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Abstract 5 

Despite the recognized importance of flowing waters in global greenhouse gas (GHG) budgets, riverine 6 

GHG models remain oversimplified, consequently restraining the development of effective prediction 7 

for riverine GHG emissions feedbacks. Here we elucidate the state of the art of riverine GHG models 8 

by investigating 148 models from 122 papers published from 2010 to 2021. Our findings indicate that 9 

riverine GHG models have been mostly data-driven models (83%), while mechanistic and hybrid 10 

models were uncommonly applied (12% and 5%, respectively). Overall, riverine GHG models were 11 

mainly used to explain relationships between GHG emissions and biochemical factors, while the role 12 

of hydrological, geomorphic, land use and cover factors remains missing. The development of complex 13 

and advanced models has been limited by data scarcity issues; hence, efforts should focus on developing 14 

affordable automatic monitoring methods to improve data quality and quantity. For future research, we 15 

request for basin-scale studies explaining river and land-surface interactions for which hybrid models 16 

are recommended given their flexibility. Such a holistic understanding of GHG dynamics would 17 

facilitate scaling-up efforts, thereby reducing uncertainties in global GHG estimates. Lastly, we propose 18 

an application framework for model selection based on three main criteria, including model purpose, 19 

model scale and the spatiotemporal characteristics of GHG data, by which optimal models can be 20 

applied in various study conditions. 21 
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List of acronyms  23 

A: Watershed area 24 

Chl-a: Chlorophyll a 25 

CCO2: CO2 concentration 26 

CCO2gw: CO2 molarity in the groundwater 27 

CCO2atm: CO2 molarity in the atmosphere 28 

CNO3: Nitrate concentration 29 

CN2O_rip: Nitrite concentration in the riparian zone 30 

CN2O_soil: Nitrite concentration in the soil area 31 

CI: Confidence interval 32 

d50: Median grain size of streambed sediments 33 

D or h or z: River depth 34 

Dif: Diffusion coefficient 35 

Disp: Dispersion coefficient 36 

DO: Dissolved oxygen 37 

DOC: Dissolved organic carbon 38 

DIC: Dissolved inorganic carbon 39 

DIN: Dissolved inorganic nitrogen 40 

ER: Emission rate 41 

EcoR: Ecosystem respiration 42 

F*N2O: N2O emission flux  43 

FWC: Molar flux of CO2 from water column 44 

Fhe: Molar flux of CO2 from hyporheic zone respiration 45 

g: Gravity force 46 

GPP: Gross primary production 47 

K600: Gas exchange rate normalized to a Schmidt number of 600 48 

KCO2: Reaeration coefficient of CO2  49 

Kh: Stream hydraulic conductivity 50 

KNIT: Rate constant for nitrification 51 

Lst: Stream length  52 

LDIN: DIN load 53 

MF: Methane formation 54 

NPP: Net primary production 55 

NO2: Nitrite 56 

NO3: Nitrate 57 

NH4: Ammonium  58 

OM: Organic matter 59 



PPFD: Photosynthetic photon flux density 60 

Pop_Density: Population density 61 

PN2O_denrip: Rate of production of N2O 62 

pCO2: Particulate CO2 63 

Q: Discharge 64 

Rautotrophic: River autotrophic respiration 65 

Rheterotrophic: River heterotrophic respiration 66 

Rhyporheic: River hyporheic respiration 67 

So: Average slope gradient 68 

SIM: Suspended inorganic matter 69 

SOM: Suspended organic matter 70 

SSS: Sea surface salinity 71 

SST: Sea surface temperature 72 

tm: Time of turbulent vertical mixing  73 

Tair: Air temperature 74 

Tw: Water temperature 75 

TCG: Total carbon gas concentration (CO2 + CH4) 76 

TN: Total nitrogen 77 

TP: Total phosphorous  78 

V or u: River velocity 79 

Vfden: Uptake rate of denitrification 80 

W or B: River width  81 

YDIN: DIN yield 82 

∅1: Arrhenius coefficient 83 

αox: Water column methane oxidation rate 84 

τ50: Median hyporheic residence time 85 

τD: Time of denitrification 86 



1. Introduction 87 

Rivers have recently become recognized as an important component of the carbon (C) cycle and 88 

represent a potential yet-to-be-quantified feedback of climate change. Global estimates of riverine CO2 89 

emissions range from 0.65 (95% CI: 0.48–0.84) to 2.0 ± 0.2 Pg CO2 yr-1 (Lauerwald et al., 2015; Liu et 90 

al., 2022), equivalent to 33.7% of total anthropogenic emissions from industrial activities and land use 91 

change (Drake et al., 2018) and higher than the annual terrestrial carbon sink of 3.6 Pg C yr-1 (Keenan 92 

and Williams, 2018). Riverine CH4 emissions range from 1.5 to 26.8 (5th–95th percentiles: 0.01–160) 93 

Tg CH4 yr-1
 (Bastviken et al., 2011; Stanley et al., 2016) equivalent to 15–40% of the emissions from 94 

wetlands and lakes combined (Stanley et al., 2016). And riverine N2O emissions range from 72.8 to 95 

291.3 ± 58.6 Gg N2O yr-1 (Marzadri et al., 2021; Yao et al., 2020),  about 1–10% of the global 96 

anthropogenic N2O emissions (Beaulieu et al., 2011; Tian et al., 2020). Significant discrepancies within 97 

GHG estimates are reported because of the use of different estimation methods or models, which use 98 

datasets with varying characteristics, different data processing techniques, and include diverse 99 

assumptions such as the inclusion or exclusion of headwaters in global assessments (Beaulieu et al., 100 

2011; Lauerwald et al., 2015; Marzadri et al., 2021; Rosentreter et al., 2021; Yao et al., 2020). As such, 101 

the real potential of riverine systems to contribute to GHG emissions is yet unquantified. 102 

By excluding the complexity of riverine ecosystems, current estimation models of riverine emissions 103 

are oversimplified with questionable assumptions, hence have been reported to be error-prone. For 104 

example, emission factors (EF) assume that emissions are proportional to nitrogen (N) inputs (IPCC, 105 

2019, 2006), while upscaling techniques assume that regional fluxes are proportional to point 106 

measurements, surface area, and local gas transfer velocities (Bastviken et al., 2011; Cole et al., 2007; 107 

Raymond et al., 2013). These oversimplified methods disregard multiple essential drivers, such as land 108 

use and cover (LULC) or lateral fluxes, consequently causing errors in estimation of as high as 42% 109 

(Yang et al., 2022). To improve the estimation of riverine GHG emission, several modeling approaches 110 

have been proposed lately, offering diverse methodologies and knowledge frameworks. However, no 111 

review of the models for riverine GHG emissions can be found to analyze their current status, identify 112 

challenges and limitations, and guide future developments in this field.  113 

In contrast to recent reviews that provide an overview of methods to achieve global-scale estimates 114 

(Lauerwald et al., 2023) or focus on GHG emissions modeling in lentic waters (Ion and Ene, 2021; 115 

Levasseur et al., 2021), this review centers on critically evaluating the state of the art of riverine GHG 116 

models across diverse case studies with varied spatiotemporal scales. As such, we conducted a 117 

comprehensive analysis of 148 models obtained from 122 publications published over the past 11 years 118 

(2010–2021). The goal of this review is threefold: 1) to provide new insights into the potential 119 

challenges and issues associated with existing models; 2) to define their role in quantifying regional 120 

and global GHG budget; and 3) to guide future development of modeling techniques. This review 121 



focuses on diverse elements of model selection and development, which are progressively scrutinized 122 

in three sections. First, we define the three model types and elucidate their properties, advantages, and 123 

disadvantages. Second, we characterize these models according to model purposes, model scales, data 124 

attributes, modeled factors, and uncertainty analysis. These findings are mapped into a decision tree to 125 

facilitate model selection for future studies, considering specific requirements and objectives of 126 

researchers. Finally, we critically discuss challenges associated with riverine GHG models and highlight 127 

key research needs and future directions to enhance the accuracy and reliability of these models.  128 

2. Methodology 129 

To investigate recent studies on riverine GHG emission modeling, we launched a detailed review of the 130 

studies published in peer-reviewed journals on the Scopus platform for the timeframe 2010–2021 by 131 

applying the query TITLE (river* AND  (nitrous*  OR  "carbon dioxide*"  OR  "greenhouse gas*"  OR  132 

CO2  OR  methan*  OR  CH4  OR  N2O))  AND PUBYEAR > 2009 AND PUBYEAR < 2022 AND 133 

TITLE-ABS-KEY (model*  OR  method*  OR  framework*  OR  estim*  OR  predict*). In total, 707 134 

publications were collected. We scrutinized these studies by eliminating publications on unrelated 135 

topics, ultimately obtaining 122 relevant publications, including 148 models almost equally distributed 136 

among the main GHGs: CO2 (40%), CH4 (29%) and N2O (31%) (Figure S1 in supplementary material). 137 

The studies collected were used to investigate factors of interest, including model types, model 138 

purposes, model scales, riverine GHG data attributes, modeled factors, and uncertainty analysis. Based 139 

on modeling paradigm, we identified three model types: data-driven, mechanistic, and hybrid models 140 

(Figure S2), which, according to their purpose, were subcategorized into explicative and predictive 141 

models. Given their scale of application, these models were subclassified into site-, basin-, or global-142 

scale models. Similarly, we investigated data attributes that are used for model development by 143 

identifying data collection methods, sampling frequency, and sampling duration. Additionally, we 144 

determined driving factors that are commonly used as inputs in riverine GHG models, namely 145 

biochemical, hydrological, geomorphic factors, and LULC types. This subclassification of factors is 146 

described in Table S3. Finally, we evaluated the use of uncertainty analysis and model validation 147 

techniques in riverine GHG models. Note that these characteristics were selected to represent main steps 148 

in model selection and development, which can enable us to define the state of the art of riverine GHG 149 

models. It is worth mentioning that we excluded the boundary layer method to estimate fluxes via gas 150 

exchange as this method was out of scope of our review and was thoroughly investigated in Hall Jr. and 151 

Ulseth (2020).   152 

3. Model types 153 

Illustrating the distribution of model types from 2010 to 2021, Figure 1A reveals that the majority of 154 

riverine GHG models have been data-driven models (83%), while mechanistic and hybrid models have 155 



been constructed less frequently (12% and 5%, respectively). Prior to 2015, all riverine GHG models 156 

were data-driven, with less than 10 models published per year. However, since 2015, there has been a 157 

considerable increase in the number of models, reaching a peak of 34 models in 2021, with a breakdown 158 

of 10 models for CO2, 15 for N2O, and 9 for CH4. This increase is accompanied by the growing 159 

application of mechanistic and hybrid models, which implies a better understanding of the mechanism 160 

and production pathways of riverine GHG dynamics. GHG modeling studies were mainly developed in 161 

highly industrialized countries such as China and United States that concentrate ~60% of riverine 162 

modeling research (Figure 1B). While tropical areas are missing, especially in Africa and South and 163 

Central America, which might be significant given the high concentrations of GHGs reported in these 164 

waters (Aufdenkampe et al., 2011).To further shed light on the current state of riverine GHG models, a 165 

detailed analysis of the specific characteristics of these models is provided in the following section. 166 

   167 



168 

 169 

Figure 1. Chronological evolution (A) and spatial distribution (B) in the development of riverine 170 
GHG models, including the number of modeling studies in the top-five countries (CHN: China, USA: 171 

United States of America, BRA: Brazil, DEU: Germany, CAN: Canada). 172 

3.1. Data-driven models 173 

Data-driven models rely on observed data to define relationships between GHG fluxes or concentrations 174 

with driving factors. In our review, we found that these relationships are mainly defined statistically by 175 

applying methods such as principal component analysis (PCA) and regression analysis, or empirically 176 

with EFs and upscaling techniques, while other data-driven methods such as non-linear models have 177 

been scarcely applied (Figure S2). The differences between these main approaches is in their model 178 

structure and purpose. Statistical models can adapt model structure to collected data in order to obtain 179 



optimal relationships and model performance, while empirical models have their structure fixed. Due 180 

to this flexibility, statistical models can be used to explore raw data and identify relationships between 181 

model inputs and output (Begum et al., 2021; Xiao et al., 2021). On the other hand, empirical models 182 

assume that GHG emissions are proportional to point measurements in the system. As such, values of 183 

EFs are used to transform N inputs into N2O emissions and GHG point measurements are converted to 184 

regional and global emissions by multiplying them with surface area and gas transfer velocities 185 

(Aufdenkampe et al., 2011; Hu et al., 2016). Note that, given the diverse conditions of river systems, 186 

different equations of EFs have been obtained to estimate riverine N2O emissions with diverse 187 

characteristics, such as hydrogeological conditions (Cooper et al., 2017) or climate (Hu et al., 2016).  188 

Data-driven models have been applied for modeling site-scale riverine emissions, taking mainly into 189 

account biochemical processes (Table 1 and Figure S3). For instance, CO2 data-driven models have 190 

focused on chemical equilibria of aquatic inorganic carbon – as such, pH, OC, DO, and Chl-a variables 191 

are included – while CH4 and N2O models have accounted for microbial processes, thereby using 192 

different forms of nutrients. Data-driven models are preferred due to their flexibility. Even with limited 193 

datasets, these models can provide initial insights and practical predictions, which can be valuable for 194 

making informed decisions or guiding further data collection efforts (Gu et al., 2021). However, the 195 

performance of data-driven models heavily relies on quality, quantity, and representativity of data. 196 

Therefore, the captured relationships are strongly dependent on the characteristics of collected data. 197 

Specifically, in riverine research, sampling campaigns have been conducted often under different 198 

climatic conditions, locations, seasons, and sampling periods, consequently, leading to datasets and 199 

models containing distinct characteristics (Xia et al., 2014). Moreover, the experimental design, such 200 

as sampling methods and measurement techniques, introduce further variation in data (Bastviken et al., 201 

2022). Due to this strong dependence on datasets, data-driven models are limited to provide general 202 

comprehensive results, and their ability to make predictions beyond the observed data is restricted.  203 

Table 1. Summary of the data-driven models riverine GHG models encountered in this review. ns: not 204 
specified.  205 

System Equation R2 Reference 

Regression analyses 

CO2 

Amazon  
Estuary, Brazil 

pCO2 = 0.05*SSS2 + 34.81*SST2 + 19.71*SSS*SST + 
48792.07 – 560.47*SSS – 2694.56*SST 

0.74 Valerio et al. (2021) 

River Kelvin, 
UK 

FCO2 = 1.01*Q + 0.17 

pCO2 = 0.09*Q – 0.10 

0.64 

0.96 

Gu et al. (2021) 

Upper Yangtze 
River, China 

For the Taohua river 

pCO2 = –3637*pH + 280*DOC + 30587 

 

0.84 

Tang et al. (2021) 

For the Nan river 

pCO2 = –1341*pH + 12640 

 

0.40 



For the Puli river 

pCO2 = –2535*pH + 392*Chl-a + 21896 

 

0.78 

For winter season  

pCO2 = –2712*pH + 308*DOC + 22810  

 

0.87 

For summer season  

pCO2 = –3022*pH + 214*Chl-a + 26165  

 

0.83 

For all seasons  

pCO2 = –3092*pH + 130Chl-a + 46*CFU + 26704 

 

0.85 

Tanswei River, 
Northern 
Taiwan 

pCO2 = 1.88*turbidity + 10160.507*SOM + 71.930*SIM 
– 46.157*NO3 + 3705.831 

ns      Yang et al. (2015) 

Global Log(pCO2) = –3.192 + 9.372*Pop_density – 0.279*log(So) 
+ 1.343*Tair + 0.279*NPP 

0.47 Lauerwald et al. (2015) 

Boreal River Log(pCO2) = –2.76 + 0.28*Log(DOC) – 0.22*Log(V) 0.38 Campeau and Del Giorgio 
(2014) 

CH4 

Upper Yangtze 
River, China 

When urban land proportion < 2% 

pCH4 = 8493 – 973*pH 

0.27 Tang et al. (2021) 

When 2% ≤ Urban land proportion < 20% 

pCH4 = 1430 + 929*TN – 27*DO – 388*Chl-a + 3620*TP 

0.75 

When 20% ≤ Urban land proportion ≤ 46% 

pCH4 = 7191 + 3498*TN – 8598*NO3 

0.96 

For all land use types 

pCH4 = 1679 + 1411*TN – 10153*NH4 + 9432*TP – 
708*NO3 

0.59 

River Kelvin, 
UK 

FCH4 = 2.53*Q + 3.70 

pCH4 = 0.17*Q – 0.17 

0.46 

0.91 

Gu et al. (2021) 

Flooding event 
Indigirka River, 
Siberia 

pCH4 = –1.90*(reflectance) + 1.02 0.94 Morozumi et al. (2019) 

Tanswei River, 
Northern 
Taiwan 

pCH4 = 84.463*SIM + 864.274*NH4 – 456.171 ns Yang et al. (2015) 

Boreal River in 
Québec, 
Canada 

Log(CH4)/TCG = –2.90 + 0.06*Tw 0.39 Campeau and Del Giorgio 
(2014) 

N2O 

Saitama, Japan pN2O = 0.34*NO2-0.30*pH + 0.22*NH4 + 0.26*NO3 + 
0.23*DOC 

0.64 Mishima et al. (2021) 

Xiaoyue River, 
China 

FN2O = 4810.3e-0.26*DO 0.70 Wang et al. (2020) 

Mara River, 
Kenya 

When forest land use proportion > 70%   

pN2O = 0.23 + 0.10*pCO2 + 1.71*NH4 – 0.03*DOC 

 

0.59 

Mwanake et al. (2019) 



When agricultural land use proportion > 70% 

pN2O = 1.49 + 0.27*pCO2 – 0.18*DO – 0.05*DOC 

 

0.77 

When livestock land use proportion > 70% 

pN2O = 1.52 – 0.42*pCO2 – 0.22*DO 

 

0.45 

Changjiang 
River estuary, 
China 

pN2O = f(NO3)*Q  

Log(N2O) = –0.39 + 0.69*Log(NO3) 

0.52 Yan et al. (2012) 

Empirical models 

CO2 

Global FCO2 = ∑A*k*pCO2 

FCO2 = ∑A*FCO2 

Aufdenkampe et al. (2011) 

CH4 

Global FCO2 = ∑A*FCH4 Stanley et al. (2016) 

N2O 

Global  For freshwater systems 

EF5r = 0.0026 (kg N2O per kg of N inputs to rivers) 

EF5r = N2O/NO3 

IPCC (2019) 

Rivers Avon, 
Eden, and 
Wensum, UK 

For unconfined chalk hydrogeological conditions  

EF5r = 0.00036; EF5r = N2O/NO3 

Cooper et al. (2017) 

For semi-confined chalk hydrogeological conditions 

EF5r = 0.00020; EF5r = N2O/NO3 

For confined chalk hydrogeological conditions 

EF5r = 0.00016; EF5r = N2O/NO3 

Global General equations 

ERN2O = 0.0034*YDIN
-0.169 LDIN = 0.0034*YDIN

0.831*A 

ERN2O = 0.0138*YDIN
-0.417 LDIN = 0.0138*YDIN

0.583*A 

Hu et al. (2016) 

For subtropical and tropical rivers 

ERN2O = 0.0044*YDIN
-0.179 LDIN = 0.0044*YDIN

0.821*A 

ERN2O = 0.0112*YDIN
-0.355 LDIN = 0.0112*YDIN

0.645*A 

For temperate rivers 

ERN2O = 0.0041*YDIN
-0.230 LDIN = 0.0041*YDIN

0.770*A 

ERN2O = 0.0198*YDIN
-0.521 LDIN = 0.0198*YDIN

0.479*A 

 206 

3.2. Mechanistic models 207 

Based on model structure and complexity, three types of mechanistic models are observed: conceptual, 208 

mass-balance biochemical, and mass-balance hydraulic models (Table 2). Conceptual models apply 209 

simplified forms of physical or chemical principles to define relationships between GHG fluxes or 210 

concentrations with driving factors. For instance, Marzadri et al. (2017) estimated N2O emissions at a 211 



basin scale, based on two denitrification Damköhler numbers, DaDHZ and DaDS. The first model accounts 212 

for emissions from streams where hyporheic and benthic processes play an important role, while the 213 

second simulates emissions from rivers where processes in the water column are more important. Mass-214 

balance biochemical models are usually one-dimensional models that estimate the time-variant 215 

transformation of C and N sources into riverine GHGs. For example, Newcomer et al. (2018) applied a 216 

mass-balance model to study nutrient transformation in the hyporheic zone, including storage and 217 

release of C and N in biomass and biogenic CO2 and N2 to the atmosphere, driven by fluctuations in 218 

groundwater levels, antecedent hydrological conditions, riverbed sediment characteristics, and DOC 219 

delivery.. Mass-balance hydraulic models are two-dimensional models that simulate the spatial- and 220 

time-variant concentration of C and N components along the river network, including transformation 221 

processes in the water column and the interaction of these with lateral sources. Mass-balance hydraulic 222 

models include two major modules: flow and reactive transport. The flow module simulates the 223 

propagation of flow in a channel, while the reactive transport module simulates the quantity and fate of 224 

GHG components using transport coefficients, such as diffusion and dispersion (Akella and 225 

Bhallamudi, 2019). Mass-balance hydraulic models are particularly useful to evaluate interactions of C 226 

and N components carried by the river with groundwater inputs and point effluents at different locations, 227 

thereby providing a detailed modeling framework for predicting hotspots of GHG emission and 228 

production (Saccardi and Winnick, 2021).  229 

Mechanistic models use fundamental knowledge to describe via mathematical expressions and physical 230 

principles, temporal and/or spatial changes in C, N, and resulting GHG components. Mechanistic 231 

models are more comprehensive than data-driven models, being suitable to provide new insights into 232 

system processes and mechanisms and extrapolate beyond observed data (Pfeiffer-Herbert et al., 2019). 233 

However, the extensive system representativity of mechanistic models can lead to complex calculations 234 

and overparameterization, which increases substantially required data (Ho et al., 2019). As a result, 235 

river modelers often appeal to certain assumptions on model parameters and boundary conditions, such 236 

as denitrification conversion ratio or zero initial GHG concentrations (Saccardi and Winnick, 2021; 237 

Stets et al., 2017; Vanderborght et al., 2002). These assumptions often distort the representation of the 238 

real system, introducing biases into modeling results. 239 

Table 2. Summary of the mechanistic riverine GHG models encountered in this review. 240 

System Equation Reference 

Conceptual models 

N2O 

Upper 
Mississippi 
River basin, 
USA 

 ERN2O,i =  V*DINi ∗ F*N2O*Wi ∗ LSt,i

NC

i=1

NC

i=1

 

When river width ≤ 10 m 

F*N2OHZ = 1.55*10-7*(DaDHZ)0.43 

Marzadri et 
al. (2020, 
2017) 



When 10 m < river width ≤ 175 m 

F*N2OBZ = 1.91*10-8*(DaDHZ)0.58 

When river width W > 175 m 

F*N2OWC = 4.56*10-6*(DaDS)0.72 

DaDHZ = τ50/τD = 17.810*g*D*Vfden/(Kh*V2) 

DaDS = tm/τD = 14.925*Vfden/(g*D*So)1/2 

CH4 

Saar River, 
Germany MFZ1T= ቆa1*e

-
z
z1  + a2*e

-
z

z2 + a3 ൬
1

1+e-b3z3+c1
–  1൰ቇ a4Tb4 

Wilkinson 
et al. (2015) 

Mass-balance biochemical models 

CO2 

Connecticut 
River, USA 

ΔDOi,d = ቆ
GPPd

𝐷i,d
×

𝑃𝑃𝐹𝐷i,d

𝑃𝑃𝐹𝐷dതതതതതതതതത
ቇ  + ቈቆ

EcoRd

𝐷i,d
ቇ  + fi,d(K600d)(DOsati,d - DOi,d)  × Δt 

DICt = DICt-1–  KCO2*൫CO2,t-1 –  CO2,sat൯ –  GPPDIC,t-1 + EcoRDIC,t-1 

Aho et al. 
(2021) 

Russian 
River, USA 

dCO2

dt
 = GPP – Rautotrophic –  Rheterotrophic + Rhyporheic ± Dif 

Newcomer 
et al. (2018) 

N2O 

Seine River, 
France 

PN2O_denrip = 
N2O

N2O+N2
*∆CNO3_denrip*Q 

Q × CN2O_rip = Q×CN2O_soil + PN2O_denrip + kvs × Arip× (CN2O_soil –  Ceq) – kvs × 

Arip*(CN2O_rip – Ceq) 

Billen et al. 
(2020) 

CH4 

Cambridge 
Bay estuary, 
Canada 

CCH4t+1= (C
CH4t

Vbox + Friv,t + Fice,t + Fgasex,t + Fin,t + Fout,t + Fox,t)/Vbox 

Friv,t = Vriv,t*CCH4_riv,n,t  

Fice,t = Vice,t*CCH4_ice,n,t 

Fin,t = (Vriv,t + Vice,t)*CCH4,n-1,t-1  

Fout,t = –(Vriv,t + Vice,t)*CCH4,n,t 

Fgasex,t = KCH4,t(CCH4,eq,t
 + CCH4,n,t)*Vbox*dt 

Fox,t = – Kox,t*C
CH4,t

*Vbox*dt 

Manning et 
al. (2020) 

Mass-balance hydraulic models 

CO2 

East River, 
USA 

dCCO2

dt
 = –V

dCCO2

dx
 + 

1

A

dQ

dx
൫CCO2gw – CCO2൯ – kCO2

(CCO2 – CCO2atm) + Fwc + 

Fhe 

Saccardi 
and 
Winnick, 
(2021) 

N2O 

Tyne River, 
UK 

∂D

∂t
 + D

∂V

∂x
 + V

∂D

∂x
 + 

D*V

𝑊

dW

dx
 = 

QL

W*∆x
    Akella and 

Bhallamudi 
(2019) 



∂NH4

∂t
 + V

∂NH4

∂t
 = 

1

A

∂

∂x
൬A*Dispx

∂NH4

∂x
൰  + ൬

QL

A
൰ NH4Lat + 

RAmmon

h
 – 

KNITNH4∅1
T-20–  KAlg-upNH4 

∂NO3

∂t
 + V

∂NO3

∂t
 = 

1

A

∂

∂x
൬A*Dispx

∂NO3

∂x
൰  + ൬

QL

A
൰ NO3Lat – KNITNO3∅1

T-20 

∂N2O

∂t
 + V

∂N2O

∂t
 = 

1

A

∂

∂x
൬A*Dispx

∂N2O

∂x
൰  + ൬

QL

A
൰ N2OLat + 

0.25

100
* 

KNIT*N2O*∅1
T-20 –  α(N2O – N2Oatm) 

CH4 

Columbia 
River, USA 

Qj,k = Vj,k *∆y*∆z 

A
∂Cେୌସ

∂t
 = 

∂

∂x
QRCେୌସ + A*DifH

∂Cେୌସ

∂x
൨ + A* 

KCH4

H
൫Cେୌସsat –  Cେୌସ൯ –  αOXCେୌସ + 

CH4Lat൨ 

Pfeiffer-
Herbert et 
al. (2016) 

3.3. Hybrid models 241 

Hybrid models combine data-driven models and mechanistic models to leverage their strengths and 242 

potentially provide more comprehensive and accurate assessments. This model type is able to integrate 243 

diverse knowledge realms, data sources, and formats into its calculations, thereby providing a holistic 244 

analysis of the system (Jia et al., 2020). A holistic approach is highly required in riverine GHG research, 245 

as land-surface and riverine processes need to be integrated to simulate the entire cycle of GHG 246 

dynamics and accurately estimate the fate and transport of C, N, and GHG components (Borges et al., 247 

2015). 248 

Table 3 shows hybrid models collected in this review. What is noticeable is the flexibility of this model 249 

type, as a data-driven model can be used to either complement the outputs of a mechanistic model or 250 

provide input variables. This characteristic is particularly useful in riverine GHG research as well-251 

established mechanistic models can be used to simulate processes such as C and N biogeochemical 252 

transformations in the river (Ho et al., 2021) or hydrology driving the transport of C and N components 253 

from land-surface to riverine systems (Gao et al., 2020). In the meantime, a data-driven model can be 254 

used to predict riverine GHG emissions from the outputs of a mechanistic model, thereby providing a 255 

holistic approach of the cycling of water, C, N, and GHGs. Additionally, data-driven models can also 256 

provide inputs for a mechanistic GHG model, thereby creating tools to estimate global N2O emissions 257 

(Marzadri et al., 2021). 258 

Despite these advantages, hybrid models face challenges that hinder their application. These challenges 259 

include complexity, specialized knowledge requirements, discrepancies in temporal and spatial scales 260 

of models, and concerns regarding the interpretability of their outcomes (Kratzert et al., 2019). 261 

Integrating diverse data sources and model types demands for substantial computational resources and 262 

expertise, posing time and cost barriers (Willard et al., 2020). Moreover, the accuracy and 263 

interpretability of hybrid models remains disputed, as these models usually rely on physical constraints 264 

of mechanistic components to provide transparency to their calculations, which might be unrealistic or 265 



insufficient to explain model output (Chen et al., 2022). Furthermore, the lack of interpretative tools to 266 

validate the accuracy of hybrid models contributes to their characterization as black-box models 267 

(Schneider et al., 2022). 268 

Table 3. Description of the hybrid riverine GHG models encountered in this review. 269 

System Model 1 Model 2 Reference 

CO2, CH4, and N2O 

Cuenca River 
basin, Ecuador 

Mechanistic model: River Water 
Quality Model No.1 (RWQM1) and 
Activated Sludge Model No.1 
(ASM1) 

Data-driven model: fuzzy models to 
evaluate risk of GHG accumulation 
in the river 

Ho et al. 
(2021) 

N2O 

Naoli River 
basin, China 

Mechanistic SWAT hydrological 
model 

Data-driven N2O regression model Gao et al. 
(2020) 

Global Data-driven models to calculate 
hydrological and morphological 
factors: W, D, V, S, d50, Kh, Lst, 
Vfden, τ50, τD, tm 

Mechanistic N2O emission model Marzadri et 
al. (2021) 

Manistee and 
Tippecanoe 
River basins, 
USA 

Data-driven models to calculate 
hydrological and morphological 
factors: W, D, V, S, d50, Kh, Lst, 
Vfden, τ50, τD, tm 

Mechanistic N2O emission model Tonina et 
al. (2021) 

4. Current status of riverine GHG models  270 

4.1. Model purposes 271 

Regarding model purposes, riverine GHG models can be classified into explicative or predictive (Figure 272 

2). Explicative models aim to explain the relationships and underlying mechanisms between driving 273 

factors of GHGs. Examples include statistical causal analyses, such as multiple linear regressions (Hao 274 

et al., 2021) and PCA analyses (Shen et al., 2020), and mechanistic models that validate the hypothesis 275 

of GHG dynamics (Pfeiffer-Herbert et al., 2016). Predictive models, on the other hand, forecast the 276 

value of GHG concentrations or fluxes based on the status of driving factors. Their focus is to develop 277 

models that can extrapolate precisely to unseen data. Examples include regression models used to 278 

forecast global CO2 emissions using changes in basin population density, slope of the river, air 279 

temperature, and net primary production (Lauerwald et al., 2015), or mechanistic models used to 280 

simulate scenarios to determine the optimal allocation of wastewater effluents in tidal rivers (Akella 281 

and Bhallamudi, 2019). Note that studies also combined explicative and predictive techniques, such as 282 

PCA to determine the principal drivers of GHG production, followed by regression models that use 283 

these factors for prediction (Tang et al., 2021).  284 

Figure 2 shows that explicative models are more commonly applied than predictive models, reflecting 285 

the ongoing interest of researchers in understanding the causal relationships between driving factors 286 



and GHG emissions. Among explicative models, the data-driven approach prevails in CO2 (76%), CH4 287 

(68%) and N2O (58%) models, followed by much fewer applications of mechanistic models at 7%, 16% 288 

and 4% in CO2, CH4 and N2O, respectively. Predictive models also show a dominance of data-driven 289 

approaches (13%, 14% and 20%), while mechanistic (2%, 0% and 9%) and hybrid models (2%, 2% and 290 

9%) are less commonly applied. This data reveals the researcher preference for applying data-driven 291 

models, likely due to less data requirements, and for predicting N2O emissions, which might be 292 

explained by the early concern over anthropogenic N inputs to river systems (Baulch et al., 2011; 293 

Seitzinger and Kroeze, 1998). 294 

 295 

 296 

Figure 2. Description of riverine GHG models according to the model purpose. 297 

4.2. Model scales 298 

Riverine GHG modeling research is mostly applied at specific site-scale conditions, whereas the 299 

analysis of larger-scale systems (basin or global) is scarcely proposed ( Figure 3). Site-scale studies 300 

apply either data-driven or mechanistic models, basin-scale studies apply either mechanistic or hybrid 301 

models, and global-scale studies apply data-driven, mechanistic, and hybrid models. This can be related 302 

to the distinct advantages that each model type offers at different scales.  303 

Data-driven models are suitable either at the site or global scale. At the site scale, data-driven models 304 

excel at defining relationships between biochemical factors that locally affect GHG production and 305 

emissions. As shown in Section 3.1, multiple data-driven models are proposed to model chemical 306 

equilibria of aquatic inorganic carbon or microbial nutrient transformations. At the global scale, data-307 

driven models are applied due to their flexibility in using datasets from heterogeneous systems without 308 

requiring to satisfy any physical constraint. Therefore, a single model can be applied simultaneously to 309 

multiple (and even ungaged) basins (Lauerwald et al., 2015). On the contrary, at the basin scale, data-310 

driven models require extensive datasets because basin-scale processes are characterized by 311 

geomorphological heterogeneity and time-dependent relationships. For example, depending on 312 

antecedent hydrological conditions, such as accumulated precipitation and soil water content of the 313 



basin before precipitation events, generated runoffs can either carry great soil CO2 to a river triggering 314 

riverine emissions or conversely dilute CO2 concentrations with rapid runoff to a river (Zhang et al., 315 

2020). Since available riverine GHG datasets rarely satisfy this demand, more parsimonious 316 

mechanistic models are preferred for basin-scale practical applications. 317 

Mechanistic models are able to simulate dynamics occurring at multiple temporal and spatial scales 318 

therefore being useful at any scale of analysis. At the site scale, these models provide detailed 319 

simulations of underlying physical and chemical processes, which allows researchers to understand 320 

processes where data is difficult to obtain. For example, mechanistic models were used to explain 321 

nitrification and denitrification processes in hyporheic zones, contributing to our understanding of the 322 

complexities of GHG fluxes (Hu et al., 2021). However, as the model size increases, required data and 323 

computational power also increase significantly. For instance, Yao et al. (2020) proposed a mechanistic 324 

model that integrates surface and subsurface hydrological and biogeochemical processes to estimate 325 

global riverine N2O emissions. This model requires extensive data to define critical parameters, such as 326 

ratio of riverine N2O production, thickness of the hyporheic zone, and surface area of streams and rivers, 327 

which are not available in global datasets, constituting great uncertainties in the model outcomes. 328 

Contrary to data-driven and mechanistic models, hybrid models offer advantages across multiple 329 

scales by combining the strengths of different modeling approaches. They can integrate data-driven 330 

and mechanistic models to capture both site-scale biochemical processes and basin-scale land-surface 331 

processes. For instance, in Gao et al. (2020), the basin-scale model SWAT, originally designed to 332 

model hydrological, soil, and plant physiological processes, was complemented with a data-driven 333 

model to also account for biochemical riverine transformations of nutrients into N2O fluxes. In other 334 

words, hybrid models offer the possibility of complementing well-established mechanistic basin-scale 335 

models, whose parameters and capabilities are largely investigated in the literature. Hybrid models are 336 

also applied at the global scale. For instance, Marzadri et al. (2021) designed data-driven models to 337 

derive parameters from globally available datasets that subsequently are inputted to mechanistic 338 

conceptual GHG models. Differently from fully data-driven global models, hybrid global models 339 

offer a knowledge-based background that explain, to a certain extent, the outcomes of the model. 340 

However, it must be noted that at the global scale, models oversimplify processes, likely omitting 341 

important sources and sinks of GHGs, such as wastewater inputs or drainages from urban and arable 342 

areas. Therefore, global models need to report uncertainties implied in their methodology (e.g., Yao et 343 

al., 2020).   344 

 345 



 346 

 Figure 3. Characterization of the model scale of river GHG models. Site-scale models are applied 347 
locally to specific spots in the basin, while basin- and global-scale models combine data from 348 

multiple points into a single modeling framework.  349 

4.3. Riverine GHG data attributes 350 

The attributes of measurement methods and datasets used for riverine GHG model development is 351 

shown in Figure 4. The measurement methods are categorized based on data acquisition processes, 352 

namely indirect calculations and conventional and advanced measurements (Figure 4A). The first 353 

category uses chemical equilibria of aquatic inorganic C to calculate dissolved CO2 concentration 354 

(pCO2) (Nordstrom et al., 1979). Typical calculations of pCO2 include the DIC-pH-temperature method 355 

(Abril et al., 2015; Hunt et al., 2011), the alkalinity-pH-temperature method (Hunt et al., 2011; Li et al., 356 

2013; Liu et al., 2020) as well as software tools like CO2SYS (Lewis and Wallace, 1998) or PHREEQC 357 

(Parkhurst and Appelo, 2013). Conventional measurements correspond to manual methods used to 358 

collect data at specific site spots, such as floating chambers, the headspace method, bubble traps, and 359 

gas analyzers. Advanced measurements encompass non-invasive techniques that cover larger areas 360 

compared to conventional methods, such as hydroacoustic surveys and remote sensing techniques. 361 

Further details on these methods can be found in Bastviken et al. (2022). It is important to note that 362 

remote sensing techniques, including satellite surveys, face challenges in directly measuring GHGs in 363 

riverine systems due to detection limits, sample frequencies, and spatial coverage (Palmer et al., 2018; 364 

Thorpe et al., 2017). Consequently, proxies for GHGs are identified, such as reflectance or surface water 365 

temperature, which are then utilized to indirectly predict riverine GHG concentrations and fluxes 366 

(Morozumi et al., 2019; Valerio et al., 2021; Wilkinson et al., 2019). 367 

Figure 4A indicates that 84% of the models are based on conventional measurements, namely the 368 

headspace method (48%), floating chamber (21%), and gas analyzers (15%). The extensive use of the 369 

first two techniques can be attributed to their lower costs and easier deployment compared to expensive 370 

gas analyzers and time-consuming bubble traps (4%) (Bastviken et al., 2022; Wilkinson et al., 2015). 371 

In addition to conventional methods, indirect calculations are employed (10%) despite their 372 



acknowledged systematic errors due to overestimation of pCO2 in acidic, organic-rich freshwaters 373 

(Abril et al., 2015; Hunt et al., 2011; Liu et al., 2020). Furthermore, it appears that riverine GHG models 374 

barely use data collected from advanced methods, which might be related to the high costs of 375 

hydroacoustic surveys and technical difficulties of satellite surveys in rivers. 376 

The majority of riverine GHG models (77%) are based on data collected over a period longer than a 377 

month (Figure 4C). The low frequency of sample collection can be attributed to the prevalence of 378 

conventional manual methods, such as the headspace method and floating chambers (Figure 4A). 379 

Although the headspace method is simple to perform, increased sampling frequency requires multiple 380 

displacements of human resources to the study site, whereas combining this method with automated 381 

water collection systems is problematic due to difficulties in preserving samples unaltered, e.g., issues 382 

regarding degassing in the sampled bottle (Johnson et al., 2010). In addition to multiple displacements 383 

to the field, floating chambers also require a significant amount of deployment time, making it labor-384 

intensive to collect samples at shorter intervals (Thanh Duc et al., 2020). The few studies that obtained 385 

higher temporal resolutions (1–2 weeks or continuous) involved either dedicated efforts by researchers 386 

using manual methods or the use of automated methods that combined gas analyzers (Figure 4C). The 387 

limited frequency of GHG data collection poses significant challenges in establishing comprehensive 388 

relationships between GHGs and the drivers that influence emissions at high temporal resolution (Xia 389 

et al., 2014). For instance, sporadic precipitation events cause the interruption of aquatic metabolism 390 

processes, therefore changing the diurnal variation of CO2 emissions from rivers (Zhang et al., 2020).  391 

Furthermore, GHG data are often of short duration (Figure 4B), which can be attributed to the 392 

aforementioned challenges associated with costly deployment and equipment. Overall, more than 90% 393 

of riverine GHG models were built based on a dataset of less than 4 years, with the majority (59%) 394 

using a dataset of 1–2 years. The use of short-term datasets hampers the comprehensive investigation 395 

of the long-term effects that driving factors have on riverine GHG emissions, which likely fails to 396 

capture a full range of GHG emissions from riverine systems (Borges et al., 2015). For instance, the 397 

identification of seasonal trends and patterns of riverine GHG emissions and other environmental 398 

factors is unlikely to be revealed with the absence of long-term datasets (Ran et al., 2021). 399 



 400 

 401 

Figure 4. Percentage of riverine GHG models across distinct measurement methods (A), length of 402 
dataset (B), and sampling frequency (C). Figure C describes the sampling frequency of the three most 403 

frequently used measurement methods.  404 

4.4. Modeled factors 405 

This section elucidates the complexity of riverine GHG models by examining the number of factors that 406 

are incorporated in model development, namely biochemical, hydrological, geomorphic, and LULC 407 

factors (Figure 5). Integrating multiple factors is crucial in riverine GHG modeling, as overlapping 408 

effects of factors can create emission hotspots (Quick et al., 2019; Stanley et al., 2016). For instance, 409 

areas in which the river flows from low to high slopes can become emission hotspots as a result of OM 410 

accumulation, which is commonly driven by an increase in hydrological flow paths after precipitation 411 

events (Rocher-Ros et al., 2019). 412 

Based on the number of modeled factors, the complexity of riverine GHG models increases from data-413 

driven models to mechanistic and hybrid models (Figure 5). Data-driven models have incorporated one 414 

to four factors, focusing mostly on biochemical factors in contrast to infrequent use of hydrological, 415 



geomorphic, and LULC factors. This degree of complexity of data-driven models remained steady from 416 

2010 to 2021. On the other hand, mechanistic and hybrid models exhibit an increasing complexity by 417 

incorporating up to seven and eight factors, respectively. Although these models are able to integrate 418 

more hydrological and geomorphic factors, LULC factors have been rarely used.  419 

The lack of integration of LULC factors might be explained by the difficulties in accurately representing 420 

this factor in existing models. LULC data is usually reported in maps where each grid is representative 421 

of a class or category (categorical spatial data). This troubles its integration with data-driven models 422 

that are based on point measurements (Mallast et al., 2020). For instance, LULC factors are currently 423 

represented into data-driven models simply as a percentage of the basin area, losing valuable spatial 424 

information through converting map details into numerical values (Tang et al., 2021). Contrarily, the 425 

mass-balance calculation scheme of mechanistic models allows the integration of LULC factors, but 426 

this can make the model and required data considerably more complex and lead to uncertain outcomes 427 

(Hu et al., 2021).  428 

 429 

Figure 5. Description of model complexity across diverse model types. Line plots show the maximum 430 
number of factors used per year, while bar plots show the classes of these factors. 431 

4.5. Uncertainty analysis 432 

Reporting uncertainties associated with model outcomes is indispensable to increase the transparency 433 

of GHG emission inventories, thereby enabling realistic feedbacks of anthropogenic climate change 434 

(Benveniste et al., 2018). Uncertainty information is often provided as a range, reflecting uncertainties 435 

related to data limitations, parameter values, and/or model structure, helping to identify the most 436 

influential model components and therefore bottlenecks in model development and outcomes (Hu et al., 437 

2021). This information is crucial for a comprehensive understanding and comparison within the 438 



outcomes provided by different modeling approaches. However, uncertainty evaluation techniques have 439 

often been omitted in riverine GHG models (Figure 6A). Only few publications that evaluated model 440 

uncertainties applied either Monte Carlo analysis (Rosentreter et al., 2021), error propagation (Borges 441 

et al., 2019), or generalized likelihood uncertainty estimation (Ho et al., 2021). 442 

Large discrepancies exist in global estimates of riverine GHG emissions, however uncertainty ranges 443 

are overlooked in 56% of the cases (Figure 6B). For instance, significant discrepancies in riverine CO2 444 

emissions have been observed due to the inclusion of headwaters in some models (Raymond et al., 445 

2013) and exclusion in others (Aufdenkampe et al., 2011; Lauerwald et al., 2015). Similarly, 446 

discrepancies in riverine N2O emission estimates have been reported when incorporating headwaters 447 

(Yao et al., 2020) and hydromorphological effects in models (Marzadri et al., 2021). Furthermore, 448 

estimating global riverine CH4 emissions remains challenging due to substantial flux variability within 449 

and between aquatic ecosystems. For instance, CH4 empirical data distribution is skewed towards higher 450 

values making estimations sensitive to modeling assumptions and methods (Rosentreter et al., 2021). 451 

Additionally, determining surface areas of aquatic ecosystems, crucial for most riverine global models, 452 

carries significant uncertainties (Rosentreter et al., 2021; Yao et al., 2020).  453 

  454 

 455 



Figure 6. Application of uncertainty analysis in global and non-global riverine GHG models (A), 456 
including global estimates of riverine GHG emissions with uncertainty ranges when reported (B). 457 

5. Application framework of riverine GHG models 458 

Based on the characteristics of riverine GHG models, a decision tree is provided in Figure 7 to guide 459 

model selection. Specifically, model selection is based on three main criteria, including model purpose, 460 

model scale, and the spatiotemporal characteristics of GHG data. Overall, low complexity of data-461 

driven models allows for its simple application, making these models applicable even when data is 462 

scarce. The development of more complex data-driven models, such as machine learning algorithms in 463 

GHG riverine research, is still limited by data availability. However, the use of such complex data-464 

driven models is gradually being implemented in GHG riverine research through their combination in 465 

hybrid models, e.g., for determining catchment characteristics for global-scale predictions (Marzadri et 466 

al., 2021). Given the extensive representation of the system of mechanistic models, these can simulate 467 

temporal and spatial dynamics of GHGs being relevant for explicative or predictive purposes when 468 

sufficient spatiotemporal resolution is available to validate model outcomes. However, a fully 469 

mechanistic approach needs abundant data for large-scale applications. Then, hybrid models are 470 

particularly valuable as they can combine existent mechanistic models, such as hydrological models 471 

with a data-driven component for GHG emission calculation, therefore providing a framework suitable 472 

for combining processes occurring at different temporal and spatial scales, such as land-surface and 473 

riverine processes. 474 

  475 

 476 



Figure 7. Decision tree for riverine GHG model selection. DDM: Data-driven models; MM: 477 
Mechanistic models; HM: Hybrid models.  478 

6. Current challenges and future directions 479 

After meticulously reviewing numerous research articles in multidisciplinary studies, we created a 480 

comprehensive summary outlining the factors that have restricted the advancement of riverine GHG 481 

models (Table 4). These factors are categorized into drawbacks in data availability and model 482 

development, including specific knowledge gaps described per GHG. This compilation encompasses 483 

implications and potential research directions that we strongly advocate for acknowledgment during 484 

this epoch of prolific model development.  485 

Table 4. Main drawbacks and potential research directions for riverine GHG modeling. 486 

 487 

Findings Implications Potential research directions 

Drawbacks in data availability and quality  

86% of modeling studies 
are carried at the site 
scale. 

- Biochemical factors are vastly studied with 
data-driven models, however the interplay of 
these local factors at larger scales is 
unknown. Consequently, it remains 
uncertain if the factors identified as 
significant at the site scale also apply across 
the entire river network.  

- More basin-scale studies are needed to 
depict the complex interactions of in-stream 
biochemical factors and basin-scale LULC 
and geomorphological heterogeneities, 
together with time-dependent hydrological 
relationships. For this purpose, mechanistic 
and hybrid models are suitable, especially 
hybrid models that can integrate available 
knowledge of in-stream biochemical controls 
with missing basin-scale processes. 

CO2: 

 

- Current studies fail to define relationships 
of riverine CO2 evasion with basin-scale 
hydrological flow paths that transport DOC 
from organic-rich areas (e.g., croplands) and 
geogenic DIC to rivers (Gu et al., 2021; Liu 
et al., 2021; Stewart et al., 2022). Likely, 
transition areas from high to low slopes 
might support high CO2 effluxes (Rocher-
Ros et al., 2019). As such, catchment land 
use, geology, geomorphology and alkalinity 
might be relevant for predicting CO2 
emissions. 

- More research is needed to explain the 
influence of catchment hydrology and 
geogenic C sources on riverine CO2 
emissions. Moreover, these factors need to 
be characterized and integrated into riverine 
GHG models, to improve scaling-up efforts 
and facilitate more reliable regional and 
global estimates. 

CH4: 

 

- Current studies are unable to constrain 
river hydrological connectivity with organic-
rich areas that input dissolved CH4 
(McGinnis et al., 2016; Sieczko et al., 2016; 
Teodoru et al., 2015), or to determine the 
potential effects of hydrological exchanges 
on CH4 oxidation in the hyporheic zone 
(Villa et al., 2020). Moreover, basin 
geomorphology might drive patterns of 
sediment deposition in river channels, 
creating CH4 hotspots (Sawakuchi et al., 
2014). 

- Researchers must apply basin models to 
elucidate the potential effects of hydrology 
and hydrodynamics in creating hotspots of 
CH4 production and emissions.  

N2O: 

 

- Catchment geology affects significantly the 
transport of N inputs from land surface to 
rivers, with low permeable aquifers 

- It would be interesting to combine spatially 
distributed measurements of GHG fluxes 
and isotope analysis with hydrological 



promoting complete denitrication, whereas 
permeable aquifers are linked to high N2O 
effluxes (Cooper et al., 2017). Additionally 
case studies might miss to determine the 
overall effect of riparian zones in regional 
and global reports (Billen et al., 2020; 
Saggar et al., 2013; Yao et al., 2020). 

modeling. While flux and isotope 
measurements would help explain 
production pathways and sources (Ho et al., 
2023), hydrological models would elucidate 
hydrological flow paths, depicting 
relationships between aquifer residence 
times and denitrification processes. This can 
be also applied to elucidate riparian buffer 
effects. The overall goal must be to 
characterize catchment geology, 
geomorphology and hydrology in order to 
conceptualize hyporheic and riparian 
denitrification rates, which are highly 
required for upscaling calculations. 

77% of riverine GHG 
models are based on data 
collected over periods 
longer than a month.  

- Manual measurements are vastly reported 
while automated measurements are missing. 
Consequently, datasets have low temporal 
resolution and are of short duration. This 
hampers the comprehensive investigation of 
factors that influence riverine GHG 
emissions at high temporal resolution or 
have long-term effects on riverine emissions. 
Consequently, global estimates fail to 
incorporate seasonal trends and elucidate 
feedback patterns. 

- Automated and affordable data collection 
systems are needed. Moreover, standardized 
protocols and guidelines must be proposed 
for data collection in riverine systems which 
include biochemical, hydro- and 
geomorphological data (Ho and Goethals, 
2022). This will provide compatible datasets, 
thereby enabling the analysis of large-scale 
relationships between factors, reducing data 
uncertainties in upscaling approaches.  

CO2: 

 

- Short datasets might overlook important 
shifts in C sources to rivers, for instance the 
interconnection of rivers and floodplains 
during high-flow periods might lead to peaks 
in fluxes (Gu et al., 2021; Scofield et al., 
2016), whereas during low-flow periods 
groundwater inputs might be of great 
importance (Aho et al., 2021; Hotchkiss et 
al., 2015; Saccardi and Winnick, 2021).  

- Automated measurements would generate 
higher GHG data resolution, which must be 
combined with hydrological mechanistic 
models to explain system flow connections 
and dynamics. Until these automated 
systems become available, researchers must 
prioritize experimental designs with 
systematic temporal measurements, 
including standarized protocols, with a main 
goal: to integrate antecedent hydrological 
conditions into CO2 evasion prediction.  

CH4: 

 

- Current datasets fail to capture seasonal 
fluctuations in CH4 emissions pathways. For 
instance, low-flow periods are associated 
with hyporheic CH4 generation (Sawakuchi 
et al., 2014; Villa et al., 2020; Wang et al., 
2018). Additionally, sporadic events are also 
missing, such as abrupt changes in water 
levels promoting CH4 ebullition (Ho et al., 
2021). Spatial variability in inundated and 
air-exposed sediments might also play an 
important role missing in current datasets 
(Bednařík et al., 2019; Villa et al., 2020). 

- In addition to combining automated GHG 
measurements with mechanistic models to 
explain catchment dynamics, CH4 models 
require to associate advanced remote sensing 
methods to include the variability of 
inundated-exposed river areas. As currently, 
advanced methods are not able to provide 
such data at adequate resolutions, synergies 
between advanced and conventional methods 
are needed. While advanced methods 
provide long-term data at large scales, yet at 
coarse spatiotemporal resolution (Huang et 
al., 2019), conventional methods offer high 
resolution data at site-specific locations 
(Wilkinson et al., 2019).  

N2O: - With the current GHG data resolution, the 
study of seasonal hydrological flow paths 
causing the shift in N2O production from the 
hyporheic zone to the water column is 
incomplete (Cornejo-D’ottone et al., 2019; 
Hu et al., 2021; Marzadri et al., 2017). It is 
therefore likely that datasets might not 
capture important N inputs from croplands 
during intensive agricultural periods (Gao et 
al., 2020; Yao et al., 2020). 

 

- Apart from automated measurement 
techniques and modeling, more isotope 
mixing models and mapping analysis are 
required to investigate potential nitrate 
sources to riverine systems, such as 
precipitation, soil N, chemical fertilizers, and 
manure and sewage (Barthel et al., 2022). 



Drawbacks in model development 

Although data-driven 
models have yielded 
valuable insights into the 
dynamics of riverine 
GHG emissions, there is 
still room for 
improvement. 

- Data-driven models mostly incorporated 
biochemical factors, whereas basin factors 
are missing. If data is limited, data-driven 
models have implicit difficulties to integrate 
spatial information (e.g., maps) with point 
measurements of GHGs without 
substantially losing information. For 
instance, LULC emissions, including 
deforestation and reforestation, are excluded 
in current figures of regional and global 
emissions. The few cases in which LULC 
factors are included used numerical values of 
percentage of the basin area, yet were unable 
to accurately capture the impact of LULC on 
riverine emissions. 

- We recommend more mechanistic and 
hybrid models to target basin-scale 
simulations. Given the flexibility of hybrid 
models, they are able to integrate multiple 
drivers and data sources at diverse scales of 
analysis, for example, the integration of 
mechanistic models that simulate lateral 
exports from land-surface to rivers with 
data-driven models (existing) that simulate 
site-scale riverine GHG production and 
emissions. Such hybrid models can provide a 
holistic simulation of the system, especially 
at the basin level where the complex effects 
of LULC factors can be captured and models 
can be better constrained. Likewise, this 
flexibility of hybrid models makes it easy to 
update results when new data become 
available. 

Large discrepancies exist 
within global estimates 
of riverine GHG 
emissions; yet, 
uncertainty ranges are 
overlooked in 56% of the 
cases. 

- Overlooking uncertainty ranges hampers a 
comprehensive understanding of the 
estimates obtained from different approaches  
(different methodologies, assumptions, 
factors and data), because the potential 
errors, limitations and/or variability 
associated with each approach remain 
unknown. 

- Incorporating uncertainty ranges must be 
mandatory for reporting purposes, as this 
facilitates more informed decision-making 
and helps in evaluating the robustness and 
effectiveness of the applied methodologies. 

 488 

7. Conclusions 489 

This review investigated the progress of riverine GHG models over the past 11 years. Three main model 490 

types have been applied: data-driven, mechanistic, and hybrid models, among which data-driven models 491 

have been predominated. These models mainly explore biochemical processes in site-scale studies, 492 

while the role of geomorphological, hydrological factors, and land use types remains largely 493 

overlooked. Limited insights and data prevent the existing models from simulating complex interaction 494 

between influencing factors, which ultimately results in uncertainties in GHG global budgets. To 495 

advance this field, we proposed an application framework for model selection in which advantages and 496 

disadvantages of the model types regarding purposes, scales, and data availability can be found. 497 

Moreover, we outlined the factors restricting model development, emphasizing the lack of basin-scale 498 

studies to explain the interplay of river-land dynamics triggering riverine GHG emissions. We highlight 499 

the need for automated data collection systems and improved experimental designs to systematically 500 

gather GHG, biochemical, hydro- and geomorphological data, to cover these knowledge gaps.   501 
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