 5% and 95% quantiles 
from a bootstrapping procedure. Colours represent the different input datasets, 
that is, upper or lower canopy cover boundaries (GS models) and ESA-CCI, 
Walker et al.2 or harmonized (SD models). Light colours above white lines 
indicate the difference between current and potential tree carbon stocks.  

b, Meta-analysis showing literature estimates of living tree carbon potential 
based on ensemble models4,53,54, inventory data19,55–61 and mechanistic62–67 or 
data-driven2 models. The horizontal dashed line represents the average existing 
living tree carbon of 443 Gt C estimated in these publications. c, Differences 
between current and potential tree carbon stocks. d, Literature estimates for 
the difference between current and potential tree carbon stocks from ref. 4 
(ensemble models), refs. 1,53,58,61 (inventory data), refs. 63,64 (mechanistic 
models) and ref. 2 (data-driven models).
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We also show that the type 1 models (GS1 and SD1) predicted a 47 Gt C 
lower potential than the type 2 models (GS2 and SD2; Fig. 3). The focus 
on ‘undisturbed’ regions in the type 2 models may introduce bias by 
favouring regions with unusually high biomass. By contrast, the type 1 
models incorporated observations across the full human-disturbance 
gradient, potentially resulting in an underestimation of potential in 
regions with incomplete historic-disturbance data. Furthermore, we 
imposed a constraint on forest biomass potential by limiting forest 
growth to the potential tree cover range projected in a previous analy-
sis3. If this spatial constraint is removed to compare our model with 
the estimate of Walker et al.2 of 796 Gt C (without such constraints), 
our SD2Walker model generates a similar total potential of 760 Gt C (<5% 
difference). Thus, our mean estimate of Earth’s total potential living 
tree carbon of 600 Gt C from the ensemble of modelling approaches 
is probably conservative.

Total ecosystem carbon potential
To determine the total carbon storage potential of natural woody eco-
systems, we converted our estimates of living tree biomass into total 
ecosystem carbon stocks by incorporating global data on soil carbon23, 
dead wood and litter19. To represent the various sources of uncertainty 
(Fig. 4), we considered: (1) model type (types 1 and 2); (2) input data 
(upper and lower canopy cover boundaries for GS models; ESA-CCI, 
Walker et al. and harmonized for SD models); (3) aboveground biomass 
potential (bootstrapping); (4) tree root biomass; (5) dead wood and 
litter; and (6) soil carbon23. The GS and SD models exhibited similar 
uncertainty contributions globally, with 21.2% and 19.0% attributed 
to aboveground living tree biomass potential, 21.6% and 23.9% to dead 
wood and litter, 22.8% and 20.7% to aboveground biomass input data, 
15.0% to soil carbon, 12.1% and 11.8% to root biomass and 7.3% and 9.6% to 

model type. Soil carbon emerged as the primary source of uncertainty 
in regions with high latitudes and elevation. By contrast, aboveground 
biomass input data and dead wood and litter were the primary sources 
of uncertainty in dry and humid tropical areas, respectively (Fig. 4).

Considering all carbon pools together, we estimate that current 
forest carbon storage is 328 Gt (221–472 Gt) lower than the full natural 
potential (Fig. 5 and Table 1). Of this difference, 226 Gt C (151–363 Gt C) 
exist outside urban and agricultural areas, with 61% in forested regions 
in which sustainable management and conservation can promote car-
bon capture through the recovery of degraded ecosystems and 39% in 
regions in which forests have been removed (Table 1). These estimates 
highlight that forest conservation, restoration and sustainable man-
agement can help achieve climate targets by mitigating emissions and 
enhancing carbon sequestration.

Carbon potential in existing forests
Previous work has suggested that up to 80% of the world’s forests are 
secondary systems that have undergone anthropogenic degradation26. 
Our models corroborate these findings, revealing a considerable poten-
tial for carbon capture in existing forests by allowing these degraded 
ecosystems to regenerate to maturity. The difference between cur-
rent and potential ecosystem carbon stocks amounts to 139 Gt C 
(108–228 Gt C) in existing forests, representing 61% of the total dif-
ference when excluding urban and agricultural areas (Table 1). Of the 
total 139 Gt, 11 Gt (8%) can be attributed to biomass loss in existing 
forest plantations, in which restoring diverse ecosystems could lead 
to further carbon capture. The remaining 128 Gt can be attributed to 
human degradation in other forest ecosystems. These findings high-
light the importance of forest conservation for carbon capture, as 
ecosystems are allowed to recover to their mature states. It suggests 
that a substantial proportion of carbon capture can be achieved with 
minimal land-use conflicts. However, it is essential to acknowledge 
that the demand for wood and other forest-based products imposes 
limitations on this potential, given their climate benefits as substitutes 
for carbon-intensive materials such as fossil fuels and concrete5. None-
theless, evidence shows that reductions in harvesting intensity and 
forest degradation can deliver important climate benefits27. Moreover, 
our model might underestimate the extent of degradation owing to 
challenges in capturing historical land-use legacies and limited data 
availability on plantations in certain countries28. These observations 
reinforce the importance of effective forest conservation and man-
agement not only in reducing future carbon emissions15,29 but also in 
removing carbon that has already been released into the atmosphere.

Carbon potential in converted lands
In areas in which forests have been removed, the difference between  
the current and potential forest carbon stocks amounts to 189 Gt C  
(112–269 Gt C). Of this difference, 30% (57 Gt C) can be attributed to 
cropland areas, 28% (53 Gt C) to areas experiencing low anthropo-
genic pressure at present, 23% (43 Gt C) to pasture land, 18% (34 Gt C) 
to rangeland and 1% (2 Gt C) to urban areas (Fig.  5, Table  1 and  
Supplementary Fig. 10). It is important to recognize that the scale of this 
potential is contingent on social land-use constraints. Socially respon-
sible ecosystem restoration must be driven by the land-use decisions of 
local communities, especially indigenous communities that often face 
marginalization. Sustainable economic development that promotes 
approaches that work with nature (for example, agroforestry, ecotour-
ism etc.) can provide critical avenues for long-term financial security 
as a result of healthy nature. Also, it is important to acknowledge that 
forests can lead to reductions in surface albedo30,31, which generally 
have warming effects in high-latitude regions. Conversely, the local 
biophysical cooling effects of forests in warmer regions32 probably 
enhance the climate-adaptation benefits in the global south.
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uncertainty source within each pixel. The pie charts show the relative 
contribution of uncertainties worldwide.
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Taking into account the future food and feed demand, the Intergov-
ernmental Panel on Climate Change (IPCC) highlights a range of meas-
ures to improve ecosystem health and carbon storage in the land-use 
sector33. This will require a diverse range of approaches, including 
sustainable diets, reducing food waste, rewetting, improved soil health, 
methane reduction and promoting the use of wood in construction. 
We estimate that approximately 41% of the difference between cur-
rent and potential ecosystem carbon stocks outside existing forests, 
within the areas of the world that would naturally be forested, can be 
attributed to livestock grazing areas (pasture and rangelands). Also, 
36% of the world’s crop yields are being used for animal feed34. This 
impact of animal husbandry on forest ecosystems underscores the 
potential implications of transitioning to more plant-based diets. 
Besides reducing greenhouse gases that directly stem from animal 
farming (methane emissions, food production), a reduction in meat 
consumption could reduce emissions from land-use change and create 

large carbon sinks if ecosystems were allowed to regenerate on former  
pasture lands35,36.

 
Comparison with previous estimates
Our integrated estimate of the difference between current and 
potential global living tree biomass (217 Gt C) falls at the lower end of 
the range of previous estimates, which ranged from 150 to 446 Gt C 
(Fig. 3c,d). Also, our estimate of the extra potential for total ecosys-
tem carbon storage outside urban and agricultural land (226 Gt C) 
aligns closely with recent global-scale estimates of 205 and 287 Gt C 
(refs. 2,3). However, it is worth noting that three previous data-driven 
approaches, not included in this meta-analysis because of methodo-
logical differences, have suggested carbon potential values below 
this range. Specifically, Lewis et al.9 considered more rigorous social 
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Fig. 5 | Contribution of land-use types, forest types, carbon pools and 
countries to the difference between current and potential ecosystem-level 
carbon stocks. a, Of the 328 Gt C discrepancy between current and potential 
carbon stocks, 226 Gt C is found outside urban and agricultural (cropland and 
pasture) areas, with 61% in forested regions in which the recovery of degraded 
ecosystems can promote carbon capture (conservation potential) and 39% in 
regions in which forests have been removed (restoration potential). b, Relative 
contribution of forest degradation (conservation potential; blue area) and 
land-cover change (orange colours) to the difference between current and 

potential ecosystem-level carbon stocks. The darker blue area represents the 
conservation potential of 10.5 Gt C in forest plantation regions. c, Relative 
contribution of tropical, temperate, boreal and dryland forests to the total 
forest conservation potential. d, Relative contribution of the three main 
carbon pools (living biomass, dead wood and litter, and soil) to the difference 
between current and potential carbon stocks. e, The nine countries 
contributing more than 50% to the difference between current and potential 
carbon stocks.
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constraints and estimated that natural restoration of 350 Mha of 
deforested, tropical land could capture 42 Gt C in living tree biomass. 
Scaling this estimate to 900 million hectares yielded a potential of 
89–108 Gt tree carbon20, which is comparable with our estimate of 
tree biomass restoration potential of 91 Gt C outside existing forest, 
urban areas and cropland regions (Table 1). Similarly, Roebroek et al.5 
recently reported that the carbon potential in existing forests could 
be as low as 44 Gt C. Their estimate is considerably lower than our 
conservation potential estimate of 139 Gt C. This difference arises 
because Roebroek et al.5 focused only on aboveground tree biomass 
(excluding soil, roots, dead wood and leaf litter) and only consid-
ered the tree cover of existing forested regions. When we narrow 
our analysis to aboveground biomass in these forests, we recover a 
similar estimate of forest potential of 50 (39–63) Gt C. Nonetheless, 
when we consider studies that focused on the total ecosystem poten-
tial in all forest regions, our analysis reveals a distinct overlap that 
provides confidence in the scale of carbon losses from the global  
forest system.

Discussion
Understanding the potential for carbon storage in natural forests is 
crucial for comprehending their role in combating climate change. Our 
combined modelling approach, including ten estimates from this study 
and nine others from previous studies, allows us to identify the extent 
of overlap across diverse approaches and increases our confidence 
about the scale of the forest carbon potential across the globe. We 
found that total forest carbon storage is, at present, 328 Gt C (model 
range = 221–472 Gt C) below its full potential. Of this potential, 102 Gt C 
(69–134 Gt C) exist in urban areas, cropland and permanent pasture 
sites, in which substantial restoration is highly unlikely. Yet, a potential 
of 226 Gt C (151–363 Gt C) is in existing forests and regions with low 
human pressure (Table 1). Of this constrained forest carbon potential, 
139 Gt C (61%) can be found in regions that are already forested. This 
highlights that the prevention of deforestation does not only contribute 
to the reduction of carbon emissions but has large carbon drawdown 
potential if ecosystems can be allowed to return to maturity. Improved 
forest management and restoration to reconnect fragmented forest 
landscapes contribute a considerable 87 Gt (39%) to the extra carbon 

drawdown potential. We stress that, despite considering the broad 
land-use types, we cannot identify detailed land-use activities at a high 
resolution, so different social and economic considerations may place 
further constraints on the scale of this potential. Nevertheless, this 
work highlights the potential contribution of forest conservation, 
restoration and sustainable management in capturing carbon from 
the atmosphere.

The development of current and natural forest carbon maps 
involved several approaches and data sources with varying strengths 
and weaknesses. This ensemble of modelling approaches can help 
to identify the extent of agreement and uncertainty across model-
ling approaches, enabling a comprehensive understanding of carbon 
potential at a global scale. As new satellite technologies, such as the 
Global Ecosystem Dynamics Investigation (GEDI) project37, begin to 
reveal high-resolution information about forest structure, it will be 
increasingly important to refine the spatial and temporal resolution of 
these carbon stock models. Our multimodel and multidata comparison 
pinpoints regional variation in the main sources of uncertainty in forest 
carbon potential, highlighting the need for improved aboveground 
data-sampling efforts in the tropics and soil carbon sampling at high 
latitudes (Fig. 4). As such, continuing efforts to refine the confidence in 
this forest carbon potential require advancements in remote-sensing 
instrumentation7, field-monitoring strategies with sustained funding 
for research teams and field workers, especially in the Global South38,39, 
better representation of temporal dynamics in carbon stocks, espe-
cially in ecosystems prone to natural disturbances40, and methodology 
to allow for strict and verifiable integration of ground data and remote 
sensing into comprehensive carbon stock estimates41. Fair and equi-
table funding support for sustaining and sharing tropical forest data 
is vital to reduce global sampling biases in forest inventory efforts38,39 
(Supplementary Fig. 11).

It is important to note that our estimates of potential carbon cap-
ture in woody ecosystems pertain only to the biophysical potential 
and do not account for future changes in human pressure that may 
threaten forests42,43. Moreover, our estimations are based on recent 
climate conditions (1979–2013). If fossil fuel emissions continue to 
rise, the capacity of ecosystems to capture and store carbon will be 
threatened by climate-change-induced factors such as increasing 
temperature, drought and fire risks44,45. CO2 fertilization also has the 
potential to further change this system46. The dynamic and vulner-
able nature of forests underscores the urgency of conserving existing 
ecosystems to maintain their carbon sink potential and highlights 
the urgent need to uphold no-deforestation pledges at the 26th UN 
Climate Change Conference of the Parties (COP26), including public 
and private-sector commitments to end forest loss as soon as 2025 
(refs. 18,47,48).

Given the positive effect of biological diversity on ecosystem pro-
ductivity6,49, the magnitude of the estimates presented here can only 
be achieved in ecosystems that support a natural diversity of species. 
Indeed, almost half of global forest production can be directly or indi-
rectly attributed to the role of biodiversity6, highlighting that the full 
carbon potential cannot be achieved without a healthy diversity of 
species. Ecologically responsible forest restoration does not include 
the conversion of other natural ecosystem types, such as grasslands, 
peatlands and wetlands, that are equally essential. Restoration can take 
many forms, including the protection of land to allow natural vegeta-
tion recovery, soil microbiome enhancement, enrichment planting 
or reintroducing wild animals33,50. It also includes a vast array of active 
management practices, such as sustainable agroforestry, silviculture or 
permaculture practices, to promote biodiversity in managed systems. 
Ultimately, the protection and restoration of forest ecosystems are 
complex social, political and economic challenges that require the 
development of land-management policies that give priority to the 
rights and wellbeing of local communities and indigenous people51. 
Only when healthy biodiversity is the preferred choice for local people 

Table 1 | Differences between current and potential carbon 
stocks for living tree biomass, dead wood and litter, soil 
(0–2 m depth) and total ecosystem carbon in different 
land-use types

Land-use 
types

Living tree 
biomass

Dead wood 
and litter

Soil Total

Urban 1.1  
(0.8–1.4)

0.3  
(0.2–0.4)

0.3  
(0.2–0.5)

1.7  
(1.2–2.2)

Cropland 38.3 
(25.5–50.7)

10.1  
(6.7–13.3)

8.5  
(5.4–12.6)

56.8  
(37.5–76.6)

Pasture 29.8 
(21.0–36.5)

7.6  
(5.3–9.2)

6.0  
(3.5–9.4)

43.3  
(29.8–55.1)

Rangeland 24.6 
(11.4–38.7)

6.1  
(2.8–9.5)

3.1  
(1.9–4.6)

33.7  
(16.0–52.9)

Low-human- 
pressure land

37.0 
(18.8–54.4)

12.2  
(6.0–17.2)

4.2  
(2.4–10.5)

53.3  
(27.2–82.1)

Existing forest 84.7  
(68.7–105.0)

26.9  
(25.9–32.3)

27.3  
(13.5–91.1)

138.9  
(108.1–228.4)

Sum 216.7  
(153.0–266.8)

61.8  
(41.3–76.2)

49.3  
(26.8–128.7)

327.8  
(221.1–471.7)

Values show the means (in Gt C) of the four GS and six SD model predictions. Values in brackets 
show the full range of estimates across the ten models. For soil carbon, the uncertainty range 
(absolute errors) was based on ref. 23.



Nature | Vol 624 | 7 December 2023 | 99

can ecosystem-restoration initiatives be sustainable in the long term52. 
When built in a socially and ecologically responsible way, the promo-
tion of diverse forests can contribute substantially to achieving our 
combined climate and biodiversity goals.
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Methods

Ground-sourced tree biomass
Forest inventory data. Plot-level forest inventory records were  
obtained from data compiled in the GFBI database6 (http://www. 
gfbinitiative.org), which hosts information for 1,188,771 plots (median 
plot size = 250 m2) from every continent except Antarctica (Fig. 1). Each 
plot contains information on stem diameter at breast height (DBH) 
for each tree6. Individuals with a DBH < 5 cm were removed from the 
analysis. Quality controls of tree density values were conducted and 
we removed plots with tree densities that fell outside the median ± 2.5 
times the median absolute deviation (moderately conservative  
threshold)68 in each biome (6% of total plots). This resulted in retaining 
a total of 25,779,993 tree observations in 1,089,026 plots.

Biomass estimation for individual trees. For extratropical biomes, we 
used 430 species-specific DBH-based allometric equations obtained 
from the GlobAllomeTree database69 to estimate the aboveground 
biomass of each tree, W. These allometric equations use a common 
logarithmic equation for estimating aboveground biomass from DBH 
measures70:

W β βln( ) = + × ln (1)0 1
DBH

in which W is the predicted individual aboveground biomass (kg dry 
weight), DBH is the measured diameter at breast height (cm), ln is the 
natural logarithm and β0 and β1 are the parameter estimates.

Following ref. 70, we applied back calculation to generate a pseudo 
dataset for biomass changes along DBH gradients based on each of the 
430 allometric equations. To generate the pseudo data, we applied the 
following rules: (1) for a DBH between 5 and 25 cm, each centimetre 
was assigned a corresponding pseudo biomass value; (2) for a DBH 
between 25 and 100 cm, every 5 cm was assigned a corresponding value; 
(3) for a DBH between 100 and 300 cm (maximum DBH), every 10 cm 
was assigned a corresponding value. We then trained biome-specific 
allometric equations (varying in the β0 and β1 parameter estimates) 
based on the pseudo DBH and biomass dataset71 (Supplementary Fig. 12 
and Supplementary Table 4).

Biomass estimations for the tropics followed the allometric model 
for pantropical regions from ref. 72, which is available through the 
R package BIOMASS (ref. 73). These equations require information 
on wood density, which came from the Global Wood Density Data-
base74 and the Biomass And Allometry Database (BAAD)75. To match 
the binomial species names between the GFBI and the wood density 
databases, we standardized species binomials using the Taxonomic 
Name Resolution Service (TNRS)76.

Plot-level tree biomass calculation. After computing the above-
ground dry biomass for all approximately 28 million individuals in 
our dataset, plot-level biomass values were obtained by summing the 
biomass of all individuals in the respective plot. For plots that con-
tained data for several years, we calculated the mean of these years. The  
median year of observation across all plots was 2002. Subsequently, 
the biomass densities (in t ha−1) of each plot were obtained by dividing  
the total aboveground biomass (W) by the plot area. Carbon values were 
obtained by multiplying tree biomass by biome-specific wood carbon 
concentrations, ranging from 45.6% in tropical moist broadleaf forest 
to 50.1% in temperate conifer forest77 (see Supplementary Table 5). The 
spatial modelling was performed at 30-arcsec (about 1-km2) resolution 
and we therefore averaged tree carbon-density values for plots located 
in the same 30-arcsec pixel.

To avoid overestimation of carbon densities, we removed (1) values 
larger than the maximum carbon density ever recorded for forests 
(1,867 t C ha−1) and (2) values that fell outside the median ± 2.5 times 
the median absolute deviation (moderately conservative threshold) 

in each biome68,78. Small outlier values were kept, however, if they 
fell in human-modified non-forest landscapes, that is, regions with a 
human-disturbance index >10% and canopy cover <10%. This was done 
to avoid the underestimation of current carbon in croplands, pasture 
lands and urban areas that can contain notable amounts of existing 
biomass in trees outside forests79. To obtain normally distributed data, 
the carbon-density values were log-transformed before the median 
absolute deviation was calculated, using the following equation (Sup-
plementary Fig. 13):

x x= log( + 1) (2)transformed

This removed 6.4% of the data (0–6% in biomes), resulting in a total 
of 527,767 spatially distinct carbon-density values used for the final 
analysis.

Environmental and human-disturbance variables
Environmental covariates. In total, 40 layers, reflecting climate, soil 
and topographic features, were used as covariates in our analyses (Sup-
plementary Table 6). All layers were standardized to 30-arcsec resolu-
tion (1 km2 at the equator). Layers for 19 bioclimatic variables came from 
the CHELSA version 1.2 open climate database (www.chelsa-climate.
org)80, topographic information (elevation, slope, roughness, eastness, 
northness, aspect cosine, aspect sine and profile curvature) from the 
EarthEnv (www.earthenv.org/topography) database81, cloud cover  
(annual mean, inter-annual standard deviation and intra-annual stand-
ard deviation) from the EarthEnv (www.earthenv.org/cloud) database 
and ref. 82, depth to the water table from ref. 83, the annual mean of 
solar radiation and wind speed from the WorldClim database (version 
2)84, absolute depth to bedrock and soil texture (clay content, coarse 
fragments, sand content, silt content and soil pH), averaged for the 
depth between 0 to 100 cm below surface, from the SoilGrids database85 
and the Global Aridity Index from the Global Aridity Index and Potential 
Evapotranspiration (ET0) Climate Database version 2.0 (refs. 86,87).

Human-disturbance covariates. To represent human disturbance in 
our models, we used eight global layers that directly reflect anthropo-
genic effects on the environment. Information on the proportion of 
cultivated and managed vegetation and urban built-up areas in each 
pixel came from the EarthEnv database88. These maps integrate four 
global land-cover products to represent accuracy-weighted consensus 
information on the prevalence of land-cover classes at 1-km resolution 
across the globe (except for Antarctica). By representing the propor-
tional area of anthropogenic modification in each pixel (urban area 
or managed vegetation), the maps provide information on the spatial 
extent of human disturbance within pixels.

Information on agricultural land use (cropland, grazing, pasture and 
rangeland layers transformed to the percentage of agricultural land in 
each pixel) came from the HYDE database version 3.1 (refs. 89,90). Each 
layer represents the proportional area of cropland, grazing, pasture or 
rangeland in each pixel, thus allowing us to account for the individual 
impacts of agricultural land-use types.

Information on human modification, reflecting the overall inten-
sity of human activity, came from ref. 91. Rather than representing 
the impact of individual human-modification classes, such as urban 
areas or cropland, this map provides a cumulative measure of human 
modification based on models of the physical extent of 13 anthropo-
genic stressors in five main classes: (1) human settlement (population 
density, built‐up areas); (2) agriculture (cropland, livestock); (3) trans-
port (major roads, minor roads, two tracks, railroads); (4) mining and 
energy production (mining, oil wells, wind turbines); and (5) electrical 
infrastructure (power lines, night-time lights).

All variables were scaled to represent a continuous gradient of human 
impact, whereby values of zero indicate no human impact in the respec-
tive pixel and values of 1 indicate maximum human impact. Also, we 
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included information on the regions with minimal human disturbance 
across the globe, using the global protected area map from the World 
Database on Protected Areas92,93. Protected areas were treated as a 
binary variable of whether the respective pixel is intentionally disturbed 
by humans or not (that is, strict nature reserve or wilderness area)94.

Geospatial modelling of existing tree carbon
Ground-sourced tree carbon density model. To represent the uncer-
tainty in canopy cover of the forest inventory plots, we used upper and 
lower boundaries of canopy cover in each pixel at approximately 30-m 
resolution to convert C per plot to C per pixel95. We either assumed the 
canopy cover (% forested) of each forest inventory plot to represent 
the maximum canopy cover observed for the respective 1-km2 pixel 
(termed ‘upper canopy cover estimate’) or the mean canopy cover of 
the forested part (≥10% canopy cover) of the respective pixel (‘lower 
canopy cover estimate’). This canopy cover range ensured that our 
estimates represent the range of feasible sampling designs, as forest 
inventory plots can be biased towards high canopy cover sites within 
pixels rather than representing the average forest canopy cover. To 
convert C per plot into C per pixel, we divided the C per plot by the 
canopy cover within the plot (assuming either upper or lower canopy 
cover) and multiplied by canopy cover of the entire pixel, that is, C per 
pixel = (C per plot)/(canopy cover within plot) × (% forested per pixel). 
Thus, the resulting carbon value is inversely related to the canopy cover 
of the forest inventory plots: if the plot locations are assumed to reflect 
the maximum canopy cover in the pixel, then the resulting carbon esti-
mate is the smallest; if instead the plots reflect the mean canopy cover, 
then the resulting carbon estimate is the largest. Note that we do not 
consider the scenario in which the plots are preferentially located in 
areas with minimum forest canopy cover, as this would lead to unrealis-
tically high pixel-level carbon estimates (and carbon potential values) 
and is also unrealistic given the study design of the forest inventories 
underpinning the data. All subsequent analyses were conducted using 
C per pixel derived from both the upper and lower plot-level canopy 
cover estimates, allowing us to represent the uncertainty associated 
with canopy cover.

To train spatially explicit tree carbon models across the world’s for-
ests, we ran random-forest machine-learning models using Google 
Earth Engine96. The models included 40 environmental layers (rep-
resenting climate, soil and topographic features), eight human dis-
turbance layers, and canopy cover as predictors. In random forest, 
unlike traditional regression, correlation among variables does not 
affect the model accuracy. Indeed, the ability to use many correlated 
predictors is one of the key benefits of machine-learning models97. 
When variables are correlated, the effect of these variables is ‘shared’ 
across the trees in the random forest. Because random forest does not 
estimate coefficients as in regression, this correlation does not hinder 
model fit or performance but, rather, complicates efforts to quantify 
variable importance, which is also shared across correlated variables 
(see Supplementary Fig. 14 for an evaluation of variable importance 
using a reduced, uncorrelated set of variables). Thus, including numer-
ous variables, even if correlated, can improve the predictive power of 
the model to accurately quantify current carbon.

The model had the following form:

⟶ ⟶ ⟶
∑ ∑C α β γ= Var + Var + Var (3)
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in which CCurrent is the current forest tree carbon density in each pixel, 

Var
Env⟶

 are the environmental variables, Var
Human⟶

 are the variables 
directly representing human disturbance (see ‘Environmental and 

human-disturbance variables’ section for details) and 
⟶
Var

CanopyCover
 is 

the current canopy cover for the year 2010 (ref. 95).
In a first step, we tested for the existence of spatial autocorrela-

tion in model residuals, which can bias model-validation statistics98.  

This was done by calculating the Moran’s I index of the residuals from 
generalized additive models at different spatial scales (0–1,000 km). 
The Moran’s I indices indicated residual spatial autocorrelation at dis-
tances of up to 80 km for all GS models (Supplementary Fig. 15a–d). To 
avoid any bias introduced by the influence of spatial autocorrelation and 
correct for the uneven sampling across regions, we therefore applied 
bootstrapped spatial subsampling (100 iterations) to predict both cur-
rent and potential tree carbon densities (see ‘Geospatial modelling of 
tree carbon potential’ section). The spatial subsampling was conducted 
by subsampling one random observation inside each 0.7-arcdegree 
(about 78-km) grid, resulting in approximately 4,500 observations 
for each subsample. Given that the model was run with 100 iterations, 
this resulted in a total of about 450,000 samples used to build our GS 
models. Parameter tuning for each model was performed through the 
grid-search procedure of Google Earth Engine96 to explore the results 
of a suite of machine-learning models trained on the 49 covariates. For 
each of the models, we ran 48 discrete parameter sets covering the total 
grid space of 700 possible parameter combinations. Performance of 
each model was assessed using the coefficient of determination (R2) 
values from tenfold cross-validation (Supplementary Table 1) and we 
retained the best models from each bootstrapped spatial subsample. All 
R2 values reported throughout the manuscript represent the coefficient 
of determination relative to the 1:1 line of observed versus predicted 
values, which is equivalent to a standardized mean squared error.

As an alternative to testing whether spatial autocorrelation in model 
residuals affects model-validation statistics, we applied spatially buff-
ered LOO-CV using the respective autocorrelation distances as buffer 
radii (Supplementary Table 1). In this procedure, each data point is 
predicted by a model that uses all data outside the buffer radius of the 
respective data point as training data. To run the LOO-CV, we used the 
hyperparameter settings of the best-performing random-forest model 
based on random tenfold cross-validation.

To create the final maps of current tree carbon density, we used an 
ensemble approach, whereby we averaged the global predictions from 
the 100 best random-forest models. By taking the average prediction 
across several models, ensemble methods minimize the influence of 
any single prediction, thereby stabilizing variation and minimizing 
bias that can otherwise arise from extrapolation or overfitting when 
using a single machine-learning model99. Geospatial mapping was also 
performed in Google Earth Engine96.

To account for tree carbon stored belowground as roots, we mul-
tiplied our aboveground tree carbon predictions by the pixel-level 
means or the upper and lower confidence bounds of the proportional 
contribution of root carbon, using a spatially explicit map of tree root 
mass fraction24 (Supplementary Fig. 16). This map was derived from 
random-forest models based on 5,170 spatially explicit observations of 
tree biomass ratios between roots and shoots, covering all continents 
except Antarctica. Confidence ranges of the pixel-level root mass frac-
tion estimates were based on sampling uncertainty, using a stratified 
bootstrapping procedure (see methods in ref. 24 for details).

To generate the final ground-sourced map of existing total living 
tree carbon (aboveground and belowground biomass in t C ha−1) at 
30-arcsec resolution (about 1 km2), the total carbon stored at present 
in living trees (Cexisting) was then calculated as:

∑C D= ( × Area ) (4)
p

m

existing
=1

existing Pixel

in which Dexisting is the living tree carbon density in each pixel and AreaPixel 
is the area of each pixel.

To evaluate the extent of model interpolation versus extrapola-
tion, that is, how well our training data represent the full multivariate 
environmental covariate space, we performed an approach based on 
principal component analysis (PCA)100. To do so, we performed PCA on 
the 49 covariates represented in our training data, using the centring 



Article
values, scaling values and eigenvectors to transform the 49 covariates 
into the same PCA spaces. Then we created convex hulls for each of the 
bivariate combinations from the top 19 principal components (which 
collectively covered more than 90% of the sample-space variation). 
Using the coordinates of these convex hulls, we classified whether each 
pixel falls within or outside each of these convex hulls. In total, 92% of 
the potential canopy cover area fell within ≥95% of the 171 PCA convex 
hull spaces computed from our training data (representing the range 
of environmental conditions in our training data), with most of the 
outliers existing in arid regions (Supplementary Fig. 17a).

We also tested how well the training data span the variation in the 
eight human-disturbance layers. In total, 90% of the potential canopy 
cover area fell within ≥95% of the ten PCA convex hull spaces computed 
from our training data (Supplementary Fig. 17b).

Satellite-derived tree carbon density models. To compare and bench-
mark our ground-sourced tree carbon models against satellite-derived 
predictions, we used three state-of-the-art products of current above-
ground forest biomass: (1) the latest ESA-CCI forest biomass map 
published in 2022 by the European Space Agency’s Climate Change 
Initiative7,101; (2) a woody carbon stock map published in 2022 by  
Walker et al.2; and (3) a harmonized woody carbon stock map published 
in 2020 by Spawn et al.8.

The ESA-CCI map represents aboveground living tree biomass for the 
year 2010 and was produced using satellite data from ALOS-2/PALSAR-2 
and a physical-based inversion model that estimates biomass from 
growing stock volume, wood density and biomass expansion factors, 
with bias adjustment following the validation framework in ref. 7. The 
map was averaged from 100-m to 1-km2 spatial resolution to match the 
resolution of the covariates. The 1-km2 ESA-CCI map was assessed fol-
lowing the validation framework in ref. 7, wherein map bias is predicted 
using a model-based approach based on global reference data. This 
step reduces mapping bias in areas with statistically significant predic-
tion bias and particularly reduces the underestimation of biomass at 
high-biomass forests >350 t ha−1. The map comes with an uncertainty 
layer that accounts for spatially correlated errors during spatial averag-
ing. To convert the living tree biomass estimates to carbon, we multi-
plied tree biomass with biome-specific wood carbon concentrations77 
(see Supplementary Table 5).

The Walker et al.2 map represents woody aboveground carbon stocks 
for the year 2016 and was created by combining field measurements 
using airborne and spaceborne (NASA ICESat Geoscience Laser Alti-
meter System; GLAS) lidar data to yield spatially explicit estimates 
of aboveground biomass density at the GLAS footprint (about 60-m  
diameter) scale. Regression models were then used to relate the 
GLAS-based estimates of aboveground biomass to satellite imagery 
by the Moderate Resolution Imaging Spectroradiometer (MODIS), 
ultimately allowing to generate spatially explicit estimates of global 
aboveground biomass density at a resolution of approximately 500 m. 
The map was aggregated from 500-m to 1-km2 spatial resolution to 
match the resolution of the covariates and came with an uncertainty 
layer that accounts for the spatially modelled error, representing the 
95% quantile intervals generated by quantile regression forests2.

The harmonized map8 represents aboveground woody carbon stocks 
for the year 2010 and was based on the GlobBiomass102 map and refined 
using remotely sensed data for Africa103 (see ref. 8 for details). The map 
was aggregated from 300-m to 1-km2 spatial resolution to match the 
resolution of the covariates and came with an uncertainty layer that rep-
resents the uncertainty associated with the harmonization correction8.

Geospatial modelling of tree carbon potential
To map the tree carbon potential in the hypothetical absence of 
humans, we developed four data-driven modelling approaches, with 
two sets of models developed from ground-sourced data (GS1 and GS2) 
and two from satellite-derived data (SD1 and SD2).

GS models. After training and parameterizing the GS model of current 
tree carbon density using equation (3), we estimated the potential 
tree carbon density in forests that could exist in the absence of human 
disturbance by modifying this equation setting human-disturbance 
variables to zero and replacing existing canopy cover with potential 
canopy cover (GS1):

→ →∑ ∑C α β γ= Var +
→

Var + Var (5)
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in which Var
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 are the environmental variables, 
⟶
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zeroHuman
 are the 

scaled human-disturbance variables set to zero and Var
CanopyCover⟶

 is 
the current canopy cover95, which was replaced by potential canopy 
cover3 after model training for the prediction of the total carbon poten-
tial. This allowed us to train the model including information on current 
(2010) forest canopy cover95 and then to predict the tree carbon poten-
tial inside the potential canopy cover by replacing current canopy cover 
with the ‘natural’ canopy cover expected in the absence of humans3.

For the second GS model of potential tree carbon density (GS2), we 
included only data from regions with minimal human disturbance and 
used the 40 environmental covariates and canopy cover as predictors:

→ →∑C α γ= Var + Var (6)
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in which Var
Env⟶

 are the environmental variables and Var
CanopyCover⟶

 is the 
current canopy cover95, which was replaced by potential canopy cover3 
after model training.

The GS2 model differs from the GS1 model in a reduced number 
of observations (only pixels with minimal human disturbance) and 
a reduced number of predictors (no human-disturbance variables). 
Regions with minimal human disturbance were defined as pixels located 
in: (1) a protected area, that is, strict nature reserve or wilderness area94; 
(2) intact forest, that is, contiguous forest with no remotely detected 
signs of human activity and a minimum area of 500 km2 (ref. 26); and/or 
(3) pixels in which human modification is <1% following ref. 91. To mini-
mize the influence of uneven distribution of observations and spatial 
autocorrelation on model training, we applied bootstrapped spatial 
subsampling (100 iterations), similar to the GS1 models, whereby—
for each subsample—we randomly sampled one observation in each 
0.25 arcdegree, which resulted in about 4,500 observations for each 
subsample.

As for the predictions of current tree carbon, for both the GS1 and 
GS2 models, we added root carbon24 to generate maps representing 
total living tree carbon potential in the absence of human disturbance.

SD models. The two types of SD model were run with the ESA-CCI18, 
Walker et al.2 and harmonized maps8 of current woody carbon as input 
data, resulting in six model combinations (two model types and three 
input datasets). As for the GS1 model, model structure and param-
eterization of the first SD model of potential living tree carbon (SD1) 
followed equation (5). Similarly, as for the GS2 model, the second SD 
model of potential tree carbon density (SD2) followed equation (6), 
and we trained the model using only biomass density information from 
areas with minimal human disturbance inside protected areas (strict 
nature reserve or wilderness area)94 and/or intact forest landscapes26.

For both the SD1 and SD2 models, we conducted a bootstrap sub-
sampling approach similar to the GS models, whereby about 4,500 
sample points were drawn 100 times with replacement. For the SD1 
model, observations were drawn randomly, given that the models were 
built from global maps for which data are distributed equally across all 
global forest areas. For the SD2 model, we applied spatial subsampling, 
randomly sampling one observation in each 1-arcdegree grid to account 
for the uneven distribution of areas with minimal human disturbance 
across the globe. For each subsample, we ran 48 discrete parameter sets 



covering the total grid space of 700 possible parameter combinations 
and kept the parameter set with the highest coefficient of determina-
tion (R2) based on tenfold cross-validation. To obtain the final predic-
tions, we averaged the predictions from the 100 random-forest models.

To test for spatial autocorrelation in model residuals, we calculated 
the Moran’s I index of the residuals from generalized additive models 
at different spatial scales (0–1,000 km) and, for each model, found 
spatial autocorrelation at distances of up to 550–900 km (Supple-
mentary Fig. 15e–j). To test for the effect of spatial autocorrelation 
on model validation statistics, we then ran LOO-CV models for each 
of the 100 bootstrapped subsamples, using the respective autocor-
relation distances as buffer radii and the hyperparameter settings of 
the best-performing random-forest model based on random tenfold 
cross-validation (Supplementary Table 1).

Adding dead wood, litter and soil carbon to scale living tree 
carbon to total ecosystem carbon
Dead wood and litter biomass. To account for forest carbon 
stored in dead wood and litter, we obtained forest-type-level carbon  
ratios from previous studies19,104. Means and confidence ranges of the 
ratios between dead wood and litter carbon and living tree carbon for 
tropical, temperate and boreal forests were calculated from forest-type 
estimates of total living biomass, dead wood and litter from Table S3 
in ref. 19. Means and confidence ranges for dryland forests were cal-
culated from Table 1 in ref. 104, using all sites for which data on plant 
aboveground and belowground biomass and litter was available. The 
ratios between dead wood and litter carbon and living tree carbon were 
22% (95% confidence range = 15–33%), 33% (30–37%), 80% (68–94%) 
and 21% (2–40%) for tropical, temperate, boreal and dryland forests, 
respectively. We then multiplied pixel-level living tree carbon values 
by these percentages to estimate the means and confidence bounds 
of dead wood and litter carbon for each pixel (Table 1).

Soil carbon. Using the soil potential map ref. 23, which represents the 
effects of anthropogenic land-use and land-cover changes on soil organ-
ic carbon in the top 2 m (ref. 23) over the past 12,000 years, we extracted 
estimates of soil carbon potential in the absence of humans (difference 
between soil carbon 10,000 BC and current soil carbon) for all pixels 
that would naturally support trees (potential canopy cover3 ≥ 10%; 
Table 1). Associated spatial-prediction uncertainties (absolute errors) 
were calculated by fitting a spatial-prediction model to the prediction 
residuals of the cross-validated original model and applying this error 
model over the whole area of interest23.

Model uncertainty
For each of the GS and SD models, the 100 bootstrapped models of 
aboveground tree carbon potential were used to calculate per-pixel 
coefficient-of-variation values (standard deviation divided by the 
mean predicted value) as a measure of sampling uncertainty (hereaf-
ter referred to as bootstrap prediction uncertainty; Supplementary 
Figs. 1 and 2). Using the bootstrapped models, we also calculated 95% 
confidence ranges of estimates, allowing us to represent uncertainty 
ranges for each aboveground carbon model. To represent the uncer-
tainty in canopy cover of the forest inventory plots, we ran the GS1 and 
GS2 models for both the upper and lower canopy cover estimates. To 
represent data uncertainty of the SD models, we ran the SD1 and SD2 
models using three different input datasets (ESA-CCI18, Walker et al.2 
and harmonized biomass maps8). Uncertainty in belowground tree 
carbon was derived by multiplying the upper and lower confidence 
ranges of aboveground tree carbon values with the upper and lower 
confidence ranges of spatially explicit root mass fractions24, thus rep-
resenting uncertainties in both root mass fraction and aboveground 
biomass. Using the entire confidence range of total (aboveground 
and belowground) living tree carbon, including sampling and data 
uncertainty, we then calculated the uncertainty in dead wood and  

litter biomass by multiplying the upper and lower confidence ranges 
of total living tree carbon values with the upper and lower confidence 
ranges of the forest-type-specific ratios between dead wood and  
litter carbon and living tree carbon (see ‘Dead wood and litter biomass’  
section). Dead wood and litter biomass uncertainty was thus the result 
of uncertainties in both dead wood and litter-to-tree biomass ratios and 
tree biomass. Spatially explicit uncertainties in soil carbon potential 
were derived from maps of absolute errors in organic carbon density 
at 0–200 cm soil depth provided in ref. 23. Propagation of uncertainty 
was done by summing all individual uncertainties and assuming that 
they are uncorrelated.

To quantify the relative contribution of the different sources of 
uncertainty to the overall uncertainty in our models, we divided the 
absolute uncertainty of each uncertainty type by the sum of all uncer-
tainties (Fig. 4). This partitioning allows for relative comparison in 
uncertainty among sources, but otherwise does not necessarily reflect 
total model uncertainty owing to overlap and correlation across sources 
of uncertainty.

Carbon potential partitioning
On the basis of our carbon models, we could generate estimates of (1) 
the relative contribution of forest degradation (that is, reduced tree 
carbon within the existing canopy cover) to the difference between 
current and potential carbon stocks (hereafter referred to as conserva-
tion potential) and (2) the relative contribution of deforestation (that 
is, declines in canopy cover owing to land-use change in areas that 
would naturally support trees) to the difference between current and 
potential carbon stocks (hereafter referred to as restoration potential). 
Specifically, to estimate the relative contribution of forest degradation 
(conservation potential) and deforestation (restoration potential) to 
the difference between current and potential carbon stocks, we first 
attributed the proportional amount of the extra carbon predicted by 
our model to the extra canopy cover expected in the absence of humans. 
For example, for a pixel in which potential canopy cover is twice as high 
as current canopy cover and for which the predicted potential carbon is 
also twice as high as current carbon, the extra carbon is attributed only 
to the difference in canopy cover (restoration potential). For pixels in 
which the potential increase in tree carbon exceeded the proportional 
increase in canopy cover, the carbon potential fraction exceeding the 
proportional increase in canopy cover was equally distributed across 
the total potential canopy cover of the pixel. For pixels in which poten-
tial canopy cover was the same as current canopy cover, we attributed 
the difference between current and potential tree carbon stocks to 
forest degradation (conservation potential).

Throughout the text, we refer to conservation potential as the differ-
ence between current and potential carbon in existing forests, which 
was computed by subtracting the carbon stored at present inside exist-
ing forests from the expected carbon in these forests in the absence of 
human disturbance. We refer to restoration potential as the difference 
between current and potential carbon outside existing forests, which 
was estimated as the expected carbon in non-forest areas that would 
naturally support trees in the absence of human disturbances3. Finally, 
the total difference between current and potential carbon refers to 
the sum of the conservation and restoration potentials (Figs. 3 and 5).

To estimate the existing and potential carbon within biomes (Sup-
plementary Table 2), forest classes (tropical, temperate, boreal and 
dryland; Supplementary Table 3) and countries (Fig. 5e), we used the 
World Wide Fund for Nature (WWF) biome definitions71 and country 
boundaries from the world boundary map105. Forests were classified 
into four broad categories (tropical, temperate, boreal and dryland)71. 
Tropical forest includes six biomes: tropical and subtropical moist 
broadleaf forest, tropical and subtropical dry broadleaf forest, tropical 
and subtropical coniferous forest, tropical and subtropical grassland, 
savannah and shrubland, flooded grassland and savannah, and man-
groves; temperate forest includes four biomes: temperate broadleaf 
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and mixed forest, conifer forest, temperate grassland, savannah and 
shrubland, and montane grassland and shrubland; boreal forest 
includes two biomes: boreal forest/taiga and tundra; dryland refers 
to the two biomes Mediterranean forest, woodland and scrub, and 
desert and xeric shrubland.

To partition potential carbon stocks into different land-cover 
types, we integrated four land-cover maps88–90,106, providing infor-
mation on the relative area of a pixel that is covered by urban area, 
cropland, permanent pasture, rangeland, urban area, forest, water 
body and ice and snow. The difference between current and potential 
tree carbon stocks predicted by our models was then allocated to the 
land-cover types urban area, cropland, permanent pasture, range-
land, urban area and forest in proportion to their relative pixel cov-
erage. Low-human-pressure land was defined as the proportion of a 
non-forest pixel (<10% canopy cover) that could not be attributed to 
pasture, rangeland, cropland, urban area, water body or ice and snow. 
All areas in forest pixels that could not be attributed to pasture, range-
land, cropland, urban area, water body or ice and snow were attributed 
to forest. Global information on forest plantations came from ref. 28 
and we only considered plantations if they covered more than 10% of 
the canopy area in a pixel.

Meta-analysis of previous studies on the global carbon potential
To gain insight into the forest carbon potential estimated by previous 
studies, we reviewed publications that applied diverse approaches to 
quantify the potential carbon storage capacity of global forests. These 
studies fall into two types of estimate. The first type included studies 
reporting the total carbon that could be stored in global forests in the 
absence of human activities (Fig. 3b). The second type encompassed 
studies reporting the extra potential carbon that could be stored in the 
global forests, that is, the difference between current and potential car-
bon stocks (Fig. 3d). In total, we found 20 estimates of the total carbon 
potential and nine estimates of the difference between current and 
potential carbon stocks. These estimates were derived from four dif-
ferent approaches: inventory-based empirical estimates, mechanistic 
models, ensemble models and data-driven models. Inventory-based 
estimates comprise studies that estimated the global carbon potential 
from maximum forest carbon densities observed in climate zones 
or ecoregions based on inventory data1,55,58. Mechanistic-model esti-
mates included studies that used mechanistic models, such as Earth 
system models, to estimate the carbon potential of global forests64,67. 
Ensemble-model estimates consisted of studies that used a variety of 
existing biomass maps to estimate the global carbon potential from 
maximum forest carbon densities in climate zones or ecoregions4. 
Last, the data-driven model category encompassed studies that used 
extensive global carbon density observations to train global models 
based on environmental covariates2. References to the studies included 
in this meta-analysis are shown in the legend of Fig. 3 and Supplemen-
tary Table 7.

All analyses were conducted in Google Earth Engine96 and R  
(v. 3.6.3)107. All figures were created in R (v. 3.6.3)107.

Data availability
Data and code are available at GitHub: https://doi.org/10.5281/
zenodo.10021968.
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