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Samenvatting
– Summary in Dutch –

Gedurende de afgelopen decennia zijn onderzoeks- en erfgoedinstellingen be-
gonnen met het digitaliseren van hun uitgebreide collecties. Deze digitale ar-
chieven zijn beschikbaar voor bijna alle onderzoeksvelden en disciplines, zoals
natuurwetenschappen, plantkunde, geografie en cultureel erfgoed. Deze digita-
liseringsactie heeft deze collecties geopend voor onderzoekers en het brede pu-
bliek en zijn over het algemeen toegankelijk via het internet. Digitalisering is
een tijdrovend proces, waarbij objecten gescand, gefotografeerd of getranscri-
beerd worden en vervolgens geannoteerd worden met metadata. Deze metadata
is cruciaal voor het organiseren en bevragen van deze archieven, maar het is vaak
beperkt en niet gestandaardiseerd over verschillende instellingen.

Deze digitaliseringsinspanningen hebben de shift naarmachine learning, deep
learning en datagedreven methoden aangewakkerd en versneld. Door neurale
netwerken te trainen op gevarieerde datasets, leren de eerste lagen van het net-
werk generieke features. Vervolgens kunnen deze modellen snel worden gefine-
tuned op nieuwe data, door de laatste lagen van het netwerk te hertrainen. In
de afgelopen jaren heeft AI-onderzoek zich gericht op het trainen van grotere en
complexere modellen, op enorme datasets. Dergelijke modellen worden door-
gaans foundation models genoemd. Ze generaliseren efficiënt naar nieuwe data,
zelfs in few- of zero-shot omgevingen (via prompting). Bovendien kunnen derge-
lijke modellen multimodaal worden getraind en toegepast, waarbij zowel visuele
als tekstuele informatie wordt gebruikt. Multimodale technieken maken het mo-
gelijk om visuele inhoud te bevragen via natuurlijke taal en vice versa, waardoor
de toegankelijkheid van de collectie sterk toeneemt.

Hoewel datagedreven methodes aanzienlijk minder vakkennis vereisen dan
traditionele methoden, resteren er veel uitdagingen om ze efficiënt te gebruiken.
Eerst moeten de beschikbare objecten worden gedigitaliseerd, wat vaak veel tijd
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en kosten vergt. Daarna moeten deze digitale objecten worden geannoteerd met
gedetailleerde metadata of labels, om specifieke modellen te finetunen. Vervol-
gens moeten de datagedreven methodes worden geïmplementeerd en toegepast
op de collectie. Dit vereist doorgaans enige programmeerkennis. Ten slotte ver-
eisen de meeste state-of-the-art AI-modellen veel rekenkracht, vooral bij grote
collecties. Dergelijke infrastructuur is vaak niet beschikbaar, wat de implemen-
tatie van grote AI-modellen belemmert.

Tijdens mijn onderzoek heb ik gewerkt op vele interdisciplinaire projecten
en collecties, met zowel tekst als beeldmateriaal. Het onderzoek was gericht op
vier verschillende types collecties: fotoarchieven, rasterkaarten, herbaria en so-
cial media data. De meeste van deze collecties hadden één ding gemeen: het
gebrek aan gelabelde data. Daarom lag de focus van het onderzoek vooral op hoe
we AI-gebaseerde methodes efficiënt kunnen gebruiken om digitale archieven te
creëren, analyseren en de bevraging ervan te verbeteren.

Beginnend met fotoarchieven, ontwikkelden en pasten we AI-modellen toe
om automatisch belangrijke objecten en locaties te herkennen. Voor alledaagse,
courante objecten konden bestaande state-of-the-art detectiemodellen worden
ingezetmet grote nauwkeurigheid. Omminder vaak voorkomende objecten te de-
tecteren of om de afbeeldingen te geolokaliseren, gebruikten we similarity-based
technieken. Om belangrijke personen op de foto’s te herkennen, ontwikkelden
we een gezichtsherkenningspipeline in samenwerking met Meemoo. We gebruik-
ten open-source modellen en pasten ze toe op meer dan 150.000 afbeeldingen.
Via deze pipeline identificeerden we automatisch meer dan 62.000 gezichten uit
de archieven met een precisie van 0.936. Bovendien ontwikkelden we een inter-
actieve labelingtool dat meer dan 180.000 labels ontving om de persoonsvoor-
spellingen te valideren. We kunnen besluiten dat gezichtsherkenningsmodellen
nauwkeurig en schaalbaar kunnen worden ingezet op fotoarchieven.

Gedigitaliseerde rasterkaarten waren een ander belangrijk aandachtspunt
van ons onderzoek. Historische kaarten zijn vaak de enige bron van betrouwbare
geografische informatie, waardoor ze zeer waardevol zijn. Hoewel er al grote
hoeveelheden zijn gedigitaliseerd, bevatten ze vaak weinig metadata over welke
regio’s, plaatsnamen of geografische kenmerken op de kaart zijn afgebeeld. Der-
gelijke informatie is nodig om de kaarten te integreren in een geografisch infor-
matiesysteem (GIS) of om grootschalige studies uit te voeren. Tijdens ons onder-
zoek ontwikkelden we een nieuw, automatisch geolokalisatie-algoritme. Eerst
worden de plaatsnamen op de kaart gedetecteerd en gegeocodeerd. Vervolgens
worden de relatieve locaties van de tekstlabels op de kaart en hun geocoding-
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resultaten gebruikt om een regio voor de kaart te voorspellen. Deze regio wordt
vervolgens iteratief verfijnd via RANSAC. Dit algoritme bleek zeer accuraat te zijn
op historische en hedendaagse topografische kaarten.

Nu voor elke kaart een geolocatie is voorspeld, kunnen deze worden geïm-
porteerd in een GIS. Echter, om enige vorm van analyse op de afgebeelde geogra-
fische kenmerken uit te voeren, moeten deze ook worden geëxtraheerd. Daarom
hebben we een casestudy uitgevoerd naar de automatische wegextractie van he-
dendaagse rasterkaarten. Hierbij gebruikten we beschikbare vectordata om de
weglabels te genereren. Ons hertraind U-Net segmentatiemodel behaalde een
IoU van 0.804 en kon de meeste wegen correct segmenteren. Uiteindelijk willen
we deze aanpak generaliseren naar historische kaarten, waar bijna geen gela-
belde gegevens beschikbaar zijn.

Een groot deel van ons onderzoek richtte zich ook op de automatische ver-
werking van herbaria. Deze herbaria, die plantensoorten documenteren die we-
reldwijd zijn verzameld, vormen de basis van de systematische plantenkunde. Ze
zijn verzameld over meerdere eeuwen en worden zorgvuldig bewaard en gear-
chiveerd. Elk plantspecimen is bevestigd aan een herbariumvel dat typisch infor-
matie bevat over de wetenschappelijke naam van de plant, de verzameldatum,
de geografische herkomst en andere relevante details. We hebben een casestudy
uitgevoerd om de soort en het genus van de plant te identificeren op basis van
fuzzy tekstmatching en hebben laten zien hoe dit kan worden gebruikt om de
bestaande metadata te valideren.

In samenwerking met Plantentuin Meise hebben we de archieven van de Uni-
versiteit Gent bijgestaan met hun lopend digitaliseringsproces. Dit proces om-
vat het fotograferen van elk herbariumvel. Naast elk vel werd een gestandaar-
diseerde kleurenkaart geplaatst om kleur- en groottereferenties te bieden. We
hebben de herbariumvellen en kleurenkaarten automatisch gedecteerd en daarna
aan elkaar geplaatst. We hebben twee methodes ontwikkeld om de kleurenkaar-
ten te detecteren. De ene was gebaseerd op ORB-features, terwijl de andere
gebruik maakte van een roodkleurig papier dat onder de kleurenkaart werd ge-
plaatst. Deze tweede methode was veel nauwkeuriger (97,6%) en versnelde het
digitaliseringsproces.

Om een volledig herbariumvel automatisch te analyseren, hebben we een
nieuwe instance segmentation dataset van 250 bladen gecreëerd. Via een semi-
automatische labelingmethode konden we binaire plantenpixelmaskers extrahe-
ren en later valideren. Daarna hebben we de vellen handmatig geannoteerd met
vaak voorkomende objecten zoals meetlatten, kleurenkaarten en barcodes. We
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hebben deze dataset gebruikt om drie segmentatiemethodes te evalueren. Er
werden verschillende binaire plantsegmentatiemodellen getest, waarbij UNet++
de hoogste IoU van0.951 behaalde. Voor instance segmentation scoordeMask2Former
gemiddeld het best, met een mAP van 78.9. Tot slot werd de segmentatie ook ge-
herformuleerd als een panoptic segmentation probleem, met de plantklasse als
een semantische klasse. Een combinatie van YOLOv8 en UNet++ presteerde beter
dan het Mask2Former model en kon nauwkeurig de vellen segmenteren. Hoewel
deze resultaten veelbelovend waren, is er verder onderzoek en meer gelabelde
data nodig om de automatische verwerking van herbaria op te schalen naar een
globaal niveau.

Tot slot hebben we aangetoond hoe je grote social media datasets kan ver-
zamelen, verwerken en analyseren. We hebben meer dan 15 miljoen tweets gere-
lateerd aan natuurrampen en milieuthema’s verzameld en gegeocodeerd. Eerst
probeerden we eenvoudige sentiment analysemodellen te gebruiken, maar deze
leverden geen nieuwe inzichten op. Daarom hebben we een kleine stance detec-
tion dataset van 500 tweets gecreëerd en hebben we daar een BERTweet-model
op getraind. Het model behaalde een gemiddelde F1-score van 0.67. We verwach-
ten dat deze score aanzienlijk kan worden verbeterd door extra data te labelen.
Bovendien hebben we via een casestudy op een Flickr dataset laten zien hoe je
automatisch toeristische hotspots kunt bepalen en deze geospatiaal kunt analy-
seren.

Dit proefschrift heeft een overzicht gegeven van ons onderzoek naar het ge-
bruik van AI-gebaseerde methoden om digitale archiefcollecties te verrijken. We
hebben laten zien hoe deze methoden in de praktijk kunnen worden gebruikt, op
verschillende collecties en datasets. We kunnen besluiten dat AI-gebaseerde en
datagedreven technieken kunnen helpen bij het creëren, analyseren en onder-
houden van digitale archieven. Het implementeren van dergelijke technieken kan
enorme kosten en tijd besparen. Het levert ook aanvullende metadata op, wat de
bevraagbaarheid van de collecties vergroot.



Summary

Over the past few decades, many scientific and heritage institutions have begun
digitizing their vast collections. Such digital archives have become commonplace
in nearly all research fields and disciplines, such as natural history, botany, geog-
raphy, cultural heritage, and more. This digitization effort has opened up these
collections to researchers and the public, and are generally accessible via the in-
ternet. Digitization is a labor-intensive process, involving scanning, photograph-
ing, transcribing, and subsequently annotating the objects with metadata. This
metadata is crucial for organizing and querying archives, but is often limited and
not standardized across different institutions.

These digitization efforts have fueled and accelerated the shift toward ma-
chine learning, deep learning, and data-driven methods. While these methods
require significantly less expert knowledge than traditional methods, many chal-
lenges remain to use them efficiently. First, the available objects need to be dig-
itized, which often involves a lot of manual effort. Second, these digital objects
need to be annotated with detailed metadata or labels, to fine-tune specialized
models. Third, the data-driven methods need to be implemented and applied
to the collection. This typically requires some programming knowledge. Fourth,
most state-of-the-art AI models require a lot of computation, especially on large
collections. Such infrastructure is often not available, hindering the implementa-
tion of large AI models.

During my research, I have worked on many interdisciplinary projects and
collections, featuring both text and images. The research was focused on four
different types of collections: photo archives, raster maps, herbaria, and social
media data. Most of these collections had one thing in common: the lack of la-
beled data. Therefore, the research has mainly focused on how we can efficiently
use AI-driven methods to process, analyze, and improve the accessibility of digital
archives. To achieve this, we utilized robust models that can be quickly fine-tuned
to new data. We also improved the data labeling process by shifting the manual
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labor from annotation to validation. This drastically reduced the amount of time
required, especially for complex annotations like pixel masks.

Starting with archive photo collections, we developed and applied AI models
to automatically recognize objects and places of interest. For everyday objects, ex-
isting state-of-the-art detectionmodels showed great accuracy and performance.
To efficiently detect rare objects or geolocate the images, similarity-based ap-
proaches can be used. Furthermore, such models can be trained and applied mul-
timodally, utilizing both vision and language information. These techniques en-
able querying of the visual content via natural language, further increasing the
accessibility of the collection.

To recognize persons of interest in the photographs, we developed a facial
recognition pipeline in collaboration with Meemoo. We used open-source mod-
els and applied them to over 150,000 images. Via this pipeline, we automati-
cally identified over 62,000 faces from the image archives with a precision of
0.936. Additionally, we developed an interactive labeling tool that received over
180,000 labels to validate the person predictions. We conclude that facial recog-
nition models can be applied accurately and at scale on archive photo collections.

Digitized rastermapswere another key focus of our research. Historical maps
are often the only source of reliable geographic data, making them very valuable.
While large amounts have already been digitized, they often lack information on
which regions, place names, or geographical features are depicted on the map.
Such information is needed to integrate the maps into a geographical informa-
tion system (GIS) or to perform large-scale studies. Therefore, we developed a
novel, automatic geolocation algorithm. First, the place names on the map were
detected and geocoded. Next, the relative location of text labels on the map and
their geocoding coordinates were used to estimate a region for the map. This re-
gion was then iteratively refined via RANSAC. This algorithm proved very accurate
on historical and contemporary topographic maps.

Now that each map has a predicted geolocation, these can be imported into
a GIS. However, to perform any kind of analysis on the depicted geographical fea-
tures, these need to be extracted as well. By using contemporary raster maps
and associated vector data, we generated a road segmentation dataset covering
the entire Netherlands. Using this dataset, we fine-tuned a U-Net segmentation
model, which achieved an IoU of 0.804. The model was fast and could segment
most roads accurately. Ultimately, we would like to generalize this approach to
historical maps using domain adaptation techniques.

A large portion of our research also focused on the automated processing of
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herbarium specimens. These herbarium specimens record plant occurrences col-
lected from all corners of the world, forming the foundation of systematic botany.
They have been collected over several centuries and are carefully archived and
preserved. Each specimen is attached to a herbarium sheet that typically con-
tains information on the plant’s scientific name, collection date, geographical ori-
gin, and other relevant details. We performed a case study to identify the plant’s
species and genus, based on fuzzy text matching and showed how this could be
used to validate the existing metadata.

In collaboration with Meise Botanic Garden, we assisted the Ghent Univer-
sity archives with their ongoing digitization process. This process involved pho-
tographing each herbarium sheet. A color chart was placed next to each sheet,
to provide color and size references. We automatically extracted the herbarium
sheets and color cards, which were then stitched together. We developed two
methods to detect the color cards. Onewas based on ORB features, while the other
involved placing a red-colored paper under the color card. This second method
was far more accurate (97.6%) and greatly sped up the digitization process.

To fully analyze an entire herbarium sheet via computer vision, we needed
to create a novel instance segmentation dataset. Via a semi-automatic labeling
approach, we extracted the plant masks and later validated them. Then, we man-
ually annotated the sheets with common objects such as rulers, color cards, and
barcodes. We used this dataset of 250 sheets to evaluate three segmentation ap-
proaches. Different binary plant segmentation models were tested, with UNet++
achieving the highest IoU of 0.951. For instance segmentation, Mask2Former scored
best overall with a mAP of 78.9. Finally, the segmentation task was reformulated
as a panoptic segmentation problem, with the plant class as a semantic class. A
combination of YOLOv8 and UNet++ outperformed the Mask2Former model and
could accurately segment the entire sheet. While these results were promising,
further research and labeled data are needed to improve and evaluate the auto-
mated processing of herbarium specimens on a global scale.

Lastly, we’ve demonstrated how to collect, process, and analyze large social
media datasets. We collected and geolocated over 15 million tweets, related to
natural disasters and environmental topics. First, we tried using simple senti-
ment analysis models, but they did not provide novel insights. Therefore, we cre-
ated a small stance detection dataset of 500 tweets and retrained a BERTweet
model. The model achieved an average F1-score of 0.67. We expect that this score
can be improved significantly by labeling additional data. Additionally, via a case
study on a Flickr dataset, we’ve shown how to automatically determine tourism
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hotspots and analyze these geospatially. In essence, we’ve shown that NLP meth-
ods can be used to efficiently generate insights on large social media datasets.

We can conclude that AI-based methods can deliver tremendous value in cre-
ating, maintaining, and analyzing digital archives at scale. Our research focused
on multiple collections and our methods can be easily adapted to similar collec-
tions. While a lack of detailed metadata or labeled data inhibits certain solutions,
we’ve presented ways to overcome these issues and implement practical data-
driven techniques.



1
Introduction

“The only source of knowledge is experience”

– Albert Einstein

This chapter situates the performed research, summarizes themain contributions,
and outlines the structure of this dissertation. The chapter also lists all of the
scientific publications written during my research.

1.1 Context

During the past few decades, many scientific and heritage institutions have begun
digitizing their vast collections. Such digital archives have become commonplace
in nearly all research fields and disciplines, such as natural history, botany, geog-
raphy, cultural heritage, and more. This digitization effort has opened up these
collections to researchers and the public. They are generally accessible via the
internet. This mass digitization was only possible due to the tremendous efforts
of researchers, archivists, and volunteers. For instance, pictures and documents
need to be scanned or photographed, texts and books need to be transcribed.
These digital objects are subsequently annotated with additional metadata.

This metadata typically describes the object, its geographic origin, its author,
and other features. This metadata is crucial in organizing and querying digital
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archives efficiently. It can be easily integrated into existing search engines, en-
abling detailed filtering of the collection. The available metadata is often limited
to the most important object information and is not fully standardized. This is
because different institutions tend to have different digitization processes, even
for the same type of data. This heterogeneity hinders the accessibility and in-
teroperability of these digital archives. For instance, image collections are rarely
annotated with detailed information on what is depicted in the images, which
makes it difficult to search for specific persons, objects, or themes.

Even when new data is created in a digital format, it often lacks high-quality
metadata or structure. Such data is created constantly, via digital photography,
literature, journalism, or other means. This born-digital data is often shared pub-
licly online. Many digital archives collect or create such data, further increas-
ing the size of their collections. Social media platforms, which store billions of
images, texts, and other content are a prime example of born-digital archives.
Such platforms could be considered as the archives of the future, storing personal
memories and moments of cultural significance.

1.1.1 Shift towards Machine Learning

While these mass digitization efforts have been expensive and time-consuming,
access to digitized data has fueled and accelerated the shift toward machine
learning, deep learning, and data-driven methods. In the past decade, computer
vision and natural language processing (NLP) research have made great strides
with the advent of neural networks, access to larger datasets, and more perfor-
mant GPUs. For computer vision, this trend started in 2012, when AlexNet [1]
achieved state-of-the-art accuracy on the ImageNet competition [2] by training a
deep convolutional neural network (CNN). Since then, practically every state-of-
the-art computer vision model has used convolutional layers. One of the most
widely used architectures, ResNet [3], introduced residual connections between
successive layers (see Figure 1.1). This enabled the training of larger and deeper
networks on larger datasets.

By training thesemodels on huge and varied datasets, the lower layers of the
network essentially learn generic image features. Then, thesemodels can be fine-
tuned on other labels, by replacing the final layers of the network. This process is
called transfer learning and is a common practice, as it drastically cuts down the
time and labeled data needed to achieve accurate results.

Throughout the years, model architectures have been continuously evolv-
ing, until Transformers [5] redefined the state-of-the-art NLP model architecture.
Their key innovation was the self-attention mechanism, which allows the model
to focus on different parts of the input data with varying degrees of attention,
depending on the context.
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Figure 1.1: A visualization of the residual connections used in the ResNet architecture
(Image from [4]).

The input is essentially embedded into a sequence, where each item in the se-
quence is represented by a query, key, and value. The Transformer then calculates
how much attention each item should pay to every other item by multiplying the
query of that item with the keys of all other items. This score is then normalized
and used to weigh the value (importance) of each item. This enables the model to
learn the importance of each item in the context of the whole sequence (e.g. each
word in the context of an entire sentence). This generic and efficient architecture
has since been adopted by many state-of-the-art models in computer vision and
other domains. Figure 1.2 visualizes one of the earlier Vision Transformer (ViT)
architectures from [6]. An input image is essentially split into fixed-size patches,
embedded with their position embeddings, and fed to a transformer encoder. The
attention mechanism then learns the importance of each patch in relation to all
other patches.

1.1.2 Current trends in AI

By using (vision) transformers, researchers have been able to train increasingly
larger models on increasingly large datasets. These so-called foundation models
are typically trained in an unsupervised way on a broad range of data [7]. Once
trained, these models can be fine-tuned or adapted to many downstream tasks
with little to no supervision. In essence, the models ”learn foundational knowl-
edge”, on top of which they can quickly learn specialized tasks. This is essentially
taking the concept of transfer learning to its extreme, where the models can al-
ready achieve a decent performance on new datasets, with minimal (few-shot) or
no additional labeled examples (zero-shot).
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Figure 1.2: Vision transformer architecture from [6]

So, the field of AI has shifted even more towards collecting high-quality data
to train these foundation models. Instead of developing specialized models and
processing methods for each collection, AI-driven methods can be applied to sin-
gle or multiple data modalities (multimodal), across collections. For instance, ob-
ject detection models are applicable to virtually any photograph depicting com-
mon objects. Large language models (LLMs) apply to any writing, code, or other
textual data, independent of the language or context. Across all media, tremen-
dous progress in automated processing has beenmade and such automatedmeth-
ods have even surpassed human capabilities inmultiple fields [8, 9]. Furthermore,
data-driven methods require much less expert knowledge to be used effectively
than their traditional counterparts, which require handcrafted features for each
specific task.

1.1.3 Lack of Labeled Data

However, for certain research domains, access to high-quality labeled data or pre-
trained models is limited and is often the main bottleneck in creating scalable
solutions. For instance, labeled datasets of digitized herbarium specimens, his-
torical maps, or art collections are scarce and often not fully labeled. This makes
it difficult to develop generic and accurate end-to-end models. Many collections
containing uncommon objects have this problem. Despite these issues, there has
been a sharp increase in new interdisciplinary projects, uniting computer scien-
tists and other domains. These projects typically develop innovative processing
methods and publish new labeled datasets, furthering the state-of-the-art and
opening up these often-overlooked collections for future research.

Throughout my research, I have worked on many of these interdisciplinary
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projects and collections, featuring both text and images. Most of these collections
had one thing in common: the lack of labeled data. Therefore, a key focus of our
research was how to efficiently use AI methods on collections with limited or no
labeled data. To achieve this, we utilized robust models that can be quickly fine-
tuned to new data. We also improved the data labeling process by shifting the
manual labor from annotation to validation. This drastically reduced the amount
of time required, especially for complex annotations like pixel masks. Data-driven
methods were the key focus of my research, hence, this dissertation is organized
based on the type of collection and data processed.

1.1.4 Research Focus

My Ph.D. was not fundedwith a scholarship but encompassesmywork onmultiple
research projects over a five-year period. These projects were mainly situated in
the cultural heritage and geo domains featuring various partners like Meemoo,
GhentCDH, TUWien, KBR, GUM, and Meise Botanic Garden. This allowedme to work
on many collections, in multiple domains and gave me a versatile skillset. These
projects involved analyzing large collections with little labeled data, forcing me
to develop and combine efficient AI and computer vision methods.

This thesis summarizes the research performed on four different types of col-
lections: photo archives, raster maps, herbaria, and textual data, which are visu-
alized in Figure 1.3. Photo collections were enriched with image-level metadata,
by recognizing objects and persons of interest. We proposed a novel geolocation
algorithm and road segmentation method on raster maps. Herbarium collections
were another focus of research. There, we assisted in the digitization and eval-
uated multiple segmentation methods on a newly created dataset. Lastly, our
research on textual data focused on applying NLP methods to large social media
datasets and analyzing them geospatially.

The developedmethods and research are applicable to any collection contain-
ing similar data and can be easily adapted to other collections. To summarize, the
general goal of my research and this dissertation can be stated as follows: How
canAI-drivenmethods be used to automatically process, analyze, and improve
the accessibility of digital archives?

1.2 Outline

Based on the context and problems presented in the previous Section (Section
1.1), Section 1.3, discusses the challenges regarding AI-based processing of digi-
tal archives. The first chapter concludes with Sections 1.4 and 1.5, which list the
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Figure 1.3: Overview of the four different types of collections and data that are discussed
in this dissertation.

main research contributions and publications written during my research. Chap-
ter 2 discusses photo collections, and how computer vision can be used effectively
to detect objects or persons in these collections. Chapter 3 summarizes the re-
search performed on digitized raster maps. The chapter starts by discussing a
novel geolocalization method based on text recognition and geocoding of visible
place names. It finishes by presenting road segmentation methods and a case
study on walking and cycling maps. In Chapter 4, automated processing methods
for digitized herbaria are proposed. These automated methods include prepro-
cessing, dataset creation, specimen identification, and segmentation. Chapter 5
discusses the use of NLP techniques on textual data, with an emphasis on social
media data. We show how these techniques can be used to perform geospatial
analyses on a global scale. The dissertation concludes in Chapter 6, summarizing
the main findings of the research and proposing some future work.

1.3 Challenges

There aremany challenges in creating, maintaining, and publishing digital archives.
The contents of the collections first need to be digitized and annotatedwithmeta-
data. Next, the collections need to be easily accessible and searchable. AI-driven
methods can assist this process, however, they come with their own challenges.

1.3.1 Digitization

First and foremost, the contents of the collections need to be digitized. This pro-
cess typically involves the scanning, photographing, or transcription of the phys-
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ical objects. This requires a tremendous amount of manual labor, by archive em-
ployees, researchers, and volunteers. Many collections across the globe contain
thousands to millions of objects. Therefore, it is crucial to minimize the time re-
quired to digitize each object. This can be achieved by streamlining the digitiza-
tion process (developing improved protocols and workflows) and by implement-
ing automated processing and validation methods.

The digitization of the New York Botanical Garden Herbarium is a great ex-
ample of how new technology can reduce processing time. By incorporating im-
proved equipment and protocols, they doubled the image capture rates per vol-
unteer [10]. This was achieved via a combination of new hardware and integrated
software tools, which were much easier to use. Figure 1.4 shows four volunteers
using the ”Photo-eBox” toolkit to digitize herbarium specimens.

Figure 1.4: Four volunteers using the Photo-eBox toolkit to digitize herbarium specimens
(Image from [10]).

While new technologies and workflows have sped up the digitization pro-
cess, there is always room for improvement. Automatic preprocessing tools will
rarely be perfect and sometimes still introduce errors. Therefore, manual correc-
tion and validation are still required. However, shifting the manual labor towards
validation instead of annotation can greatly speed up the digitization process.
For instance, manually removing the background from photographed herbarium
specimens is tedious. Via computer vision, we implemented an automated pre-
processing method to crop and preprocess the herbarium sheet. The processed
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images can then be quickly validated, speeding up the digitization process. Such
automated processing methods are also easier to scale than the number of vol-
unteers or employees.

1.3.2 Detailed Metadata

Once the objects are digitized, they are organized within databases or digital
repositories to ensure they’re accessible to researchers and the general public.
During this process, they are annotatedwith object-levelmetadata. Thismetadata
provides context about the digital items, offering information on the object’s ori-
gin, creator, date of creation, subject matter, and much more. Well-curated meta-
data is crucial in supplying researchers and the public with relevant information.
Imagine an archive of photographs without any metadata. Finding photographs
depicting a specific person becomes unfeasible, as you would have to search each
photo individually. Similarly, having no information about the image contents
makes it difficult to find photographs depicting certain locations, themes, or ob-
jects.

Annotating objects with detailed metadata entails many challenges. First,
it introduces more manual labor, as someone needs to either validate or enter
the available information into a digital format. Second, exact metadata might
not even be available at all. Looking back to our photo archive, recognizing the
visible persons requires intimate knowledge about the collection. Luckily, face
recognition models can be used to automatically recognize persons of interest.
We successfully used such an approach on a collection of 180,000 archive pho-
tographs. Finally, even when metadata is available, there is often no standard-
ized format. Therefore, different institutions and even archivists within a single
institution will annotate the same metadata in different ways. This results in in-
consistencies within and across collections and hinders their accessibility.

Automatically extractingmetadata fromhistorical collections comeswith some
additional challenges. First, the original data sources can be degraded, generally
lowering the accuracy of pre-trained models. Second, many objects depicted in
historical photographs are no longer common and will not be detected. Finally,
the names ofmany addresses and places have changed throughout the years. This
hinders the automatic matching of recognized text with linked open data sources.
To tackle these issues, fuzzy matching and specialized historical gazetteers [11]
need to be used. Fuzzy matching enables the linking of non-exact text matches
via string similarity metrics and is frequently used to correct text recognition er-
rors.
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1.3.3 Labeled Datasets

While AI-based methods are valuable in generating object-level metadata, these
models first need to be trained on existing labeled datasets. For common tasks,
like object detection on photographs, such labeled datasets already exist (e.g.
COCO [12]). These pre-trainedmodels achieve incredible performance without any
fine-tuning. This was only made possible by painstakingly annotating thousands
to millions of images. For most institutions, this is not feasible and the amount
of available metadata or labeled data is limited. This is especially true for col-
lections featuring historical data, like digitized maps, herbarium sheets, books, or
other archives.

For such collections, there is generally little to no information on what is de-
picted in the image. For instance, contemporary maps are generated from avail-
able vector datasets using a GIS (Geographic Information System). For historical
maps, no such vector data exists. There is no information on the depicted roads,
land use, or other geographical features. Therefore, these cannot be easily in-
tegrated into a GIS, and large-scale studies cannot be performed without first
(manually) processing these maps.

The images in the collection can be annotated with new, task-specific labels.
However, this again introduces additional manual labor. For instance, to segment
collection-specific objects on images, these first need to be annotated with de-
tailed pixel masks. These masks are difficult and time-intensive to annotate. The
same is true for other tasks, like face recognition, which requires a dataset of faces
annotated with person names.

Crowdsourcing can help supply large collections with task-specific labels. Via
an interactive online platform, volunteers can annotate objects of the collection.
Such approaches have been successful in the past, but require additional costs to
set up [13, 14]. They also require a set of volunteers willing to help annotate the
collections. The resulting labels still need to be validated in some way, as it can
be difficult for people unfamiliar with the source material to provide accurate
labels. However, for many tasks, computer vision methods can also assist the
labeling process.

Instead of manually annotating images with object labels or fine-grained
pixel masks, computer vision methods can generate these labels. These will con-
tain many errors and need to be validated. This is a much easier task, as one
simply needs to validate each prediction as correct or incorrect. The validated pre-
dictions are then used to create a dataset with task-specific labels. This process
is called semi-automatic labeling. We used such an approach to create detailed
pixel masks of herbarium specimens. Via transfer learning, AI models can then be
trained and evaluated on this task. After training, these models can predict new
labels for the rest of the collection.
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Multimodal and foundationmodels can help to further reduce the labeling ef-
forts, by providing impressive few or zero-shot accuracy via text or other prompts.
For instance, the breakthrough Segment Anything model (SAM) [15], is a generic
image segmentation model. It produces object masks, given a point, box, mask,
or text input. This enables interactive data labeling, by allowing users to click ob-
jects or draw boxes around them. Figure 1.5 visualizes the SAM mask predictions
for digitized herbarium sheets, given bounding box prompts. Such novel methods
can greatly speed up data labeling and are easy to use. Similar progress has been
made for textual data labeling, via large language models. These allow users to
specify a text prompt defining the task and the model produces the labels. For
instance, you can prompt GPT-4 [16] to label a set of tweets with their sentiment
(positive or negative). Studies have already shown that such an approach can
outperform crowdsourced workers [17] for a fraction of the cost.

Figure 1.5: SAM mask predictions given bounding box prompts for each specimen.

1.3.4 Lack of Knowledge

AI-basedmethods can provide tremendous value for digital archives, but someone
still needs to implement them. There is often a lack of knowledge on what is al-
ready possible with AI to process the collection. Furthermore, many employees or
researchers involved with these institutions have little knowledge of how to use
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these models. They have limited programming experience, which is generally re-
quired to implement AI models. Therefore, interdisciplinary research projects are
key in bringing computer scientists together with these institutions, to develop
and implement AI-pipelines.

For many problems, there is often an overlap between different research
projects. Multiple projects focus on similar problems on their own dataset and
generate their own labels and predictions. These datasets are often private and
the trained models or code are sometimes not shared. Even when they are pub-
licly available, different projects will use differentmodels, which are generally not
interchangeable. For instance, different facial recognition models will generate
different embeddings for each face, which can then be matched via a similarity
metric. These embeddings cannot be interchanged, so if another project wants
to integrate an existing dataset with a new model, the embeddings have to be
extracted again.

There has been a positive shift towards more open-source code and models
these past few years. Many research projects have started to adopt this as well.
Combined with the development of new foundation models, this has greatly re-
duced the knowledge gap. State-of-the-art models like GPT-4 can be prompted
to generate code to train other AI models. While such code might not be optimal,
it is already a big step forward to reduce the knowledge gap.

1.3.5 Growing Computational Demands

Besides knowledge and data, AI models also require computing power. Unfor-
tunately, larger and more performant models, typically require more computing
power. GPUs are necessary to process large collections in a reasonable amount
of time. For most computer vision tasks, low to midrange GPUs will perform quite
well, and some optimized models like YOLOv8 [18] or Mobilenets [19] can be run
quite fast on CPUs. However, for specific tasks dealing with high-resolution im-
ages or complex architectures, more GPU RAM is necessary. This is especially true
for state-of-the-art foundation models and LLMs. The larger models also take
much longer to train, which is shown in Figure 1.6. It visualizes the estimated
amount of petaFLOPS (Floating-point Operations) required to train popular com-
puter vision and language models. While computing power has also increased
over the years, the models are growing faster than the speed of available hard-
ware.

In general, there is always a trade-off between processing time and accuracy.
The larger and slowermodels will producemore accurate results but requiremore
compute. Therefore, decidingwhichmodel to use on large collections is important.
It is often not worth it to use the most cutting-edge models on larger collections.
These might be 2% more accurate but require three times the processing time.
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Figure 1.6: Estimated amount of petaFLOPS needed train to popular computer vision and
language models (log scale) [20].

This is especially true when the processing needs to be real-time or interactive.
Then, smaller and faster models are preferred.

Most institutions do not have the infrastructure necessary to train and run
specialized AI models on their collections. There is often little budget for expen-
sive GPU workstations or servers. Therefore, cloud computing providers like AWS
and GCP can be used instead. These enable pay-as-you-go pricing and allow you
to scale up the required compute as needed. However, this again introduces ad-
ditional manual effort, as someone needs to set up these cloud servers and data
pipelines.

1.3.6 Bias in AI

The last important challenge is that of bias in AI. While this is not studied in detail
in this dissertation, it is important to acknowledge the ethical implications and
biases inherent to AI systems. These can emerge from various sources, such as
the training data, the design of the model, or the context in which it is applied.
Face recognition systems are a great example when it comes to such issues. They
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are typically less accurate for certain races, perceived genders, or skin tones1 2.
Furthermore, they might break privacy laws (e.g. GDPR) or copyright laws without
careful use. While it is extremely difficult to overcome these biases, it is vital to
be aware of them, especially when using AI models in production.

The processing of historical collections comeswith additional challenges. The
use of AI might risk reinforcing historical biases or stereotypes encoded in these
collections. The outputs of AI models are also typically less accurate on these
collections, due to degradation of the source material, changes in language and
writing style, but also changes in the visual appearance of objects and people.
Clearly, careful analysis and evaluation are required when analyzing sensitive or
historical data sources.

1.4 Research contributions

The main contributions of my research can be summarized as follows:

• In collaboration with Meemoo3, we developed a facial recognition pipeline
using open-source models and applied it to over 150,000 images. Using
this pipeline, we automatically identified over 62,000 faces from the im-
age archives with a precision of 0.936.

• Developed an online similarity-based labeling tool that received over 180,000
labels to validate the facial recognition pipeline.

• Proposed a novel geolocalization algorithm for topographic raster maps
via text recognition and geocoding of the toponyms on the map.

• Evaluated binary and multiclass road segmentation approaches on con-
temporary topographic maps of the Netherlands, using associated vector
data.

• Developed a fully automated preprocessing pipeline, to assist Ghent Uni-
versity in digitizing their collection of 300,000 herbarium specimens.

• For the DISSCO-Flanders4 project and in collaboration with the botanical
garden of Meise5, we created a novel open-source instance segmentation

1https://github.com/deepinsight/insightface/tree/master/python-package
2https://storage.googleapis.com/mediapipe-assets/MediaPipe%20BlazeFace%20Model%20

Card%20(Short%20Range).pdf
3https://meemoo.be/en/news/fame-comes-to-an-end-initial-results
4https://dissco-flanders.be/
5https://www.plantentuinmeise.be/en

https://github.com/deepinsight/insightface/tree/master/python-package
https://storage.googleapis.com/mediapipe-assets/MediaPipe%20BlazeFace%20Model%20Card%20(Short%20Range).pdf
https://storage.googleapis.com/mediapipe-assets/MediaPipe%20BlazeFace%20Model%20Card%20(Short%20Range).pdf
https://meemoo.be/en/news/fame-comes-to-an-end-initial-results
https://dissco-flanders.be/
https://www.plantentuinmeise.be/en
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dataset for digitized herbaria. We then evaluated multiple segmentation
approaches on this dataset, to accurately segment the plants and common
objects on the herbarium sheets with an mAP of 78.9.

• Collected and geolocated over 15 million tweets related to natural dis-
asters and alternative energy sources. Created a novel stance detection
dataset and retrained NLP models to analyze this geospatial data on a
global scale.

1.5 Publications

1.5.1 Publications in international journals
(listed in the Web of Science 6 )

1. Groom, Q., et al. (2023). Envisaging a global infrastructure to exploit the
potential of digitised collections. Biodiversity Data Journal, 11, e109439.

2. Milleville, K., Van den broeck A., Vanderperren N., Vissers R., Priem M., Van
de Weghe N., & Verstockt S. (2023). Enriching Image Archives via Facial
Recognition. ACM Journal on Computing and Cultural Heritage.

3. Milleville, K., Chandrasekar, K. K. T., & Verstockt, S. (2023). Automatic ex-
traction of specimens frommulti-specimen herbaria. ACM Journal on Com-
puting and Cultural Heritage.

4. Ali, D.,Milleville, K., Verstockt, S., Van deWeghe, N., Chambers, S., & Birkholz,
J. M. (2023). Computer vision and machine learning approaches for meta-
data enrichment to improve searchability of historical newspaper collec-
tions. Journal of Documentation.

5. Milleville, K., Verstockt, S., & Van de Weghe, N. (2022). Automatic Geo-
referencing of Topographic Raster Maps. ISPRS International Journal of
Geo-Information, 11(7), 387.

6The publications listed are recognized as ‘A1 publications’, according to the following defini-
tion used by Ghent University: Articles included in one of the Web of Science databases ’Science
Citation Index’, ’Social Science Citation Index’ or ’Arts and Humanities Citation Index’. Limited to
the publications document type article, review, letter, note, proceedings paper.
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1.5.2 Publications in other international journals

1. Milleville, K., Van Ackere, S., Verdoodt, J., Verstockt, S., De Maeyer, P., & Van
de Weghe, N. (2023). Exploring the potential of social media to study en-
vironmental topics and natural disasters. Journal of Location Based Ser-
vices, 1-15.

1.5.3 Publications in international conferences

1. Milleville, K., Thirukokaranam Chandrasekar, K.K., Van de Weghe, N., & Ver-
stockt, S. (2023). Evaluating Segmentation Approaches onDigitizedHerbar-
ium Specimens. In: Bebis, G., et al. Advances in Visual Computing. ISVC
2023. Lecture Notes in Computer Science, vol 14362. Springer, Cham.

2. Milleville, K., Van Ackere, S., Van de Weghe, N., Verstockt, S., & De Maeyer, P.
(2022). An exploratory analysis on using social media to monitor environ-
mental issues and natural disasters. Proceedings of the 17th International
Conference on Location Based Services (LBS 2022), 1–7.

3. Ali, D., Milleville, K., & Verstockt, S. (2022). NewspAIper: AI-Based Meta-
data Enrichment of Historical Newspaper Collections. In DH Benelux 2022-
ReMIX: Creation and alteration in DH (hybrid).

4. Milleville, K., Thirukokaranam Chandrasekar, K. K., Blyau, T., Iannello, A.,
Michelucci, U., & Verstockt, S. (2022). Extraction and classification of his-
torical stamp cards using computer vision. In DH Benelux 2022-ReMIX:
Creation and alteration in DH (hybrid) (pp. 1-4).

5. Milleville, K., Van den broeck, A., Vissers, R., Magnus, B., Vanderperren, N.,
Vergauwe, A., … Verstockt, S. (2022). FAME video browser – face recognition
based metadata generation for performing art videos. DH Benelux 2022:
RE-MIX: Creation and Alteration in DH, Proceedings. Presented at the DH
Benelux 2022 - ReMIX: Creation and alteration in DH (hybrid), Esch-sur-
Alzette, Luxembourg.

6. Chandrasekar, K. K. T., Milleville, K., & Verstockt, S. (2021). Species Detec-
tion and Segmentation of Multi-specimen Historical Herbaria. Biodiversity
Information Science and Standards, 5, e74060.

7. Chambers, S., Lemmers, F., Pham, T. A., Birkholz, J. M., Ducatteeuw, V., Jacquet,
A., Dillen, W., Ali, D.,Milleville, K., & Verstockt, S. (2021). Collections as Data:
interdisciplinary experiments with KBR’s digitised historical newspapers:
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a Belgian case study. In 7th DH Benelux: The Humanities in a Digital World
(DH Benelux 2021).

8. Milleville, K., Verstockt, S., & Van de Weghe, N. (2020). Improving toponym
recognition accuracy of historical topographicmaps. In Internationalwork-
shop on Automatic Vectorisation of Historical Maps. ELTE Eötvös Loránd
University. Department of Cartography and Geoinformatics.

9. Milleville, K., Ali, D., Porras-Bernardez, F., Verstockt, S., Van de Weghe, N.,
& Gartner, G. (2019). WordCrowd: A location-based application to explore
the city based on geo-social media and semantics. In 15th International
conference on Location Based Services (LBS 2019) (pp. 231-236). Vienna
University of Technology. Research Group Cartography.

10. Vandecasteele, F., Kumar, K., Milleville, K., & Verstockt, S. (2019). Video
Summarization And Video Highlight Selection Tools To Facilitate Fire Inci-
dent Management. In ISCRAM.

11. Verstockt, S., Milleville, K., Ali, D., Porras-Bernandez, F., Gartner, G., & Van
deWeghe, N. (2019). EURECA: EUropean Region Enrichment in City Archives
and collections. In 14th ICA conference: Digital approaches to cartographic
heritage (pp. 161-169). Aristoteleio Panepistimio Thessalonikis (APTh).
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2
Photo Collection Enrichment

“A picture is worth a thousand words”

– Fred R. Barnard

This chapter discusses the automated processing of photo collections using
computer vision. It starts with an overview of relevant techniques and related
work. Next, it details the use of computer vision techniques to recognize objects,
using both supervised and unsupervised methods. The chapter concludes with a
facial recognition pipeline, that was successfully used to recognize over 62 thou-
sand faces.

This chapter features an adapted version of the following publication:

Milleville, K., Broeck, A. V. D., Vanderperren, N., Vissers, R., Priem, M., Van de Weghe,
N., & Verstockt, S. (2023). Enriching Image Archives via Facial Recognition. ACM
Journal on Computing and Cultural Heritage. https://doi.org/10.1145/3606704

2.1 Introduction

In recent years, cultural heritage and archive institutions have digitized their photo
collections. This digitization process entailed many challenges, which are dis-
cussed in Sections 1.1 and 1.3. Often, only a generic image description and date are

https://doi.org/10.1145/3606704


20 Chapter 2

available. The names of the persons depicted might not be available in the im-
age metadata or this metadata might not be complete (e.g. ”Group photo of the
Flemish Parliament, 1984”). This makes it difficult to search for specific persons,
objects, or places of interest in the entire collection.

As collections can contain millions of images, manually annotating each im-
age with detailed metadata is not a feasible task. Therefore, manual annotation
efforts often focus on a smaller part of the collection that provides the most his-
torical value. Crowdsourcing approaches can also help speed up the annotation
efforts [1–3]. These require a large enough set of volunteers willing to help an-
notate the collections and some costs to set up the crowdsourcing infrastructure
and marketing. The resulting metadata still needs to be validated in some way
before adding it to the collections, as it can be difficult for people not familiar
with the source material to provide accurate labels. Automated metadata cre-
ation techniques using AI have been gaining popularity, as the quality of the tech-
niques has improved dramatically over the years. While this was not a focus of
the performed research, many challenges remain concerning bias and fairness in
AI and how to better integrate these results in archival information systems [4].
For instance, multiple studies have shown that facial recognition systems tend
to have a higher error rate for certain demographics and even non-demographic
attributes like eyeglasses and accessories [5, 6]. Despite these issues, computer
vision models are an effective tool to analyze large picture collections. They are
robust, efficient, and generalize well to similar datasets.

2.2 Recognizing Objects of Interest

To find objects or places of interest in a given image, there are typically four main
approaches. These are classification, object detection, object segmentation, and
image retrieval approaches.

2.2.1 Image Classification

Image classification models will assign one or more object classes to a given im-
age, without any information on where this object is located in the image. This
was the main task of the ImageNet challenge [7], where the goal was to predict
a single class for the test images of the dataset. The ImageNet dataset contains
over one million labeled training images and features 1000 object classes. Be-
cause this dataset is so diverse, it is still frequently used to pre-train computer
vision models. People noticed that CNNs trained on ImageNet can be reused on
other datasets with little modifications, by replacing the final classification lay-
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ers. This practice is referred to as transfer learning. It enables neural networks to
achieve good results on a new dataset, with much fewer labeled images and with
a faster convergence. The lower layers of the network have essentially become
generic image feature extractors.

Image classification approaches are very efficient and used when it does not
matter where the object is located. One common example is using them to detect
inappropriate or not safe for work (NSFW) content. Many social media platforms
employ such models, where any image that is predicted as NSFW is either imme-
diately removed or flagged for manual validation. Image classification could also
be used to separate different types of images as part of an ensemble method,
where each type of image is then fed to a second, specialized model. For instance,
a classification model can detect if buildings are prominently visible (see Figure
2.1). If a building was found, the image can be fed to a secondary model to extract
building-specific keypoints (e.g. via [8]). Classification is also the easiest and
fastest approach to label. While predicting one or more object classes for a given
image can be useful, it does not give any information on the number or location
of these objects.

Figure 2.1: Image classification can be used to differentiate photographs of buildings
(left) versus people (right).

2.2.2 Object Detection and Segmentation

To locate all visible objects in a given image, object detection can be used. Such
an approach will predict a bounding box location and class for each recognized
object. Depending on the model, these bounding boxes can be rotated or not (see
Figure 2.3 for an example of non-rotated bounding boxes). They are represented
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by two or four coordinates. Detection models typically contain additional regres-
sion layers, which take input features and produce the coordinates of the bound-
ing boxes [9]. However, when the visible objects have complex or non-convex
shapes (e.g. with holes or consisting of multiple parts), these bounding box pre-
dictions will not be an accurate representation of the object’s shape.

Therefore, image segmentation techniques can be used to predict pixelmasks
for each recognized object or object class. Segmentation techniques are catego-
rized into three tasks: semantic, instance, and panoptic segmentation [10]. Se-
mantic segmentation aims to classify each pixel in the image (e.g. ”person”, ”car”
or ”background”). So, every pixel representing a person on the image is assigned
the same class. Instance segmentation not only classifies each pixel but distin-
guishes between individual instances of each class. Panoptic segmentation com-
bines these two types, segmenting both ”stuff” (semantic) and ”things” (instance)
within the same framework. Figure 2.2 visualizes the three segmentation types.

Figure 2.2: Different segmentation types visualized (Image from [10])

While segmentation is more accurate, the masks are much harder and time-
consuming to label than bounding boxes. The segmentation labels are typically
represented as a polygon or binary mask. One of the most popular datasets con-
taining both detection and segmentationmasks is COCO [11]. This dataset contains
over 200 thousand labeled images, featuring more than 1.5 million annotations.
Detection models trained on such datasets are already widely applicable out-of-
the-box and can easily be fine-tuned via transfer learning. Popular detection
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models, such as YOLOv8 [12] and Detectron2 [13], achieve accurate results, while
still being performant and can easily be integrated into existing workflows. Fig-
ure 2.3 shows the output of a YOLOv8 instance segmentation model on an archive
photograph, with both the masks and bounding boxes visualized. It is clear that
the segmentation masks better represent the recognized objects.

Figure 2.3: Object instance segmentation using YOLOv8 [12]. The object class and
confidence score are shown above each detection.

To conclude, pre-trained object classification, detection, and segmentation
models are readily available, with a wide range of object classes. For most pic-
tures, these can be used as is, without any modification. When the goal is to find a
specific object or building, detection models will need to be fine-tuned using ad-
ditional labeled data. This may not be optimal, especially if the number of distinct
buildings or objects is quite large.

2.2.3 Image Retrieval

Imagine you have a dataset of archive pictures, taken across an entire city or coun-
try. If you now want to determine where these pictures were taken, an object de-
tection approach will not get you far. You would have to label distinct landmarks
or buildings, that are commonly featured in these pictures. This can quickly get out
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of hand and become counterproductive. Therefore, an image retrieval approach
is often preferred for such use cases.

Image retrieval approacheswill try to find the top-kmost similar results from
a dataset, for a given query image. They generally use image similarity models,
that predict a similarity score for a pair of images. During training, an image
similarity model is typically trained on pairs of images, containing both correct
and incorrect matches for each person or object. The model’s loss function is con-
structed in away thatmaximizes a similaritymetric between learned embeddings
from image pairs containing the same object and minimizes it otherwise. To use
such a model in practice, you could feed it image pairs, but such an approach is
not scalable. If you have a dataset of 10,000 pictures and want to find the most
similar pictures for a couple of query images, the model would have to predict
this score 10,000 times for each query image. Therefore, image similarity models
typically remove the last layers of the network during inference, resulting in an
output vector. This vector or embedding, is a low-dimensional representation of
the input image. To match two embeddings, a similarity metric is used. Typical
examples of such metrics are Euclidean distance and cosine similarity.

So, if wewant to estimate where a picture was taken given our archive picture
collection, we first extract an embedding for each image in the dataset. Then, we
extract an embedding for the new pictures and use a similarity metric to find
the top-k most similar matches. The big difference in this approach is that the
embeddings only need to be calculated once for each image of the dataset.

Image similarity approaches are commonly used for landmark identification
and face recognition models [14, 15]. We successfully used such an approach in
the Ugesco [16] project, to automatically geolocate a dataset of archive pictures
taken in Brussels during the Second World War. We constructed a small set of pic-
tures featuring popular locations and landmarks from Google images and Google
Streetview. Then, we extracted image embeddings for each of them and calcu-
lated the similarity scores with the archive dataset. This resulted in an ordered
list of matches for each image. The proposed image matches were then subse-
quently validated via crowdsourcing. Figure 2.4 shows the resulting matches for
the Ugesco dataset, given two recent images. Becausewe know the location of our
recent images, we can assign this location to the archive images, automatically
geolocating them.

2.2.3.1 Multimodal Models

Besides images, similarity and retrieval approaches can also be used on text,
which became increasingly popular after the Word2Vec [17] model was released.
They constructed embeddings from a given string to match it with other text. This
resulted in a semantic similarity between two texts, instead of a simple string sim-
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Figure 2.4: Two recent query images, taken from Google, and their best-matching results
from the Ugesco dataset.

ilarity. In 2021, the popular CLIP (Contrastive Language–Image Pre-training) [18]
model was published. This model combined image and text embeddings by pre-
training 400 million image and caption pairs. The model was trained to predict
the caption for a given image. Such an approach made it possible to match im-
ages with text and vice versa. It also showed impressive zero-shot accuracy on
ImageNet.

Many future research used a similar approach to CLIP, to combine text and
images into a single, unified model. One such multimodal model is BLIP-2 [19],
which we used in a case study on the ”Collectie van de Gentenaar”1 (CoGent). This
is an open dataset, containing pictures with descriptions and tags from multiple
museums and institutions from Ghent.

First, we extracted an embedding for each image in the dataset. Next, we
calculated the pairwise similarity scores, resulting in an ordered list of matches
for each image. Given a new image, the embedding can be calculated and quickly
matched with the dataset using an efficient vector similarity approach such as
Annoy2. Because many images lack a good description, these can be difficult to
find, therefore image similarity offers an additional way of querying the database.
Figure 2.5 shows three examples of image-to-image matching results and their
cosine similarity scores.

Besides image-to-image matching, we also wanted to find images related to
typical Belgian topics such as cycling, chocolate, etc. We constructed a list of topics
and associated keywords. Then, we used BLIP-2 to embed these texts and find the
best-matching images from the dataset, using the image embeddings we already
calculated. This way, we have found the best-matching images for each topic. Text
embeddings enable users to search the visual content of the collection, using nat-
ural language. The BLIP-2 library also features an image captioning model, which
can generate image descriptions. While these descriptions are rather generic,

1https://data.collectie.gent/
2https://github.com/spotify/annoy

https://data.collectie.gent/
https://github.com/spotify/annoy
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Figure 2.5: Best matches from the CoGent dataset for three query images.

they can be directly integrated with existing database search methods. Figure
2.6 shows three sample images from the dataset, with their auto-generated cap-
tions. We noticed that the model sometimes gave incorrect captions, so its results
should be used with caution.

Figure 2.6: Example of some auto-generated image captions. The man pictured on the
right is definitely not playing baseball.

While not perfect, the CoGent use case demonstrates the added value of us-
ing multimodal similarity-based methods to enrich the collection. The presented
methods required no manual annotation, except for a list of topics and keywords.
They allow users to search for visual content using natural language or similar
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images. The methods do require some processing, to extract embeddings from a
new search query (a query image or natural language). This is their main limi-
tation and the biggest reason why such approaches aren’t already integrated in
many collections.

2.3 Recognizing Persons of Interest

To efficiently and accurately find persons of interest in large archive collections,
we developed a generic image enrichment pipeline based on state-of-the-art fa-
cial recognition tools. This pipeline was successfully used in the FAME (facial
recognition as a tool for metadata creation) project to enrich multiple image
archive collections. FAME was a collaborative project with Meemoo (the Flem-
ish Institute for Archives) and four content partners: Kunstenpunt (the Flanders
Arts Institute), KOERS (the Museum of Cycle Racing), ADVN (Archive for National
Movements), and the Flemish Parliament Archive. Each content partner provided
a sample dataset to enrich and assisted in the validation process. The pipeline en-
riches the collections with image-level metadata, by predicting who is depicted
in each picture. It was applied to a dataset containing over 150 thousand images,
resulting in more than 62 thousand confident person predictions. Furthermore,
an interactive labeling tool was developed to validate the person predictions. Us-
ing this tool, more than 180 thousand annotations were collected over one year
and used to validate the recognition model accuracy. This additional metadata is
a valuable resource for researchers and others interested in exploring and inter-
preting the contents of the image archives. Researchers can more easily analyze
the trends and relationships of the identified persons throughout the collection.
Facial recognition can also aid in the identification of previously overlooked in-
dividuals or groups, providing a more comprehensive understanding of historical
events.

2.3.1 An overview of Facial Recognition Systems

Facial recognition has been a prominent area of computer vision research for quite
some time. It tackles the problem of assigning the correct identity to a given
face, using a dataset of known faces, also called the reference or ground truth set.
Generally, a face recognition model consists of three components. First, a face
detector detects and localizes the faces present in the image. Research about
face detection models has been going on since the 1990s, with the earlier works
using low-dimensional handcrafted features [20]. At the time, such approaches
were state-of-the-art but were later vastly outperformed by convolutional neural
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networks (CNNs), as were most other computer vision problems. Such CNNs are
similar to those used for object detection. They generally consist of a backbone
(feature extractor) followed by some additional layers, that perform bounding
box regression to predict the location of each face in the image. One of the more
popular face detection models, RetinaFace, is very accurate, while still having a
relatively fast processing time [21]. Other popular face detection models include
Mediapipe [22] and MTCNN [23].

Next, an alignment module crops and normalizes the detected faces. This
module preprocesses the detected faces for the final component to perform face
recognition. This final component extracts face embeddings (feature vectors)
from a given face, which can then be matched with a dataset of known faces
(and extracted embeddings) [24]. Tomatch two embeddings, a similarity metric is
used. To recognize a known person from a given face, this metric is calculated for
each embedding in the reference set. One can subsequently get the best match-
ing person from the reference set and its similarity score. If this score is higher
than a predefined threshold, it is considered a correct match.

Deepface [25], was the first face recognition approach to rival human per-
formance and a big breakthrough in the field. They used a nine-layer CNN and
achieved an accuracy of 97.35% on the LFW dataset [26]. Later, FaceNet [27] im-
proved the accuracy to 99.63% using a retrained GoogLeNet on a private dataset
and a triplet loss function. Since then, many new open datasets arose, such as
VGGFace2 [28], CASIA-Webface [29], and WebFace260M [30], which led to multi-
ple advances in the field of face recognition. For our facial recognition pipeline,
we used InsightFace, which is one of the most popular open-source face recogni-
tion libraries. They offer close to state-of-the-art accuracy and great performance
with their pre-trained models [14, 31]. For a more detailed research overview on
face recognition, we refer the reader to [24].

2.3.2 Facial Recognition in Practice

In [32] the location and geometry of facial landmarks were used to detect the fa-
cial expressions and their intensity for Indian arts performers. The automated sys-
tem demonstrated an accuracy exceeding 95% on a varied dataset of performers,
with and without makeup. Via user feedback, they learned that both beginners
and experts found the automated system useful to practice and improve their ex-
pressions during performances. [33] proposed a three-part methodology for an-
alyzing gender in historical advertisements. The authors covered face and gender
detection as well as the detection of visual medium types (illustrations or pho-
tographs). From their larger collection of digitized newspapers, they annotated
a sample of 45 thousand images containing both photographs and illustrations
with the location and gender of visible faces. This resulted in a dataset of nearly
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19 thousand annotations, on which they benchmarked a pre-trained DSFD [34]
and RetinaFace model. While the models’ performance suffered when process-
ing newspaper images rather than photographs, they still achieved an average
precision of 0.71 and 0.68, respectively. They subsequently retrained a classifier
and were able to accurately distinguish male and female illustrations or pho-
tographs, with an average weighted precision of 0.84. In [35], the authors used a
facial recognition pipeline to automatically recognize celebrities and prominent
persons from the French national video archives. They constructed their reference
set of known persons via web scraping. For each person, they gathered 50 images
from theweb and filtered outwrongly detected faces using the extracted face em-
beddings. The predictions were validated on two samples from their dataset. One
consisted of 216 shots and 13 persons of interest, the other contained 100 shots
featuring six persons of interest. They achieved a recall of 0.97 and 0.98, respec-
tively. Photo Sleuth [1] is a web-based platform that combines facial recognition
with crowdsourcing to identify Civil War portraits. Due to their age and quality,
these Civil War pictures were naturally more difficult to process accurately than
modern digital photographs. Therefore, they used additional visual information
(coat color, chevrons, shoulder straps, etc.) and help from the crowd to improve
the recognition process. In a one-year period, over 12 thousand users registered
to the platform. They helped identify 2979 portraits and uploaded over 8000 new
images to the platform, demonstrating the added value of crowdsourcing.

2.3.3 Overview of the Pipeline

An overview of the entire facial recognition pipeline is given in Figure 2.7. The first
step in the pipeline is to build a reference set of known persons we aim to rec-
ognize. This process was performed semi-automatically, with manual validation.
Face detection and feature extraction were performed on each of the reference
images. Next, face detection and feature extraction were performed on the unla-
beled datasets. After this extraction, each detected face was matched with all the
faces in our reference set via a similarity metric on the embeddings. This resulted
in a person prediction and associated score for each detected face. The faces that
did not have a confident prediction were clustered, to find frequently occurring
persons that were not included in the reference set. The final step of the pipeline
was to manually validate these person predictions and found clusters via an in-
teractive labeling tool. The resulting metadata was then exported back to the
content partners.



30 Chapter 2

Figure 2.7: Overview of the facial recognition pipeline.

2.3.4 Building the Reference Set

To perform facial recognition, we first need a reference set of known persons and
their associated embeddings. Ideally, each person should have a set of images
that only contain the person in question. Havingmultiple reference images is pre-
ferred, to increase the robustness of facial recognition. These should be relatively
high-quality images, with the person facing the camera. To build this reference
set, a list of persons of interest for each content partner was made using expert
knowledge, image descriptions, and Wikidata. Images for each person were col-
lected via web scraping, Wikidata, and manually selected from the archives of
Meemoo and our content partners using the associated metadata.

We split our reference dataset into three collections based on the type of
source material and persons of interest. The first collection (Kunstenpunt) con-
tains performing artists, actors, and other people from the cultural sector. The
second collection (Koers) consists mainly of cyclists and images taken during cy-
cling events. The third collection (Government) consists of politicians and well-
known activists. Face detection and feature extraction were performed on each
of the images of our reference set, using the pre-trained model pipeline from
InsightFace (buffalo_l 3). This pipeline consists of several models, including an
SCRFD [36] model for face detection and a Resnet50 model with Arcface loss
trained on WebFace600K for face recognition, which generate the following out-
puts:

3https://github.com/deepinsight/insightface/tree/master/python-package#model-zoo

https://github.com/deepinsight/insightface/tree/master/python-package#model-zoo
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• Location and detection confidence for each detected face in the image

• Facial keypoints and landmarks (both 2D and 3D) for each detected face

• A 512-dimensional feature vector (embedding) for each detected face

• Age and gender prediction for each detected face

These outputs were subsequently grouped per person in the reference set,
resulting in a set of embeddings for each person. Some of the images in the ref-
erence set had problems regarding the face detection. If no faces were detected,
which sometimes occurred if the face was large w.r.t. the image (e.g. close-ups),
the input image size of the model was lowered from the standard 640x640 pix-
els to 256x256 pixels. This often led to a successful detection. If multiple faces
were detected, mainly due to people in the background or false detections, it is
difficult to be certain which face belongs to the person in question. Filtering the
wrong detections based on their relative size and position frequently led to er-
rors. We solved most of these errors by matching each detected face with all the
other faces from that person in the reference set. By using the resulting similarity
scores, it was trivial to decide which face (if any) belonged to the person in ques-
tion. If the image still had problems (no face detected or not sure which face was
correct), it was discarded from the reference set.

Ultimately, we ended up with 60,976 images portraying 6075 unique persons
across the entire reference set. Table 2.1 gives an overview of each of the collec-
tions in our reference set. It features the number of images and unique persons,
the average number of images per person, and the number of images that were
discarded. The Koers collection had the most images with problems, mainly due
to the gathered images containingmultiple persons or the person’s face not being
clearly visible (many pictures were taken during a cycling race).

Table 2.1: Overview of the reference set

Collection Images Unique persons Images/person Discarded

Kunstenpunt 37,172 2393 15.53 92 (0.25%)
Koers 15,323 2791 5.49 482 (3.05%)

Government 8481 891 9.51 7 (0.08%)

Total 60,976 6075 10.04 581 (0.94%)
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2.3.5 Face Recognition on the Archive Data

After constructing the reference set and extracting a set of embeddings for each
person, we can use these to perform face recognition on the unlabeled archive
images. Similar to the reference set, this dataset was split into three correspond-
ing collections, depending on the content partner. For Kunstenpunt, a sample of
17,382 images from their digitized and born-digital archive was used (1933-2020).
For Koers, we used a set of 123,911 digitized photographs taken by Maurice Terryn
that cover cycling events between 1969-1980. For the Government dataset, we
used 5587 pictures from ADVN and 4824 from the Flemish Parliament Archive
(1975-2019). The same InsightFace model pipeline was used to detect the faces
on each image and extract their embeddings.

To predict the persons present in the images, the detected faces and corre-
sponding features need to be matched with our reference set features via a sim-
ilarity or distance metric. Euclidean distance on the normalized features is often
used, but we chose to use cosine similarity, as initial testing on the reference set
(matching faces of the same person) showed it was slightly more accurate. The
cosine similarity is given by Eq. 2.1 and is bounded by [-1, 1], where 1 indicates a
perfect match (same embeddings).

A · B
∥A∥∥B∥

=
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n∑
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i

√
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i=1

B2
i

(2.1)

For each collection, the cosine similarity between the detected faces’ embeddings
and all the embeddings in the reference set was calculated. This resulted in a
list of similarity scores for each detected face from the unlabeled dataset. From
this list, the 100 highest scores and associated person names (from the reference
set) were saved. As a person in the reference set usually has multiple images
and embeddings, the correct person prediction will likely appear multiple times
in this list. Figure 2.8 visualizes the similarity scores and top person predictions
for a sample image of the ADVN archive collection. Both persons were accurately
recognized, with similarity scores of 0.66 and 0.75. Because of the large number
of reference set embeddings, these calculations can become memory and time-
consuming. Therefore, an efficient approximation approach such as Annoy can be
used to speed up this process. We used such an approximation for a part of the
evaluation (see 2.3.9).
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Figure 2.8: Sample image from the ADVN collection depicting a young Herman van
Rompuy (left) and Leo Tindemans (right). The correct person predictions and similarity

scores (0.66 and 0.75, respectively) are visualized.

2.3.6 Finding New Persons

After performing the face recognition on the unlabeled datasets, a large number
of detected faces may have low similarity scores and poor person predictions.
This is often due to the detected faces being too small or noisy, resulting in bad
embeddings. When this is not the case, the poor prediction is usually because
the correct person is not included in the reference set. However, this person may
appearmultiple times in the unlabeled dataset. Therefore, we can use a clustering
approach on all detected faces with a poor prediction, to find persons not included
in the reference set.

First, the detected faces were filtered on their size. Detected faces with a
width or height smaller than 80 pixels were ignored. This removed many false
positive detections and smaller faces of people in the background. Next, only
faces with a top similarity of less than 0.5 were considered. The cutoff value of
0.5 was chosen as it usually resulted in a correct prediction (see 2.3.8.2). For each
collection, an initial test was done using the DBSCAN clustering algorithm, which
clusters higher-density regions [37]. Because DBSCAN expects a distance metric
and not a similarity metric, we used the inverse of the absolute value of the previ-
ously calculated cosine similarity. This distance metric ranges from [0, 1], where 0
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indicates a perfect match. We set the epsilon parameter to 0.5 and the minimum
number of samples per cluster to 5. This ensures that the faces found in each
cluster will be relatively similar to each other. Figure 2.9 shows some sample
images from two found clusters from the Kunstenpunt collection. Both persons
were not included in the initial reference set but still appeared multiple times in
the Kunstenpunt archive collection. After manual validation, these persons can
now easily be added to the reference set.

Figure 2.9: Sample images of two clusters found for persons not included in the initial
Kunstenpunt reference set.

2.3.7 Applying the Model to Video

The content partners also provided a small sample of videos to perform a feasi-
bility study on. As a video is just an ordered set of frames, we could perform face
recognition on every frame. However, such an approach would not be scalable
and many processed frames would result in the same prediction. If a person is
in frame for one minute and the video has a frame rate of 30 fps (frames per
second), he would appear on 1800 consecutive frames. The number of frames
to process can be reduced by skipping a fixed number of frames after one has
been processed, but this will still result in a large number of frames. Instead, a
test was performed using a scene detection algorithm [38], that detects when
there’s a different scene or shot in the video. For each scene, we randomly se-
lected three frames, which were subsequently processed for face recognition. Be-
cause the scene detection algorithm runs much faster than face recognition, this
approach was more efficient. For instance, one video of the Flemish Parliament
with a frame rate of 25 fps and a duration of 1h44 minutes contained a total of
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156,000 frames. However, using scene detection, 85 scenes were detected and
a total of 255 frames were extracted for face recognition. This approach works
well when the video has many cuts or major shot transitions, as these were usu-
ally detected by the algorithm. Virtual meetings are a great example of such type
of videos, as the camera switches to the active speaker. For longer shots with a
static camera, where persons are moving in and out of the shot, the scenes were
often quite long and their detection less accurate. Using this approach, the result-
ing person predictions were grouped per detected scene, providing fine-grained
metadata. We used this metadata to develop a video browser web application4

that allows the user to query the video based on the recognized persons and find
all the shots they appeared in [39]. Figure 2.10 shows the video browser interface
for a video meeting of the Flemish Parliament. The different scenes are high-
lighted and grouped per recognized person, allowing for quick navigation of the
video.

2.3.8 Evaluation

This section details the interactive labeling tool, which was used to validate the
face recognition predictions. It also details the evaluation procedure and presents
the face recognition accuracy. Furthermore, an exploratory study was performed
analyzing the detected faces and predicted genders. The section concludes by
comparing the InsightFace embeddingswith FaceNet, another popular face recog-
nition model.

2.3.8.1 Validating the Model Predictions

Manually validating each person prediction is a very time-consuming process, con-
sidering the size of our dataset and the number of persons in the reference set.
Each image can contain multiple persons, further increasing the time spent label-
ing the predictions for each image. Therefore, an interactive web-based labeling
tool was developed, inspired by our earlier work [40]. Instead of labeling each
image or prediction one by one, the predictions are grouped on a per-person ba-
sis and presented in batches for labeling. After selecting a person, some sample
images of the reference set are shown, together with a batch of faces for which
the selected person was predicted. Figure 2.11 shows this interface after select-
ing the person ’Bert Anciaux’ from the Government collection. The predictions are
sorted by their similarity score, with the most confident predictions being shown
first. Above each face, metadata of the original image is given, and additional
metadata is shown on right-click.

4https://labeltool.idlab.ugent.be/eureca/label/faces/videobrowser/index

https://labeltool.idlab.ugent.be/eureca/label/faces/videobrowser/index
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Figure 2.10: Interface of the video browser application for a virtual meeting of the
Flemish Parliament. The recognized persons are shown below the video and their scene

occurrences are visualized after clicking on their portrait.

The tool allows the user to quickly select multiple predictions and label them
with the same value. We opted for three possible labels: accept, reject, and bad. A
prediction was accepted if the selected face belonged to the selected person and
rejected otherwise. The bad label was used to indicate that the selected face was
either a false detection (no face visible in the crop) or it was too noisy to recognize
the person. This can happen for small faces in the background, or when the face is
viewed from the side. Some examples of such bad faces are shown in Figure 2.12.
Without any knowledge of the context, it is extremely difficult to determine the
correct person. Luckily, the similarity scores for such bad faces are much lower on
average.
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Figure 2.11: Interface of the labeling tool, after selecting a person (Bert Anciaux). The top
row shows reference set images of that person, with the top predicted faces below it.

The metadata of the original image is shown on top of each predicted face. The user can
validate multiple predictions at once, speeding up the labeling process.

2.3.8.2 Results

Over a one-year period and in collaboration with the content partners, we have
collected a total of 182,202 face prediction labels and 2053 labels for face clus-
tering via the labeling tool. For the Koers collection, the initial dataset consisted
of a small sample of 6051 images, which was later expanded with an additional
117,860 images. More than 1million faceswere detected on this additional dataset.
Therefore, the person predictions were first filtered on aminimum similarity score
of 0.4, to focus labeling efforts on more confident predictions. Table 2.2 breaks
the validation labels down by collection and label value. Roughly 43.4% of the
face predictions were accepted, 44.4% rejected, and 12.2% labeled as bad faces.
Because the person predictions were sorted by similarity score, these labels are
biased towards acceptance, as not every detected face in the dataset was labeled.
The average similarity score for predictions with an accepted label was 0.57, for a
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Figure 2.12: Examples of ’bad’ faces detected by the face detection model. These include
masks wrongly detected as a face, faces that are too noisy to tell who is depicted, and

obstructed faces.

rejected label 0.31, and for a bad label 0.29. The full similarity score distributions
of all labeled predictions are shown in Figure 2.13. There is a clear spike visible
at 0.4, due to the filtering of the Koers dataset. Nevertheless, these distributions
clearly show that a higher similarity score increases the probability of a correct
person prediction.

Clearly, there are correct predictions with lower scores and incorrect predic-
tions with higher scores. A minimum score threshold can be set, to mark confi-
dent predictions as correct and discard the others. A higher threshold will result in
fewer errors, but also fewer correct person predictions with higher scores. This is
the classic trade-off between precision and recall. Table 2.3 lists the various pre-
cision and recall scores for thresholds between 0.4 and 0.8. The threshold of 0.5
resulted in a high precision of 0.936 and still had a relatively high recall at 0.740.
62,455 person predictions had a similarity score that was greater than or equal
to this threshold. Meanwhile, the highest threshold of 0.8 had an almost perfect
precision of 0.997 (only 2 errors made) but the recall dropped to 0.01. Therefore
only 1% of the correct predictions would remain after applying the threshold.

Table 2.2: Overview of the manually validated labels per collection. The number of ’bad’
labels is much lower for Koers, due to the filtering on a minimum similarity of 0.4.

Collection Labels Accepted Rejected Bad

Koers 131,909 63,967 (48.5%) 63,558 (48.2%) 4384 (3.3%)
Government 42,040 12,245 (29.1%) 15,430 (36.7%) 14,365 (34.2%)
Kunstenpunt 8253 2818 (34.1%) 1939 (23.5%) 3496 (42.4%)

Total 182,202 79,030 (43.4%) 80,927 (44.4%) 22,245 (12.2%)
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Figure 2.13: Distribution of person prediction similarity scores for the manually validated
predictions, grouped by their label (accepted, rejected, and bad). The red lines indicate
the median score. There is a clear spike visible at 0.4, due to the filtering of the Koers

dataset.

2.3.9 Analysis

This section details a number of analyses made on the collection, using facial
recognition and gender predictions. Furthermore, we showhowperson co-occurrences
can be used to find connections in the dataset.

2.3.9.1 Number of Persons per Image

The number of detected faces per image can be a useful metric for various pur-
poses. It can provide insights into past events and improve the search capabilities
and accessibility of the collection. For example, it enables the search for large
crowd gatherings or single-person profile photographs. For each collection, we
filtered out the images on which no faces were detected. Next, the images were
categorized based on the number of detected faces. Images featuring a single
person, 2-4 persons, 5-10 persons, and more than 10 persons. For each category,
the number of images was aggregated and divided by the total number of images
for that collection. This process was performed for all detected faces and also for
detected faces that were matched with a minimum score of 0.5. The resulting ra-
tios are visualized in Figure 2.14. Most images feature a single person, except for
the Kunstenpunt collection. There, the ratio for 2-4 persons is slightly higher be-
cause most of the images were taken during a performance, where multiple peo-
ple are visible. The Government collection features the most images with more
than 10 detected persons, due to a large number of group pictures and pictures
taken inside the Flemish Parliament. After filtering the detected faces based on
their person prediction score, we see a much lower number of persons per image.
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Table 2.3: Precision and recall per similarity score threshold. The positive prediction
column denotes the number of predictions with a similarity score greater than or equal

to the threshold.

Threshold Positive predictions Precision Recall F1

0.40 97,716 0.782 0.967 0.865
0.45 75,978 0.901 0.867 0.884
0.50 62,455 0.936 0.740 0.826
0.55 48,839 0.957 0.591 0.731
0.60 34,447 0.971 0.423 0.589
0.65 20,727 0.978 0.256 0.406
0.70 9612 0.985 0.120 0.214
0.75 3151 0.991 0.040 0.076
0.80 768 0.997 0.010 0.019

The reason for this is twofold: many persons present in the collections were not
included in the reference sets, and smaller faces in the background will generally
have a lower prediction score. Nevertheless, 84 group photos of the Government
collection feature more than 10 confidently recognized persons.

Figure 2.14: Distributions visualizing the number of detected faces per image for all three
collections, without filtering (left) and after filtering on a minimum prediction score of

0.5 (right).
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2.3.9.2 Network Analysis

In addition to aggregating the number of person detections, we identified con-
nections between individuals using predicted person co-occurrences. For every
image, predictions were filtered on a minimum similarity score of 0.5. Next, a
graph was constructed with all the predicted person names as the nodes. Each
time two individuals appeared in the same image, an edge between them was
added to the graph, or the weight of the existing edge was incremented. Using
this graph, we can calculate variousmetrics like degree centrality, to find themost
connected persons in the collection. The degree centrality of a node is equal to
the fraction of nodes it is connected to. We have performed this analysis on the
collection of Koers. We compared the total number of occurrences of the 15 most
frequently occurring persons with their degree centrality. Table 2.4 lists these
persons with their degree centrality and Figure 2.15 visualizes the resulting net-
work graph for these persons (in red) and their connections. As the total number
of unique persons is over 1000, the full network graph becomes complex to visual-
ize, therefore we limited the visualization to a subgraph of the 50most frequently
occurring persons.

If we compare the number of occurrences and degree centrality, we see that
these have a strong correlation. However, some persons have a much lower cen-
trality compared to others in this list. For instance, De Vlaeminck Erik has a high
number of occurrences but a low centrality, indicating that he is featured with a
relatively small fraction of the total number of unique persons identified. On the
other hand, Demeyer Marc has fewer total occurrences but is pictured with more
than double the number of unique persons. Next, we looked at the most fre-
quently occurring duos. The most frequently occurring duo was Pollentier Michel
andMaertens Freddy at 170 occurrences, followed byMerckx Eddy and Sercu Patrick
at 149 occurrences. These duos were teammates for a portion of the Koers collec-
tion period, so they were often pictured together during or after a race.

2.3.9.3 Gender Prediction

Besides the number of detected persons per image and their connections, a small
study was performed on the predicted gender of a subset of the collection of the
Flemish Parliament (1980-2019). We chose to limit this study to this collection,
as every image in this collection was accurately dated, which was not the case
for the other collections. Also, the collection of Koers would be less interesting to
study, as it features images taken during men’s cycling races, which would heav-
ily skew the results. The InsightFace model outputs a binary gender prediction
for each detected face. This binary classification is a common practice in facial
recognition due to its simplicity and accuracy. We acknowledge the limitations of
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Table 2.4: Top-15 most frequently identified persons in the Koers collection, with their
associated degree centrality.

Name Occurrence Centrality

Maertens Freddy 2632 0.210
Merckx Eddy 2019 0.179
Sercu Patrick 2007 0.159
De Vlaeminck Roger 1720 0.148
Godefroot Walter 1008 0.153
Van Springel Herman 942 0.150
Pollentier Michel 852 0.117
De Vlaeminck Erik 718 0.070
Demeyer Marc 638 0.151
Vermeire Robert 603 0.079
Demol Dirk 522 0.074
Leman Eric 476 0.090
Verbeeck Frans 474 0.088
Dierickx André 442 0.131
Planckaert Eddy 441 0.063

this approach and its reductionist nature, however, certain physical characteris-
tics are often strongly associated with the male or female gender, making binary
categorization still a useful metric.

Because some years contained few pictures, we grouped the images into ten-
year periods, starting from 1980 until 2019, the last year of the collection. The first
five years of the collection were excluded (1975-1979) so that every period spans
a decade. For each period, the ratio of male and female predicted faces was cal-
culated. Figure 2.16 shows this distribution throughout the years. We see that the
ratio of predicted female faces steadily rises throughout the years, from around
9% to 27%. These are the predicted genders, so some mistakes will be included in
this aggregate, but it still demonstrates the overall trend of the collection.

2.3.10 Comparison with FaceNet

Throughout the FAMEproject, face recognitionmodels from InsightFacewere used.
After gathering the prediction labels, a comparative study was performed be-
tween the embeddings generated from InsightFace and FaceNet, another pop-
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Figure 2.15: Subgraph of the top-15 most frequently identified persons (in red) and their
connections.

Figure 2.16: Ratio of male and female predicted faces, grouped per decade, for the
collection of the Flemish Parliament.

ular open-source face recognition library. For FaceNet, we used an InceptionRes-
netV1 model that was trained on VGGFace2 5. A sample of faces from the dataset
was taken, containing the reference images and accepted validated predictions
for the Government collection. This set included a total of 17,998 faces. All per-
sons who appeared less than three times were discarded, leaving 17,901 faces.

5https://github.com/timesler/facenet-pytorch

https://github.com/timesler/facenet-pytorch
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For each detected face, the FaceNet embedding was extracted. Next, a leave-one-
out test was performed using the InsightFace and FaceNet embeddings. For each
embedding, we found the most similar match with all other embeddings via the
cosine similarity. If this match belonged to the same person, it was marked as
correct and the similarity score was saved. We also saved the similarity score for
the most similar incorrect match. We used the Annoy library to quickly find the
most similar matches. Figure 2.17 shows the similarity score distributions for both
InsightFace and FaceNet embeddings, for the best match and the best incorrect
match. The overlap between both distributions visualizes the number of errors
made (the best match was a different person). The recognition accuracy for In-
sightFace was 0.989 (188 errors) and 0.959 (736 errors) for FaceNet. Clearly, the
newer InsightFace model outperforms FaceNet, which was expected. We also see
that the average correct prediction score is much higher for FaceNet, whichmeans
a larger threshold should be used when making person predictions with FaceNet
compared to InsightFace.

Figure 2.17: Similarity score distributions of the best match (highest similarity score) and
best incorrect match for both InsightFace (left) and FaceNet (right) embeddings. The

overlap of the distributions denotes the number of errors made.

2.3.11 Discussion

This section presented a facial recognition pipeline that was used successfully in
the FAME project. The pipeline was able to accurately recognize persons in each
image using a reference set of known persons. The construction of the reference
set required the most manual effort and was crucial to make good predictions. It
should consist of persons of interest likely to appear in the archive collections. For
each person, a handful of images (3-5) was sufficient for robust recognition. It is
important that these images are of a single person, of good enough quality, and
that the person is facing the camera. We have noticed that low-resolution, noisy
images, tend to match with a higher score with other noisy images. Furthermore,
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relatively small or extremely large faces on such noisy images were often not
detected, which was also noted in [33].

It’s also recommended to include images in the reference set from a similar
time period as the collection. Reference images with a similar resolution or noise
(e.g. from digitization) as those in the collection will generally result in a higher
matching score. Furthermore, as people grow older, their facial features change,
which affects the embedding vector. For several persons in the reference set, only
more recent reference images were used. Surprisingly, some of those persons are
still accurately predicted on archive images taken decades ago. An example is
shown in Figure 2.18. Even though all the reference set images for this person
were taken two decades later, the prediction is relatively accurate with a score of
0.69. If we then look at the highest score between this image and a sample of
other archive images for this person from the same period, we see the similarity
scores are slightly higher at 0.77, demonstrating the importance of a more varied
reference set.

Figure 2.18: Left: Sample image from the reference set for Bert Anciaux. Right: Sample
image from the ADVN collection depicting a young Bert Anciaux. Even though all the
reference set images for this person were taken over 20 years later, the prediction is

relatively accurate with a score of 0.69.

After extracting the embeddings from the reference set and archive dataset,
these were matched using cosine similarity. In this work, we mainly focused on
the best-matching person prediction. But remember that for each face we have
calculated the similarity with all faces in the reference set. Persons in the ref-
erence set also have multiple images and embeddings. Therefore, the person
prediction is a list of names containing duplicates, ordered by similarity. We are
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confident the results can be further improved using the top-k person predictions.
If these predictions are all the same person, they could be viewed as confident,
even with a lower similarity score threshold.

As metadata enrichment is our end goal, precision should likely be prioritized
over recall. Only confident predictions should be imported back into the archives
without human validation. It is arguably better to miss out on some predictions
than to incorrectly predict the visible persons on a given image. However, the
threshold should not be too high, otherwise, most of the predictions will be dis-
carded. The similarity score itself could also be used to query for persons in the
archives, allowing the user to decide whether or not to include non-confident pre-
dictions. However, even with a relatively low threshold of 0.5 and no fine-tuning
of the pre-trained models, over 93% of the person predictions are correct. This
makes facial recognition a good choice to enhance the accessibility of archive col-
lections, with minimal manual input. It only requires a handful of images per
person. As many different institutions have images featuring the same persons,
it could prove useful to collaborate and exchange reference sets or embeddings.
Such collaborations would greatly reduce the amount of manual effort required
to implement a facial recognition system.

Frequently occurring persons that were not included in the reference set were
also detected via DBSCAN clustering of their embeddings. The results of this clus-
tering depend on the parameters, namely the epsilon (controls how dense each
cluster needs to be) and the minimum number of faces per cluster. Our initial test
using epsilon as 0.5 and 5 faces per cluster produced good results. Usually, most
clusters contained images from a single person. Decreasing the epsilon parame-
ter will make the clustering more strict, reducing the total number of clusters and
average images per cluster, but it will also reduce the number of errors (multiple
persons inside one cluster). Besides clustering, the number of detected faces per
image can be used to separate group pictures easily. The co-occurrence of mul-
tiple persons can also be a useful feature in finding relations between persons.
Furthermore, while sometimes less accurate, the predicted age and gender can
also be used to refine searches.

The same facial recognition pipeline can also be applied to video. The naive
solution to process every frame will produce optimal results, but will also be the
most time-consuming. Our initial test using a scene detection model and extract-
ing a set number of frames worked well, but it can still be improved. Using qual-
ity metrics to detect the blurriness of each frame, can help to replace bad frames
with those of a higher quality. The prediction confidence could also be improved,
by looking at succeeding frames and their predictions. If the same person is pre-
dicted multiple frames in a row, this prediction is likely more confident.

While facial recognition is a valuable tool for metadata creation, it involves
some legal and ethical concerns. First, the processing of biometric data with a
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view to identification is strictly regulated under the European GDPR laws. It is
important to maintain the right balance for the privacy and rights of those in-
volved, and that the necessary technical and organizational safeguards are in
place. Second, it’s important to ensure that we apply artificial intelligence in an
ethically responsible way in the cultural heritage sector. In this research, we only
used public figures in the creation of our reference sets, which reduced the num-
ber of legal and ethical barriers, and limited any impact on private individuals.
Furthermore, racial and gender biases can be particularly prevalent within facial
recognition applications, and there’s a risk they could reinforce or increase exist-
ing social inequalities. While it isn’t completely possible to remove bias from the
used technologies, we need to limit any consequences and provide visibility for
the potential biases as much as possible. For additional details regarding the le-
gal and ethical concerns and our approach to minimize the negative impacts, see
our tech blog 6.

2.4 Conclusion

This chapter discussed how pre-trained object detection and segmentation mod-
els can be used with little adjustments to detect common objects. Through a
case study, we showed how image retrieval andmultimodal similarity models can
be used to query picture collections using similar images and natural language.
While suchmethods require additional processing, they enable novel and intuitive
ways to explore collections and enhance them with additional metadata.

Furthermore, we have successfully implemented a facial recognition pipeline
to enrich archive image collections using pre-trained open-source models. Per-
sons were identified by matching face embeddings from the reference set with
the archive collections using cosine similarity. A total of 182 thousand detected
faces were manually labeled with a custom labeling tool to validate the predic-
tions. With a minimum similarity of 0.5, the face recognition model achieved a
precision of 0.936. With this threshold, we were able to automatically identify
over 62 thousand persons depicted in the image archives. By clustering the face
embeddings, we found an additional 95 frequently occurring persons that were
not initially in the reference set. In summary, computer vision techniques are an
effective way to greatly improve the quality and accessibility of archive collec-
tions with minimal manual annotation efforts. The resulting metadata allows for
a more comprehensive and efficient analysis of the collection.

6https://meemoo.be/en/publications/facial-recognition-what-are-the-legal-and-ethical-a
spects

https://meemoo.be/en/publications/facial-recognition-what-are-the-legal-and-ethical-aspects
https://meemoo.be/en/publications/facial-recognition-what-are-the-legal-and-ethical-aspects
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3
Automatic Processing of Raster Maps

“Theory will take you only so far”

– J. Robert Oppenheimer

This chapter discusses automated processing methods for digitized raster
maps. First, the challenges and relatedwork are discussed. Next, a custommethod
for automated geolocalization is presented. The chapter finishes by presenting
road segmentation approaches on topographic and walking maps.

This chapter features an adapted version of the following publication:

Milleville, K., Verstockt, S., & Van de Weghe, N. (2022). Automatic Georeferencing
of Topographic RasterMaps. ISPRS INTERNATIONAL JOURNALOFGEO-INFORMATION,
11(7). https://doi.org/10.3390/ijgi11070387

3.1 Introduction

The digitization of historical maps has given researchers access to high-quality
geographical data from the past. Thesemaps are often the only digitized source of
reliable data, making them a valuable resource. Many institutions have digitized
large collections of raster maps depicting different time periods and locations.

https://doi.org/10.3390/ijgi11070387
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This time-consuming digitization process is usually performed manually. Most
maps contain little metadata, such as a generic title, date, and a short description.
This makes it difficult to efficiently search for maps that describe a specific region
of interest. Querying on the name of that region will not return complete results,
as most place names do not appear in the title or description of the map. Creating
additional metadata for these collections will greatly improve their accessibility
and provide new opportunities for novel research.

Manually annotating or georeferencing these collections can be a tedious
process. Therefore, institutions mainly focus on the most important items in their
collections. Crowdsourcing approaches are often used to annotate these collec-
tions with valuable metadata. For raster maps, an interactive program is typically
used to manually georeference the maps [1–3]. Users need to select matching
control points on both the rastermap and at the corresponding locations on Earth.
The program then automatically georeferences and corrects the raster map. This
technique provides accurate results, given that the control points are selected
correctly. Once the maps in the collection have been georeferenced, they can be
queried for specific regions of interest. However, searching for toponyms is still
not efficient, as each map must be manually checked for the desired toponyms.

To query the toponyms present on themap, these have to be annotated. Man-
ual annotation can take up to several hours for one map, which is not feasible for
large collections. Therefore, text detection and recognition approaches can be
used to automatically detect and transcribe the text present on the maps. Com-
pared to a traditional optical character recognition (OCR) approach for scanned
document images, where the text is structured in horizontal lines and paragraphs,
raster maps come with additional challenges. Text labels can be handwritten, ap-
pear in different orientations, sizes, fonts, and colors, overlap one another, and
even curve along with the described geographical features (e.g., rivers) [4]. Addi-
tionally, historical maps can be degraded or digitized at a lower resolution, fur-
ther reducing the transcription accuracy [5]. Figure 3.1 shows part of a historical
United States Geological Survey (USGS) topographic map from 188612. It features
different text styles and complex text placements, which are common for histor-
ical raster maps.

The recognized text can be linked to the correct contemporary toponyms via
publicly available geocoders. These geocoders contain millions of toponyms and
attempt to match an input string with their database. To account for spelling er-
rors, fuzzy matching is often used. Fuzzy matching includes non-exact matches
and is necessary for historical maps because some toponyms are spelled differ-

1https://www.usgs.gov/programs/national-geospatial-program/historical-topographic-map
s-preserving-past

2https://github.com/spatial-computing/map-ocr-ground-truth/tree/master/USGS-60-CA-m
odoclavabed-e1886-s1884

https://www.usgs.gov/programs/national-geospatial-program/historical-topographic-maps-preserving-past
https://www.usgs.gov/programs/national-geospatial-program/historical-topographic-maps-preserving-past
https://github.com/spatial-computing/map-ocr-ground-truth/tree/master/USGS-60-CA-modoclavabed-e1886-s1884
https://github.com/spatial-computing/map-ocr-ground-truth/tree/master/USGS-60-CA-modoclavabed-e1886-s1884
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Figure 3.1: Crop of a USGS topographic from 1886 featuring parts of California. The visible
texts have different fonts, sizes, and curve along geographical features.

ently over time. Linking the recognized text to geocoders and open data improves
map accessibility and reduces recognition errors by eliminating false positives.

Besides toponyms, raster maps typically contain a representation of existing
geographical features, such as roads, waterways, vegetation, etc. Contemporary
raster maps are generated from existing geolocated vector datasets containing
these features and visualized using a specific set of rules [6]. However, historical
raster maps generally do not have associated vector data. This makes it very dif-
ficult to perform research on land use or other geographic features using these
historical maps. Computer vision methods can aid in processing these maps to
automatically segment and vectorize the visible geographical features.

3.2 Related Work

Text recognition is amajor field of computer vision and has been the focus ofmany
research papers and studies. With the rise of convolutional neural networks, su-
pervisedmachine learning techniques became state of the art for OCR and (scene)
text recognition. OCR results on scanned document images from state-of-the-art
and commercial tools are generally excellent and dependmostly on the quality of
the scan [7]. Text recognition on natural images is generally harder, as these usu-
ally contain a larger variety of text fonts and backgrounds. With the rise of larger
and more varied datasets (e.g. ICDAR2015 and Coco-Text [8, 9]), state-of-the-art
text detection and recognition models can already achieve a relatively high ac-
curacy [10]. Many of those works publish their pretrained models and the code
needed to use them. However, when using these models on raster maps, both the
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text detection and recognition performance are generally worse, even when us-
ing commercial recognition services [11]. This decrease in performance is mainly
due to the higher complexity of backgrounds and text label placements for raster
maps, compared to natural images.

Because of this lower accuracy on rastermaps, pre- and post-processing tech-
niques are frequently used to improve the results. A common approach is to
first extract the text labels from the map and afterward perform text recogni-
tion. A combination of computer vision techniques, such as connected compo-
nents analysis and color quantization can be used to differentiate the text labels
from the background of the raster maps. These techniques all generate similar
results, namely binarized images that are easier to process [12, 13]. Because it
can be difficult to automatically differentiate the foreground text from the back-
ground, a semi-automatic approach can be used to improve the results. Chiang
et al. [14] developed a general, semi-automatic text recognition technique, where
users needed to label a small number of crops on the maps and indicate whether
they contained text. They then used computer vision techniques to homogenize
multi-oriented and curved text. These preprocessing techniques greatly increased
the recognition accuracy of the used OCR software.

After recognizing the text on the map, geocoders can be used to match the
text labels to the corresponding toponyms and their coordinate locations. These
coordinates can then be used to estimate the correct geolocation of the map.
However, many problems occur when matching the recognized text with the cor-
rect toponym. The spelling of a toponym may have changed over time and the
recognition likely contains errors. Therefore, fuzzy string matching is required to
deal with these spelling errors. However, the ambiguity of place names, further
increased by fuzzy matching, can produce many false positives. When queried for
a given string, a geocoder may return a multitude of toponyms from different
countries. This makes it difficult to determine which match, if any, is correct for
the given text label. These problems are further amplified when common street
names or points of interest (e.g., Main Street, church) are recognized. The toponym
may not even be present in the geocoder’s database, a possibility that is further
increased for older maps. Another possibility is that the toponym is not detected
at all. However, since topographic maps generally contain many toponyms that
are relatively close to each other, most false positives can be filtered out and a
general location of the map can be estimated.

Weinman [15] used this information along with known toponym geocoordi-
nates and feature label placements to construct a probabilistic model that im-
proved text recognition accuracy. He was able to reduce the word error rate by
36%, compared to the raw OCR output. In [16], the framework for an automated
open-source map processing approach is presented. Part of the framework in-
cludes a module for automatic geolocalization. As a preliminary result of this
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module, the first toponym match for a label with a confidence value of 90% or
more obtained from the Google Geocoding API was used to geolocate each map.
The geocoding results were clustered and the centroid of the largest cluster was
used to predict the actual center of the map. The approach was then validated
on 500 randomly selected maps from the NYPL georectified map collection3. The
results were promising: 37% of the geolocated maps were within a 15 km radius
from the ground truth coordinates and 28% were within a 5 km radius. The au-
thors noted that considering only a single toponym match for each text label was
very restrictive and that the text recognition sometimes failed to detect enough
text labels. In a follow-upwork by the same authors, they developed a text linking
technique that further improved results [17]. By using both the textual and visual
content, they were able to train a model that could correctly link multiple words
of the same location phrase (e.g., linking ”Los” and ”Angeles” to ”Los Angeles”).
The text linking greatly reduced the number of false-positive geocoder matches
and made the geolocation more precise.

Our goal was to provide a general geolocation technique based on text recog-
nition results from topographic maps. We used pretrained text detection and
recognition models, to show that it is possible to accurately geolocate and anno-
tate topographic raster maps without the need for labeled datasets and custom
models. Thismakes our approach useful tomany institutions and researcherswho
wish to annotate their collections of digitized raster maps with minimal man-
ual input. The text detection and recognition models can be replaced by other
text recognition services. The pretrained model4 uses the same text detector as
in [18] and the same recognition model as in [19]. The main benefit of using this
detection model as opposed to another popular text detector such as EAST [20],
is that this model was trained to detect text on a character level, providing more
flexibility for rotated and curved text.

Many approaches exist for the segmentation of roads from rastermaps. These
range from traditional computer vision methods, to using convolutional neural
networks [21]. Chiang et al. [6] presented an end-to-end road segmentation ap-
proach from raster maps. Their approach consisted of three major steps. First,
they extracted the road geometry. Next, the road intersections were detected. Fi-
nally, the result was vectorized. They used a variety of computer vision techniques,
which included most notably color quantization. While their approach produced
great results, it still required some user input, to select the road colors in the given
image. In [22], the authors proposed a vector-to-raster alignment algorithm to
annotate geographic features on raster maps. This way, existing spatial data can
be used to train CNNs in a weakly-supervised way. Their algorithm is generic,

3http://spacetime.nypl.org
4https://github.com/faustomorales/keras-ocr

http://spacetime.nypl.org
https://github.com/faustomorales/keras-ocr
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and it can be applied to multiple geographic features. In [23], the authors pro-
posed a domain adaptation technique and used it to train semantic segmentation
models for hydrological features on historical maps. They introduced a novel loss
function that corrects for object changes and spatial misalignment. Their experi-
ments showed that their approach outperformed the state-of-the-art, even with
limited supervision. For a more detailed overview of different road segmentation
techniques, see [21].

3.3 Automated Geolocalization

This section proposes a generic pipeline to georeference topographic raster maps
and extract the visible text and toponyms as linked open data (LOD). An overview
of the entire pipeline is given in Figure 3.2. The first step in the pipeline is to pre-
process the raster maps and extract the actual map region. Most digitized raster
maps contain additional information outside the map boundary that can affect
geolocation accuracy. The second step of the pipeline details text recognition and
geocoding. Next, both the location of the recognized text (pixel coordinates) and
the location of the matching geocoding results (geocoordinates) are used to es-
timate a geolocation for the map. After recognizing and geocoding the text on
each map, each text label was matched with a list of possible geolocation coor-
dinates. To georeference the maps, we need to find control points on the map
itself and their corresponding WGS84 coordinates (latitude and longitude). Using
these point pairs (matching pixel and geocoordinate pairs), a transformation can
be calculated to convert pixel coordinates to geocoordinates and vice versa. We
have developed an iterative algorithm that uses the text label locations and their
geocoder matches, to generate four control points representing the four map cor-
ners in WGS84 coordinates. These are then compared to the correct corner geo-
coordinates, to estimate the accuracy of our method. The map geolocation was
determined in multiple steps, by first estimating an initial region of interest (ROI).
This ROI was then further refined by iteratively removing outliers via a RANSAC fil-
tering approach. In each step, we filtered out the geocoder matches that had a
low probability of being correct. The new ROI was chosen as the bounding box
of the geocoordinate matches that remained after filtering. This ROI was subse-
quently refined until nomore outliers were found. Finally, the locations of the text
labels on the raster map and their matching geocoordinates were used to calcu-
late the four control points and georeference the map. The output can be saved
as GeoJson or any other commonly used format and contains the estimated map
geolocation, the recognized text on the map, and found toponyms as LOD.

The approach does not depend on how the text labels and geocoder matches
were generated, therefore it can be used with any text recognition system and
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Figure 3.2: Overview of the geolocation pipeline

geocoder. The geolocation accuracy largely depends on the text recognition ac-
curacy and geocoder results. If the map is of low quality and most text labels
are not recognized, the results will be poor. For each text label, we define its lo-
cation on the map as the center point of the text detection bounding box. All
figures presented in this section refer to the same topographic map of Gent-
Melle, from dataset M834 (see 3.3.9.1). The code is made publicly available at
https://github.com/kymillev/geolocation.

3.3.1 Preprocessing

The dataset of historical topographic map sheets from Belgium contains addi-
tional information outside the map boundary. Each map is surrounded by a black
border and some blank space, in which coordinate information is given. At each
corner, the map is georeferenced based on the 1972 Belgian Datum. The numbers
surrounding the map denote the X and Y coordinates in the Belgian Lambert72
projection [24]. This dataset was first preprocessed and the effective map region
was determined. It is not strictly necessary to extract the effective map region to
geolocate the map. It does make the used techniques slightly more accurate, as
the image crop now only contains the map itself, but not the legend, surround-
ing coordinates, and toponyms. These labels could be incorrectly recognized as
toponyms, leading to additional false positives. Figure 3.3 shows the upper-left
corner of one of the topographic maps and the extracted map region.

Morphological operations (erosion and dilation) were used to detect the thick
black borders surrounding each map. Next, small crops were taken along the
edges of the map. The text within these crops was recognized. For both the left
and right side edges, the crops were first rotated so that the X/Y coordinates were
upright. We used the location of these surrounding text labels to determine the ef-
fective map region. Detection of this inner region with morphological operations
alone was inconsistent due to the thin outer edges and slight rotations of some
of the scanned maps. After recognizing each text label, the Lambert coordinates

https://github.com/kymillev/geolocation
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were filtered out and the remaining text was used to extract the effective map
region. The dataset of contemporary topographic maps did not contain any addi-
tional information surrounding the maps and was therefore not preprocessed.

Figure 3.3: Outer rectangle detected by morphological operations (in blue), and the
effective map region determined via text recognition on the surrounding coordinates (in

red).

3.3.2 Text Recognition

Since the images of the map sheets have a much higher resolution than typi-
cal images, the performance of the text detection model on the entire dataset
was poor. Smaller text labels were consistently not detected when using the full-
sized maps. This is likely due to the text detection model using global thresholds
to segment the text regions. Therefore, a tiling approach was used to improve
results. Previous work showed that larger tile sizes are preferred over smaller
ones [11]. Each image was divided into multiple tiles of 2500x2500 pixels, with
an overlap region (in both X and Y) of 500 pixels. Text detection and recognition
were performed on each of the tiles. Text labels detected in the overlap region
were merged with overlapping and similar text labels from adjacent tiles to avoid
splitting words at the edges of each tile. After merging, the recognized text was
post-processed.

First, the text labels that only contained digits were filtered out. These la-
bels denoted height contours, kilometer milestones, or highway segments and
did not providemeaningful results in the following geocoder steps. Next, overlap-
ping detections of multiple text labels were merged, as many toponyms consist
of multiple words. This can introduce additional errors, by merging incorrectly.
Therefore, overlapping detections were only merged if their relative orientations
were within 15 degrees of each other. We found that this threshold eliminated
most of the incorrectly merged labels. Minor problems still occasionally occurred
due to text detection errors and complex arrangements of toponyms. Figure 3.4
shows one of these complex arrangements, where each detected label overlaps
with another and also shows the result after merging.

Whenmergingmultiple overlapping text labels, we sorted them in the natural
reading direction. The individual detections were first sorted from top to bottom
and divided into different groups based on the difference in their Y-coordinates.
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Then, each groupwas sorted individually from left to right, resulting in the natural
reading direction. Only text labels (usually denoting rivers) that were read from
bottom-left to top-right, were sometimes merged incorrectly.

Figure 3.4: Example of merging the text labels in the natural reading direction.

Vertically oriented text was usually detected correctly but often transcribed
incorrectly, as can be seen in Figure 3.5a. Because the recognition model assumes
that the text is oriented from left to right, such errors occur. After detecting the
effective text region, the image crops were warped into horizontally oriented text.
If the label was vertically oriented, this transformation needed to be adjusted to
warp it correctly. If the leftmost point of a text label is on top, the text is normally
read from top-to-bottom. Due to minor errors in text detection, we cannot always
rely on the coordinates of the predicted bounding boxes, so two warping transfor-
mations are possible. Both image transformations were performed and the text
was recognized. In a later step, the incorrect prediction was filtered out using
the geocoder results. Figure 3.5b shows an example of the proposed solution. We
suppose a more elegant solution can be used to determine the correct text ori-
entation, based on the visual information or the text content. Because each map
only contains a handful of such vertical text labels, such an improvement was left
as future work. As the main goal of this work is to show how off-the-shelf text
detection and recognition models can be used to effectively georeference topo-
graphic raster maps with little adjustments, no additional processing or linking
of the detected text labels was performed.

3.3.3 Geocoding

After recognizing and processing the text labels on the map, multiple geocoders
were queried with each predicted text label. Strings shorter than three characters
were ignored as they rarely returned meaningful results. Three different geocod-
ing services were used: Google Geocoding, TomTom Geocoding, and Geonames
(open source). We originally intended to only use Geonames but found that many
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(a) The text was
incorrectly

recognized as the
character ”s”.

(b) Text recognition result after
warping the text in both ways.

Figure 3.5: An example of the proposed solution for vertically oriented text.

queries did not return meaningful results, while good matches were found with
the commercial geocoders. For each geocoder, the resulting toponyms were com-
pared to the query string via the partial string similarity score5. Given two strings
of length n and m, if the shorter string is length m, the partial string similar-
ity will return the similarity score (based on the Levenshtein distance6, a popular
string similarity metric) of the best matching length-m substring. This similarity
score ranges from 0 (mismatch) to 100 (perfect substring match). We found that
this score performed better than the standard Levenshtein distance, especially
for shorter strings. For each match, the toponym name, geocoordinates, similar-
ity, and type (populated place, street, etc.) were saved. Because we used multiple
geocoders, these results contained duplicates. The duplicates were removed if
there was an exact match for the toponym name and type and if both coordinates
were close to each other. Checking their closeness is important, as two differently
located places or streets can have the same name. Some duplicate matches still
remained, but these had little effect on the final region of interest.

Each map contained an average of 365 and 671 usable text labels, for the
Belgian (M834) and Dutch (TOP50raster) datasets, respectively. A histogram of
the geocoder matches per text label for both datasets is shown in Figure 3.6. It
is clear that the distributions are asymmetric and that most text labels have a
small number of matches. The labels with a larger number of matches are the
least informative to predict an area of interest, as these denote common place
names, spread over a large area.

5https://github.com/seatgeek/thefuzz#partial-ratio
6https://en.wikipedia.org/wiki/Levenshtein_distance

https://github.com/seatgeek/thefuzz#partial-ratio
https://en.wikipedia.org/wiki/Levenshtein_distance
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Figure 3.6: Histograms showing the distribution of the number of geocoder matches per
recognized text label for both datasets. Many text labels have a large number of

geocoder matches (>50), which do not provide much value.

3.3.4 Estimating an Initial Region of Interest

Because some place names are common, certain queries yielded more than 100
geocodermatches. Many street names, such as ”Kerkstraat” (comparable to ”Main
Street” in the USA), are common in Belgian cities. Plotting these coordinates re-
vealed possible matches throughout Belgium and the Netherlands and a small
number of random locations around the world. Even though the geocoders allow
a country to be specified, the results are not always limited to that country. Most
of these geocoder matches were not correct for the queried text. They were either
common place and street names or were found due to the fuzzy matching of the
geocoders. Figure 3.7a displays the coordinates of all initial geocoder matches for
all recognized text labels on the map of Gent-Melle. Clearly, these are distributed
all over Belgium, with some outliers.

Text labels with a large number of matches are therefore not very relevant
for predicting an initial region of interest. Similarly, geocoder matches with a
lower string similarity with the corresponding text label have a lower probability
of being correct. Therefore, we discarded geocoder matches with a partial string
similarity below90. Afterward, text labels that containedmore thanfive geocoder
matches were also discarded. In this way, the worst string matches and the most
common place names were filtered out. These toponyms were still scattered over
hundreds of kilometers and clustering them produced huge regions of interest.
Therefore, geocoder matches were also filtered by their relative coordinate dis-
tance. Assuming that the correct matches were found, their relative distances
should be small and they should be distributed relatively uniformly on the map.
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(a) Coordinates of the initial geocoder matches. The green rectangle denotes the
ground truth geolocation of the map. The shape of Belgium is visible in the

distribution of points (extreme outliers are not shown to improve the visibility of
the figure).

(b) Result after filtering and clustering of the initial coordinates. The largest
cluster found is shown in red. The green rectangle denotes the ground truth

geolocation of the map.

Figure 3.7: Coordinates of the initial geocoder matches before and after filtering and
clustering.
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Subsequently, each correct coordinate should be relatively close to other correct
coordinates. Therefore, the haversine distances between the toponym candidates
were calculated and a geocoder match was removed if the distance to any of the
five nearest neighbors was greater than 100 km or if the distance to the nearest
neighbor was greater than 25 km. This additional filtering ensured that clear out-
liers were removed. These distance thresholds depend somewhat on the scale of
the map. However, most topographic maps contain many toponyms, so the rel-
ative distances of correct matches should still be small. For the datasets used, a
much smaller distance threshold could be chosen, as each map’s diagonal only
covers approximately 19 and 32 km.

Next, the remaining geocoordinates were clustered with the DBSCAN [25]
clustering algorithm, which clusters higher density regions. This clustering elimi-
nated additional outliers and was also used successfully in previous work [16, 17].
We used the reciprocal of the number of geocodermatches as a sample weight for
each point. In this way, points with multiple matches received a lower weight in
clustering. The bounding box of the found cluster was taken as the initial region
of interest. If multiple clusters were found, the one containing the most points
was selected. Figure 3.7b displays the result after discarding the low-probability
coordinates and clustering. A more detailed plot of the remaining coordinates af-
ter determining an initial region of interest for the map of Gent-Melle is shown
in Figure 3.8.

3.3.5 Refining the Region of Interest

To refine the initial region of interest, we used both the locations of the text labels
and the coordinate locations of their geocoder matches. Generally, the relative
pixel location on themap should be very similar to the relative coordinate location
of the corresponding toponym match. Similarly, text labels that are further away
from each other on the map should have corresponding geocoordinates that are
also further away from each other. Naturally, the exact location of the text label
will not fully correspond with the correct geocoder coordinates. However, outliers
can be filtered out, as this error is quite large on average for incorrect geocoder
matches.

3.3.6 Predicting the Geolocation

Weused aRANSAC-based approach to removemost false-positive coordinatematches.
RANSAC is a generic iterative algorithm that can fit a model while still being ro-
bust to outliers [26]. Figure 3.9 gives an overview of the RANSAC-based outlier
filtering.
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Figure 3.8: Coordinates of the geocoder matches that were located inside the initial
region of interest. The ground truth geolocation of the map is shown in green.

First, a set of inlier point pairs was randomly selected from all possible point
pairs. Each recognized text label and corresponding pixel location on the raster
map was given a 50% probability of being selected. For each selected pixel loca-
tion, we then randomly chose one of the corresponding geocoordinate matches.
This produced a randomized set of point pair inliers. Assuming these inliers were
correct, the map geolocation was predicted (see 3.3.6). This geolocation was then
used to filter the selection of additional point pairs in the RANSAC algorithm. For
each other point pair not initially selected, we performed two checks to decide if
these should be added to the set of inliers. First, we checked if the geocoordinates
were inside the predicted geolocation. Next, the relative position error (see 3.3.7)
was calculated. If the point was inside the geolocation and the error was smaller
than a predetermined threshold, we added the point as a candidate inlier. Finally,
both the initial inliers and new candidates were used to make a new prediction of
the map geolocation and calculate the average relative distance error over all se-
lected point pairs. This entire process was repeated for 10,000 iterations and the
set of point pairs with the lowest average error was chosen for further processing.

As mentioned before, the location of a text label on the raster map does not
fully correspond with its corresponding toponym geolocation. There is a slight
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Figure 3.9: Overview of the RANSAC outlier filtering algorithm.

error for each coordinate pair, as the text label placement depends largely on
other geographical features or symbols in that location. If the text label overlaps
with the other map features, it is typically moved to provide a better view of the
landscape. An underlying feature (river, road, etc.) will not be altered so that a
toponym label can be placed more correctly. Combined with the fact that we still
cannot guarantee which point pairs are correct, we use the average coordinate
vector of all selected point pairs to geolocate the map, to reduce the error in label
placement. Even if the toponym labels have a consistent bias contrary to our
assumptions, for instance, by making the geolocation correspond to the top-left
corner of the toponym label instead of its center, this would only result in a minor
translation error in our final prediction of the control points.

After randomly selecting an initial set of coordinate pair inliers, we estimate
the map geolocation assuming that these pairs are correct. This geolocation is
then used to filter the selection of additional coordinate pairs in the RANSAC al-
gorithm. First, the average pixel and geocoordinate vectors were calculated, re-
sulting in a central point pair. Next, the absolute vector differences with each
point pair and the centers were calculated. The differences in X and Y were calcu-
lated independently, as were the differences in longitude and latitude. Afterward,
a linear conversion factor between pixel coordinates and geocoordinates was cal-
culated. All of the differences in X were divided by the differences in longitude,
and similarly, all the differences in Y were divided by the differences in latitude
for each point pair. We now have calculated a conversion factor from pixels to
geocoordinates for each point pair and the center points. Because the text label
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position is not perfectly alignedwith the corresponding geocoder coordinates, the
median for each of these factors was selected, resulting in an average conversion
factor from pixel coordinates to geocoordinates. The median is preferred over the
mean as it is more robust to outliers. To calculate the conversion factor, we only
need two correct point pairs. By taking the median factor of all point pairs, the
variance and geolocation error is reduced since it does not fully rely on the cor-
rectness of a single pair (which we cannot know). Because the pixel coordinate
origin corresponds with the upper left corner of the raster map, the conversion
factor for Y must still be multiplied by -1.

After calculating the central coordinate vectors and the conversion factor, the
four map corners can be transformed from pixel coordinates to corresponding
geocoordinates. Assuming that the predicted geolocation is a rectangle, only the
upper left and lower right points need to be transformed to georeference the
map. The calculation of the control points is described as a vector equation in Eq.
(3.1). Where, C1 and C2 denote the upper left and lower right control points,
respectively,Cgeo andCxy the average geo- and pixel coordinate vectors, fxy

denotes the conversion factor, and Bxy is a 1D vector containing the width and
height of the raster map.

C1 = Cgeo − fxyCxy

C2 = Cgeo − fxy(Cxy −Bxy)
(3.1)

Basically, the translation vector of the average pixel coordinate and map
boundaries ([0,0] and [w,h]) is calculated and multiplied by the conversion factor
to get the corresponding translation vector in geocoordinates. This vector is then
subtracted from the average geocoordinate to attain the predicted map bound-
aries in WGS84 coordinates.

3.3.7 Relative Position Error

In each RANSAC iteration, a set of inlier coordinate pairs was randomly selected
and themap regionwas predicted. For each pair thatwas not selected, we checked
if the geocoordinates were within the predicted map region. If they were, the rel-
ative position error was calculated. If this error was smaller than a predetermined
threshold, the coordinate pair was added to the set of new candidate inliers. This
simple but effective relative position error was calculated by comparing the rel-
ative position of each point pair with the inlier point pairs, for both the pixel and
geocoordinate locations. We check how many points are to the left/right of the
current point on the map and how many points are to the left/right of the as-
sociated geocoordinates. We take the difference between these two values and
calculate a similar difference for how many points lie above/below the specified
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pair. Finally, these differences are added and divided by the number of inlier point
pairs. This way, the metric is normalized to the total number of inlier pairs con-
sidered. The error metric can be calculated very efficiently and will discard many
outliers during the randomized inlier candidate selection. We found good results
with a threshold of 0.05. So each candidate inlier pair’s relative position needs
to ”agree” with at least 95% of the initially selected inlier pairs to be selected.
After selecting these new candidates, the error metric is calculated for all of the
selected point pairs and averaged. The set of point pairs with the lowest average
error after 10,000 iterations was then selected for further processing.

Figure 3.10: Left: Latitude and longitude coordinates of the geocoder matches. The green
and red rectangles denote the ground truth geolocation and the predicted geolocation,
respectively. Point pairs selected during the RANSAC algorithm are shown in red, the
others in blue. Right: X and Y pixel coordinates of corresponding text labels. The green

rectangle denotes the raster map bounds (width and height).

3.3.8 Determining the Final Region of Interest

Now that a region of interest has been defined and most of the outlier coordinate
pairs have been filtered out with RANSAC, the final geolocation can be estimated.
First, the selected coordinate pairs from the previous step were used to predict
the map geolocation. This result is shown in Figure 3.10. After geolocating the
map, some geocoder matches can still lie outside the predicted region, either be-
cause they are incorrect matches or because the predicted region is incorrect. We
iteratively deal with such remaining outliers. We find the outlier geocoordinate
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point that is farthest from the predicted region, remove that point pair, and pre-
dict the geolocation of the map again with all the remaining pairs. We repeat
this process until there are no more outliers. The resulting prediction is our best
estimate for the map’s geolocation. This iterative outlier filtering process further
improved the accuracy of our algorithm. Figure 3.11 shows the final geolocation
estimate and remaining coordinate pairs for the map of Gent-Melle.

Figure 3.11: Final geolocation prediction (in red) and ground truth geolocation (in green)
for the map of Gent-Melle. Point pairs used for the prediction are marked in red. There is

a visible correlation between the relative positions of the point pairs.

3.3.9 Evaluation

This section details the two datasets of topographic raster maps used to validate
our techniques. We have chosen a dataset of older maps that were later scanned
and digitized, as well as a dataset of contemporary maps generated from topo-
graphic vector data. We have applied the same techniques to both datasets and
have compared our results in section 3.3.9.2.

3.3.9.1 Datasets

M834 topographic raster maps of Belgium
This dataset consists of 16 adjacent topographic map sheets of Belgium, situ-
ated around the city of Ghent. These maps are part of the second edition of the
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M834 series, and they were created between 1980 and 1987 by the Belgian Na-
tionaal Geografisch Instituut (NGI) [27]. The map sheets have a quality of 225 dpi
(6300x4900 pixels), which is lower than the usually recommended quality of 300
dpi for OCR and text recognition. Eachmap sheet contains a legend and additional
information regarding the projection and geodetic system used. The map sheets
were printed at 1:25,000 scale in six colors on offset presses. The average length
of the diagonal of each map is approximately 19 km. Each map is surrounded by a
black rectangle and some blank space, in which coordinate information is given.
At each corner, themap is georeferenced based on the Belgian Datum of 1972. The
numbers surrounding the map note the X and Y coordinates in the Belgian Lam-
bert72 projection [24]. To validate the georeferencing of these maps, the ground
truth WGS84 coordinates of the bounding polygon for each map were taken from
the official metadata provided by the NGI. These maps are subject to copyright, so
we are unfortunately unable to share the full raster images. However, the maps
can be viewed online in Cartesius7. A list of all the selected maps is included with
our code. Because our georeferencing technique uses the position of the text la-
bels on the map, this dataset was first preprocessed and the effective map region
was determined.

TOP50raster
This dataset consists of 9 adjacent contemporary topographic raster map sheets
from the full Top50Raster dataset covering the Netherlands. These 9 maps were
created in 2018 and are published on PDOK8, an open-source geospatial data plat-
form, published by the Dutch government. The TOP50rastermaps and other raster
collections were generalized from the TOP10NL vector data [28]. Each map was
generated at a scale of 1:50,000 and the map diagonal measures 32 km on aver-
age. Adjacent map sheets were randomly selected from the full collection, links
to the original map sheets and the processed results are included with our code.
Each map is stored in the GeoTIFF format [29] and is already georeferenced. The
coordinates of the map corners were extracted and converted to WGS84. The im-
ages have a quality of 508 dpi (8000x10,000 pixels), which is substantially better
than the other dataset. There is no additional information surrounding each raster
map, so no preprocessing was required.

7https://www.cartesius.be/CartesiusPortal/
8https://www.pdok.nl/downloads/-/article/dataset-basisregistratie-topografie-brt-toprast
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3.3.9.2 Results

The developed techniques were applied to both georeferenced datasets and the
resulting predictions were compared to the ground truth geolocations. To eval-
uate the geolocation predictions, the mean and center georeferencing error dis-
tances were calculated. We define the mean distance as the mean haversine dis-
tance between all control points (vertices of the ground truth polygon) and the
corresponding predictions. We define the center distance as the haversine dis-
tance between the predicted map center and the ground truth geolocation center.
For each step of the geolocation algorithm, these error distances were calculated.
For each dataset, the entire geolocation algorithm was run three times, and the
results were averaged and are presented in Table 3.1.

Table 3.1: Geolocalization results for both datasets, with the average map diagonal
shown in brackets. The average mean error, maximum mean error, and average center
error are presented for each step of the geolocalization algorithm. Prefilter details the
result from Section 3.3.4, without the final clustering step. Initial ROI denotes the result
after clustering and refined ROI denotes the result after outlier filtering with RANSAC.

Dataset Step
Mean error
(km)

Max. error
(km)

Center error
(km)

Prefilter 138 183 16.7
M834
(18.94 km)

Initial ROI 17.4 22.0 1.869

Refined ROI 0.710 4.08 0.421
Final Prediction 0.316 0.631 0.179

Prefilter 170 181 10.0
TOP50raster
(32.06 km)

Initial ROI 16.8 19.9 1.166

Refined ROI 0.423 1.037 0.322
Final Prediction 0.287 0.438 0.162

Max. error denotes the largest mean error for any map. Note that the center
error distance does not give any indication of how large the predicted map re-
gion is compared to the ground truth geolocation and is therefore usually much
smaller than the mean error. The average mean error distances for the M834 and
TOP50raster datasets were 316 m (1.67% with respect to the map diagonal) and
287 m (0.90%), respectively. The largest mean error distances were 631 m (3.33%)
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and 438 m (1.37%), respectively. Considering the small error distances with re-
spect to each map’s size, these results are very promising and accurate enough
to use in practice. The full results for the M834 dataset are shown in Figure 3.12.
Of the 16 predicted geolocations, 15 have a mean error of less than 500 m, and 11
have a center error of less than 200 m.

Figure 3.12: Mean and center geolocation error distances for each map in the M834
dataset.

Now that each map has a predicted geolocation, these can be imported into a
GIS, using the GeoTIFF format. However, to perform any kind of analysis on the de-
picted geographical features, thesewill also need to be extracted. Most GIS offer a
range of tools to semi-automatically extract relevant features of interest, but for
a large collection, this is still a time-consuming process. Therefore, we performed
a case study on the automatic road extraction of contemporary raster maps, using
available vector data to generate the road labels. The final goal would then be
to generalize this approach to historical maps, where almost no labeled data is
available. Some possible approaches to perform this are described in Sections 3.6
and 6.1.

3.4 Road Segmentation

This section proposes two road segmentation approaches on a dataset of topo-
graphic raster maps. The first details a binary road segmentation approach. The
second approach uses multiclass segmentation, to segment the roads by their
type.
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3.4.1 Dataset

For binary andmulticlass road segmentationweused the same TOP50Raster dataset
as in 3.3.9.1. We used the complete set of the Netherlands totaling 113 different
map sheets, eachwith a scale of 1:50,000. Eachmap imagemeasures 8,000x10,000
pixels and is in GeoTIFF format. In addition to the raster maps, the corresponding
vector data is also available on PDOK. This vector dataset contains various fea-
tures such as roads, waterways, buildings, tracks, etc. An example of a single map
sheet is shown in Figure 3.13.

Figure 3.13: Example of one map sheet from the TOP50Raster dataset
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3.4.2 Preprocessing

The vector dataset covers the entirety of the Netherlands. We used the geocoor-
dinate bounding box of each map sheet to crop the vector dataset and selected
all roads (named ”Wegdeel”). We then used the GDAL library9 to rasterize the vec-
tor data using the same resolution as the original raster map. This resulted in a
binary label image representing the roads. Because these images are too large
to process directly, we split each sheet into 512x512 tiles. The images and labels
were zero-padded at the edges. This process resulted in a total of 31,635 images.
Because the extracted roads were only a single pixel wide, these images were di-
lated to better match the thickness of the roads on the raster maps. After this last
step, we get a result as shown in Figure 3.14. We used a 70:20:10 split for training,
validation, and testing of the models in the subsequent sections.

Figure 3.14: Example of one labeled tile from the dataset.

3.4.3 Binary Segmentation

For binary segmentation, we tested two model architectures, namely U-Net [30]
and DeeplabV3 [31]. For each architecture, we tested four different backbones:
Resnet18, ResNet50, EfficientNet-B0, and EfficientNet-B5 [32, 33]. Each backbone
was initialized from weights pretrained on Imagenet. Each model was trained
for a maximum of 30 epochs. We used Dice loss to train the models and saved
the model with the lowest validation loss. During training, the images were aug-
mented with random rotations and changes in contrast and brightness. Table 3.2

9https://gdal.org/

https://gdal.org/
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lists the intersection over union (IoU) and F1 scores for each model on the test
set.

Table 3.2: Binary segmentation scores

Metric Model ResNet18 ResNet50 EffNet-B0 EffNet-B5

IoU
U-Net 0.8029 0.8040 0.8008 0.8043
DeepLabv3 0.7592 0.7699 0.7653 0.7667

F1
U-Net 0.8605 0.8609 0.8595 0.8618
DeepLabv3 0.8305 0.8388 0.8370 0.8353

The results show that theU-Netmodels consistently outperformed theDeeplabV3
models. The difference between backbones was small, with the largest backbone
(EfficientNet-B5), achieving the best IoU score of 0.8043. The ResNet50 model
was a close second, achieving an IoU score of 0.8040. When looking at the model
predictions, both the U-Net and the Deeplabv3 architectures could identify most
roads on the test set images. However, the predictions from the Deeplabv3 mod-
els had jagged edges and were of a lower quality. Figure 3.15 visualizes the pre-
dictions for each model on a tile from the test set.

Overall, the U-Net architecture is the most suitable for this problem. The
difference in backbones is small, therefore a smaller backbone like ResNet50 or
EfficientNet-B0 is preferred. The EfficientNet-B5 backbone required almost twice
as much training time than the ResNet50 model. This is due to the larger number
of parameters and floating point operations required to run the model.

3.4.4 Multiclass Segmentation

The PDOK vector dataset contains data for seven different road types: highway,
main road, local road, regional road, street, ferry connection, and ”other”. These
are typically represented as a different style or color on the raster maps. Because
some road types are rare, we chose to create three main classes by merging the
different road types. These are highway (highway class), unpaved roads (”other”
class), and normal roads (remaining classes).

Using the GDAL library, we separated these respective classes and rasterized
each road with a different integer value. This way, we created a multiclass seg-
mentation dataset for each road type. The roads were dilated and each sheet was
split into 512x512 tiles. The same dataset split was used as before. Based on the
binary results, we trained a U-Net model using the ResNet50 backbone and dice
loss, for 30 epochs. After training, we saw that the IoU score for the highway
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Figure 3.15: Comparison of binary segmentation model predictions.

class was zero. When looking at the pixel distribution of each class we got the
following: background 94.87%, normal roads 2.93%, unpaved roads 2.09%, and
highways 0.11%. We then retrained the model using Focal loss [34], which has a
better performance on large class imbalances. After this change, the model cor-
rectly predicted the highway class. Table 3.3 lists the IoU scores for each road type
and loss function. Figure 3.16 shows the model predictions on a tile from the test
set.

While the results are less accurate than the binary segmentation, these are
still good. We suspect that these scores can still be improved by using additional
augmentation methods and perhaps by restructuring the classes. We noticed that
sometimes there was a small change of road type in the vector data, but this was
not reflected in the raster map. Such cases may harm the model’s performance.
To integrate these results into a GIS, the road masks still need to be vectorized.
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Table 3.3: Overview of the IoU scores per road type and loss function.

Loss Highway Road Unpaved Average

Focal Loss 0.736 0.791 0.748 0.758
Dice Loss 0.000 0.714 0.664 0.459

Figure 3.16: Comparison of loss functions for multiclass segmentation. Highways were
not detected using the Dice loss function.

3.5 Case study: Walking Route Segmentation

This section details a case study on the automated processing of walking and cy-
cling maps, where the goal was to estimate GPS coordinates for the highlighted
route. This case study was part of a collaborative project with RouteYou 10.

To extract the highlighted walking or cycling route from a given map image,
we constructed an automated processing pipeline based on our developed meth-
ods from Sections 3.3 and 3.4. First, the maps were converted to images from
PDF, where we saved each page as an image. Next, we used a YOLOv5 object de-
tection model to locate and crop the map(s) on each image. After cropping, we
performed text detection and geolocalization using the same methods as in 3.3.
A custom color-based method was used to generate labels for the highlighted
routes. These labels were then used to train a custom U-Net model. Finally, the
route was post-processed and matched with the underlying street network via
OpenStreetMap (OSM).

10https://www.routeyou.com/

https://www.routeyou.com/
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The walking and cycling routes were gathered from two sources. We used a
collection of 132 walking and 115 cycling maps from Tourisme Oost-Vlaanderen
(TOV) 11. Each of the maps was depicted on a single image and contained a single
GPX (GPS Exchange Format) file with the route coordinates. The second dataset
consisted of 656 walking and cycling maps from France gathered via web scrap-
ing. These PDFs often contained multiple maps and routes. The combined dataset
contained a total of 1987 images after splitting the PDFs per page.

3.5.1 Route Segmentation

To crop the maps from the full image, we used an edge detection approach com-
bined with horizontal line detection via morphological operations. Figure 3.17
shows an example image and the mask of the largest connected component of
the edges that was used to crop out the map. To segment the highlighted route
from each map, we first tried a color-based approach via trial and error on the
247 maps from the TOV dataset.

Figure 3.17: Left: Original image of the route, with the detected map region highlighted.
Right: Largest connected component after edge detection and dilation.

Eachmap typically only contained a few colors and the actual route was often
centrally placed in a unique color. Via k-means clustering, we reduced the number

11https://www.routen.be/

https://www.routen.be/


80 Chapter 3

of colors in each image to 16. Each road on the map was always represented as a
linewith a certain thickness. This thicknesswasmuch smaller than the filled poly-
gons on the map that represented the different types of terrain (grass, industry,
water, etc.). Therefore, we used the distance transform to classify the road colors.
The distance transform produces another image where the value of each pixel
represents the distance to the nearest zero pixel (background pixel) in the input
mask. Therefore, the colors depicting roads had a much lower maximum value of
their distance transform. We could then easily separate the road colors, by clus-
tering the maximum distances for each color mask. We subsequently merged all
these road colors into a single mask that represented all of the roads.

While this mask typically contained all the roads, it also contained text and
other symbols that overlapped with the roads or were represented in the same
color. Therefore, we used the ground truth route coordinates to filter out the ac-
tual route. We rasterized these coordinates, and performed template matching
to match the route with the mask containing all roads. Because the geocoordi-
nates were scaled differently than the image, we iteratively rescaled the width
and height independently from 0.5 to 1 and saved the parameters with the high-
est matching score. Finally, we can use an AND operation to get the correct mask
of the route. To speed up this algorithm, the images were downscaled by a fac-
tor of four. Figure 3.18 shows the mask of all detected roads, the best template
match, and the resulting final mask.

This approach worked well on the dataset of TOV, but performed quite poorly
on the dataset of French maps, even after cropping out the maps as described in
3.5.2. Therefore, we used a simple interactive script to overlay the predicted route
on top of themap. Then, using keyboard inputs, these predictions were quickly ac-
cepted or rejected. Ultimately, only 279 out of 903 (30.1%) of the predicted routes
were accurate. We then used these correct predictions to train a U-Net segmenta-
tion model and selected 32 random images for validation. The model achieved an
IoU of only 0.266 on the validation set. Figure 3.19 shows the predictions on some
maps from the validation set. The low IoU score is mainly due to the difference
in thickness of the predicted versus the actual route and due to non-route roads
being included in the predictions. Nevertheless, most route predictions include
the actual route. Therefore, with some post-processing, these can be improved.

First, we performed k-means clustering on the original map image. Then, we
used the U-Net prediction to select the top 3 colors with the most overlap with
the prediction. Next, these color masks were filtered if they touched the map
edges, as most routes were placed in the middle of the map. We then applied
skeletonization to get a mask of one pixel wide. Sometimes, the resulting route
had holes or loops. We simply connected each edge with its closest unconnected
edge using a straight line, to fill the gaps. Then, we represented the mask as a
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Figure 3.18: From top to bottom: Mask of all detected road colors. Best template match
(red) overlaid on all roads (blue). Final mask rescaled to the original image dimensions.
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Figure 3.19: Walking route predictions of the U-Net model on two maps from the
validation set.

graph and used NetworkX 12 to find the longest non-looping path. This path was
then selected as the final route prediction.

3.5.2 Map Detection

To detect the map(s) on each image from the French dataset, we used a YOLOv5
object detection model. We manually labeled all of the images from the French
dataset with each map’s bounding box. 128 images were randomly selected for
validation. We trained a YOLOv5 object detection model, which achieved a mean
average precision (mAP) of 0.89 on the validation set. Figure 3.20 visualizes the
map predictions on an image from the validation set.

3.5.3 Route Geolocalization

Now that the maps have been detected and the route has been segmented, we
can assign geocoordinates to the route. Using the same approach as in 3.3, we
estimated a geolocation for each map. For the TOV dataset, we calculated the

12https://networkx.org/

https://networkx.org/
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Figure 3.20: Map detection predictions via YOLOv5 on an image from the validation set.

geolocation errors, as each map was linked to a single route. For the dataset of
French maps, these were not linked to a single route, so they were difficult to
validate.

The geolocation errorwas estimated by taking the bounding box of the ground
truth GPS route and comparing this to the predicted geolocation. Keep in mind
that the predicted geolocation was a prediction for the full map, so these regions
were typically larger than the ground truth route. Nevertheless, we achieved a
mean geolocation error of 2981m and 4940m for the walking and cycling routes,
respectively. The average center errors were 843m and 1211m, respectively (see
3.3.9.2 for an explanation of these metrics).

As a final step, we used the predicted geolocation to assign geocoordinates
to the predicted route. Next, we used a map-matching algorithm to match our
predictions with the underlying road network via OSM. Figure 3.21 shows one of
the better results after geolocating andmapmatching. The final route predictions
were often far away from the actual route, as they depended on both the route and
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Figure 3.21: Final route prediction (blue) with the ground truth (green) and matched
(red) routes visualized.

geolocation to be predicted accurately. This was especially true for the dataset of
French maps, which were more complex and typically contained fewer toponyms.

3.6 Discussion

We developed an automatic map processing approach that can extract visible to-
ponyms on raster maps and subsequently georeference these maps, with a rela-
tively small error. It is surprising that the predictions for the TOP50raster dataset,
which contains much larger maps, were better than the other dataset. There are
two main reasons for this. First, the maps of TOP50raster are of a higher quality
(508 dpi versus 225 dpi), which should lead to better text detection and recogni-
tion performance. Second, the average number of detected text labels is nearly
twice as high, while the distribution of the number of geocoder matches per text
label is similar (see Figure 3.6). This results in the geolocation algorithm receiv-
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ing much more valuable information on average, resulting in a better prediction.
Detecting more text labels improves the predictions only if they can be matched
with the corresponding toponym.

Table 3.1 shows the improvements for each step in the geolocation algorithm.
It is clear that simply clustering the initial geocoder matches gives inaccurate
results compared to the final prediction. The error distances also show that the
center error is not a good indicator of overall accuracy. As we only compared
the predicted and ground truth center, there is no indication of the relative scale
of the predicted area. Without filtering, the geolocation algorithm consistently
predicted much larger areas than the actual map.

For many applications, an average error of less than 2% is usable. Thesemaps
can now be integrated into a GIS with the recognized text labels and matched to-
ponyms as additional metadata. Besides the raster maps themselves, we only
used the country information. This was provided to the geocoders to reduce the
number of incorrect toponymmatches. For most collections, it is trivial to provide
the country information to the algorithm. For maps depicting border regions of
countries, it can be beneficial to include both countries in the geocoder requests.
Besides querying the recognized text labels with the geocoders, the entire pro-
cessing pipeline, from text detection and recognition to geolocation prediction is
relatively fast. The calculations necessary to perform the outlier filtering and to
calculate the error metric presented in Section 3.3.7 were nearly all vectorized and
are therefore very performant.

However, it remains difficult to automatically determine if the georeferenc-
ing predictions were accurate. This is a classic problem that plagues many un-
supervised approaches, as no labeled data would be available when using this
technique in practice. We can, however, perform some extra validations, given
that the raster map is part of a uniform series (which is usually the case for to-
pographic maps). For instance, if the height or width of the predicted geolocation
for a map is much greater than the other predictions, we can assume that this
prediction is less accurate.

The backbone of this pipeline is the determination of the initial region of in-
terest. Because density-based clustering was used, this determination assumes
that the text recognitionwas usable and that the number of false-positive geocoder
matches was relatively small compared to the number of correct matches. There-
fore, the two main failure cases of the geolocation approach occur when the map
is of low quality, resulting in poor text recognition results, or when the text labels
are consistently split into multiple, far away words or presented in complex ar-
rangements. Text recognition techniques that can work with low-quality images,
such as [35], could be used to improve results. But usually, this is not an issue
when analyzing raster maps. The main issue is often the correct linking of text
labels with the same location phrase. This was not the focus of our research and
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is not a trivial task to solve, as the impressive work in [17] shows. Even with a
complex technique to correctly link the text labels, errors remained. In that study,
only the center of each map was geolocated. The center of the largest cluster of
geocoder matches was taken as a prediction for the map center, which resulted
in errors of 27%, 48%, and 51% with the ground truth center, relative to the map
diagonals, for the three maps discussed in detail. Without any text linking, these
errors were over 91%, clearly demonstrating its importance in predicting an initial
region of interest.

Even thoughwe are satisfiedwith the results presented, we believe that there
is still much room for improvement. Mainly the text linking and geocoder querying
need improvement, as these are key in predicting a correct initial region of inter-
est. Adding additional semantic information can also help determinemore robust
geolocations. Currently, each text label and corresponding toponym is naively
considered as a point. These toponyms often do not represent single points, but
lines and polygons. Clearly, this is not the optimal way to deal with these types
of features. Additionally, text labels that denote visible features on the map, such
as rivers and streets could be used in conjunction with the visual content to more
accurately geolocate these. It can also be beneficial to give different features a
higher weight, depending on their type. For instance, a street name may provide
more useful and localized information than a place name. Finally, more work
needs to be done on developing an effective strategy to validate the predicted
geolocation in an unsupervised way. It can be valuable to know if the predictions
were not accurate for certain maps in the dataset; these can then be corrected
manually.

Furthermore, we showedhowU-Netmodels can effectively segment the roads
on contemporary topographic maps. We were able to construct a multi-class
dataset of different road types, by linking the raster maps with associated vector
data. However, for historical maps, no such vector data typically exists. Synthetic
data generation or domain adaptation techniques, such as [22, 23], have to be
used to train the models in a weakly-supervised way.

Our case study on walking and cycling maps showed another use case for the
geolocation and segmentation approaches. By combining these, we were able to
predict GPS coordinates for the highlighted routes on each map. While the full
pipeline did not always work perfectly, this is (to the best of our knowledge) the
first automatic pipeline that can achieve this feat.

3.7 Conclusion

We have developed an automatic technique to georeference topographic raster
maps using pretrained text recognitionmodels and geocoders. Two datasets were
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processed, resulting in an average error of 316 m (1.67%) and 287 m (0.90%) for
maps spanning 19 km and 32 km, respectively. With average errors within 2% of
themap size, thesemaps can now be accurately queried for a specific region of in-
terest. The georeferenced maps can then be integrated into a GIS with the recog-
nized text labels and linked open data toponyms as additional metadata for each
raster map in the collection. This additional metadata greatly improves the qual-
ity and accessibility of the dataset. Furthermore, we showed how U-Net models
can effectively segment the roads on contemporary topographic maps, by linking
the raster maps with associated vector data. Our ResNet50 segmentation model
achieved an IoU score of 0.804 and 0.758 on the binary and multi-class datasets,
respectively. We then combined both methods, to propose a novel walking route
prediction pipeline, that produces GPS coordinates from a given map image.
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4
Analyzing Herbarium Sheets

“Study the past, if you would divine the future”

– Confucius

In this chapter, automated processingmethods for digitized herbarium sheets
are discussed. The chapter starts with an overview of the challenges related to
herbarium processing, followed by related work. Next, automated processing
methods are discussed, from preprocessing to specimen identification via OCR.
The chapter finishes by proposing and evaluating multiple herbarium segmenta-
tion approaches on a novel dataset.

This chapter is an adapted version of the following publication:

Milleville, K., Thirukokaranam Chandrasekar, K. K., Van de Weghe, N., & Verstockt, S.
(2023). Evaluating Segmentation Approaches on Digitized Herbarium Speci-
mens. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2023. Lecture Notes
in Computer Science, vol 14362. Springer, Cham. https://doi.org/10.1007/978-3-0
31-47966-3_6

Which improves upon our earlier work:

Milleville, K., Thirukokaranam Chandrasekar, K. K., & Verstockt, S. (2023). Auto-

https://doi.org/10.1007/978-3-031-47966-3_6
https://doi.org/10.1007/978-3-031-47966-3_6
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matic Extraction of Specimens from Multi-specimen Herbaria. ACM Journal on
Computing and Cultural Heritage, 16(1), 1-15. https://doi.org/10.1145/3575862

4.1 Introduction

Herbarium specimens record plant occurrences collected from all corners of the
world, forming the foundation of systematic botany. They have been collected
over several centuries and are carefully archived and preserved. Each specimen,
typically a dried plant, is attached to a herbarium sheet. These sheets also con-
tain essential information such as the plant’s scientific name, collection date, ge-
ographical origin, and other relevant details. The herbarium sheets thus form a
physical database of plant biodiversity and are used to study species diversity
and their evolution over time. Furthermore, herbaria offer a unique opportunity
to study past ecological conditions and the effects of climatic and other changes
on plant populations. Following a report by the Index Herbatorium from 2021,
there are close to 400million herbarium specimens spread over 182 countries [1].

In the last few decades, many institutions have begun digitizing their archives
and making their specimens accessible on various online repositories like GBIF1

and iDigBio2. This digitization effort has led to a dramatic increase in accessibility
and research focused on herbarium specimens. The digitization process involves
taking a photograph or making a scan of the specimen followed by (manual) data
entry for the specimen details (location, date, taxonomy, collector, etc.) [2]. This
digitization is time-consuming, considering many collections contain thousands
or millions of herbarium sheets. Usually, a ruler and color card are added during
digitization to provide color and size references, that are useful for later analysis.

Most herbarium sheets contain little or nometadata about the size and shape
of the specimens. Therefore, performing large-scale studies on the morpholog-
ical features of these specimens typically requires a tremendous manual effort.
Several semi-automated tools exist, but most still require manual annotation or
corrections, which limits the scope of such studies [3, 4]. Luckily, computer vi-
sion and deep learning methods can be used to automatically analyze digitized
herbarium specimens. The resulting metadata can then be used to enrich the
digitized specimens, which allows researchers and botanists to delve deeper into
plant biodiversity studies.

1https://www.gbif.org/
2https://www.idigbio.org/

https://doi.org/10.1145/3575862
https://www.gbif.org/
https://www.idigbio.org/
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4.2 Related Work

In recent years, deep learning-based object detection and segmentation models
have become the most popular state-of-the-art methods for analyzing digitized
herbarium sheets. Object detection approaches work well for clearly defined ob-
jects and are easy to label. However, plant specimens can have a complex, non-
convex shape, which makes these bounding boxes inaccurate with regard to the
actual shape. Therefore, image segmentation techniques are preferred. Differ-
ent segmentation models have been developed over the years to tackle these
tasks. For semantic segmentation, U-Net [5] has been widely used, especially in
the biomedical field. DeepLabV3+ [6] is another notable model used for seman-
tic segmentation tasks. For object detection, YOLO [7] models are popular and
performant. YOLOv8 [8] is one of the newer YOLO architectures, that is also capa-
ble of instance segmentation. Detectron2 [9] is another popular framework for
instance and panoptic segmentation. It includes implementations of several pop-
ular models, such as Mask R-CNN [10]. More recently, vision transformers, which
typically contain both convolutional and transformer layers, are among the state-
of-the-art for segmentation tasks. Mask2Former [11] and OneFormer [12] are no-
table examples, which achieve outstanding accuracy and combine the three seg-
mentation tasks into a single unified model. However, these newer architectures
typically require more computational resources.

Semantic segmentation methods are frequently used to separate the spec-
imen(s) from the background and tend to be very accurate. In [13], the authors
published a dataset of 400 digitized fern specimens. They used a color thresh-
olding method with manual corrections to extract the specimens from the back-
ground. Their retrained U-Net model achieved an F1 score of 0.95. Similarly, [14]
retrained DeeplabV3 and FRRN-A [15] models on a custom dataset of 395 herbar-
ium specimens, achieving mIoU (mean intersection over union) scores of 0.981
and 0.992, respectively. Similar approaches are also applied to other types of
specimens. In [16], the Mothra toolkit was developed to segment moth speci-
mens, labels, and rulers, which were used to measure phenotypic characteristics.
They then applied this method to over 180,000 specimens to perform large-scale
studies.

The detection of leaves or other objects is typically performed via object de-
tection or instance segmentation models. In [17], a modified YOLOv3 model was
used to detect plant organs (leaves, buds, flowers, and fruits). After data augmen-
tation, they achieved anF1 score of 0.938, compared to 0.899without augmenta-
tion. Deep Leaf [4] is an instance segmentationmodel, based onMask R-CNN, that
segmented leaves and common objects from herbarium specimens. It achieved a
mIoU of 0.905 for the leaf segmentation on a dataset of 4000 images. Further-
more, the length of the recognized rulers was used to accurately estimate leaf
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morphological traits.

4.3 Digitization and Preprocessing

In collaboration with the Meise Botanic Garden, we assisted the Ghent Univer-
sity archives with their ongoing digitization process. The digitization process in-
volves photographing each herbaria sheet, identified by a unique barcode. A stan-
dardized color card is placed next to each sheet, to provide color and size refer-
ences. We assisted this digitization effort by automatically extracting the herbar-
ium sheets and color cards, which were then stitched together. Figure 4.1 shows
one of the digitized sheets.

Figure 4.1: Example of a digitized herbarium sheet from the collection.

4.3.1 Page Extraction

The preprocessing pipeline begins with the extraction of the page from the image
and is adapted from the methods developed in [18, 19]. First, the image is rotated
such that the longest edge is maintained as its height. Next, the page is masked
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from the image using a threshold of 136 on the grayscale values. This masked
the page from the darker background. Using this mask, the largest connected
component was selected as the page. Finally, the contour of the page mask was
used to dewarp the page into a straight rectangle. By selecting 32 points along
the contour, the image contents are remapped and interpolated into the correct
shape using the OpenCV remap function3. Figure 4.2 shows the extracted page
mask and selected points along the page edge before dewarping.

Figure 4.2: Left: page mask and its contour in red. Right: selected points along the page
edge before dewarping.

4.3.2 Color Card Extraction

To extract the color card from each image, we used a manually cropped color card
as a template for object detection. Because the same color card is always used
during digitization, there is no need to train an object detection model. Classic
feature extraction and matching techniques can be used effectively. After some
initial testing, we found that ORB features [20] worked well to detect the color
card. The position of the card was then determined using the bounding box of the
matched features and also via a homography approach using RANSAC. We found

3https://docs.opencv.org/4.7.0/d1/da0/tutorial_remap.html

https://docs.opencv.org/4.7.0/d1/da0/tutorial_remap.html
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Figure 4.3: Results of the three color card detection methods.
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that the simple bounding box approach was consistently inaccurate, therefore the
homography approach was used. This approach did not always work perfectly, so
if the detection failed, we used a template matching technique. While template
matching was consistent, the downside was that only the top-left corner of the
card was found. If the card was slightly rotated in the photograph, this was not
detected, resulting in an inaccurate bounding box. Figure 4.3 shows the three
detections generated via each method.

Figure 4.4: Final result of the preprocessing pipeline.

After segmenting both the page and color card, these were stitched together
and the Ghent University logo was added. The resulting image was also converted
to lossless TIFF for further processing. Figure 4.4 shows the final result. In an ini-
tial test using 3000 digitized herbarium sheets, we noticed that the above detec-
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tion methods were often slightly inaccurate in detecting the color cards. There-
fore, a small change was made during the digitization process. The color card was
placed on top of a bright red piece of paper, which completely surrounded it. This
way, the red color could easily be detected along with the color card. We manu-
ally validated 3507 images using this new method and found that 3423 (97.6%)
were preprocessed correctly. The errors were usually due to incorrect dewarping
or page extraction when the sheets had an irregular shape.

4.4 Specimen identification

This section details the use of Azure OCR4, to recognize and match a specimen’s
species and genus, from the herbarium text labels. The genus and species are the
lowest levels of the plant taxonomy classification, thus providing themost specific
information. This information is typically already available in a digital format, or
it has to be added manually during digitization. If this information was already
available, the automatic identification could be used to validate the digitization.

A test was performed using a random sample of 400 digitized herbarium
specimens from the LifeCLEF 2020 Plant Identification Challenge [21]. These spec-
imen images are accompanied by XML files, detailing their genus, species, and
other additional metadata. After a sanity check of these XML files, we found that
some could not be correctly parsed, resulting in 369 usable files containing both
the genus and species.

The OCR results were consistently accurate for printed text, but are typically
less accurate for handwritten text. Almost every specimen was accompanied by
one or more printed text labels, so this was not an issue for this test. Figure 4.5
shows the output of Azure OCR for one of the specimens. Many specimens also
contain a barcode, which can either be extracted via OCR or via a barcode reader
like Zebra Crossing5, providing an additional validation step during digitization.

The OCR results are structured as lines, that each contain a list of recognized
words. If a line is longer than six words, it is ignored because it is unlikely to con-
tain the plant’s name. The names of the plants are usually written on a separate
line with sometimes one word in front of it, such as ”name” or ”genus”. Other
times, the canonical name of the plant is followed by an abbreviation like ”L.” or
”O.”, this typically indicates the name of the botanist credited for the plant name.

Lines containing less than three characters or consisting solely of numbers
or punctuation marks are discarded. The list of lines is then trimmed down to
the first two words. These two words usually contain the full canonical name of

4https://azure.microsoft.com/en-us/products/ai-services/ai-vision
5https://github.com/zxing-cpp/zxing-cpp

https://azure.microsoft.com/en-us/products/ai-services/ai-vision
https://github.com/zxing-cpp/zxing-cpp
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Figure 4.5: Output of Azure OCR on one of the specimen labels.

the plant. Words that are shorter than four letters or contain only numbers or
punctuation marks are discarded. Finally, all words are converted to lowercase to
reduce matching errors.

4.4.1 Text Matching

To match the recognized words as a correct genus or species, the GBIF backbone
taxonomy [22] was used. This database contains the canonical name, genus, and
species. Because the OCR results still contain some errors, we cannot fully rely on
exact string matching. Sometimes visually similar letters or groups of them are
recognized as different letters. For instance, ”cl” could be recognized as ”d” or ”g”
could be recognized as ”q”. Therefore, a fuzzy matching approach was used, using
the popular TheFuzz library6. This library offers multiple fuzzy string matching
functions, based on the Levenshtein distance.

As a first step, an exact match is sought for the extracted word pairs. This
string comparisonwas significantly faster than fuzzymatching and almost always
resulted in a correct match. If no exact match was found, the algorithm switched
to matching separate words. The algorithm will try to match the separate words
with a genus or species from the database. Once a list has been compiled with
these exact matches, a search was conducted for each genus for an applicable
species and vice versa.

If none of these combinations was a correct plant species, the algorithm
switched to fuzzy matching. The lists of possible matches were first narrowed

6https://github.com/seatgeek/TheFuzz

https://github.com/seatgeek/TheFuzz
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down so that only applicable species and genera were considered based on the
previously found part of the plant name. When a wordmatched with a score of 80
or more, it was saved as a possible candidate for the genus or species of the plant
until a better match was found. The match with the largest score was ultimately
considered the chosen plant name.

It is also possible to look for a fuzzy match for both the genus and the plant
species, but this step significantly slows down the algorithm. The algorithm typi-
cally took around five minutes to complete. When this additional fuzzy matching
step was added, it ran up to fifty times slower. Besides this massive speed de-
crease, the precision of this step of the algorithm fell to a little over 5 percent.
With this level of precision, every specimen would have to be checked manually,
which defeats the purpose of automatic identification.

4.4.2 Results

When the algorithm found a match for a plant name, it also indicated how the
genus and species were identified. The algorithm distinguishes between three
possibilities:

• The name was found by an exact match of both parts (Exact).

• The name was found by a fuzzy match of the genus (FuzzG).

• The name was found by a fuzzy match of the species (FuzzS).

TheFuzz has six differentways to calculate the similarity between two strings.
After testing each similarity score, we found that the Token Sort Ratio produced
the best results. This ratio was then used during the evaluation.

When an exact match of both genus and species was found, the precision
was 1, and the recall was 0.39. Using the full algorithm with fuzzy matching,
the precision dropped to 0.72 for the genus and 0.66 for the species. The recall,
however, greatly increased to 0.75 and 0.74, respectively.

When looking at incorrect matches, we identified three major causes. Firstly,
there are cases where the XML files deviate from the name present on the im-
age. Secondly, there are a large number of cases where a place name mentioned
on the page is interpreted as the species of the plant. This is often due to the
words ”Paris” or ”flora”. ”Paris” appeared many times due to a large number of
herbarium sheets originating from Paris and flora is also frequently present on
the text labels. The last cause lies in the text recognition errors of the OCR. Ta-
ble 4.1 shows the precision and recall for the full algorithm and how names were
matched, with and without the inclusion of the words ”Paris” and ”flora”. By ex-
cluding these commonwords, the precision increased for both species and genera,
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while the recall decreased. While these fuzzy results are okay, their precision is
likely too low to be used effectively as a validation tool.

Table 4.1: Precision and recall for the full algorithm and how names were matched. Tests
were performed with and without inclusion of the words ”paris” and ”flora”. All tests

were performed using the Token Sort Ratio.

Genus

Algorithm All Without Paris & flora

Full 0.72 | 0.75 0.81 | 0.69
Exact 1.00 | 0.39 1.00 | 0.39
FuzzG 0.66 | 0.63 0.71 | 0.59
FuzzS 0.75 | 0.56 0.92 | 0.51

Species

Algorithm All Without Paris & flora

Full 0.66 | 0.74 0.74 | 0.67
Exact 1.00 | 0.39 1.00 | 0.39
FuzzG 0.68 | 0.64 0.74 | 0.59
FuzzS 0.60 | 0.50 0.71 | 0.44

4.5 Herbarium Specimen Segmentation

This section details the different segmentation approaches used to analyze the
herbarium sheets. These methods improve upon our previous work [18] and are
evaluated on a novel instance segmentation dataset. First, binary segmentation
models are fine-tuned to segment the specimens from the background. Next, sev-
eral instance segmentation models are compared. Finally, a comparison is made
between combining both types of models and using a single panoptic segmenta-
tion model to segment both specimens and objects.

4.5.1 Dataset

The herbarium specimen dataset was created using a semi-automatic approach.
The labeling was split into two parts, namely, the semi-automatic labeling of the
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plant specimen(s) followed by the manual annotation of common herbaria ob-
jects. We started with a random sample of 1500 images from the LifeCLEF 2020
Plant Identification Challenge [21] and also included the 250 specimens from [23].
These images were resized such that their longest side measured 1024 pixels.
We used this dataset to fine-tune our semi-automatic labeling approach for the
plants.

First, the images were transformed into the LAB color space, which groups
similar colors closer together than the traditional RGB color space. Next, k-means
clustering was used with a k value of 3, to reduce the number of colors in the im-
age. This facilitated the extraction of the foreground regions (plants and objects)
from the background sheet. Then, the foreground regions were split via a con-
nected components analysis.

We noticed thatmost non-specimen objectswere rectangular and close to the
image borders. Therefore, these were filtered based on their relative size, shape,
and overlap with the page borders. For each foreground object, we calculated
the overlap with the page border (outer 10% of the image) and the overlap of its
area compared to the area of its bounding box. If these exceeded a predefined
threshold, the object was filtered out. These thresholds were determined qual-
itatively and the full algorithm details are made available with our code. After
filtering, each remaining specimen’s mask was saved independently. Figure 4.6
shows the result after extracting the foreground objects and after filtering the
non-specimen objects.

Figure 4.6: From left to right: The original herbarium image. Result after segmenting
and dilating the foreground objects. Final result after filtering the non-specimen objects

(each color denotes a separate specimen).

When the image contains multiple clearly separated specimens as in Figure
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4.6, it is trivial to separate the resulting masks and label each specimen indepen-
dently. However, when multiple specimens overlap, separating them correctly
becomes extremely difficult. Similarly, when a piece of the specimen is detached
(e.g., a leaf or branch), it is difficult to determine whether this piece is part of
the same specimen. Furthermore, many specimens are attached to the page with
small pieces of tape. This tape is often not included in the foreground mask, re-
sulting in disconnected specimens. Luckily, most of these issues were solved by
dilating the masks first, then filtering, followed by an intersection with the orig-
inal mask. The tape is sometimes (partly) included in the specimen mask, which
is currently one of the main limitations of the semi-automatic labeling method.

After this process, the specimenmasks weremanually validated. Using an in-
teractive script, we overlaid the masks on the original image and used keyboard
inputs to quickly label themasks as correct or incorrect. The plant specimenswere
correctly extracted from 506 of the 1750 images (28.9%). The algorithm mainly
failed due to the large variety of specimens, background colors, and objects in the
dataset. For instance, some specimens had a larger surface area than the back-
ground, which incorrectly labeled their color as background. The most common
failure occurredwhen parts of another object were containedwithin the specimen
mask. This frequently occurred when they were positioned close to one another
or overlapping.

We selected a sample of 250 images from the manually validated images
and labeled seven common object classes (ruler, color card, note, barcode, stamp,
attachment, and other) with their bounding polygons via the LabelMe annotation
tool [24]. The class ”note” details any attached note or textual information on
the page. ”Attachment” was used to label additional items such as envelopes, or
attached fruit. The class ”other” denotes rare objects, such as photographs. We
noticed that many color cards contained a ruler, therefore this ruler strip was also
labeled separately as a ruler. This way, there is no need for an additional class
indicating the presence of both. Finally, these annotations were converted to the
COCO [25] format and merged with the specimen masks, to construct a complete
instance segmentation dataset. Figure 4.7 visualizes two fully labeled herbarium
sheets from the training set.

From the 250 labeled images, 30 were randomly selected as part of the val-
idation set used throughout this chapter. Table 4.2 lists the number of labeled
objects for each class and the percentage of images on which they occur. Due to
the low number of ”other” objects (8 occurrences in 3 images), thesewere deliber-
ately not included in the validation set. The other classes are relatively balanced,
with ”note” being the most prominent class. Surprisingly, some labeled images
did not contain a ruler, while others had multiple.
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Figure 4.7: Two herbarium sheets from the training set with their labels visualized.
Different instances of the same class are visualized with the same color to improve

clarity. Best viewed in color and with zoom.

4.5.2 Binary Plant Segmentation

Three semantic segmentation models were trained to extract the plants from
the background. These include U-Net, UNet++ [26] (an improved version of U-
Net), and DeeplabV3+. Each model was trained with the same encoder, namely
EfficientNet-B0 [27], starting from weights pretrained on Imagenet. The herbar-
ium images and masks were resized to (608,800) and each model was trained
for a maximum of 200 epochs. We used Dice loss to train the models and saved
the model with the lowest validation loss. During training, the images were aug-
mented with random color jittering, rotations, and reflections. Table 4.3 lists the
intersection over union (IoU) andF1 scores for each model on the validation set.
The results show a large difference between the U-Net and DeeplabV3+ models.
Even though the Unet++ architecture is more complex and was shown to outper-
form U-Net for biomedical image segmentation, we found little difference for the
plant segmentation.
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Table 4.2: Number of different labeled objects in the dataset and the percentage of
images on which they occur.

Class Train (%) Validation (%)

Note 551 (99.5) 83 (100)
Barcode 231 (95.9) 34 (96.7)
Stamp 221 (80.5) 30 (80.0)
Ruler 216 (92.3) 29 (86.7)
Color card 145 (59.5) 21 (60.0)
Attachment 125 (56.8) 19 (63.3)
Other 8 (1.4) 0 (0)

Table 4.3: Binary plant segmentation results.

Model IoU F1

UNet++ 0.951 0.975
U-Net 0.950 0.974
DeeplabV3+ 0.915 0.954

4.5.3 Instance Segmentation

To detect both the plants and the other objects, we evaluated multiple instance
segmentation models. These include YOLOv8l-seg (large), Mask R-CNN with FPN
head, and Mask2Former (Swin-T backbone). For Mask R-CNN, we used the imple-
mentation from Detectron2 and also from Pytorch, both with a Resnet50 encoder.
For YOLOv8 and Detectron2, their default training augmentations were used. For
the Mask R-CNN and Mask2Former, we used custom data augmentations. Each
model was trained for 200 epochs and the model with the lowest validation loss
was saved.

To train the YOLOv8 model, the instance masks had to be converted to the
YOLO format, namely a single polygon annotation per instance. This was per-
formed using their supplied conversion script. However, many plant masks con-
tain holes and have complex shapes, which makes the resulting polygon repre-
sentations inaccurate.

The resulting average precision (AP) scores for both the bounding boxes and
masks are presented in Table 4.4, as well as the mask AP for the plant class and
the average mask AP of all other classes (object AP). These scores were calculated
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Table 4.4: Results of the instance segmentation models.

Model box AP mask AP mask AP50 plant AP object AP

Detectron2 76.7 68.4 85.4 9.0 78.3
Mask R-CNN 78.2 76.7 92.7 31.9 84.1
YOLOv8 87.0 78.5 96.1 48.1 83.5
Mask2Former 80.7 78.9 91.0 77.0 79.2

using the official COCO evaluation code 7. For the non-plant objects, all models
performed relatively well, with mask AP scores ranging from 78.3 to 84.1. For the
plant class, the Detectron2 and Mask R-CNN models scored poorly. Mask R-CNN
scored slightly better, potentially due to the custom data augmentation. Their
predictions often contained only a part of the entire plant. Conversely, the YOLOv8
model often predicted masks that were much bigger than the actual plant, which
also led to poor performance. The Mask2Former model scored well on both plants
and objects, making it a solid all-around choice. Figure 4.8 visualizes the predic-
tions with a minimum confidence score of 0.5 for each model on a sample image
from the validation set.

Figure 4.8: Predictions from each model on a sheet from the validation set. From left to
right: Detectron2, Mask R-CNN, YOLOv8, and Mask2Former. Different instances of the
same class are visualized with the same color to improve clarity. Best viewed in color

and with zoom.

7https://cocodataset.org/#detection-eval

https://cocodataset.org/#detection-eval
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4.5.4 Panoptic Segmentation

Because most herbarium sheets only contain a single specimen, the problem can
be reformulated as a panoptic segmentation task. The specimen(s) can be con-
sidered as a single ”stuff” class (semantic segmentation) and the other objects
as ”things” (instance segmentation). So every pixel denoting a specimen will be
labeled the same value, regardless of the number of specimens on the sheet. This
way, predictions for the specimens will not be incorrectly split into multiple in-
stances.

We have tested two approaches: a combined output of the previous UNet++
for the plant class paired with a retrained YOLOv8 for the objects and a single
Mask2Former model, retrained on the panoptic labels. The same train and val-
idation splits as before were used. Each model was trained for a maximum of
200 epochs. Table 4.5 shows the resulting mask AP scores for the objects and IoU
scores for the plant class.

Table 4.5: Results of the panoptic segmentation approaches. Mask AP scores were
calculated for the non-plant classes only.

Model mask AP mask AP50 plant IoU

YOLOv8 + UNet++ 83.7 98.3 0.951
Mask2Former 81.6 95.7 0.899

The results show that the combined approach outperforms the Mask2Former
model on both the objects and plant classes. Interestingly, the panopticMask2Former
model performed slightly better on the objects than the previous instance seg-
mentation model (mask AP of 81.6 vs 79.2). The combined approach achieved a
mask AP of 83.7 and IoU for the plant class of 0.951, which are both better than
the single Mask2Former model. Especially for the plant class, the difference in
performance is clear. The Mask2Former model often struggled with segmenting
smaller parts of the plants and objects. An example of this problem is shown in
Figure 4.9, where predictions for both approaches are visualized (instance predic-
tions were thresholded with a minimum score of 0.5).

4.6 Discussion

Our page and color card extraction pipeline has proven successful in assisting the
digitization process. It greatly speeds up digitization and provides a standardized
output that can be quickly manually verified. Detecting the color card via ORB
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Figure 4.9: Panoptic predictions on a sheet from the validation set for the combined
approach (YOLOv8 and Unet++) on the left and for Mask2Former on the right. Best

viewed in color and with zoom.

features worked well, but was not consistent enough and made too many mis-
takes. By changing the digitization process slightly and enclosing the color card
in a solid red color, we were able to achieve an accuracy of 97.6%. Some errors
still occurred, which were either due to non-uniform sheets or human errors (e.g.
color card not positioned correctly).

Automatic specimen identificationwas performedusing exact and fuzzy string
matching. Exact matching proved the most useful, achieving perfect results on
around 40% of the images. Fuzzy matching lowered this precision, making it less
applicable as a validation tool. We expect that more complex matching algo-
rithms will achieve better results and can successfully include fuzzy matching.
The matching speed was also not amazing, but popular tools like Elasticsearch8

can be used to speed it up.
Our results for binary plant segmentation are in line with [13, 14, 18], which

also achieved IoU and F1 scores upwards of 0.95. We can conclude that the U-
Net architecture can quickly and accurately segment plants from the background.
However, instance segmentation proved a much more difficult task. Only the

8https://www.elastic.co/

https://www.elastic.co/
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Mask2Former model achieved a good segmentation of the plants, while the other
models struggled. We suspect this is partly due to the Mask R-CNN architecture,
which often smooths larger objects, removing the finer details [28]. The predic-
tions from the YOLOv8 model were better, but still inaccurate, which was partly
due to incorrect polygon labels.

For the non-plant objects, all models achieved a good performance, with
mask APs ranging from 78.3 to 84.1. We suspect these results can be further im-
proved by labeling additional data and using additional augmentation methods.
Regarding processing time, the YOLOv8 model was the clear winner, which is an
important consideration when processing large herbarium collections. The ruler
class was generally the hardest to segment correctly, likely due to the many vari-
ations in the dataset. After post-processing, the extracted rulers can be used in
combination with the plant masks to estimate the size and morphological traits
of the specimens. Other objects can prove useful too, for instance, the notes can
be cropped from multiple sheets and stacked into a single image. This reduces
processing time for OCR tools and can often improve OCR results [29]. These re-
sults could then be used to improve or validate the manual data entry process
during digitization.

By treating the segmentation as a panoptic segmentation task, we can lever-
age the performance and accuracy of the YOLOv8 and UNet++ models by com-
bining their outputs. Such an approach achieves superior results compared to in-
stance segmentation and is applicable when the herbaria sheets contain a single
specimen or when semantic segmentation suffices for the plant class. We showed
that thismodel combination outperformed a single panopticMask2Formermodel.
Further tuning of the Mask2Former model can likely reduce this difference in ac-
curacy. There are both benefits and drawbacks to using multiple models. The
main drawback is that each model needs to be trained individually and then run
separately for inference, which can increase processing time. Luckily, both UNet++
and YOLOv8 are quite performant and not memory-intensive. The benefit of using
multiple models is that these can be trained on separate datasets. It is gener-
ally much easier to combine all the available binary plant segmentation datasets
and retrain a plant segmentation model than it is to add object labels to these
datasets, which are required to train a single panoptic model. This is also true for
the instance segmentation model, although the used datasets would need to be
normalized to contain the same object classes.

Because the binary segmentation models were trained on specimens labeled
using the semi-automatic technique, this might bias the trained models and pro-
vide optimistic results. Therefore, we performed an additional qualitative eval-
uation of unlabeled specimens from the LifeCLEF dataset. We noticed that the
segmentation results are generally comparable to the labeled dataset, but no-
ticed some common segmentation errors. Plants were frequently not segmented
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entirely or split into multiple parts. Other times the predicted masks were larger
than the plant. Three examples of predictions on the unlabeled dataset contain-
ing such errors are given in Figure 4.10. These errors also occurred on the labeled
dataset, but typically to a lesser extent.

Figure 4.10: Results of panoptic segmentation on the unlabeled dataset highlighting
some common segmentation errors.

Regarding data labeling, the Segment Anything [30] model (SAM) or similar
tools could be used to speed up the annotation of herbarium sheets. Our initial
tests with SAM showed mixed results. Often, plants were split into multiple parts.
This could however prove useful to annotate the specimens in a more detailed
way, separating the leaves, branches, fruits, etc. [4] already showed promising
results in calculating morphological features from leaves and we suspect such an
approach can be generalized to additional parts of the specimens.

The main limiting factor for a more generic image processing approach is the
lack of labeled image data [31]. It is a tedious and often difficult task to fully
annotate herbarium sheets due to the diversity in species, objects, and quality.
While this work introduced a novel instance segmentation dataset and promising
results, additional research and labeled data are needed to further improve and
evaluate the automated processing of herbarium sheets.

4.7 Conclusion

Our research has proven that automated herbaria processing tools can be devel-
oped using traditional computer vision methods and deep learning. The digitiza-
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tion process can be sped up tremendously, by preprocessing or validating manu-
ally photographed specimens. OCR tools can be used to recognize plant names
and match them with existing taxonomy databases. A semi-automatic label-
ing technique was developed and used to label a novel dataset of 250 digitized
herbarium specimens with plant masks. Next, polygon annotations for 7 common
herbarium objects were manually added. Different binary plant segmentation
models were tested, with UNet++ achieving the highest IoU of 0.951. Four popu-
lar instance segmentation models were evaluated. YOLOv8l-seg and Mask R-CNN
performed best on the object classes, achieving mask APs of 83.5 and 84.1, but
they performed poorly on the plants. Mask2Former achieved the best overall re-
sults, with a mask AP of 78.9. The segmentation task was also reformulated as a
panoptic segmentation problem, with the plant class as a semantic class. A com-
bination of YOLOv8 and UNet++ outperformed the Mask2Former model, achieving
a higher IoU for the plant class and a higher mask AP for the non-plant objects.
While these results are promising, further research and labeled data are needed
to improve and evaluate the automated processing of herbarium specimens on a
larger scale.
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5
Processing Textual data

“The purpose of computing is insight, not numbers”

– Richard Hamming

This chapter discusses the automated processing of textual data using natu-
ral language processing methods. Such methods enable the extraction of seman-
tic information from text. We applied these methods to Twitter data to analyze
spatiotemporal differences in the public opinion surrounding forest fires and re-
newable energy. The chapter concludes with a case study, where Flickr data was
used to analyze tourism interests in the cities of Ghent and Vienna.

This chapter features an adapted version of the following publications:

Milleville, K., Van Ackere, S., Verdoodt, J., Verstockt, S., De Maeyer, P., & Van de
Weghe, N. (2023). Exploring the potential of social media to study environ-
mental topics and natural disasters. JOURNAL OF LOCATION BASED SERVICES.
https://doi.org/10.1080/17489725.2023.2238663

Milleville, K., Ali, D., Porras-Bernardez, F., Verstockt, S., Van de Weghe, N., & Gartner,
G. (2019). WordCrowd: a location-based application to explore the city based
on geo-social media and semantics. In G. Gartner & H. Huang (Eds.), Adjunct
proceedings of the 15th international conference on location based services (LBS
2019) (pp. 231–236). https://doi.org/10.34726/LBS2019.29
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5.1 Introduction

Textual data can be found in many digital collections or it can be the result of
processing such collections (e.g. OCR on digitized newspapers). Often, this type
of data is unstructured and used to search through the collection. This can make
it difficult to efficiently query the collection and often too many results are re-
turned. Natural language processing techniques can be used to analyze this data
automatically. Such techniques can be used to geolocate place names, determine
the topic of the text, extract named entities, summarize the text, and much more.
The techniques are generic and can typically be applied to any textual data source.

In our research, we have successfully applied many different NLP techniques
to social media posts, OCR results of digital archives, image descriptions, and
more. Many of these collections contained geospatial data, which provided ad-
ditional dimensions to the data. This geospatial data was either provided as ad-
ditional metadata in a structured format (timestamp or coordinate information)
or was embedded in the text itself (place names or dates). After processing, the
results can be analyzed and visualized spatially, temporally, or semantically. By
leveraging these spatiotemporal dimensions, we can uncover trends and detect
outliers in the collections.

5.2 Geospatial Data

In recent years, governments at regional, national, and supranational levels have
invested heavily in the standardization (e.g., Inspire), collection (e.g., Copernicus),
and use of remote sensing data to monitor environmental parameters. The quali-
tative development of geospatial information technologies and services over the
past two decades has led to a dramatic increase in the amount of data that can
be used to assess the state of the environment. Although the amount of data has
increased substantially, the quality of decisions made based on this data has not
improved much [1]. Remote sensing data collection is typically performed using
satellite imagery. This method requires significant investment in hardware and
software to process the data into indicators. Various characteristics describing
the ecological condition of areas have been derived from satellite images taken
at different moments in time, resulting in spatiotemporal indicators [2]. Atlas in-
formation systems and their qualitative advancements, such as Digital Earth, are
becoming increasingly important, especially in the field of environmental man-
agement. New sources of information and new approaches to aggregate and an-
alyze information greatly expand the ability to monitor the ecological condition
of areas and support environmental decision-making.

In addition to remote sensing data, new types of data are being incorporated
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into environmental studies. Research in citizen science, crowdsourcing, and social
media has shown the potential to gather both knowledge and insights to address
environmental emergencies [3, 4]. Although the use of social media data is useful
for disaster management, further research is needed to sift through the (poten-
tially) interesting information and provide valuable insights for environmental
indicators [5].

The biggest challenges lie in collecting and aggregating the myriad of data
across different technologies. As each social media post in itself provides little
additional information, they must be aggregated both semantically (via natural
language processing) and spatiotemporally (via clustering techniques). Once the
data is aggregated, the next step is to explore the transformation of this infor-
mation into valuable indicators at local and global levels.

Using social media data, we aim to provide an additional dimension to envi-
ronmental data by analyzing public opinion about different environmental top-
ics and studying the impact of natural disasters. We expect to find regional dif-
ferences on these topics and want to examine how public opinion has changed
over time. Do people think environmental topics, such as global warming and re-
newable energy, are important? If so, when did this change occur, and can we
hypothesize about what caused this change in mentality? Concerning natural
disasters, we will study their immediate impact online and determine whether
they had a long-term impact on people’s views. For instance, did the forest fires
around the world reignite the discussion about global warming? Did the tragedy
in Fukushima lead to a negative change in mentality about nuclear energy? Espe-
cially when it comes to polarizing topics, this data can provide new insights. We
hope to answer most of these questions and provide a framework that will allow
other researchers and legislators to freely access the data and gain insights to
answer similar questions.

A similar approachwas used in a case study onmetadata frompictures posted
on Flickr in the cities of Ghent and Vienna. Using this metadata, we were able
to determine tourism hotspots and spatiotemporal differences in tourism inter-
ests. When grouping the tourists by their country of origin, we uncovered different
hotspots and interests automatically. The results of the case study were visual-
ized in an interactive LBS (Location-Based Service) application.

5.2.1 Related Work

To automatically analyze large text datasets, natural language processing tech-
niques can be used. NLP is the field of computer science that deals with the au-
tomatic extraction of information from (unstructured) text [6]. With recent ad-
vances in neural network architectures, faster computing, and larger datasets to
train on, the field has made tremendous progress. Many NLP models can be used
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immediately on new, unseen datasets and still perform well. Sentiment analy-
sis is a popular NLP technique to predict an author’s sentiment from their text.
Usually, sentiment is denoted as a class (positive, negative, or neutral) or as a
numerical value (-1 to 1). For most people, it is often straightforward to deter-
mine the sentiment of a given text. However, due to the complexity of natural
language, the small amount of text per tweet, sarcasm, and the unique vocabu-
lary used in certain subcultures, it can be difficult to determine sentiment in an
automated way.

A related problem is stance detection, which involves determining whether
the author is in favor, against, or neutral toward a given statement or topic. The
author’s stance can either be explicitly mentioned or implied in the text. In [7],
this problem was posed as a supervised learning task by annotating a dataset of
tweets on five different topics: atheism, climate change, feminism, Hillary Clin-
ton, and abortion. The annotated data was used to create the SemEval-2016 Task
6 challenge. The highest Favg score of the participating teams was 67.8, indi-
cating that this problem is not easy to solve. In recent work, these scores have
been improved by using large pre-trained language models. One popular model,
BERT (Bidirectional Encoder Representations from Transformers), is a state-of-
the-art language model that uses a bidirectional transformer architecture [8].
This model was pre-trained on huge corpora of unlabeled text, allowing rapid
fine-tuning on a wide range of NLP tasks. Even though these models can outper-
form traditional techniques, they typically require labeled data for each specific
topic or statement to fine-tune. Automatically determining the specific topic or
statement being talked about positively or negatively is even more challenging.

In the event of a (natural) disaster, social media users produce many posts
with disaster-related information that can be useful for analysis [9–11]. For in-
stance, [12] found that extracting sentiments during Hurricane Sandy could help
emergency responders develop better situational awareness of the disaster area.
In another study, a BERT model was applied to a set of tweets related to the
Jakarta floods in early 2020 to identify relevant tweets that could provide in-
formation on disaster response [13]. Besides natural disasters, previous research
has shown correlations between mode of travel and tweet sentiment [14], be-
tween temperature anomalies and tweeting behavior [15], and between people’s
concern about climate change and the severity of weather anomalies [16]. By an-
alyzing tweets made with the hashtag #WorldEnvironmentDay, [17] found that
certain environmental topics (climate change, clean water, and pollution) carried
a negative sentiment. While other topics such as public health and clean energy,
were rather positive. These results can potentially be used by NGOs or policy-
makers to focus on the most concerning topics. In [18], a semi-automatic method
was developed to label over 20,000 tweets regarding their stance on the inde-
pendence of Catalonia. Their method greatly speeded up the labeling process by
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leveraging user-based relations. Their best models were based on the BERT archi-
tecture and achieved an Favg score of 0.7468 and 0.7472 on Catalan and Spanish
tweets, respectively.

More recently, large language models such as ChatGPT or GPT-4, are being
used for sentiment analysis or stance detection. These models can be applied in a
zero-shot fashion (using no labeled data or examples) and achieve close to state-
of-the-art performance on certain benchmarks [19, 20]. One study even found
that ChatGPT outperformed crowd workers to label tweets, for a fraction of the
cost [21]. While these large language models are computationally intensive, they
are becoming increasingly popular to tackle a wide range of NLP tasks.

5.2.2 Twitter Data

The proposed approach for investigating public opinion and spatiotemporal dif-
ferences related to natural disasters consists of four phases: tweet collection,
tweet processing, tweet georeferencing, and analysis.

5.2.3 Collection and Preprocessing

Over the past decade, social media has become an integral part of global commu-
nication and is therefore frequently used as a data source for large-scale analyses.
Twitter, a social network where users can send tweets (short messages of up to
140 characters, increased to 280 characters in 2017), is often used to collect such
data. It has an open API for research purposes with detailed query functionalities.
It is estimated that over 500 million tweets are sent daily, allowing for extensive
data collection on virtually any topic. However, many people do not use Twit-
ter, preferring alternatives such as Facebook, Reddit, and Sina Weibo (popular in
China). We are aware that these alternatives exist and that their exclusion could
lead to geospatial bias, but we will focus only on Twitter data to limit the scope of
the project. However, the proposed methods can be applied to virtually any social
media platform.

First, a query relating to forest fires was performed in four languages: En-
glish, Spanish, Chinese, and Russian. Each query consisted of multiple writing
variations on the topic of forest fires. The tweets were collected from January
2012 until August 2021. The last two years of tweets were processed and analyzed
in detail. Table 5.1 shows the number of retrieved tweets in those last two years,
the percentage of geotagged tweets, the number of user locations found, and
the percentage that was successfully geolocated using our algorithm (see 5.2.3.1).
Most tweets are written in English or contain some English keywords. Although
Chinese is the second most popular language in the world, we found almost 30
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times more tweets searching with English keywords. This is likely because Twit-
ter is less popular in Chinese-speaking countries and due to translation errors.
Additionally, many viral keywords, hashtags, and trends are often written in En-
glish. This causes many non-native English speakers to tweet in English or use
such keywords to increase their reach. Using the estimated language provided by
Twitter, we find that 94% of the tweets found with English keywords were written
in English.

Table 5.1: The number of tweets and user locations found for each query language

Language Total tweets
(thousands)

Geotagged
tweets (%)

Locations
(thousands)

Geolocated
locations (%)

English 2,465 2.32 1,890 (76.7%) 69.7
Spanish 433 2.62 349 (80.6%) 73.8
Chinese 84 0.45 46 (54.4%) 12.4
Russian 17 1.03 12 (69.0%) 28.0

Because tweets can be sent in any language, this complicates both the re-
trieval of tweets and their analysis. A popular approach is to translate all col-
lected tweets into a common language (usually English) and then process them
using language-specific models. To query topics in different languages, keywords
or hashtags have to be translated using available translation services andmodels.
However, sometimes these automatic translations do not reflect the correct trans-
lation, or there are several common spellings for the specified topic. For instance,
if you aim to collect tweets regarding the coronavirus epidemic, you should use
multiple related keywords, such as ”covid”, ”coronavirus”, and ”corona epidemic”.
Even after searching for all possible spelling variations of the topic, many tweets
related to the topic may not be found. The collected tweets consisted of multiple
fields that contained additional information about the tweet itself. Table 5.2 lists
some of the most important fields with their explanations.

To perform a large-scale spatiotemporal analysis, we require coordinate in-
formation. Twitter allows users to tag their tweets with the exact coordinates
of their location (geotag). Our findings show that less than 2.5% of all collected
tweets were geotagged. Therefore, we need to rely on the location provided in
the user’s Twitter profile to determine an approximate location. Between 60-
80% of users provided their location in plain text. Users can enter anything as
their location, so many locations will not provide useful information. For in-
stance, one query found that over 10% of users listed their location as “earth” or
“planet earth”. To determine the coordinates that relate to these location names,
geocoders can be used.
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Table 5.2: Description of the tweet fields used in this work.

Field name Explanation

text The content of the tweet
lang Language of the tweet, detected by Twitter
created_at Creation time of the tweet
id Unique identifier of this tweet
author_id Unique identifier of this user
user_location (Optional) User-submitted profile location in plain text
geo (Optional) Details & coordinates of the geotagged location

5.2.3.1 Geocoding

Geocoding is the process of transforming a location description (address or place
name) into a coordinate on the earth’s surface. There are a variety of algorithms
for geocoding, but they all follow roughly the same process. First, the address to
be geocoded is entered in plain text. Then, the address is normalized into an ac-
ceptable format (usually street name, house number, city name, and postal code).
Finally, an iterative comparison of this address with a reference dataset (e.g., a
street and city database) is performed, from which the geographic coordinates of
the address can be calculated [22].

Geocoders are usually accessed via a REST API. Popular examples includeGoogle
Geocoding1 and the open-source solutions Geonames2 and Nominatim3. These
APIs have tight limitations and can become expensive to geocode millions of user
locations. Therefore, we developed a simple algorithm to geocode popular lo-
cations and place names. Our method used a reference dataset containing all
countries, their main cities, and provinces4. In total, this dataset contained about
43,000 place names. An iterative algorithm was developed that considered exact
string matches of the found place names with this reference dataset.

First, the user location was queried for a country name. If it contained a coun-
try name, we checked if it contained the name of a city or province/state of that
country. If it did, the coordinates were extracted, favoring cities over provinces,
as they provide more localized information. If no country was found, we checked
for a matching province or state and city name (e.g., ”Nashville, TN” was matched
to ”Nashville, Texas”). If no province or state was found, we queried for just a

1https://developers.google.com/maps/documentation/geocoding/overview
2https://www.geonames.org/
3https://nominatim.org/
4https://simplemaps.com/data/world-cities

https://developers.google.com/maps/documentation/geocoding/overview
https://www.geonames.org/
https://nominatim.org/
https://simplemaps.com/data/world-cities
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city name. If multiple matches were found with the same city name, the most
populous option was chosen (e.g., ”Paris” was matched to ”Paris, France” rather
than ”Paris, Texas”). This disambiguation could be further improved by consider-
ing the language of the tweet and the native language of the matching countries.
The algorithm worked quite well with place names written in the Latin alphabet
and was able to geocode 70.3% of the user locations (see Table 5.1). However, it
performed poorly in the initial tests with other alphabets (Russian and Chinese).
This is because the reference dataset often does not contain place names in the
local alphabet. After geocoding all unique user locations with this algorithm, the
locations that did not result in a match can be geocoded with a public API, greatly
reducing the number of requests.

5.2.3.2 Sentiment Analysis and Stance Detection

After processing and geocoding the collected tweets, sentiment analysis was per-
formed using Textblob. Textblob is a popular sentiment analysis model, available
as an open-source Python library [23]. In addition to sentiment analysis, the li-
brary provides a consistent API for common NLP tasks such as part-of-speech tag-
ging, noun phrase extraction, and more. Textblob determines the sentiment with
a predefined dictionary that classifies negative and positive words. All words in
the analyzed sentence receive an individual score depending on whether they are
positive or negative. A pooling operation, such as the average of all sentiments, is
then used to calculate the final sentiment. TextBlob provides two types of infor-
mation about the input sentiment: polarity and subjectivity. Polarity ranges from
[-1,1], where -1 represents a negative sentiment and 1 represents a positive senti-
ment. Subjectivity ranges from [0,1] and tries to distinguish facts from opinions.
Higher subjectivity means that the text contains personal opinions rather than
factual information. The tweets were first preprocessed by removing all men-
tions (@username), URLs, and hashtag symbols. Then, both polarity and subjec-
tivity were calculated using Textblob. Using the predicted polarity, the goal was
to visualize how public opinion varies spatiotemporally. We found that tweets re-
lated to natural disasters were not very polarizing and were difficult to analyze
after aggregation on a large scale (see Section 5.2.4).

Therefore, an additional test was conducted on tweets about alternative en-
ergy sources (nuclear, solar, wind), which represented a more polarizing topic.
Instead of using a generic sentiment analysis model, we fine-tuned a language
model for stance detection on a small subset of the collected tweets related to
nuclear energy. The tweets were manually labeled as either in favor, against, or
neutral (neither) towards nuclear energy as an alternative energy source. During
the labeling process, we found many irrelevant tweets. Some discussed nuclear
weapons, somewere job ads, and some had nothing to do with nuclear energy but
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contained one or more keywords. Due to the large number of irrelevant tweets,
we added irrelevance as an additional label. A total of 500 tweets were labeled
using the open-source tool Label Studio [24]. These labeled tweets were then
used to fine-tune a BERTweet model [25], which is a pre-trained language model
that uses a similar architecture as BERT. BERTweet was pre-trained on large cor-
pora of English tweets and outperformed other pre-trained models on NLP tasks
on tweets. In addition, the model and code are released under an open-source
license.

5.2.4 Results

5.2.4.1 Sentiment Analysis on Forest Fires

To compare our results related to wildfires, the international disaster database
EM-DAT5 of the Centre for Research on the Epidemiology of Disasters was used.
All Spanish tweets related to wildfires (from January 2012 to July 2021) were col-
lected, geocoded, and filtered for tweets posted from Spain. Figure 5.1 shows these
tweets along with some of the major wildfires in Spain reported in the EM-DAT
database. There is clearly a recurring pattern in posts about forest fires during
the summer. There is a clear overlap between the Twitter data and the wildfire
occurrences, whether at the local (in Spain) or global level. For instance, four
peaks in the Twitter data correspond to reported wildfires in Spain: July 2012,
June 2017, October 2017, and July 2021.

Figure 5.1: Number of Spanish tweets from Spain dealing related to wildfires, red dashed
lines represent some major reported wildfires in Spain from EM-DAT

Remarkably, the large spike in Spanish tweets in August 2019 did not coincide
with a reported wildfire in Spain. The only major wildfires reported in the EM-DAT
databasewere in Australia (New SouthWales, Queensland). Looking at the English
tweets posted in Europe dealing with wildfires, this peak is also noticeable. We

5http://www.emdat.be/database

http://www.emdat.be/database
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can conclude that it is possible to detect the occurrence of wildfires using Twitter
data. However, user locations do not indicate where these wildfires are occurring,
as many people across the globe tweet about major wildfires. Further analysis of
the text content is needed to determine the wildfire location.

Figure 5.2 shows the complementary spatial distributions of Spanish and En-
glish tweets related towildfires. There is a clear correlation between Spanish user
locations and countries where Spanish is the official native language. For the En-
glish query, we see better global coverage, showing that these English keywords
and hashtags are used by many non-native speakers. Furthermore, we found that
over 99% of the tweets found with the Spanish query were unique and not in-
cluded in the English query.

Figure 5.2: The distribution of English (top) and Spanish (bottom) tweets related to
wildfires

After taking a closer look at many tweets and their predicted sentiment, we
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concluded that the Textblob model cannot accurately assess sentiment. Many
tweets contain relevant keywords or hashtags (e.g., forest fire, wildfire), but are
irrelevant to the topic. We suspect that many of the viral hashtags related to wild-
fires are used to gainmore reach for an individual’s tweets, even though the tweet
is unrelated to wildfires. These irrelevant tweets heavily influence the results,
therefore, they either need to be filtered out beforehand or the model should ig-
nore them. Some positive and negative predicted tweets are shown in Table 5.3.
Interestingly, the model predicted many tweets with a positive sentiment, most
of which were irrelevant concerning wildfires. Furthermore, when the sentiments
are aggregated over large areas, they tend to average out to neutral and provide
little insight into public opinion.

5.2.4.2 Stance Detection on Nuclear Energy

Out of the 500 manually labeled tweets for stance detection regarding nuclear
energy, 98 were labeled as irrelevant. Of the 402 others, 169 were labeled as ”in
favor”, 86 as ”neither”, and 147 as ”against”. Two tests were performed: one to
predict the tweet’s relevance and one to predict the author’s stance with respect
to nuclear energy. For both tests, 20% of the data was used for validation (100
tweets). The relevance prediction performed surprisingly well, with an F1 score
of 0.92. The fine-tuned model was clearly able to distinguish tweets related to
nuclear energy from unrelated tweets.

Because we are mainly interested in favorable or negative opinions, the ir-
relevant tweets were considered as ”neither” for stance detection. To evaluate
the overall performance, we used the macro-average of the F1 scores (denoted
asFavg) for the ”in favor” and ”against” classes. This is the samemetric that was
used in [7]. The stance detection was less accurate than the relevance prediction
with anFavg of 0.67. The model was also much better at predicting the favorable
class. For completeness, Table 5.4 lists the precision, recall, andF1 scores for each
class in the validation set.

Taking a closer look at some of the incorrect predictions on the validation set,
we saw that the model sometimes made confident mistakes. Other times, none
of the predictions had a high probability, so these could be ignored by using a
threshold. For instance, if we only consider predictions with a minimum threshold
of 0.75, the Favg score rises to 0.765, but at the cost of discarding 52 % of the
tweets in the validation set. Some example tweets with incorrect predictions are
presented in table 5.5.
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Table 5.3: Some sample tweets related to wildfires, grouped by their predicted
sentiment. Many of the collected tweets contained viral hashtags related to wildfires

but were irrelevant.

Tweets with negative predicted sentiment Irrelevant
Sam Wood and Snezana Markoski raise $20,000 in donations for
bushfire relief in just 24 hours The Bachelor’s Sam Wood and
Snezana Markoski are doing their part in helping Australians af-
fected by the devastating bushfire crisis
There will be a day That all the diabolical and evil deeds of these
politicians will be met by a raging wildfire that will engulf them
and riches they have robbed this nation of.

X

Neguse Curtis Launch Bipartisan Wildfire Caucus Introduce Legis-
lation to Help Communities Recover From Devastating 2020Wild-
fire Season. TY Sen Neguse!
My brain cannot wrap itself around a fire crossing the continental
divide How can a wildfire reach 11-12,000 feet Absolutely insane.

Tweets with positive predicted sentiment Irrelevant
You can find them best the year after a forest fire. X
Best of luck to all the nominees #Wolfwalkers #DatingAmber
#Wildfire #Vivarium #HereAreTheYoungMen #SeaFever

X

Beautiful sunrise underway in Missoula courtesy of the wildfire
smoke! You can expect hazy skies again today but lessening going
into tomorrow MTwx
Man this bird is awesome #lyrebirds #leonardthelyrebird #blue-
mountains #AustralianBushfires

X

What a brilliant idea watch it catch on like wildfire! X

5.2.5 Discussion

In this Section, we presented a generic pipeline for spatiotemporal analysis of
tweets on environmental topics and our preliminary results. We showed that sim-
ple sentiment analysis models often underperform on tweets. Furthermore, the
predicted sentiment does not provide sufficient information to perform an in-
depth analysis of public opinion when aggregated over larger regions.

The relatively simple geocoding algorithm was able to geocode 70.3% of the
collected tweets in the Latin alphabet by using the locations of the users in their
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Table 5.4: Validation scores for each class of the stance detection

Stance Precision Recall F1 score

Against 0.63 0.63 0.63
Neither 0.81 0.69 0.75
In favor 0.67 0.76 0.71

Twitter bio. The locations that did not yield a match can be geocoded using a
public API, greatly reducing the number of queries. These user locations are crit-
ical because less than 2.5% of all tweets were geotagged. However, when using
geocoding APIs, certain user locations such as ”earth” and ”nowhere” can match a
real place name, resulting in false positives. Automatically removing these false
positive matches will be a challenge.

Upon closer examination of the collected tweets, we found thatmany of them
were irrelevant to the queried topic. Many news reports, job ads, or tweets on sim-
ilar topics (e.g., nuclear weapons) contained some of the keywords. The inclusion
of these irrelevant tweets will lead to an overestimation of the number of tweets
and people discussing the topics at hand. However, we showed that it is possible
to accurately filter out irrelevant tweets by fine-tuning a language model. While
this approach produced good results, it can be time-consuming when applied to
the full dataset of millions of tweets. Additionally, this approach was tested for a
single topic (nuclear energy). Future research will show whether a single model
can be used to filter out most irrelevant tweets across topics, or whether a sep-
arate model is needed for each topic. We estimate that news reports, job ads,
financial information, and other similarly structured irrelevant tweets can be au-
tomatically filtered out.

The retrained BERTweet model for stance detection regarding nuclear energy
achieved an Favg score of 0.67. Considering that the model was only trained on
400 tweets and validated on the remaining 100, this is a promising result. When
analyzing the incorrect model predictions, we saw thatmany of themwere replies
to another tweet, were too short, or were written in a convoluted way where it is
difficult to determine the stancewithout additional context. These problemswere
also mentioned in [18, 26]. Although our analysis focused solely on tweets, the
discussed methods can be applied with little adjustments to other social media
platforms featuring text-based content such as Facebook and Reddit.

Our goal is to label additional data for stance detection in queries about alter-
native energy sources (nuclear, solar, wind, etc.) to visualize the spatiotemporal
evolution of public opinion over the last decade. We will investigate the use of
large language models like ChatGPT and GPT-4 to speed up the labeling process,
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Table 5.5: Sample tweets from the validation set with incorrect predictions and
associated scores and labels.

Tweet text Prediction Label

I’ve been reading a book about the Chernobyl accident
and it’s had me thinking. Considering how the Rus-
sian government botched the building and managing of
those reactors, imaging the disaster if the trump admin
were to attempt something like nuclear energy.

Neither
(0.848)

Against

@CKscullycat Not to mention, nuclear power plants
Against
(0.696)

Neither

Observing the #printergate debacle, I think it was wise
we eschewed nuclear energy.

Favor
(0.449)

Against

@GavinNewsom How about spending money on infras-
tructure, nuclear power, etc... to accommodate the CA
population’s need for energy? Just like H2O, with proper
planning these “emergencies” can be avoided

Against
(0.575)

Favor

went down a nuclear energy rabbit hole tonight like
how did we not ditch the whole “atomic age” thing af-
ter chernobyl? fukushima?? we’re really still out here
burying radioactive waste in concrete sarcophaguses in
2020? wild

Neither
(0.393)

Against

as these offer exceptional zero and few-shot performance [19–21]. The resulting
dataset will be anonymized and published with a permissive license to stimulate
further research. We also intend to conduct a small study of the model’s perfor-
mance on tweets that were automatically translated into English. This translation
is likely to affect the performance of the model, which is important if we are to
include multilingual queries.
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5.3 Case study: Wordcrowd

WordCrowd6 is a dynamic location-based service that visualizes and analyzes ge-
olocated social media data. By spatially clustering the data, areas of interest
and their descriptions can be extracted and compared on different geographi-
cal scales. When walking through the city, the application visualizes the nearest
areas of interest and presents these in a word cloud. By aggregating the data
based on the country of origin of the original poster, we discover differences and
similarities in tourist interests between different countries. This case study was
part of Eureca, a collaborative project with the cartography research group from
the Technical University of Vienna (TU Wien) and several city and state archives
from Ghent and Vienna.

A post on social media reflects the thoughts and feelings of the poster about
a certain topic as a data point in space and time. By focusing on the location of
the post instead of on the content, areas of interest (AOIs) can be extracted as
areas with a higher post density. By spatially clustering these points, these AOIs
are automatically extracted andmost of the noise is filtered out. The dataset used
for this research consists of geolocated Flickr pictures and their associated tags. It
covers continental Europe with metadata of all the images uploaded from 2004
to 2018. Nevertheless, our approach and application can work with any type of
geolocated textual data.

The clustering technique is an essential part of this analysis and modifying
it will impact the number of AOIs, their size, shape, and contents. In this research,
HDBSCAN [27] is used as the main clustering algorithm. HDBSCAN is an extension
of the popular DBSCAN algorithm and performs better on datasets with varying
densities. By changing the parameters of the algorithm, the clustering can be per-
formed on different scales. This multi-scale clustering is necessary for an inter-
active LBS application, as the user might be overwhelmed with a large number of
smaller clusters when he zooms out on the map. To ensure the application works
in real-time with a dynamic interface, we have preprocessed the data into multi-
scale clusters and visualized only the nearby clusters instead of all the nearby
points.

When the user zooms out, the application will fetch and visualize the larger
nearby clusters from the database to reduce the network andmemory load. Figure
5.3 shows this functionality. Clicking an AOI displays its aggregated tags in a word
cloud. This provides an intuitive visualization of the tags contained in each AOI.
Initially, the points located in Austria (370,000 points) were clustered on three
scales, resulting in 845, 79, and 8 clusters. For each cluster, we aggregate and
preprocess all the related tags. The top 100 most frequently occurring tags and

6https://labeltool.idlab.ugent.be/wordcrowd/map/

https://labeltool.idlab.ugent.be/wordcrowd/map/
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Figure 5.3: Visualization of the smallest clusters for a part of Vienna (left) and the larger
clusters when the user zooms out (right). The user’s current position is marked with a

blue dot.

their frequency are then saved in our database. This gives us geolocated AOIs and
their descriptions generated from the Flickr picture tags. Afterward, this process
was repeated for all the points located in Belgium (430,000 points).

Because we were dealing with very noisy and multilingual picture tags, these
needed to be preprocessed to improve the generated word clouds. First, all the
tags were translated into English to provide a common language for the follow-
ing preprocessing steps. Next, irrelevant tags like brand names and stop words
were removed. Afterward, traditional NLP techniques such as sequence matching,
stemming, and lemmatization were used to group similar words together. Finally,
redundant multilingual place name tags were removed. Most pictures included a
tag with the current place name, making that tag the most important one for that
area. However, its inclusion in the word cloud is redundant, as the user already
knows where he is or which area he is looking at on the map. These multilingual
place names were filtered out with the use of Wikipedia and Wikidata.

These techniques made the resulting word clouds much clearer, but they still
contained some errors. The most common errors were due to bad translations or
joined tags that are normally written with a space in between (e.g. ”domkirch-
eststephan”). This is a common problem with social media tags. The emergence
of tags relating to the name or company of the photographer is another problem
that occurs within the word clouds of smaller clusters. This spatial clustering of
data visualizes the AOIs for each region and its general description through the
eyes of the crowd. The AOIs often coincide with landmarks and popular areas of
each city. As a next step, we investigated if there were differences in extracted
AOIs when comparing people from different nationalities.

5.3.1 Tourim Interest Analysis

Only a fraction (32%) of the Flickr users provided information about their home
location in their user profiles, limiting the available data for some countries of
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origin. To classify the other users, a home determination method was developed
based on [28]. The method considers all the posts created by each user and the
country in which he has the most pictures is considered as a potential country of
residence. If the time span between the first and the last post was greater than six
months, the user was classified as a resident of that country. This algorithm was
validated on the fraction of users who supplied information about their country
of residence. This information was first preprocessed with Geonames to deter-
mine the English name of the city or country provided by the user. The developed
algorithm achieved a precision of 0.87, a recall of 0.76, and an F1 score of 0.81.

Kernel density estimation (KDE) [29] was selected as a visualization tool to
generate continuous raster surfaces from the points. These surfaces are heatmaps
representing areas with varying picture densities. KDE was chosen as most users
were already familiar with the concept of heatmaps and it was immediately clear
where the hotspots were located. Each heatmap shows the unique footprint of
visitors from a certain country of origin. These heatmaps can be compared for dif-
ferent countries, to analyze the differences in tourism interest. Figure 5.4 shows
the footprints of visitors from France, Japan, and the USA in Vienna. We see
that the most popular areas of interest (the most popular tourist attractions) are
shared and that larger differences occur in the less popular areas.

Figure 5.4: Footprints of visitors from France, Japan, and the USA in Vienna.

When looking at the generated tags for different nationalities, many tags
were universal and widely used in the same locations. The most common tags
were the more generic ones such as architecture, church, and travel. Between
some nationalities, there were major differences in the areas or topics of interest.
Figure 5.5 shows the word cloud for all points in Belgium from Dutch and English
tourists. All of the points were included because the data is rather limited for spe-
cific regions of Belgium. It is clear that the interest of Dutch visitors, or at least
those who posted on Flickr, was more focused on leisure activities (tomorrow-
land, motorsport) whereas the English tourists were more focused on traditional
tourism. Tags related to the First World War (passchendaele, thegreatwar, memo-
rial) show up in the data for English tourists, as Belgium (especially Ypres) is often
visited to commemorate the Great War and its casualties.
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Figure 5.5: Word cloud of all points located in Belgium for English (top) and Dutch
(bottom) tourists. Words are positioned relative to the user’s location, which is Brussels

for both word clouds.

Currently, the AOIs situated in Belgium and Austria were extracted at three
different scales and their tags have been preprocessed and clustered. These clus-
ters were visualized in an interactive map, where the word cloud of each cluster
was shown when it was clicked. The current prototype is live and we have made
the dataset publicly available. As suggested by [30], the word cloud algorithm
was adjusted based on the location of each tag. The positions of the words on the
word cloud corresponded to the location from where they were extracted, rela-
tive to the current user position. Both word clouds in Figure 5.5 were constructed
with Brussels as the user’s location. The tag Passchendaele is located on the left
side (west) and Francorchamps is grouped with motorsport-related tags on the
bottom-right (southeast). This visualization offers the benefit that it often groups
related tags from the same place together, at the cost of introducing additional
whitespace.
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5.4 Conclusion

In this chapter, we have used NLP techniques to process and analyze social media
data. Our pipeline successfully extracted and processedmillions of tweets related
to natural disasters and environmental topics. Such a pipeline should preferably
include multilingual support to achieve better global coverage. Our initial tests
show that there are spatiotemporal correlations between the occurrence of wild-
fires and the corresponding tweets. However, our current methods are not de-
tailed enough to perform a thorough analysis of the immediate and long-term
effects of these wildfires on global tweet behavior. Additionally, many of the col-
lected tweets were not relevant to the queried topic but simply contained the
same keywords or hashtags. We also showed that basic sentiment analysis mod-
els often fail to predict the correct sentiment and do not add much value when
aggregated over large regions. Stance detection models can solve this issue, as
our initial results showed good performance in determining the stance concerning
nuclear energy. We plan to expand our dataset, label a larger number of tweets,
and fine-tune state-of-the-art NLP models to gain further insights into the im-
pact of environmental topics on Twitter. Our case study on Flickr data showed how
NLP can be used to automatically uncover tourism hotspots. Furthermore, by an-
alyzing the country of origin, we were able to uncover spatiotemporal differences
between tourism hotspots.
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6
Conclusion

“If you are not willing to be a fool, you can’t become a master”

– Jordan Peterson

This final chapter gives an overview of the main findings of the performed
research and topics discussed. The dissertation finishes with some ideas and di-
rections for future work.

This dissertation presented our research on using AI-basedmethods to enrich
digital collections. We’ve shown how these methods can be used in practice, on a
variety of collections and data.

First, we’ve shown how (semi)-automated methods can assist the digiti-
zation and labeling workflows. Instead of manually preprocessing or annotat-
ing digitized objects, data-drivenmethods can automatically perform these tasks.
The manual labor is then shifted towards validation instead of annotation, which
is less complex and time-intensive. Semi-automatic labeling workflows provide
the most benefit for complex annotations like pixel masks. We’ve shown how to
effectively implement such pipelines, for digitized herbarium specimens, raster
maps, and face recognition.

For digitized photographs, accurate open-source segmentation and retrieval
models are already available. These can be used without any fine-tuning and
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enrich the photographs by detecting a diverse set of common objects. State-of-
the-art multimodal transformers can be used to further enrich the collection
with auto-generated captions and enable querying of the collection via natu-
ral language. Furthermore, such similarity-based approaches can be used to find
rare objects or geolocate archive photographs.

Using open-source facial recognition models, we have presented a generic
pipeline to recognize persons of interest in archive photo collections. After semi-
automatically constructing a reference dataset of 6075 unique persons of interest,
our pipeline successfully recognized over 62,000 detected faces with a precision
of 0.936. Frequently occurring persons, thatwere not initially part of the reference
set, were later identified via clustering of the face embeddings. To validate these
person predictions, an interactive labeling tool was developed. The tool collected
over 180,000 labels and greatly sped up the validation process. We conclude that
facial recognition models can be applied accurately and at scale on archive
photo collections.

Our research on raster maps has resulted in an automated geolocation
pipeline, based on text recognition and geocoding of the visible toponyms.
The pipeline is generic and accurate, as long as the map contains enough to-
ponyms. Using associated vector data, we were able to segment the roads on
topographic maps with an IoU of 0.804. We then combined both methods on a
dataset of walking and cycling maps, to predict the route GPS coordinates. How-
ever, additional research is needed to generalize thesemethods to historical (hand-
written) maps.

Regarding herbaria, our research has optimized the digitization process and
provided a way to automatically validate specimen names using the text labels.
Furthermore, we created a novel herbarium instance segmentation dataset, con-
taining pixel masks of the specimens and other objects on the sheets. Using
this dataset, we have evaluated several state-of-the-art segmentation ap-
proaches andhave shown that these canaccurately segment an entire herbaria
sheet with an mAP score of 78.9. By reformulating the problem as a panoptic
segmentation task, we can combine the strengths of binary plant segmentation
via Unet++ and object segmentation via YOLOv8. While our results are promising,
additional research is necessary to scale it to the millions of publicly available
herbarium sheets.

We’ve also demonstrated how to collect, process, and analyze large social
media datasets. We’ve collected and geolocated over 15 million tweets, related to
natural disasters and environmental topics. We’ve shown that simple sentiment
analysis models do not suffice and created a small stance detection dataset. By
retraining a BERTweet model on this dataset, we achieved an Favg score of
0.67. We expect that this score can be improved significantly by labeling addi-
tional data. Furthermore, we’ve shown how to automatically determine tourism
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hotspots and analyze these geospatially through a case study on a Flickr dataset.
There is generally no single solution to processing digital archives because

the models and techniques will vary greatly depending on the context and re-
quirements. However, we can still formulate a general pipeline that can be used
to efficiently process large collections:

1. Metadata generation: Begin by employing pretrained AI models to gen-
erate (noisy) metadata. This includes image and person similarity, text
recognition, object detection, and other relevant metadata.

2. Annotation: Use a semi-automated approach to quickly validate the noisy
predictions or use domain adaptation techniques to reuse existing labeled
datasets. Use these methods to create a ground truth dataset.

3. Linking: Enhance and validate the generated metadata by linking it with
other data sources (e.g. pairing text recognition with geocoders, linking
with Wikidata, etc.).

4. Optimization: Improve prediction accuracy by extending, fine-tuning, or
combining multiple AI models tailored to the specific needs of the collec-
tion.

5. Evaluation: Assess the accuracy of your methods using the annotated
dataset. Select the bestmethod ormodel and apply it to the full collection.

6. Visualization: Aggregate and visualize the results for large-scale analy-
ses. Implement interactive demonstrators for intuitive visualization and
exploration of the collection.

7. Dissemination: Publish the models, code, and results to enable more ef-
ficient future research.

In summary, we have demonstrated how AI-based and data-driven tech-
niques can assist in creating, maintaining, and analyzing digital archives. Im-
plementing such techniques during digitization, processing, and visualization dras-
tically reduces the amount ofmanual labor required and provides additionalmeta-
data, increasing the accessibility of the collection. However, there are still some
challenges in processing historical collections without labeled data.



140 Chapter 6

6.1 Future Work

One of the main challenges remaining is increasing the efficiency of data label-
ing. New foundationmodels like Segment Anything [1] can be used to quickly label
complex objects, from points or bounding boxes. With some automated prepro-
cessing, initial bounding box estimates could be generated, and then further fine-
tuned via Segment Anything. However, this model was trained on photographs,
therefore to further optimize the labeling process, it needs to be fine-tuned for
new types of images, like herbaria or raster maps. Besides labeling additional
data, an aggregation and standardization of available datasets would also be use-
ful. For both herbaria and raster maps, some labeled datasets exist, but these are
not uniform. The datasets will need to be merged and the missing objects need
to be annotated in order to combine them.

Additionally, more complex augmentation methods can be used to further
increase the variety of available data. These can range from copy-paste instance
augmentation methods [2] to generative or domain adaptation methods. Specif-
ically for raster maps, domain adaptation and synthetic data generation tech-
niques could greatly increase the models’ accuracy. You can use domain adap-
tation to generate weakly supervised labels, to train segmentation models [3].
For synthetic data generation, you could use open-source vector data from Open-
StreetMap and use it to render map tiles in different styles. Then, to process a
dataset of historical map sheets, like the Ferraris map1, style transfer methods
can be used. These will change the style of the OpenStreetMap tiles to a histor-
ical one. Previous work already used such an approach to generate additional
synthetic text labels on raster maps, which improved OCR accuracy [4]. Going
one step further, you could use a multitude of historical map collections as tar-
get styles and then retrain Segment Anything, to develop a generic historical map
segmentation model.

For textual data, additional use of large languagemodels like GPT-4 [5] could
prove useful to automatically label additional stance detection datasets in a zero-
shot way. These labels could then be quickly validated manually and used to re-
train a supervised model. It is probably not cost-efficient to use GPT-4 or other
LLMs to make predictions on millions of tweets. However, for smaller datasets,
suchmodels will likely achieve good results, with no fine-tuning. Creating or fine-
tuning such models for specific domains or contexts would also be an interesting
direction for future research. This way, these models would have a better under-
standing of the historical or domain-specific contexts, writing style, and nuances.
You could then make them multimodal, combining two or more domains. For in-

1https://www.vlaanderen.be/datavindplaats/catalogus/ferraris-kaart-kabinetskaart-der-oos
tenrijkse-nederlanden-en-het-prinsbisdom-luik-1771-1778

https://www.vlaanderen.be/datavindplaats/catalogus/ferraris-kaart-kabinetskaart-der-oostenrijkse-nederlanden-en-het-prinsbisdom-luik-1771-1778
https://www.vlaanderen.be/datavindplaats/catalogus/ferraris-kaart-kabinetskaart-der-oostenrijkse-nederlanden-en-het-prinsbisdom-luik-1771-1778
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stance, you could train themodel on the text and images of historical newspapers.
This allows querying of the texts and images via natural language, but also the
answering of domain-specific research questions.

Developing more performant and smaller models will always be useful for
digital archives, as it will reduce the cost of implementing such models. This is
currently still a major bottleneck and the main reason why interactive, AI-based
querying and filtering functionalities via natural language are not already inte-
grated everywhere.
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