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ABSTRACT
More and more data in various formats are integrated into knowledge graphs. However, there is
no overview of existing approaches for generating knowledge graphs from heterogeneous (semi-
)structured data, making it difficult to select the right one for a certain use case. To support better
decision making, we study the existing approaches for generating knowledge graphs from hetero-
geneous (semi-)structured data relying on mapping languages. In this paper, we investigated exist-
ing mapping languages for schema and data transformations, and corresponding materialization and
virtualization systems that generate knowledge graphs. We gather and unify 52 articles regarding
knowledge graph generation from heterogeneous (semi-)structured data. We assess 15 characteristics
on mapping languages for schema transformations, 5 characteristics for data transformations, and 14
characteristics for systems. Our survey paper provides an overview of the mapping languages and sys-
tems proposed the past two decades. Our work paves the way towards a better adoption of knowledge
graph generation, as the right mapping language and system can be selected for each use case.

1. Introduction
Over the past decades, the amount of data published on

the Web significantly increased, and more and more of these
data are integrated into knowledge graphs [61]. Knowledge
graphs allow integrating heterogeneous data to make deci-
sions, provide recommendations or deduct new knowledge.
Knowledge graphs are leveraged in different domains, e.g.,
media [111], government [117, 62], search engines [121,
118], commerce [80, 106], social networks [103, 58], etc.

Aswewitness an increasing use of knowledge graphs [61],
it becomes essential to better understand the various aspects
of their generation, as well as their strengths andweaknesses.
While there are several approaches for generating knowledge
graphs, the domain has not been systematically studied so
far. Therefore, it remains challenging to identify the most
adequate solution for each use case.

Knowledge graphs are generated in different ways. They
can be generating via crowdsourcing by collecting contribu-
tions from a large group of people, e.g., Wikidata1, or they
can be extracted from (semi-)structured data, for instance
tabular (e.g., tables in relational databases or data in CSV
format) or hierarchical data (e.g., data in XML or JSON for-
mat), or unstructured data, e.g., plain text. In this paper, we
focus on the generation of knowledge graphs from heteroge-
neous (semi-)structured data.

Several approaches for generating knowledge graphs from
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heterogeneous (semi-)structured data are use-case-specific
[121, 80, 106, 103, 58, 118, 24, 43, 56]. However, these
approaches cannot be reused. Therefore, in this work, we
look into approaches that are use-case-agnostic. Such ap-
proaches typically rely on mapping languages which declar-
atively describe how knowledge graphs should be generated
from heterogeneous (semi-)structured data.

Various studies were conducted in the past but none cov-
ered all aspects of knowledge graph generation. A few of
these studies are limited to data of a specific format, such
as relational databases, e.g., [57, 59, 50, 123], or XML data,
e.g., [14]. Others are evenmore specific and not only do they
focus on a certain data format, but also on a particular ap-
proach for generating knowledge graphs, such as virtualiza-
tion, e.g., [133, 134]. Most of these surveys were conducted
following an ad-hoc methodology, and only present partial
results related to knowledge graph generation.

Recently, two systematic reviews were published which
approach the knowledge graph generation as part of the knowl-
edge graph development process but they do not focus on the
knowledge graph generation per se. The former [113] is a
systematic review of studies on knowledge graph generation
and publication. The review only considered two confer-
ences (ESWC and ISWC) and two journals (SWJ and JWS),
and only a limited period in time (2015 - 2021). The lat-
ter [125] conceptually analyses the literature, identifies the
key processes when managing the construction and mainte-
nance of knowledge graphs and provides a synthesis of com-
mon steps in knowledge graph development.

Lacking of rigorous surveys, only benchmarks [27, 6,
25] are available for comparing knowledge graphs genera-
tion approaches from heterogeneous (semi-)structured data.
However, benchmarks evaluate the performance of the sys-
tems, but not the declarativemapping language or the schema
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and data transformation. Moreover, benchmarks limit their
scope to evaluating systems that implement a singlemapping
language [25, 6] or a subset of the available systems [27].

There is no survey yet which provides an overview of all
existing approaches for knowledge graph generation, such
as materializing the complete knowledge graph (material-
ization) or virtualizing parts of the knowledge graph (virtu-
alization) nor a survey for all mapping languages proposed.

Therefore, we created this survey to provide an overview
of mapping languages and systems to help users choose the
mapping language for the data and schema transformations,
as well as their systems for a given use case. In this survey,
we answer the following research question:

Which characteristics influence mapping languages and
systems for generating RDF knowledge graphs from hetero-
geneous (semi-)structured data?

To answer the main research question, the following re-
search subquestions need to be addressed:
RQ1 Whichmapping languages exist to generate knowledge

graphs from (semi-)structured heterogeneous data?
RQ2 How are schema and data transformations supported

by mapping languages and what RDF terms can each
mapping language generate?

RQ3 How are the mapping languages implemented in dif-
ferent systems to generate RDF graphs?

With this systematic literature review, we aim to provide
an overview of existing works that can help researchers and
practitioners to find an optimal solution for their use case.
The survey also aims to identify remaining open aspects that
are worth further investigation and inspire researchers to ex-
periment further, discover new approaches, and implement
new algorithms in their systems.

This paper is structured as follows: in Section 3 we de-
scribe the survey methodology we followed in this system-
atic review. Section 4 provides an overview of different ap-
proaches to generate knowledge graphs from heterogeneous
(semi-)structured data. In Section 5 we compare different
approaches for data transformations. Section 6.2 describes
thematerialization approaches and their systems. Section 6.3
describe the virtualization approaches and systems. Sec-
tion 7 discusses the results of the systematic review. Sec-
tion 8 concludes this survey paper with further work.

2. Definitions
In this Section, we review the basic concepts and defini-

tions that we need for the systematic literature review in the
rest of the paper.

The problem of transforming data structured under one
schema into data structured under a different schema is en-
countered in several different areas of data management sys-
tems. Schema mappings are specifications used to describe
how data is to be transformed from one representation to an-
other. Schemamappings are typically specified using declar-
ative formalisms that describe the correspondence between
different schemas at a logical level, without specifying de-
tails relevant for the implementation [49]. A data integra-

tion system combines data residing at different sources, and
provides the user with a unified view of these data [88].

A data integration system  is a triple  = ( , ,)
where  is the target schema, expressed in a language over an alphabet  ,  is the source schema, expressed in
a language  over an alphabet  [88]. A schema is a fi-
nite sequence = ⟨1, ...,k⟩ of distinct relation symbols,
each of a fixed arity. Given two disjoint schemas  and 
with no relation symbols in common, then  = ⟨1, ...,n⟩is the source schema and  = ⟨1, ..., m⟩ the target schema.A schema mapping is a triple  = ( ,  ,Σ), where Σ is a
set of formulas of some logical formalism over ⟨ ,  ⟩.

The generation of a knowledge graph can be considered
as a mapping  between a source schema  , which is the
schema of original data source , and a target schema  ,
which is the schema of the knowledge graph. In this pa-
per, we focus on the generation of RDF graphs, thus RDF is
the language  of the target schema  which, on its own
turn, is a vocabulary or ontology. The mapping between the
source schema  and the target schema  follows a certain
schema mapping whose set of formulas Σ is described with
a so-called mapping language. A mapping language de-
scribes different types of mappings between a source schema
and a target schema and provides a means for linking a par-
ticular data source to its specific mapping policy [4]. In the
remaining of this paper, we call the aforementioned map-
pings schema transformations to distinguish them from the
data transformations. A schema transformation describes
how objects are related, and which vocabularies and ontolo-
gies are used to annotate the objects [63]. On the contrary,
a data transformation describe any changes in the structure,
representation or content of data [110].

A system that generates a knowledge graph may be con-
sidered as a data integration system . In the remaining of
the paper, we distinguish between materialization and vir-
tualization systems for knowledge graph generation. In the
databases field, a view is a query whose head defines a new
database relation [130]. If this relation is not stored, the view
is a virtual view, while if the results of executing the view
are stored, it is a materialized view [130]. Similarly in the
case of knowledge graphs, a materialised knowledge graph
is stored, while a virtual knowlede graph is not stored.

3. Survey methodology
We first searched for recent survey papers to compare

different survey methodologies [136, 65, 131, 2] to find the
most suitable survey methodology for this paper. We follow
themethodology of KitchenhamB. [77], similar to Amrapali
et al. [136] to discover and select relevant papers. We choose
to follow the same methodology because we also collected
and combined papers from various sources such as digital
libraries, workshops, journals and conferences while other
survey papers focus on only one of these sources. More-
over, they follow existing surveymethodologies for their sys-
tematic review [78, 101]. They clearly describe how they
searched for articles, the source of the articles, and why they

Dylan Van Assche et al.: Preprint submitted to Elsevier Page 2 of 25



Declarative RDF graph generation from heterogeneous (semi-)structured data: a Systematic Literature Review

Figure 1: Overview of the applied survey methodology to select relevant articles for this survey paper.

were included or not. We extended this survey methodol-
ogy with an additional step to limit the number of results of
digital libraries by refining the keywords.

Three authors independently performed this systematic
review following the survey methodology described in [77].
After applying our survey methodology, we retrieved 1735
potentially relevant papers published between 1999 and 2021
from which 52 were relevant for this survey. We studied and
unified these papers by categorizing them into the follow-
ing categories: ‘schema transformations’, ‘data transforma-
tions’, ‘materialization systems’, and ‘virtualization systems’.
We analyzed 15 characteristics for mapping languages, 5
characteristics for data transformations, and 14 characteris-
tics for systems.

A systematic literature review is performed for several
reasons [77]. In this survey paper, we tackle the follow-
ing reasons: (i) summarizing and comparing existing ap-
proaches, (ii) identifying open problems and (iii) concep-
tualization of various approaches. We compare existing ap-
proaches and systems implementing these approaches to gen-
erate knowledge graphs from heterogeneous (semi-)structured
data and identify open problems. We describe the applied
methodology below and visualize it in Figure 1.
Inclusion and exclusion criteria

We consider the following criteria to include an article
in this survey:

• Articles published from the first published recommen-
dation of RDF [79] in 1999 until 2021.

• Articles written in English.
• Articles describing mapping languages and systems

related to:
◦ Generating knowledge graphs frommultiple het-

erogeneous data sources.
◦ Describing systems and optimization algorithms

of existing knowledge graph generation approaches.
◦ Specifying schema or data transformation for het-

erogeneous data.
We excluded an article from this survey based on the fol-

lowing exclusion criteria:
• Articles which are not published or peer-reviewed.
• Papers written in another language than English.

• Technical reports, demo papers, posters, PhD consor-
tium papers, and presentations.

• Commercialized approaches and systems.
Step 1: Collecting articles

We created a list of terms by breaking down our research
sub-questions into individual facets and their alternatives,
e.g., different spelling, synonyms, and abbreviations. These
terms were combined together with boolean AND and OR oper-
ators and used by each reviewer when searching for relevant
articles. We avoided to use these terms individually because
they were too broad which resulted in an enormous number
of results. The following terms and combinations were con-
sidered in this systematic review:

• (‘knowledge graph’ OR ‘knowledge graphs’)

AND (‘definition’ OR ‘definitions’)

• (‘RDF’ OR ‘Resource Description Framework’)

AND ‘heterogeneous data’

• (‘transformation’ OR ‘transformations’)

AND ‘heterogeneous data’

• (‘answer’ OR ‘answers’ OR ‘answering’)

AND (‘query’ OR ‘queries’)

• (‘Resource Description Framework’ OR ‘RDF’)

AND (‘stream’ OR ‘streams’ OR ‘streaming’)

• (‘Linked Data’ OR ‘Linked Open Data’ OR ‘LOD’

OR ‘knowledge graph’ OR ‘knowledge graphs’)

AND ‘generation’

• (‘Linked Data’ OR ‘Linked Open Data’ OR ‘LOD’

OR ‘knowledge graph’ OR ‘knowledge graphs’)

AND ‘construction’

• ‘SPARQL’ AND (‘generation’ OR ‘construction’)

• (‘mapping language’ OR ‘mapping languages’)

AND (‘RDB’ OR ‘relational database’ OR

‘relational databases’)

• (‘mapping language’ OR ‘mapping languages’)

AND ‘heterogeneous data’

• (‘mapping language’ OR ‘mapping languages’)

AND (‘function’ OR ‘functions’)

• (‘mapping language’ OR ‘mapping languages’)

AND (‘transformation’ OR ‘transformations’)

• (‘mapping language’ OR ‘mapping languages’)

AND (‘RDF’ OR ‘Resource Description Framework’)

Dylan Van Assche et al.: Preprint submitted to Elsevier Page 3 of 25



Declarative RDF graph generation from heterogeneous (semi-)structured data: a Systematic Literature Review

• (‘mapping language’ OR ‘mapping languages’)

AND (‘knowledge graph’ OR ‘knowledge graphs’

OR ‘Linked Data’ OR ‘Linked Open Data’ OR ‘LOD’)

• (‘mapping language’ OR ‘mapping languages’)

AND (‘knowledge graph’ OR ‘knowledge graphs’

OR ‘Linked Data’ OR ‘Linked Open Data’ OR ‘LOD’)

AND (‘generation’ OR ‘construction’)

• (‘mapping language’ OR ‘mapping languages’)

AND ‘SPARQL’

• (‘Linked Data’ OR ‘Linked Open Data’ OR ‘LOD’)

AND (‘mapping language’ OR ‘mapping languages’)

• (‘mapping language’ OR ‘mapping languages’)

AND ‘R2RML’

• (‘generation’ OR ‘construction’) AND ‘R2RML’

AND (‘knowledge graph’ OR ‘knowledge graphs’

OR ‘Linked Data’ OR ‘Linked Open Data’ OR ‘LOD’)

• (‘stream’ OR ‘streams’ OR ‘streaming’)

AND (‘RDF’ OR ‘Resource Description Framework’)

AND ‘SPARQL’

Step 2: Review titles & abstracts
We searched for these terms in the article’s title and ab-

stract to avoid a high number of irrelevant articles in com-
parison to searching in the article’s full text [136]. An article
is selected when at least one of the combined terms has been
found in the title or abstract of an article. We searched for
our terms in 42 sources e.g. journals, conferences, and dig-
ital libraries. The following sources were used to search for
relevant articles for this survey paper:
Journals

• Semantic Web Journal (SWJ)
• Journal of Web Semantics (JoWS)
• International Journal of Web

Information Systems (IJWIS)
• Future Generation Computer Systems (FGCS)
• Journal on Data Semantics (JDS)
• International Journal on Semantic Web and

Information Systems (IJSWIS)
• PeerJ Computer Science
• Information
• International Journal on Digital Libraries (IJDL)
• International Journal of Applied

Mathematics and Computer Science (IJAMCS)
• International Journal of Software

Engineering and Knowledge Engineering (IJSEKE)
Conferences

• International Semantic Web Conference (ISWC)
• European Semantic Web Conference (ESWC)
• International Conference on Semantic

Systems (SEMANTiCS/I-SEMANTICS)
• International Conference on Semantic

Computing (ICSC)
• International Conference on Knowledge

Engineering and Knowledge Management (EKAW)
• International Conference on Knowledge

Capture (K-Cap)

• Conference on Information and Knowledge
Management (CIKM)

• Knowledge Graph and Semantic Web
Conference (KGSWC)

• The Web Conference (WWW)
• Ontologies, Databases and Applications of

Semantics (ODBASE)
• Language, Data and Knowledge (LDK)
• International Conference onWeb Intelligence (WI-IAT)
• International Conference on Web Information

Systems and Technologies (WEBIST)
• International Conference on Web Intelligence,

Mining and Semantics (WIMS)
• International Conference onWebEngineering (ICWE)

Workshops
• Knowledge Graph Construction Workshop (KGCW)
• Knowledge Graph Building Workshop (KGB)
• Consuming Linked Data Workshop (COLD)
• Large Scale RDF Analytics Workshop (LASCAR)
• Semantic Big Data Workshop (SBD)
• International Semantic Sensor Networks

Workshop (SSN)
• Workshop on Linked Data on the Web (LDOW)

Digital Libraries
• IEEE Explore
• Springer Link
• Science Direct
• ACM Digital Library
• Google Scholar
We retrieved 1884 articles which are potentially relevant

for this survey paper. After removing duplicates, 1729 arti-
cles were added to the review list.
Step 3: Applying additional search strategies

We enriched our review list following additional search
strategies to includemore relevant articles: (i) reviewing ref-
erences of potentially relevant articles, and (ii) addingmanu-
ally relevant articles. We searched for potentially relevant ar-
ticles through the references of other relevant articles which
were in our review list. This way, we discovered 3 more
potentially relevant articles [41, 26, 39]. We also manually
added 3 more articles which we found relevant for this sur-
vey [32, 85, 116]. This result in 1735 articles in total.
Step 4: Reviewing potential articles for inclusion

We manually reviewed the retrieved potentially relevant
articles among reviewers. The reviewers verified the arti-
cle’s relevance for this systematic literature review and ap-
plied our inclusion and exclusion criteria. This resulted in
52 relevant articles for this survey paper (Table 1). 18 arti-
cles introduce or extend a mapping language for transform-
ing heterogeneous (semi-)structured data into a knowledge
graph [98, 86, 36, 30, 132, 87, 83, 81, 128, 15, 46, 90, 41,
51, 135, 104, 19]. 16 articles introduce data transformations
or align them with a mapping language for heterogeneous
(semi-)structured data [99, 86, 38, 132, 87, 107, 70, 73, 32,
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15, 90, 41, 40, 95, 39, 7]. 21 articles describe a material-
ization system [85, 86, 30, 132, 107, 122, 87, 83, 81, 115,
45, 72, 54, 46, 114, 120, 64, 51, 98, 96, 116], and 18 arti-
cles a virtualization system for transforming heterogeneous
(semi-)structured data into a knowledge graph [99, 104, 19,
89, 126, 26, 18, 48, 75, 112, 22, 13, 76, 52, 93, 135, 21].
12 articles were submitted to workshops, 27 to conferences,
and 13 to journals.

4. Schema transformations
In this Section, we discuss mapping languages as schema

transformation descriptions to generate RDF graphs from
heterogeneous data. Several schema transformation descrip-
tions exist each with their own set of features and supported
data formats and sources. Currently, there is no overview to
select the right schema transformation for a given use case,
which we address in this Section.

Section 4.1 discusses the categorization we applied for
schema transformations, Section 4.2 describes which char-
acteristics we evaluate for each schema transformation. Sec-
tion 4.5 mentions schema transformations which are worth
mentioning but could not be included because of the inclu-
sion and exclusion criteria. The next sections discuss the
schema transformations per category.
4.1. Categorization

We categorized the mapping languages (Table 1) in two
categories: (i) dedicated mapping languages which extend
specifications or use a custom syntax, and (ii) repurposed
languages which repurpose existing specifications of query
or constraint languages as their base for a mapping language.
Dedicated mapping languages extend existing mapping
language specifications, or provide a custom syntax. On
the one hand, a family of mapping languages have as their
basis the W3C-recommended RDB to RDF Mapping Lan-
guage (R2RML) [35] and extend its scope from relational
databases to heterogeneous (semi-)structured data. R2RML
based mapping languages use Turtle as syntax for writing
mapping rules. RML [46], xR2RML [98] and D2RML [30]
belong in this category. Other dedicated mapping languages
provide their own custom syntax, such as the Dataset Repre-
sentation (D-REPR)written inYAML [132], andOntop [135].
Repurposed languages repurpose existing specifications
which have a different purpose thanmapping languages, such
as (i) query languages, e.g., SPARQL [109] (query-language-
driven), and (ii) constraint languages, e.g., Shape Expres-
sions (ShEx) [108] (constraint-driven).

Query-language-driven mapping languages consider a
query language, such as the W3C-recommended SPARQL
query language [109], as their basis and extend the query lan-
guage to generate RDF fromheterogeneous (semi-)structured
data. The following mapping languages belong in this cate-
gory: XSPARQL [15, 41], SPARQL-Generate [86, 87], and
Facade-X [34].

Constraint-drivenmapping languages leverage constraint
languages to generate RDF graphs from heterogeneous (semi-
)structured data. For example, the Shape Expressions Map-
ping Language (ShExML) [51] leverages ShEx [108].
4.2. Characteristics

We derived a set of characteristics from the papers on
mapping languages to discuss each characteristic for each
mapping language (Table 2). We divided these characteris-
tics into three categories: (i) declarative transformation de-
scription, (ii) data access and retrieval, and (iii) RDF speci-
fication coverage.
Declarative transformation description

Mapping languages declaratively describe how schema
and data transformations are applied on input data. The fol-
lowing characteristics are considered:
S1: Schema transformation Schema transformations (re-
)model the input data, describe relations between data, and
which vocabularies to use [63]. For example, the schema
transformation describes how a person’s age should be mod-
elled by relating the person’s age from the input data, to the
person, and use the appropriate vocabulary such as foaf:age.
If the schema transformation is declaratively described by
the mapping language [37] to be re-usable for generating any
kind of RDF knowledge graph.
S2: Data transformationData transformations describe how
to change data into a new representation [110]. For exam-
ple: the person’s birth date is available in the input data, but
the schema transformation requires the person’s age. The
data transformation describes how to transform the birth date
into the age which can be used then by the schema transfor-
mation, as shown in S1: Schema transformation. If data
can be transformed or conditions can be applied with the
schema transformation [37] to allow cleaning and process-
ing the data. Some schema transformations leverages exist-
ing data transformations, these data transformations are dis-
cussed in Section 5.
S3: Export description Export descriptions describe where
and how the generated RDF is exported. If the serializa-
tion format e.g. RDF/XML or Turtle, and target e.g., a file
or a SPARQL endpoint of a generated RDF graph are de-
scribed [129]. Describing where the generated RDF is ex-
ported to allows better integration with other tools during
knowledge graph generation.
S4: End-to-end If a mapping language allows describing
the entire process declaratively from accessing and trans-
forming the data until exporting the generated RDF, or re-
lies on hard-coded parts to access, transform, or export RDF
graphs. This way, the complete generation process is de-
scribed and re-usable without resorting to scripts customized
for a single knowledge graph.
S5: Web standards integration If a mapping language in-
tegrates with existing web standards by relating to existing
W3C recommendations. By relying on standards, imple-
mentations implementing them already can adopt a schema
transformation more easily.
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Title Author(s) Scope
A Generic Mapping-based Query Translation from SPARQL to Various Target Database
Query Languages Michel F. et al. ML, DT, VS

A middleware framework for scalable management of linked streams* Le-Phuoc D. et al. MS
A SPARQL Extension for Generating RDF from Heterogeneous Formats Lefrançois M. et al. ML, DT, MS
DAFO: An Ontological Database System with Faceted Queries Pankowski T. et al. VS
Declarative Data Transformations for Linked Data Generation: The Case of DBpedia De Meester B. et al. DT, VS
Detailed Provenance Capture of Data Processing De Meester B. et al. ML
D2RML: Integrating Heterogeneous Data and Web Services into Custom RDF Graphs Chortaras A. et al. ML, MS
D-REPR: A Language for Describing and Mapping Diversely-Structured Data Sources to
RDF Vu B. et al. ML, MS, DT

Enabling Ontology-Based Access to Streaming Data Sources Calbimonte J. et al. VS
Enabling RDF Stream Processing for Sensor Data Management in the Environmental
Domain Llave A. et al. VS

Executing SPARQL queries over Mapped Document Store with SparqlMap-M Unbehauen J. et al. VS
Exploiting Declarative Mapping Rules for Generating GraphQL Servers with Morph-
GraphQL* Chaves-Fraga D. et al. VS

Flexible RDF Generation from RDF and Heterogeneous Data Sources with SPARQL-
Generate Lefrançois M. et al. ML, DT, MS

Formalisation and Experiences of R2RML-Based SPARQL to SQL Query Translation
Using Morph Priyatna F. et al. DT, MS

FunMap: Efficient Execution of Functional Mappings for Knowledge Graph Creation Jozashoori, S. et al. DT
FunUL: A Method to Incorporate Functions into Uplift Mapping Languages Crotti Junior A. et al. DT
GeoTriples: a Tool for Publishing Geospatial Data as RDF Graphs Using R2RML Map-
pings Kyzirakos K. et al. ML, MS

GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RML map-
pings Kyzirakos K. et al. ML, MS

Implementation-independent function reuse* De Meester B. et al. DT
KR2RML: An Alternative Interpretation of R2RML for Heterogeneous Sources Slepicka J. et al. MS
LDScript: A Linked Data Script Language* Corby O. et al. DT
Leveraging Web of Things W3C Recommendations for Knowledge Graphs Generation Van Assche D. et al. ML
Linked Data Integration Framework Schultz A. et al. MS
Machine-Interpretable Dataset and Service Descriptions for Heterogeneous Data Access
and Retrieval Dimou A. et al. ML

MapSDI: A Scaled-Up Semantic Data Integration Framework for Knowledge Graph Cre-
ation Jozashoori, S. et al. MS

Mapping between RDF and XML with XSPARQL Bischof S. et al. ML, DT
Mapping Hierarchical Sources into RDF Using the RML Mapping Language Dimou A. et al. ML, MS
Obi-Wan: Ontology-Based RDF Integration of Heterogeneous Data Buron M. et al. VS
Ontario: Federated Query Processing against a Semantic Data Lake M. Endris K. et al. VS
Ontology–based access to temporal data with Ontop: A framework proposal Güzel Kalayci E. et al. VS
Ontology-Based Data Access: Ontop of Databases Rodríguez-Muro M. et al. VS
Ontop: Answering SPARQL Queries over Relational Databases Calvanese D. et al. VS
Ontop-spatial: Ontop of geospatial databases Bereta K. et al. VS
On the semantics of heterogeneous querying of relational, XML, and RDF data with
XSPARQL Lopes N. et al. ML, DT

Optique: Towards OBDA Systems for Industry Kharlamov E. et al. VS
Optique: Zooming in on Big Data Giese M. et al. VS
Parallel RDF Generation from Heterogeneous Big Data Haesendonck G. et al MS
Querying the Web of Data with XSPARQL 1.1* Dell’Aglio D. et al. ML, DT
RDF-Gen: Generating RDF from Streaming and Archival Data Santipantakis G. M. et al. MS
RocketRML - A NodeJS implementation of a use-case specific RML mapper Umutcan Ş. et al. MS
RML: A Generic Language for Integrated RDF Mappings of Heterogeneous Data Dimou A. et al. ML, MS
R2RML-F: Towards Sharing and Executing Domain Logic in R2RML Mappings Debruyne C. et al. DT
SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs Iglesias E. et al. MS
ShExML: improving the usability of heterogeneous data mapping languages for first-time
users García-González H. et al. ML

Sustainable Linked Data Generation: The Case of DBpedia Maroy W. et al. DT
Squerall: Virtual Ontology-Based Access to Heterogeneous and Large Data Sources Mami M. et al. VS
The Virtual Knowledge Graph System Ontop Guohui X. et al. ML, VS
Toward the Web of Functions: Interoperable Higher-Order Functions in SPARQL Atzori M. et al. DT
Translation of Relational and Non-relational Databases into RDF with xR2RML Michel F. et al. ML, MS, VS
TripleWave: Spreading RDF Streams on the Web Mauri A. et al. MS
Turning Transport Data to Comply with EU Standards While Enabling a Multimodal
Transport Knowledge Graph* Scrocca M. et al. MS

XGSN: An Open-source Semantic Sensing Middleware for the Web of Things Calbimonte J. et al. VS

Table 1
Overview of selected articles for this survey paper in alphabetical order. Articles with ’*‘
were manually added in step 3. The scope of each article is indicated: Mapping Language
(ML), Data Transformation (DT), Materialization System (MS), or Virtualization System
(VS).
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Mapping Language S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15
RML 3 3 3 3 3 3 3 3 3 3 3

xR2RML 3 3 3 3 3 3 3 3 3 3 3 3

D2RML 3 3 3 3 3 3 3 3 3 3

D-REPR 3 3 3 3 3 3 3 3 3* 3

XSPARQL 3 3 3 3 3 3 3 3 3 3 3 3

SPARQL-Generate 3 3 3 3 3 3 3 3 3 3 3 3

ShExML 3 3 3 3 3 3 3 3 3 3

Facade-X 3 3 3 3 3 3 3 3 3 3 3 3

Table 2
Schema transformation characteristics applied on the discussed mapping languages.
*D-REPR does not support RDF Literal language tags, only support datatypes.
S1: Schema transformation, S2: Data transformation, S3: Export description, S4: End-
to-end, S5: Web standards integration, S6: Joins, S7: Intermediate representation, S8:
Nested hierarchies, S9: Multi-paths, S10: RDF triples, S11: IRIs, S12: Literals, S13:
Blank Nodes, S14: Named Graphs, S15: Collections and containers

Data processing and composition
Mapping languages provide access descriptions and de-

scriptions regarding how to process input data in various
ways. We consider the following characteristics:
S6: Joins If data joins are supported and declaratively de-
scribed in the schema transformation [37]. Joins combine
data from heterogeneous (semi-)structured data into RDF.
S7: Intermediate representation If a mapping language
uses heterogeneous (semi-)structured data directly or trans-
forms it first into a homogeneous intermediate representation
before applying the schema and data transformations [37].
An intermediate representation influences the implementa-
tion of a schema transformation because all data must be
transformed first into the intermediate representation and af-
terwards into RDF.
S8: Nested hierarchiesNested data structures such as XML
or JSON are not tabular like SQL databases or CSV, but hi-
erarchical. If a mapping language can handle hierarchical
structures and join these nested data structures or not [37] to
support both hierarchical and tabular data.
S9: Multi-paths If multiple path expressions – such as JSON-
Path or XPath – can be used together for accessing nested
data encoded in heterogeneous formats [98], e.g., NoSQL
databases allow mixing formats, such as JSON inside the
NoSQL database. If a mapping language can combine dif-
ferent path expressions or not to refer to nested data in data
sources, such as JSON in a CSV column.
Coverage of the RDF(S) specification

We cover characteristics from the RDF 1.1 specification
and the RDF Schema (RDFS) specification. These charac-
teristics are typically described by each mapping language.
Most of these characteristics are supported by each mapping
language, forming the base of generating a knowledge graph
in RDF.
S10: RDF triples (subjects, predicates, and objects) If a
mapping language can describe how RDF subjects, predi-
cates and objects should be generated [37].
S11: IRIs If a mapping language can describe how a valid
IRI conform RFC 3987 should be generated.
S12: Literals (including language tags and datatypes) If

a mapping language can specify how a Literal with option-
ally a language tag or datatype should be generated.
S13: Blank Nodes If a mapping language can describe the
generation of RDF blank nodes [37].
S14: Named graphs If a mapping language can describe
the generation of an RDF Named Graph to make statements
about a set of RDF triples [37].
S15: Collections and containers If a mapping language
can describe the generation of RDFS collections and con-
tainers [98].
4.3. Dedicated mapping languages

Dedicated mapping languages are based upon dedicated
mapping language specifications such as R2RML [35] or a
custom syntax such asYAMLor JSON, for transforming het-
erogeneous (semi-)structured data sources into RDF.
RDF Mapping Language (2013)

RDFMapping Language2 (RML) [46] describes howRDF
is generated from heterogeneous (semi-)structured data by
extending the W3C recommendation R2RML [35] (S5) to
heterogeneous (semi-)structured data sources. RML intro-
duces a RML Logical Source which describes how the input
data should be accessed and referred to using reference for-
mulations, such as JSONPath for JSON or XPath for XML
data. Currently, RML supports heterogeneous (semi-)structured
data sources, such as relational databases, CSV/TSV, JSON,
XML, web APIs, and streams [129, 47].

RML is backwards compatible with R2RML (S1, S4)
and leverages R2RML’s join support (S6), IRI description
(S11), subjects, predicates and objects (S10), named graphs
(S14), Literals with language tags, data types (S12), and
blank nodes (S13). The input data is used directly, with-
out transforming it into an intermediate format (S7). RML
is aligned with FnO [39] (S2, S4) to describe data transfor-
mations on the input data (Section 5). Recently, RML was
extended with Logical Target to describe how and where the
generated RDF must be exported to (S3, S4) [129]. RML
cannot handle nested data structures (S8), data structures
consisting of multiple data formats (S9), or collections and

2https://rml.io/specs/rml/, last accessed 10/11/2021
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containers (S15), but an approach [42] is proposed to over-
come these limitations.
xR2RML (2015)

xR2RML3 [98] extends R2RML [35] (S1, S5, S10, S11,
S12, S13, S14) andRML [46] (S7)with additional data sources,
e.g. NoSQL databases, nested data structures, such as XML
or JSON (S8) with multiple data formats, and RDFS collec-
tions and containers generation (S15). xR2RML allows to
combine multiple reference formulations when referring to
a data value (S9) which is common amongNoSQL databases
where a key-value store may contain XML and JSON data as
value. xR2RML describes howmultiple data sources should
be joined (S6) and supports nested data structures (S8) through
xR2RML’sNested TermMapswhich allow describingRDFS
collections and containers (S15). xR2RML describes the
RDF Literal’s language tag or data type (S12). xR2RML
allows to push down data values from a nested data struc-
ture to make it accessible in lower levels of the nested data
structure. However, xR2RML does not describe where the
generated RDF triplesmust be exported to (S3, S4), and does
not describe data transformations (S2, S4).
D2RML (2018)

D2RML [30, 29] extends R2RML [35] with a D2RML
Logical Source to define how the data source should be ac-
cessed and additionally support for transformations, condi-
tions and custom IRI generation functions (S2). D2RML ab-
stracts the data model to use a column and row approach in-
stead of using the input data directly (S7). D2RML supports
HTTPweb APIs, CSVs, JSON, and XML data. D2RML can
describe the generation of subjects, predicates, objects (S10),
graphs (S14), blank nodes (S13), Literals with language tags
and data types (S12), IRIs (S11), and joinmultiple data sources
during the schema transformation (S6), because it extends
R2RML (S1). However, D2RML cannot handle nested data
structures (S8), heterogeneous (semi-)structured data (S9),
describe the generation of collections and containers (S15),
or describing the output location (S3, S4).
Dataset Representation (2019)

Dataset Representation (D-REPR) [132] is a mapping
language based upon a custom YAML [11] syntax (S5) for
transforming heterogeneous (semi-)structured data into RDF.
D-REPR supports joins (S6) among spreadsheets, CSV,XML,
JSON, (non-)relational databases, andNetCDFfiles (S8). D-
REPR represents all data in a JSON tree based structure in-
stead of the Nested Relational Model (NRM) model used in
KR2RML (S7). D-REPR does not support multi-path ex-
pressions when referring to data (S9). D-REPR fully de-
scribes the schema transformation (S1, S10, S11, S12, S13,
S14) and supports data transformations on the input data (S2).
However, the output description, named graphs, RDFS col-
lections and containers, and RDFLiteral language tags (S15)
are not specified in the D-REPR mapping rules (S3, S4).

3https://www.i3s.unice.fr/~fmichel/xr2rml_specification_v5.html,
last accessed 10/11/2021

4.4. Repurposed mapping languages
Repurposed mapping languages re-use syntax from ex-

isting specifications such asW3C’s SPARQL [109] orW3C’s
ShEx [108], for transforming heterogeneous (semi-)structured
data sources into RDF.
XSPARQL (2009)

XSPARQL4 [15, 41] is a mapping language that com-
bines XQuery [92], JSON-LD [124] and R2RML [35] with
theW3C-recommended SPARQLquery language [109] (S5)
for transforming data inXML, JSON, and relational databases
into RDF (S1). XSPARQL not only transforms XML and
relational databases into RDF (uplifting), but also the other
way around (lowering). XSPARQL inherits all the features
from SPARQL (S2, S10, S11, S12, S13, S14). XSPARQL
supports joining of nested hierarchy data sources by build-
ing on top of SPARQL without an intermediate format (S6,
S7, S8). XSPARQL does not support multi-path expres-
sions (S9), or specifies to where the generated triples are ex-
ported to (S3, S4). Built-in and custom data transformations
are applied using SPARQL Functions (S2). XSPARQL sup-
ports relational databases and XML, RDF, or JSON files.
SPARQL-Generate (2017)

SPARQL-Generate [86, 87] extends theW3C-recommended
SPARQL query language (S5) to transform heterogeneous
(semi-)structured data into RDF. SPARQL-Generate supports
streaming and binary data sources such as HDT5, WebSock-
ets6, and Kafka7, on top of the data sources supported by
RML: relational databases, XML, JSON, andCSV/TSVdata.

SPARQL-Generate can be combinedwith SPARQLTem-
plate Transformation Language [31] which can transform
RDF graphs into structured text. SPARQL-Generate uses
the input data directly during its schema transformation (S7)
and can leverage SPARQL functions to execute data trans-
formations when applying its schema transformation (S2).
SPARQL-Generate relies on SPARQL to describe the schema
transformation (S1), to join heterogeneous (semi-)structured
data (S6), handle nested hierarchical data (S8), generation of
subjects, predicates, objects (S10), IRIs (S11), named graphs
(S14), Literals with language tags or data types (S12), and
blank nodes (S13), collections and containers (S15). How-
ever, SPARQL-Generate does not specify how the RDFmust
be exported (S3, S4) or how to handle multi-paths (S9).
Shape Expressions Mapping Language (2020)

Shape Expressions Mapping Language8 (ShExML) is a
mapping language based onW3C’s Shape Expressions (ShEx)
[108] (S5) to transform heterogeneous (semi-)structured data
into RDF. ShExML supports relational databases, CSV,XML
and JSONfiles. ShExMLdescribes joins between data sources

4https://www.w3.org/Submission/xsparql-language-specification/,
last accessed 10/11/2021

5https://www.rdfhdt.org/, last accessed 10/11/2021
6https://html.spec.whatwg.org/multipage/web-sockets.html#

the-websocket-interface, last accessed 10/11/2021
7https://kafka.apache.org/, last accessed 10/11/2021
8http://shexml.herminiogarcia.com/spec/, last accessed 10/11/2021
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(S6). It does not use an intermediate representation of the in-
put data (S7) and can handle nested data structures through
its nested iterators (S8).

ShExML describes how subjects, predicates and objects
(S10), graphs (S14), RDF’s Literal language tags or data
types (S12). ShExML supports IRIs (S11) and blank nodes (S13).
ShExML describes the schema transformation (S1), but it
cannot describe collections or containers (S4, S15). ShExML
does not describe to where the generated RDF is exported
to (S3, S4), or how to handle multi-paths (S9). ShExML
does not describe data transformations to apply on the het-
erogeneous (semi-)structured data (S2, S4).
Facade-X (2021)

Facade-X [34] overrides SPARQL’s SERVICE operator (S5)
to generate RDF from heterogeneous (semi-)structured data
sources. It supports JSON,CSV,HTML,XML, spreadsheets,
binary data and embedded data such as EXIF in images.
Facade-X uses the input data directly as it follows the ap-
proach of W3C’s Direct Mapping recommendation [3] (S7).
As SPARQL-Generate, it relies on SPARQL for joins (S6)
and functions (S2), nested data structures (S8), RDF gener-
ation (S10, S11, S12, S13, S14), and describes the schema
transformation (S1). However, Facade-X does not specify
how the RDF should be exported (S3, S4), or how to handle
multi-paths (S9).
4.5. Remarks

In this subsection, we highlightmapping languageswhich
were excluded from this systematic literature review because
they do not support heterogeneous (semi-)structured data,
but they are worth mentioning since they influenced existing
mapping languages and, thus, the research domain overall.

R2O [9] and D2RQ [33] are both mapping languages for
generating RDF graphs but only from relational databases.
They areworth tomention because they influenced theworks
of the RDB2RDF Working Group9 when the R2RML [35]
and Direct Mapping [3] specifications became W3C recom-
mendations. A lot of the mapping languages discussed in
this paper (RML, xR2RML, and D2RML) extend R2RML.

Ontop Mapping Language [112] is an alternative map-
ping language to R2RML.OntopMapping Language can de-
scribe how to generate RDF from relational databases. This
mapping language is compatible with R2RML and mapping
rules can be converted in both directions. The Ontop knowl-
edge graph generation system does support RDF generation
from heterogeneous (semi-)structured data but without ex-
tending its mapping language. On the contrary, Ontop re-
lies on data virtualization frameworks, such as Denodo10,
Dremio11, and Teiid12 to access heterogeneous (semi-) struc-
tured data as if they reside in a relational database.

X3MLmapping definition language [100, 94] is an alter-
native mapping language written in XML. It is used by the

9https://www.w3.org/2001/sw/rdb2rdf/, last accessed 23/03/2022
10https://www.denodo.com/, last accessed 07/04/2022
11https://www.dremio.com/, last accessed 07/04/2022
12https://teiid.io/, last accessed 07/04/2022

X3ML engine to transform XML data into RDF. Other data
formats are under developement.

When DBpedia was originally introduced, it had its own
mapping language13 based on theMediaWiki syntax to trans-
form Wikipedia pages into the DBpedia RDF graph. How-
ever, not all schema and data transformations were defined
using its mapping language but a few of these transforma-
tions were embedded in the DBpedia extraction framework
[95]. While DBpedia is not generated from heterogeneous
data and its mapping language does not refer to heteroge-
neous data, we thought that it is worth mentioning due to
the impact of DBpedia’s RDF graph to the broader Seman-
tic Web community.

YARRRML [60] is a human friendly representation of
RML based on YAML[11] to support users to define map-
pings. YARRRML is widely adopted in the RML commu-
nity, but it was excluded because it is published as a demo.

5. Data transformations
In this Section, we discuss data transformation descrip-

tions (Table 1) and how they are aligned with mapping lan-
guages. Besides schema transformations (Section 4), data
transformations – which describe how to change data values
into a new representation [110] –may also be needed for gen-
erating an RDF knowledge graph from heterogeneous (semi-
)structured data. To date, no overview of existing data trans-
formations is available. In this Section we evaluate a set of
characteristics on existing data transformation approaches.

Section 5.1 discusses the characteristics we applied, and
Section 5.2 discusses each data transformation. Afterwards,
we mentions data transformations approaches which are ex-
cluded, but are worth mentioning in Section 5.3.
5.1. Characteristics

We derived a set of characteristics (Table 3) and divided
them in 2 categories: description and alignment.
Description

Theway in which a data transformation is described such
as function’s body or its parameters.
F1: Declarativeness If the data transformations are declar-
atively described, considering the function body, parameter
values, and return values. Declarative descriptions are not
tight to a single knowledge graph generation pipeline but can
be reused for generating other knowledge graphs.
F2: Shareability If data transformations can be shared and
reused through a common repository or library. Reusing
data transformations through a common repository enables
systems to avoid re-implementing each data transformation.
F3: Custom data transformations If custom data trans-
formations can be described declaratively and be used with
existing data transformations since generating a knowledge
graph may require a custom transformation not built-in into
the system.

13https://mappings.dbpedia.org, last accessed 23/03/2022
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Alignment
How the data transformations are aligned with mapping

languages and if they can be used standalone or not.
F4: Independence If the data transformation description is
independent, it can be used for data cleaning and processing
without a mapping language.
F5: Integration with mapping languages How mapping
languages integrate data transformations, interact with them,
and describe them in the mapping rules. Data transforma-
tionsmay only be applicable before, during, or after the schema
transformation.
5.2. Data transformations

In this Section, we analyzed 7 data transformation ap-
proaches on 5 different characteristics to provide an overview
of these approaches.
SPARQL Functions (2013)

The W3C-recommended SPARQL [109] supports func-
tions14 which are executed during query evaluation by a SPARQL
engine. SPARQL specifies a set of built-in functions, condi-
tions, and custom functions (F3). However, supported func-
tions heavily depend on the underlying SPARQL engine ex-
ecuting the query (F4). SPARQL functions can be reused
among different engines through SPARQLFederatedQueries
[7] (F2). Function parameters and return values are not hard-
coded but binded using SPARQL BIND expressions (F1). SPARQL
also provides conditions through FILTER and IF expressions
to evaluate parts of the SPARQL query only when a cer-
tain condition is met. However, SPARQL functions cannot
be used standalone because of their tight integration with
the SPARQL query and engine (F4). SPARQL functions
are integrated in SPARQL queries as a SPARQL operator
and can be applied on any part of the schema transforma-
tion (F5). SPARQL functions are leveraged by SPARQL-
Generate15 [86], XSPARQL16 [15], and Facade-X [34] to
provide data transformations.
GeoTriples (2014)

GeoTriples17 [83, 81] extends RML [46] with support for
geographical data sources and transformations. GeoTriples
uses GeoSPARQL18 [10] and stSPARQL [82, 12] functions
which are aligned with RML mapping rules through two
extensions: rrx:Function and rrx:ArgumentMap. The param-
eters order in rrx:ArgumentMap matches the order of argu-
ments of the function (rdf:List). Each function parameter
is an rr:TermMap which allows GeoTriples to reference val-
ues as function parameters. The return value is used directly
in the mapping rules and are not declarative described (F1,
F5). GeoTriples supports a fixed set of GeoSPARQL and

14https://www.w3.org/TR/sparql11-query/#func-rdfTerms, last accessed
10/11/2021

15https://github.com/sparql-generate/sparql-generate, last accessed
10/11/2021

16https://github.com/semantalytics/xsparql, last accessed 10/11/2021
17https://github.com/LinkedEOData/GeoTriples, last accessed

10/11/2021
18https://www.opengis.net/doc/IS/geosparql/1.0, last accessed

10/11/2021

stSPARQL functions (F3) as data transformations, but these
functions do not depend on GeoTriples. Thus, GeoSPARQL
and stSPARQL functions can be usedwith other GeoSPARQL
and stSPARQL engines (F4). Currently, GeoSPARQL and
stSPARQL functions are built-in into theGeoSPARQLquery
language [105], and not shared through a repository as FnO
(F2).
KR2RML (2015)

KR2RML [122] is based on R2RML [35] with support
for data transformations through custom functions and con-
ditions written in Python (F3). The function’s body and pa-
rameter values are integrated in KR2RML mapping rules as
a string (F5). Functions can use built-in Python modules
or from Python Package Index19 (F2). Function parameters
and return values are hardcoded in the KR2RML mapping
rules without a declarative description (F1, F4). KR2RML
functions are implemented in Karma20.
Function Ontology (2016)

The Function Ontology21 (FnO) [38, 39, 95] is a seman-
tic description of functions without depending on their im-
plementation (F4). FnO describes each function’s parame-
ters and return value to specify how the function should be
used. Moreover, FnO also describes the problem the func-
tion solves to enable semantically reuse of functions. Ex-
isting functions and their implementations in various lan-
guages can be shared throughout the Function Hub [39] (F2).
Values which are passed to a function are not hardcoded but
referenced (F1). Custom functions can be added by provid-
ing an FnO description and optionally one or multiple im-
plementations (F3). FnO can be used standalone (F4), but is
aligned with RML to apply data transformations.

In RML, FnO descriptions can be added in the map-
ping rules on any part of the schema transformation through
fnml:FunctionMap22 since fnml:FunctionMap is compatiblewith
an R2RML Term Map. Each Function Map refers to the
function description to execute the function (fno:executes)
and its parameters (example: grel:inputString) (F5). An
FnO function can be used as a data transformation or as a
condition in RML when performing the schema transforma-
tion. Several materialization implementations for generat-
ing knowledge graphs from heterogeneous (semi-)structured
data using mapping languages incorporated support for FnO
functions [64, 46, 70, 120].
FunUL (2016)

FunUL [73] extends RML [46] by incorporating func-
tions and conditions inside the mapping rules. FunUL func-
tion’s body is a Literal, specified with the rrf:functionBody

property. Its function’s name is described with the prop-
erty rrf:functionName. Each function can be called through a
rrf:functionCallwhich references to a function (rrf:function)
and its parameters (rrf:parameterBindings) (F5).

19https://pypi.org, last accessed 10/11/2021
20https://github.com/usc-isi-i2/Web-Karma, last accessed 10/11/2021
21https://fno.io/spec/, last accessed 10/11/2021
22http://semweb.mmlab.be/ns/fnml#, last accessed 10/11/2021

Dylan Van Assche et al.: Preprint submitted to Elsevier Page 10 of 25

https://www.w3.org/TR/sparql11-query/#func-rdfTerms
https://github.com/sparql-generate/sparql-generate
https://github.com/semantalytics/xsparql
https://github.com/LinkedEOData/GeoTriples
https://www.opengis.net/doc/IS/geosparql/1.0
https://pypi.org
https://github.com/usc-isi-i2/Web-Karma
https://fno.io/spec/
http://semweb.mmlab.be/ns/fnml#


Declarative RDF graph generation from heterogeneous (semi-)structured data: a Systematic Literature Review

Data
Transformation F1 F2 F3 F4 F5

SPARQL Functions
declarative described,
referenced function &

parameters
Federated Queries Yes Depend on

SPARQL Any

GeoTriples
declarative described,
referenced function &

parameters
No No Standalone R2RML or RML

KR2RML
function body and
parameters as

hardcoded strings

Python Package
Index Yes Depend on

KR2RML KR2RML-only

Function Ontology
declarative described,
referenced function &

parameters
Function Hub Yes Standalone Any

FunUL
function body as string,
referenced function &

parameters

Implementation
dependent Yes Depend on

RML RML-only

D2RML
declarative described,
referenced function &

parameters
No Partially Depend on

D2RML

D2RML-only,
only

pre-processing
input data

D-REPR
function body and

parameters as string,
hardcoded parameters

Python Package
Index Yes Depend on

D-REPR

D-REPR-only,
only

pre-processing
input data

Table 3
Data transformation characteristics for mapping languages.
F1:Declarativeness, F2:Execution, F3:Shareable, F4:Independence, F5:Integration

FunUL is based onR2RML-F [40] and broadens R2RML-
F’s scope from relational databases to heterogeneous (semi-
)structured data. FunUL is not stand-alone, as it must be
used together with RMLmapping rules (F4). FunUL’s func-
tions are written in JavaScript as a Literal in the RML map-
ping rules, but FunUL’s approach does not depend on a spe-
cific programming language as with KR2RML’s data trans-
formations. FunUL’s functions parameters and return val-
ues are not hardcoded in the mapping rules for reusability
(F1). However, FunUL reuses rr:column, rml:reference, and
rr:constant from RML [46] and R2RML [35] for referenc-
ing values for function parameters, therefore no other map-
ping language can be used. FunUL’s function return val-
ues are directly used to generate RDF in a R2RML Predi-
cate Object Map by the system executing the RML mapping
rules. Built-in functions of a programming language can be
used and custom functions can be defined as well inside the
mapping rules (F3). Depending on the programming lan-
guage and system, functions can be shared and reused from
repositories, but there is no equivalent of FnO’s Function
Hub (F2). FunUL is demonstrated in a forked version of the
RMLProcessor23.
D2RML (2018)

D2RML [30] extends R2RML [35] for mapping hetero-
geneous data into RDF (Section 4), but also with dr:Function

to support data transformations and conditions. D2RML in-
corporates data transformations through dr:Transformations

in its declarative description for generating RDF and are ap-
plied on the heterogeneous (semi-)structured data retrieved

23https://github.com/CNGL-repo/RMLProcessor, last accessed
10/11/2021

through D2RML’s declarative data source description (Log-
ical Source). D2RML’s data transformations can only be de-
scribed in a D2RML’s Triples Map to apply on the retrieved
data, they cannot be used on D2RML’s abstracted interme-
diate format or on the generated RDF. D2RML conditions
are located in R2RML’s Term Maps to generate an RDF
triple based upon a certain condition (F5). D2RML uses
dr:Function to refer to a function and dr:ParameterBinding to
refer to function’s parameters, but the return value is not de-
scribed (F1). D2RML data transformations and conditions
cannot be used standalone because of the tight integration
with D2RML (F4). D2RML provides a set of custom IRI
generation functions and allows the use of web services to
apply custom transformations (F3). D2RML can not lever-
age a function repository to share and reuse existing func-
tions (F2). D2RML data transformations and conditions are
available as a web service24.
D-REPR (2019)

D-REPR integrates data transformations for pre-processing
data. Functions can be customized (F3), and are shareable
as with KR2RML through the Python Package Index (F2).
Functions are written in Python with hardcoded parameters
of each function (F1, F4), following a similar principle as in
the case of KR2RML. These functions are only declaratively
described for input data in a [preprocessing] YAML block
which contains a list of functions. Each function has a func-
tion type ([type]), its input parameters ([input]), expected
return values ([output]) and its body ([code]). Since these
functions are described in the [preprocessing]) block, they
cannot be applied on the intermediate JSON tree format or

24https://apps.islab.ntua.gr/d2rml/, last accessed 10/11/2021
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on the generated RDF (F5). D-REPR’s data transformations
are implemented in D-REPR25.
5.3. Remarks

D2RQ Mapping Language [33] is a mapping language
which highly influenced R2RML [35] (Section 4) and sup-
ports conditions similar to FunUL, SPARQL Functions, or
D2RML.However, D2RQMapping Language is not included
in this systematic literature review as it is not a mapping lan-
guage that supports heterogeneous data sources. It is worth
mentioning though that while D2RQMapping Language in-
fluenced R2RML and while D2RQMapping Language does
support conditions and not other data transformations, these
conditions were not integrated in R2RML. While this is not
a problem for R2RML, as such conditions may be addressed
with a view, this is not the case for the mapping languages
that extend R2RML for heterogeneous data. Currently, this
might be one of the major drawbacks of these mapping lan-
guages and theW3CCommunityGroup onKnowledgeGraph
Construction26 considers bringing it back in its specifica-
tion’s revision as shortcut for conditional data transforma-
tions.

6. Systems
We discuss systems for generating RDF graphs from het-

erogeneous (semi-)structured data usingmapping languages.
We divided the systems into two categories, based on how
they generate the RDF graphs:
Materialization systems execute themapping rules andma-
terialize the RDF graphs, like an Extract-Transform-Load
(ETL) process [35].
Virtualization systems answer a query by virtualizing RDF
graphs through mapping rule execution (often referred to as
Ontology Based Data Access (OBDA)) [35].

Several systems exist for the same schema e.g. RML
(section 4.3) or data transformation e.g. FnO (Section 5.2).
More recent systems support more features e.g. RML’s Log-
ical Target [128] than older systems. Multiple systems for
the same schema or data transformation improves the opti-
mizations for executing these transformations [64, 54].

Section 6.1 discusses the characteristics we evaluate for
each system, Section 6.2 describes the materialization sys-
tems and Section 6.3 the virtualization systems evaluated in
this paper. Section 6.4 mentions systems which are worth
mentioning but could not be included in this systematic lit-
erature review.
6.1. Characteristics

We compiled a list of common characteristics which dif-
fer between systems:
Input/Output

These characteristics are related to the input and output
data and which schema and data transformations are used by

25https://github.com/usc-isi-i2/d-repr, last accessed 10/11/2021
26https://www.w3.org/community/kg-construct/, last accessed

07/04/2022

each system:
T1: InputDataWhich data sources are accessible andwhere
data can be retrieved from.
T2: Input Data formats Which data formats are supported
for the input data.
T3: Output Data How the generated knowledge graphs are
exported to a specific location in a certain format.
T4:OutputData formatsWhich data formats are supported
for the output data.
T5: Schema transformation languageWhichmapping lan-
guage(s) are supported by a system.
Data transformation

Each system may have support for data transformations
besides schema transformations. The following characteris-
tics are used to validate how and which data transformations
are supported by a given system:
T6: Data transformation language Which data transfor-
mation language(s) are supported by a system.
T7: ApplicabilityWhere during the execution process does
the system apply data transformations to the data: (i) pre-
processing, during the input data retrieval, (ii) during schema
transformation into RDF, (iii) post-processing, after the schema
transformation.
Implementation

Each system has specific characteristics regarding the
implementation itself such as the programming language or
how it integrates with other systems.
T8: Programming languageThe programming language of
the system.
T9: Integration How an implementation can be integrated
with other systems.
T10: Interface How a system can be used.
T11: License The license of a system.
T12: Repository The location of the system’s code reposi-
tory, if available.

Characteristics specific to materialization and virtualiza-
tion systems are described in Sections 6.2 and 6.3
6.2. Materialization implementations

In this Section, we discuss materialization systems for
transforming heterogeneous (semi-)structured data (Table 1)
into knowledge graphs as RDFwith mapping languages. We
applied a similar categorization tomaterialization systems as
in Section 4 Schema transformations and list them in chrono-
logical order.

We studied each materialization system and created a list
of characteristics specific for materialization which greatly
differ between these systems. We discuss the following char-
acteristics for each materialization system (Tables 7, 8):
T13a: Optimizations Which optimizations are applied to
the materialization process?
T13b: Scaling Which approaches are used to scale the ma-
terialization process?
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Materialization systems for dedicated mapping
languages
Linked Stream Middleware (2012) Linked Stream Mid-
dleware (LSM) [85] focuses on sensor data transformation
from relational databases and other data sources in a stream-
ing fashion (T13b). LSM leverages R2RML [35] and D2R
[16] mapping languages (T5) to access relational databases
while a wrapper is required to generate RDF from other data
sources (T1, T2). Data sources can either push messages
onto LSM’smessage queue for processing or LSM pulls data
from data sources through an Apache Hadoop based cluster
for generating RDF (T13a). RDF graphs can be stored in a
triple store or queried through LSM’s query interface with
SPARQL [109] or CQELS [84] continuously or in a pulling
fashion (T3, T4). LSM does not support data transforma-
tions, it only generates RDF fromheterogeneous (semi-)structured
data sources (T6, T7). LSM was publicly deployed, but this
deployment is not available anymore. LSM’s Java source
code and license are not publicly available, therefore we can-
not study all characteristics (T8, T9, T10, T11, T12).
Morph-RDB v3.12.5 (2014) Morph-RDB [107], previ-
ously known as ODEMapster, implements the R2RMLmap-
ping language [35] (T5) to generate RDF graphs from SQL
query results of relational databases and CSV files (T1, T2).
Morph-RDB applies optimization techniques, such as self-
join and subquery elimination when querying the relational
databases for generatingRDF (T13a, T13b). TheRDF graphs
are exported to a file, either in N-Triples, Turtle, N3, or RD-
F/XML, specified in Morph-RDB’s configuration file (T3,
T4). Morph-RDB can also translate SPARQL queries into
SQL queries (Section 6.3). Morph-RDB is written in Scala
(T8) and does not support data transformations (T6, T7).
Morph-RDB is available as a CLI implementation and pro-
vides a Docker image (T9, T10). Morph-RDB is released on
GitHub27 (T12) under Apache License 2.0 (T11).
RMLMapper v4.12.0 (2014) RMLMapper [46] is a Java
implementation of an RML processor with support for FnO
functions and RML’s Logical Target. RMLMapper can also
generate provenance metadata during the schema and data
transformation if enabled. RMLProcessor, RMLMapper’s
predecessor, was forked and extended with FunUL functions
to provide data transformations [73]. The RMLMapper sup-
ports RML for schema transformations (T5), FnO for data
transformations (T6), and generation of metadata during ex-
ecution. It first retrieves all data, applies joins if needed, exe-
cutes FnO functions and generates RDF (T13a, T13b). Thus,
FnO functions are executed as part of the schema transfor-
mation (T7). The RDF graphs are exported to the specified
RML’s Logical Targets (T3). Currently, the RMLMapper
supports N-Triples, N-Quads, Turtle, N3, RDF/XML, JSON-
LD, HDT, Trix and TriG as RDF output formats (T4). It
supports relational databases, SPARQL endpoints, files, and
data on the Web (T1). The RMLMapper generates RDF

27https://github.com/oeg-upm/morph-rdb, last accessed 23/03/2022,
date last commit on default branch 08/05/2021

graphs from SQL query results, W3C Web of Things [74]
webAPIs, SPARQL [109] query results, XLSX, ODS, CSV,
TSV, JSON and XML files (T2). It exports the RDF graphs
in N-Quads, Turtle, TriG, TriX, JSON-LD and HDT to files,
VoID datasets, and with SPARQL UPDATE queries to SPARQL
endpoints. RMLMapper is available as a CLI implemen-
tation, a Docker image, and a Java library (T9, T10). The
RMLMapper is released underMIT license (T11) onGitHub28 (T12).
Karma v2.5 (2015) Karma [122] implementsKR2RML [122] (T5)
for transforming heterogeneous data sources into RDF graphs
through an intermediate representation (Nested Relational
Model [91]). Karma transforms any heterogeneous (semi-
)structured data intoNRM format and applies joins if needed.
Afterwards, the transformation to RDFwith KR2RMLmap-
ping rules is applied (T13a, T13b). Karma supports KR2RML’s
data transformations written in Python (T6) which are ex-
cuted during the schema transformation (T7). Karma is writ-
ten in Java (T8) and is integrated in Karma’s CLI implemen-
tation (T9, T10). Karma can access relational databases and
files (T1) and transform SQL tables, CSV, TSV, JSON and
XML files to RDF (T2). The RDF is exported to a file speci-
fied as a CLI parameter (T3). Karma supports JSON-LD and
N3 as RDF output formats (T4). Karma is publicly avail-
able29 (T12) under Apache License 2.0 (T11).
Morph-xR2RML v1.3.1 (2015) Morph-xR2RML [98] ex-
tends Morph-RDB (T13a, T13b) with support for xR2RML
[98] mapping language (T5). Morph-xR2RML is written in
Scala (T8) and supports relational and NoSQL databases,
and files (T1). Morph-xR2RML can transform SQL query
results, NoSQL query results, JSON, XML, CSV, and TSV
files to RDF (T2). Morph-xR2RML retrieves the data, ap-
plies joins if needed and generates RDF, including RDFS
collections and containers (T13b). Morph-xR2RML does
not provide data transformations, such as FnO or FunUL
(T6, T7). Morph-xR2RML is configured with a configura-
tion file and provides a CLI implementation to export the
RDF graphs to a file or a SPARQL endpoint (T3, T6, T9,
T10). Morph-xR2RML supports N-Triples, Turtle, N3, RD-
F/XML, and JSON-LD asRDF output format. Morph-xR2RML
is available onGitHub30 (T12) underApache License 2.0 (T11).
TripleWave v2.1.1 (2016) TripleWave [96] generates RDF
graphs in a streaming fashion (T13b) using R2RML map-
ping rules [35] (T5). TripleWave consists of wrappers to
access data sources and currently supports JSON files (T1,
T2). R2RML mapping rules are only used to generate RDF
from the retrieved data. TripleWave scales vertically by the
number of CPU cores (T13a). TripleWave does not support
data transformation, but they can be hardcoded into the data
access wrappers (T6). Because of that, any data transfor-

28https://github.com/RMLio/rmlmapper-java, last accessed 23/03/2022,
date last commit on default branch 11/03/2022

29https://github.com/usc-isi-i2/Web-Karma, last accessed 23/03/2022,
date last commit on default branch 27/02/2022

30https://github.com/frmichel/morph-xr2rml, last accessed 23/03/2022,
date last commit on default branch 13/01/2022
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mations is executed as a pre-processing step when access-
ing the input data (T7). It is configured with a configuration
file to export its RDF stream in JSON-LD format (T4) to
a file or publish it as a WebSocket or MQTT stream (T3).
TripleWave is written in NodeJS (T8) and it is available un-
der Apache License 2.0 (T11) on GitHub31 (T12) as a CLI
implementation (T9, T10).
GeoTriples v1.2.1 (2018) GeoTriples [83, 81] implements
GeoTriples’s GeoSPARQL extensions to RML [46] (T5). It
is written in Java (T8) available as a CLI implementation
and webapp (T9, T10). GeoTriples can access relational
databases and files and generates RDF from SQL query re-
sults, CSV, XML, JSON, GeoJSON, KML, and shapefiles
(T1, T2). GeoTriples implements geospatial transformations
from GeoSPARQL [105] and stSPARQL [12, 82] to handle
geospatial data (T6). These transformations are executed to-
gether with the schema transformation (T7). It first fetches
all geospatial data, applies transformations and joins if needed
and generates RDF graphs to a file (T13a, T13b), RML’s
Logical Target is not supported yet (T3), but it can export
RDF in Turtle or RDF/XML format (T4). GeoTriples is
available as a CLI implementation or webapp (T9, T10) and
it is released32 (T12) under Apache License 2.0 (T11).
D2RML processor (2018) D2RML processor [29] imple-
ments D2RML [29] mapping language (T5) with support for
data transformations (T6), conditions and RDF generation
from heterogeneous (semi-)structured data. D2RMLproces-
sor’s source code is not publicly available, but can be used
as a web service (T9, T10). Since the source code is not
publicly available (T12), we cannot study or discuss charac-
teristics T1, T2, T3, T4, T8, T13a, or T13b.
RDF-Gen (2018) RDF-Gen [114] generates RDF in a stream-
ing fashion from multiple sources described by a custom
syntax (T5). RDF-Gen can access relational databases and
files in CSV, XML, and JSON format (T1, T2). RDF-Gen
first transforms data of a data source into records, these records
are later on transformed into RDF using a centralized clus-
ter (T13a, T13b). The authors claim that RDF-Gen support
functions for data transformation, but we have not been able
to verify this as the source is not publicly available (T6, T7).
RDF-Gen exports RDF in N-Triples or Turtle to a file spec-
ified in its configuration file (T3, T4). RDF-Gen is available
as compiled Java Jar CLI implementation (T9, T10, T12)33
under Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License (T11).
RMLStreamer v2.1.1 (2019) The RMLStreamer [54] is
RMLMapper’s counterpart (Section 6.2) for generating RDF
in a streaming fashion (T13b) usingRMLmapping rules [46]

31https://github.com/streamreasoning/TripleWave, last accessed
23/03/2022, date last commit on default branch 10/07/2019

32https://github.com/LinkedEOData/GeoTriples, last accessed
23/03/2022, date last commit on default branch 10/09/2021

33https://github.com/datAcron-project/RDF-Gen, last accessed
23/03/2022, date last commit on default branch 18/07/2019

(T5). It can access files in CSV, JSON, or XML format, and
Kafka, MQTT, or TCP streams (T1, T2). The RMLStreamer
uses Apache Flink to scale horizontally and vertically de-
pending on the number of streams and input rate when gen-
erating RDF. Moreover, the RMLStreamer also leverages
Apache Flink for optimizingmemory usage, high-availability,
and fault-tolerance (T13b). It leverages FnO [38, 39] to
apply data transformations during the schema transforma-
tion (T6, T7), and RML’s Logical Target [128] (T3). The
RMLStreamer can export RDF graphs in JSON-LD,N-Triples,
or N-Quads format (T4). It is written in Scala (T8) and avail-
able34 (T12) underMIT license (T11) as a CLI implementa-
tion and Docker image (T9, T10).
MapSDI v1.0 (2019) MapSDI [72] pre-processes hetero-
geneous data to remove duplicates and unnecessary data by
exploiting RML [46] mapping rules (T5), and applies rela-
tional algebra to improve the execution of the mapping rules.
MapSDI leverages existing RML processors to execute the
mapping rules, therefore it inherits their characteristics (T3,
T4, T5, T6, T7, T13a, T13b). MapSDI can pre-process files
in CSV format (T1, T2), is written in Python (T8) and avail-
able35 (T12) as a CLI implementation (T9, T10) underApache
License 2.0 (T11).
D-REPR v2.9.3 (2019) D-REPR [132] is a Python and
Rust (T8) based mapping language processor which gener-
ates RDF using the D-REPR mapping language [132] (T5).
D-REPR can access CSV, JSON,XML, spreadsheets, NetCDF
files, and relational & non-relational databases (T1, T2). It
applies data transformation with built-in or custom functions
(T6). D-REPR retrieves the data, infers classes and neces-
sary joins, applies pre-processing data transformations on
the input data (T7), and generates RDF (T13a, T13b). D-
REPR can export its RDF to a file as Turtle or a custom JSON
format (T3, T4). D-REPR is available on GitHub36 (T12)
underMIT license as a CLI implementation andwebapp (T9,
T10, T11).
RocketRML v1.11.3 (2019) RocketRML [120] is aNodeJS
implementation (T8) of an RML [46] processor (T5) with
FnO [38, 39] support for data transformations (T6). It can
use two different XMLparsers for performance orXML spec-
ification compliance reasons (T13a) and supports files (T1)
in JSON, XML, or CSV format (T2). RocketRML retrieves
all data, applies FnO functions, joins if necessary and gen-
erates RDF (T13b). It executes the data transformation to-
gether with the schema transformation (T7). RDF is out-
putted to a file as RocketRML does not support RML’s Log-
ical Target yet to specify how the RDF graphs should be ex-
ported to one or multiple targets (T3). It is available as a
NodeJS package on NPM, CLI implementation, Docker im-

34https://github.com/RMLio/RMLStreamer, last accessed 23/03/2022,
date last commit on default branch 25/02/2022

35https://github.com/SDM-TIB/MapSDI, last accessed 23/02/2022, date
last commit on default branch 25/10/2021

36https://github.com/usc-isi-i2/d-repr/, last accessed 23/03/2022,
date last commit on default branch 14/06/2021
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age, or through a web application (T9, T10). RocketRML
is released37 (T12) under Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International license (T11).
SDM-RDFizer v4.0 (2020) SDM-RDFizer [64] is a Python
implementation (T8) of an RML [46] processor with a focus
on efficient execution of RML mapping rules (T5). SDM-
RDFizer uses optimized data structures such as indexes, re-
lational algebra operators, and multi-threading to improve
the execution. It also avoid generating duplicate RDF and
executing duplicate joins between data (T13a). SDM-RDFizer
can access files and relational databases (T1). SDM-RDFizer
can transformSQLquery results, CSV, TSV, JSON, andXML
files to RDF (T2). It does not support data transformations
with FnO [38, 39], but it relies on FunMap (Section 6.2) to
achieve this (T6). This way, the SDM-RDFizer can focus
only on the schema transformation and optimize it. SDM-
RDFizer incrementally parses the input data, applies joins,
and generates RDF graphs (T13b). RDF graphs are exported
to a file (T3). SDM-RDFizer is available as a CLI implemen-
tation, Docker container or a Python module on the Python
Package Index (T9, T10) and released38 (T12) under Apache
License 2.0 (T11).
FunMap v1.0 (2020) FunMap [70] is a Python-based (T8)
FnO [38, 39] function processor which pre-processes FnO
functions in RML mapping rules [46] (T5, T7). This way,
FunMap allows to use mapping rules containing RML and
FnO to be executed on RML processors which does not sup-
port any FnO functions such as the SDM-RDFizer. More-
over, it optimizes the function execution by avoiding exe-
cuting a function multiple times when the function yields
the same result. (T6, T7, T13a). FunMap leverages existing
RML processors to execute the mapping rules, therefore it
inherits their characteristics (T1, T2, T3, T13b). FunMap is
available as a CLI implementation (T9, T10) and released39
(T12) under Apache License 2.0 (T11).
Chimera v2.2 (2020) Chimera [116] generates RDF graphs
(uplifting) through RMLmapping rules (T5) and transforms
RDF into various data formats (lowering) with Apache Ve-
locity Templates (T5). Chimera uses uplifting for creating
an RDF graph as intermediate format. Afterwards, lower-
ing is applied to export the data in various non-RDF for-
mats. This approach is common in public transportation use
cases where it is desired to publish the same in multiple for-
mats. Chimera leverages and extends the RMLMapper. It
improves RMLMapper’s memory utilization by not caching
subjects and data records for mapping rules without joins,
executing mapping rules by data source, and incremental
batches. Chimera’s optimizations differs fromMapSDI (Sec-
tion 6.2) and FunMap (Section 6.2) because MapSDI and

37https://github.com/semantifyit/RocketRML, last accessed 23/03/2022,
date last commit on default branch 30/11/2021

38https://github.com/SDM-TIB/SDM-RDFizer, last accessed 23/03/2022,
date last commit on default branch 18/03/2022

39https://github.com/SDM-TIB/FunMap, last accessed 23/03/2022, date
last commit on default branch 09/01/2021

FunMap optimize the mapping rules while Chimera opti-
mizes the implementation to execute these mapping rules.
Chimera also adds multi-thread execution of mapping rules
to increase the RMLMapper’s throughput and access to re-
mote RDF stores for storing the generatedRDF graphs (T13a,
T13b). Since Chimera reuses the RMLMapper, it inherits its
characteristics (T1, T2, T3, T4, T5, T6, T7, T8), but it uses
an older version of the RMLMapper which did not imple-
ment RML’s Logical Target and W3C Web of Things for
web APIs yet. Chimera is released40 (T12) as a CLI imple-
mentation under Apache License 2.0 and the RMLMapper
extension under MIT license (T9, T10, T11).
Materialization systems for query-language-driven
mapping languages
SPARQL-Generate v2.0.9 (2017) SPARQL-Generate [86,
87] is the reference implementation of SPARQL-Generate
mapping language [86, 87] (T5) on top of Apache Jena in
Java (T8). SPARQL-Generate leverages Apache Jena and its
SPARQL [109] implementation with SPARQL-Generate’s
extensions to process the SPARQL-Generate query. SPARQL-
Generate supports files, HTTP web APIs, and streams (T1),
as well as joins and SPARQL Functions to apply data trans-
formations (T6). It can generate RDF fromWebSocket streams,
MQTT streams, HTTP web APIs, plain text with regular
expressions, HTML, CSV, TSV, XML, JSON, GeoJSON,
CBOR, and HDT files (T2). SPARQL-Generate fetches all
data, applies SPARQLFunctions and joins if applicable, gen-
erates RDF graphs (T13a, T13b) and exports them to a file (T3).
SPARQLFunctions are executed by the underlying SPARQL
engine together with the schema transformation (T7). SPARQL-
Generate is available as a CLI implementation, a Java library,
a webapp, and inside the Sublime Text editor (T9, T10). It
is released41 (T12) under Apache License 2.0 (T11).
SPARQL-Anything v0.4.1 (2021) SPARQL-Anything [34]
implements Facade-X’s SPARQL SERVICE operator overrid-
ing (T5) for generatingRDF fromheterogeneous (semi-) struc-
tured data. It can access files (T1) in CSV, JSON, HMTL,
XML, RDF, and plain text formats. SPARQL-Anything can
also access data in archives, spreadsheets, images, and en-
coded metadata data, e.g., EXIF data in images (T2). It
is implemented on top of Apache Jena SPARQL engine in
Java (T8). Since SPARQL-Anything reuses an existing SPARQL
engine, support for data transformations depends on the un-
derlying engine (T6). Thus, the SPARQL Functions are exe-
cuted together with the schema transformation (T7). SPARQL-
Anything retrieves all data in memory and transforms it to
RDF (T13a, T13b). The generated RDF graphs are exported
to a file or are available through a Fuseki SPARQL end-
point (T3). SPARQL-Anything is available as a CLI imple-
mentation or a SPARQL endpoint (T9, T10). It is released42

40https://github.com/cefriel/chimera, last accessed 23/03/2022, date
last commit on default branch 01/10/2021

41https://github.com/sparql-generate/sparql-generate, last accessed
07/04/2022, date last commit on default branch 07/04/2022

42https://github.com/SPARQL-Anything/sparql.anything, last accessed
23/03/2022, date last commit on default branch 18/03/2022
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(T12) under Apache License 2.0 (T11).
Materialization systems for constraint-driven mapping
languages
ShExML v0.2.6 (2020) ShExML [51] is the reference im-
plementation of the ShExML mapping language [51] (T5)
in Scala (T8). It generates RDF using ShExML mapping
rules. ShExML can also generate the ShEx [108] validation
shapes and translate ShExML mapping rules into RML [46]
mapping rules (T6). ShExML can access HTTP web APIs,
files in XML, JSON, CSV, or TSV format, and relational
databases (T1, T2). ShExML retrieves the data, applies joins
if needed and generates RDF graphs (T13a, T13b) which are
exported to a file (T3). ShExML does not provide any data
transformations such as FnO (T6, T7). ShExML is available
as a CLI implementation, Java library, and a webapp (T9,
T10) and released on GitHub43 (T12) under theMIT license
(T11).
6.3. Virtualization implementations

In this Section, we discuss virtualization systems for trans-
forming (semi-)structured heterogeneous data into knowl-
edge graphs as RDF with mapping languages (Table 1). We
applied a similar categorization to virtualization systems as
in Section 4 Schema transformations and list them in chrono-
logical order. All virtualization implementations discussed
in this Section implement dedicatedmapping languages such
as R2RML or RML.

We studied each virtualization system and created a list
of characteristics specific for virtualization which differ be-
tween the discussed systems. We discuss two characteristics
for each virtualization system (Tables 9, 10):
T13a: Features Each system has its own set of features re-
garding virtual access to its heterogeneous (semi-)structured
data sources. Which features are applied to the virtualization
process?
T13b: Federation Virtualization systems access multiple
data sources typically using federation. Does the system sup-
port federation or not?
Morph-RDB extension (2010) Morph-RDB extension [19]
enablesOntology-BasedDataAccess to streaming data sources
by extending R2O [19] mapping rules with streaming sup-
port (S2Omapping rules) (T5) and querying these data sources
with SPARQLStream (T13a). Morph-RDB’s SPARQLStreamis inspired by C-SPARQL [8] and SNEEql [17] but with sup-
port for streamingwindows and SPARQL1.1 aggregates [109].
Morph-RDB transforms SPARQLStream queries into SNEE
queries (SNEEql), the SNEE engine executes the query on
the data sources. Morph-RDB generates the triples to an-
swer the SPARQLStream query and returns them (T3, T4).
The S2O mappings are used to transform the SNEE query
results back into RDF (T4). Morph-RDB supports files in
CSV format, SQL query results of relational databases and
sensor streams (T1, T2). Morph-RDB does not support any

43https://github.com/herminiogg/ShExML, last accessed 23/03/2022,
date last commit on default branch 28/02/2022

data transformations (T6) or federation (T13b). It is written
in Scala (T8). Morph-RDB is accessible as a CLI imple-
mentation and provides a Docker image (T9, T10). Morph-
RDB’s extension is released44 (T12) under the Apache Li-
cense 2.0 (T11).
Ontop v4.1.1 (2013) Ontop [112] virtualizes access to re-
lational SQL databases andOpenGIS by translating SPARQL
queries into SQL queries. It leverages R2RML [35]mapping
rules or the Ontop Mapping Language (T5) to perform this
translation, and extensions for accessing OpenGIS data (T1,
T2). Generated triples are returned as SPARQL query re-
sults (T3, T4). Ontop does not support data transforma-
tions (T6), advanced SPARQL features such as property paths,
existential queries with [NOT] EXIST, or basic query feder-
ation with SERVICE (T13b). However, efforts such as Den-
odo45, Dremio46, or Teiid47 extend Ontop with federation
support (T13b). Ontop uses an Intermediate Query language
(T13a) with well known SQL optimizations, such as (i) re-
dundant join elimination and pushing down joins to the data-
level, and (ii) virtualization-specific optimizations for SQL
derived from the OPTIONAL and MINUS SPARQL constructs (T10e).
Ontop translates SPARQL aggregates to SQL aggregates for
the database engine to perform the aggregation (T13a). On-
top supports ontological entailment by relying on a mapping
saturation approach: in an offline phase, the mapping rules
are saturated with the ontology rules, meaning additional
mapping rules are generated for entailed triples. In previous
generations of Ontop, ontological entailment was supported
with a query rewriting approach using the PerfectRef algo-
rithm [23], but that was abandoned as mapping saturation
proved more efficient. Ontop supports entailment for RDFS
and OWL 2 QL, and has experimental support for entail-
ment with SWRL rules (T13a). Ontop has been integrated in
the Optique Platform (2013) [76, 52] to access data such as
relational databases, triple stores, temporal databases, data
streams, etc. Optique leverages User Defined Functions as
data transformation for accessing external data sources, win-
dowing, datamining. However, Optique is not publicly avail-
able, while Ontop is available as a CLI implementation and
Docker image (T9, T10). Ontop is written in Java (T8) and
released48 (T12) under Apache License 2.0 (T11).
XGSN v2.0.1 (2014) XGSN [21] leverages Global Sensor
Networks (GSN) middleware to provide virtualization over
Internet of Things sensors using theW3C-recommended SSN
ontology [55] (T5). XGSN uses wrappers to interface with
sensors such as UDP, serial, HTTP, MQTT, etc. (T1, T2,
T6). Data transformations are applied in data wrappers when

44https://github.com/oeg-upm/morph-rdb, last accessed 23/03/2022,
date last commit on default branch 08/05/2021

45https://ontop-vkg.org/tutorial/federation/denodo/, last accessed
10/11/2021

46https://ontop-vkg.org/tutorial/federation/dremio/, last accessed
10/11/2021

47https://ontop-vkg.org/tutorial/federation/teiid/, last accessed
10/11/2021

48https://github.com/ontop/ontop, last accessed 23/03/2022, date last
commit on default branch 21/03/2022
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accessing the input data (T7). XGSN configures each sen-
sor using a custom XML document to specify the wrapper,
sampling rate, storage size, and which sensor values to ex-
pose through the SSN ontology. While XGSN can access
(semi-)structured heterogeneous data from various sensors,
it is limited to sensor data only. XGSN allows to use differ-
ent RDF stream processors (T13a) – such as CQELS –which
provide a SPARQL interface to access the RDF graphs (T3,
T4). XGSN does not support federation (T13b). XGSN is
written in Java (T8) as a CLI implementation, and can be ac-
cessed through a webapp and an API (T9, T10). XGSN is
available on GitHub49 (T12) under theGNUGeneral Public
License v3.0 (T11).
Morph-RDB v3.12.5 (2014) Morph-RDB [107] – also dis-
cussed in Section 6.2 as materialization system – supports
virtualization for relational databases, such asMySQL, Post-
gresSQL, H2, and MonetDB or files in CSV format (T1,
T2) through R2RML [35] mapping rules (T5). Morph-RDB
translates unions, filters and aggregation from SPARQL to
SQL to reduce the client-side processing (T13a). Morph-
RDB applies two types of well-known optimizations (T13a)
on SQL queries: (i) self-join elimination, and (ii) subquery
elimination. Morph-RDBdoes not use an intermediate query
language, nor does it supports data transformations (T6, T7),
ontology entailment (T13a), and federation (T13b). Morph-
RDB is accessible as a CLI implementation written in Scala
(T8) and provides a Docker image (T9, T10). Morph-RDB
is released50 (T12) under Apache License 2.0 (T11).
Morph-xR2RML v1.3.1 (2015) Morph-xR2RML [98] –
also discussed in Section 6.2 as materialization implementa-
tion – is a fork ofMorph-RDB [107]which translates SPARQL
queries into SQL queries andMongoDBqueries using xR2RML
mapping rules (T1, T2, T5, T13a). Morph-xR2RML does
not support data transformations (T6) and not all operators of
SPARQL such as joins and some filters, therefore the query
is translated in two steps: (i) an abstract query is generated
from the SPARQL query using the xR2RMLmapping rules.
(ii) the abstract query is translated into MongoDB queries.
Untranslated parts of the query are processed by xR2RML
client-side. Morph-xR2RML51 provides a CLI implemen-
tation written in Scala (T8) or as a SPARQL endpoint (T9,
T10) and is available (T12) under Apache License 2.0 (T11).
SparqlMap-M v0.7.4 (2016) SparqlMap-M [126] is an
extension of SparqlMap [127] to provide virtualization over
CSV files, relational databases, and non-relational databases
using R2RML mapping rules [35] (T5). SparqlMap-M ex-
tends R2RML [35] to support data transformations and con-
ditions (T6) which are executed during the schema transfor-
mation (T7). SparqlMap-M analyses SPARQL queries [109]

49https://github.com/LSIR/gsn, last accessed 23/03/2022, date last
commit on default branch 12/03/2017

50https://github.com/oeg-upm/morph-rdb, last accessed 23/03/2022,
date last commit on default branch 08/05/2021

51https://github.com/frmichel/morph-xr2rml, last accessed 23/03/2022,
date last commit on default branch 13/01/2022

to reduce the R2RMLmappings to the minimum for answer-
ing the query and translates to SQL to execute the query
on the the database engine (T13a). SparqlMap-M does not
implement support for SPARQL Federated Queries (T13b).
SparqlMap-M is written in Java (T8) and available as a CLI
implementation or SPARQL endpoint on GitHub52 without
a license (T9, T10, T11, T12).
Morph-streams++ v1.0.10 (2016) Morph-streams++ [89]
is the successor of the extended Morph-RDB and leverages
SPARQLStream [20] queries. Morph-streams++ uses exist-
ing Distributed StreamManagement Systems (DSMS) to ex-
ecute SPARQLStream queries with R2RMLmapping rules [35]
(T5). The SPARQLStream queries are first translated into
queries supported by the underlying DSMS and its results
are translated into RDF with R2RMLmapping rules (T13a).
Generated RDF graphs are returned as SPARQLStream query
results (T3, T4). Supported data sources and formats inMorph-
streams++ depend on the underlying DSMS: currently the
Esper53 and Global Sensors Network (GSN) [1] (T1, T2) are
supported by Morph-streams++. Morph-streams++ does
not support any data transformations (T6, T7), or federa-
tion (T13b). Morph-streams++ is written in Scala (T8) and
released54 (T12) as a CLI implementationwithout a license (T9,
T10, T11).
Squerall v0.2 (2019) Squerall [93] answers SPARQLqueries
[109] over heterogeneous (semi-)structured data sources that
are mapped to RDF with RML [46] (T5) and FnO func-
tions [38, 39] (T6). Squerall leverages the distributed data
processing systems Spark or Presto: both systems use an in-
ternal tabular data format into which different data sources
can be (virtually) integrated. Spark and Presto allow the ma-
nipulation of multiple heterogeneous (semi-)structured data
sources in a uniform, SQL-like manner. Squerall translates
SPARQL queries into Spark’s or Presto’s SQL queries for
execution (T13a). Squerall applies FnO functions during
its schema transformation with RML mapping rules (T7).
Squerall only supports translation of SPARQL aggregations;
other SPARQL operators are considered future work (T13a).
Squerall can access Apache Parquet, CSV files, relational
databaseswith JDBC connectors, and non-relational databases,
such as MongoDB, Elasticsearch, or Couchbase (T1, T2).
Squerall55 is written in Java (T8) and available under Apache
License 2.0 (T12) as a CLI implementation and via aGUI (T9,
T10).
Ontario (2019) Ontario [48] provides virtualization over a
set of SPARQL endpoints [109] and non-SPARQL database
interfaces using RML mapping rules [46] (T5). It trans-
lates queries into star shaped subqueries (T13a) and are com-

52https://github.com/tomatophantastico/sparqlmap, last accessed
23/03/2022, date last commit on default branch 31/08/2017

53http://www.espertech.com/esper, last accessed 10/11/2021
54https://github.com/jpcik/morph-streams, last accessed 23/03/2022,

date last commit on default branch 28/09/2016
55https://github.com/EIS-Bonn/Squerall, last accessed 23/03/2022,

date last commit on default branch 10/09/2021
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bined with RML mapping rules to select the right SPARQL
endpoint to answer the subquery. The results of each sub-
query are joined locally (T13a). Ontario supports SPARQL
endpoints, relational databases, such as MySQL, files (lo-
cally or on Apache Hadoop) in CSV, TSV, and XML format,
and non-relational databases such as MongoDB and graph
databases, such as Neo4J (T1, T2). It implements SPARQL
Federated Queries via SPARQL’s SERVICE operator (T13b),
but it does not support data transformations (T6). Ontario
is written in Python (T8) available as CLI implementation56
under the General Public License 2.0 (T9, T10, T11 T12).
Morph-GraphQL v1.0.0 (2020) Morph-GraphQL [26] is
a virtualization systemwritten in NodeJS (T8) for translating
heterogeneous (semi-)structured data into RDF and expos-
ing it over GraphQL (T3, T4) with R2RML and RML map-
pings (T5). Morph-GraphQL supports relational databases
e.g. MySQL and files in CSV format (T1, T2). Morph-
GraphQL does not support data transformations (T6, T7).
Morph-GraphQL is available as CLI implementation andDocker
image onGitHub57 underApache License 2.0 (T9, T10, T11,
T12). However, the authorsmarkedMorph-GraphQL as dep-
recated in its repository.
Obi-Wan (2020) Obi-Wan [18] is a Java-based (T8) virtu-
alization system for data stored in relational and non-relational
databases. Obi-Wan uses a custom Global-Local As View
(GLAV) mapping language (T5) to link heterogeneous data
to an RDF representation. Obi-Wan supports relational
databases e.g. PostgreSQL, non-relational databases e.g. Mon-
goDB, Redis, and triple stores e.g. Jena TDB (T1, T2). Obi-
Wan supports multiple entailment strategies such as query
rewriting, mapping saturation, and hybrid rewriting-saturation
(T13a). Obi-Wan returns the generated triples as SPARQL
query results (T3, T4). To the best of our knowledge, Obi-
Wan does not support data transformations (T6, T7), or SPARQL
Federated Queries (T13b). Obi-Wan is available as CLI im-
plementation andwebapp onGitLab58 underMIT license (T9,
T10, T11 T12).
6.4. Remarks

Our systematic literature review focuses on systemswhich
generate RDF from heterogeneous (semi-)structured data.
However, we discuss here a few systems which are excluded
due to our exclusion criteria, but are important in this field.

Commercial systems for generating RDF also exist. We
indicatively mention Virtuoso59 which is an RDF triple store
with support for R2RML, Oracle RDF60 which allows Ora-
cle databases to store semantic data as RDF, Stardog61 which

56https://github.com/SDM-TIB/Ontario, last accessed 23/03/2022, date
last commit on default branch 09/03/2021

57https://github.com/oeg-upm/morph-graphql, last accessed
07/04/2022, date last commit on default branch 13/10/2021

58https://gitlab.inria.fr/cedar/obi-wan, last accessed 23/03/2022,
date last commit on default branch 22/10/2021

59https://virtuoso.openlinksw.com, last accessed 07/04/2022
60https://docs.oracle.com/database/121/RDFRM/rdf-overview.htm, last

accessed 07/04/2022
61https://docs.stardog.com/virtual-graphs/mapping-data-sources, last

provides the Stardog Mappings to generate RDF from het-
erogeneous data, and CARML62 which implements RML.
However, these commercial systems are excluded following
our inclusion and exclusion criteria which exclude commer-
cial systems.

Different systems of theMorph family (Morph-RDB [107,
19], Morph-xR2RML [98], Morph-GraphQL [26], Morph-
streams++ [89]) were included in the survey, but each of
these systems grows independently. OnlyMorph-Skyline [53]
andMorph-xR2RMLbuild uponMorph-RDB.Besides these
systems, the Morph family also contains Morph-CSV [28]
which was excluded from our survey because it did not ad-
here to our inclusion and exclusion criteria (Step 4), as it only
supports CSV data. Morph-Skyline was also excluded by
our methodology in Step 4 since it only supports relational
databases. However, we consider that it is worth mention-
ing because it implements RML, thus it has the potential to
generate RDF from other data formats too.

X3ML engine [100, 94] transforms data into RDF with
the X3ML mapping definition language. The exclusion cri-
teria excluded the X3ML engine because it currently only
supports XML as input data format. However, it may be ex-
tended to RDF as input format in the future.

Last, it is worth mentioning two systems: Morph-KGC
[5] and EABlock [71], which were accepted while this jour-
nal was under review. Morph-KGC supports CSV, TSV, JSON
and XML data, as well as relational databases. EABlock fol-
lows a similar approach to FunMap by transforming RML
mapping rules with FnO functions into RML mapping rules
without FnO functions with an efficient strategy to evaluate
them.

7. Discussion
In this Section, we discuss the outcome of this systematic

literature review of declarative RDF graph generation from
(semi-)structured heterogeneous data. We discuss the high-
lights of this systematic review and its categories (schema
and data transformations, as well asmaterialization and vir-
tualization systems). Afterwards, we discuss the open issues
we encountered, excluded approaches, automation, and the
future of declarative RDF graph generation from heteroge-
neous (semi-)structured data.
Overview In this systematic literature review, we analyzed
52 articles focusing on declarative RDF graph generation
from heterogeneous (semi-)structured data sources. We closely
inspected the schema and data transformations proposed by
different mapping languages, as well as systems for generat-
ing RDF graphs from heterogeneous (semi-)structured data.
18 articles introduce a schema transformation, 16 articles a
data transformation, and 39 articles describe a system. 12 ar-
ticles were submitted to workshops, 27 to conferences, and
13 to journals.

We observed that the study of mapping languages and
their system implementations is getting more and more ma-
accessed 07/04/2022

62https://github.com/carml/carml, last accessed 07/04/2022
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ture and we more often encounter solutions being proposed
to conferences and journals the last few years. The number
of systems is twice the number of mapping languages indi-
cating that mapping languages are implemented and reused
among systems to leverage themerits of declarative approaches.
Schema transformations We discussed 15 characteristics
for each schema transformation (Section 4). 8 mapping lan-
guageswere identified. We observed that 6 of them are either
based onR2RML/RML [35, 46] (4 out of 6) or SPARQL [109]
(2 out of 6). Some schema transformations provide their own
custom syntax, such as D-REPR [132], or leverages other
specifications, such as ShExML [51].

Only 2 mapping languages (D-REPR [132] and D2RML
[30]) transform input data into an intermediate representa-
tion before applying their schema transformation. Almost
all mapping languages describe how input data should be re-
trieved and accessed, but do not consider how the generated
RDF should be exported (except RML [128]), thus, they do
not declaratively describe the complete workflow.

Most mapping languages follow the same approach to
access the input data and apply the schema transformations:
they refer to the input data considering a language relevant
to the input data. That does not hold though for the mapping
languages where the input data is transformed to an interme-
diate representation early in the process. XSPARQL [15, 41]
immediately translates a SPARQL query to an SQL or XPath
query; Facade-X [34] directly maps to RDF and then applies
custom schema transformations; D-REPR [132] to a JSON
tree structure; and D2RML [30] to a tabular structure. An
intermediate representation creates an additional processing
step for the system, but reduces the complexity of the schema
transformation in the system.

All mapping languages cover the RDF specification, be-
sides D-REPR [132] that does not support named graphs and
language tags. However, not all mapping languages support
RDFS collections and containers. In fact, this is covered by
all SPARQL-based languages, as SPARQL intuitively cov-
ers RDFS collections and containers, and only 1 mapping
language based on R2RML/RML [35, 46]: xR2RML [98].
While SPARQL covers RDFS collections and containers, it
was not designed to be used as a mapping language which re-
quires additional extensions such as SPARQL-Generate [86],
XSPARQL [15, 41], or Facade-X [34] to use it for declara-
tive RDF generation from (semi-)structured heterogeneous
data.
Data transformations 5 characteristics were discussed for
data transformations (Section 5). We observed that most
data transformations are dedicated to a certain schema trans-
formation, but only in the case of RML, there are 3 alter-
native data transformations proposed (GeoTriples [83, 81],
Function Ontology (FnO) [38, 39, 95], and FunUL [73]).

FnO [38, 39, 95] and SPARQL Functions [109] are the
only data transformations not depending on a specific schema
transformation. However, FnO is completely standalone from
any schema transformation while SPARQL Functions are

only available in a SPARQL query. Other data transforma-
tions such as D2RML [40] or KR2RML [122] are tightly
integrated with their schema transformation.

There is a big diversity on how the different data trans-
formations are defined (declaratively described, described
in a string, or hard-coded in the system implementing the
approach). All possible combinations of declaratively de-
scribed data transformations’ body and parameters are en-
countered. As opposed to schema transformations, data trans-
formations do not converge on certain practices, indicating
that there is still room for experimentation and improvement.
Systems Weanalyzed 14 characteristics for 19materialization-
based and 11 virtualization-based systems. We observed
that, in most cases, a system is proposed for each introduced
mapping language. However, only for one mapping lan-
guage (R2RML/RML) and one data transformation (FnO),
alternative systems are proposed. In total, 8 systems were
proposed for schema transformation based on RML [46]:
RMLMapper [46], GeoTriples [83, 81], RMLStreamer [54],
MapSDI [72], RocketRML [120], SDM-RDFizer [64],
FunMap [70], Chimera [116], and, 4 systems based onmodi-
fied versions of R2RML [35]: Karma [122], Morph-RDB [107],
Morph-xR2RML [98], and TripleWave [96]. 5 of the afore-
mentioned systems also support data transformations based
on FnO [38, 39, 95]: RMLMapper [46], RMLStreamer [54],
RocketRML [120], FunMap [70], and Chimera [116]. To be
complete, there is yet another materialization system based
on RML, CARML63, but it is not mentioned in our survey
because there are no publications about it and it is used in a
commercial setting.

Each alternative system provides its own set of features
or optimizations for the mapping rules execution. We ob-
served two main directions: data cleaning and vertical scal-
ing, but each system achieves it in a different way. On the
one hand, SDM-RDFizer [64] and MapSDI [72] rely their
optimizations on duplicate removal, while FunMap [70] on
functions pre-processing and their execution optimization.
We noticed that all materialization systems apply data trans-
formations either as a pre-processing step during the input
data retrieval or during the schema transformation, but not
after the schema transformation. On the other hand, Triple-
Wave [96], RMLStreamer [54], SDM-RDFizer [64], and
Chimera [116] opt for (horizontal and) vertical scaling.

While materialization systems follow similar directions
to optimize the systems, the virtualization system offer a
greater variety and experiment more with alternative solu-
tions. SQL and subquerying optimizations, as well as ontol-
ogy entailment are among themost common directions taken
by different systems, but there is a broad range of alternatives
being investigated. As opposed to materialization systems,
virtualization systems seem to be less mature. During our
analysis, we observed an evolution in maturity and optimiza-
tions for systems of the same schema or data transformation,
but there is still room for improvement. Some systems e.g.,
Morph-RDB [107] support both materialization or virtual-

63https://github.com/carml/carml, last accessed 29/11/2021
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ization, but they are not optimized for this. There are no
systems that optimize both of them, let alone their combina-
tion.
Open Issues During this systematic literature review, we
encountered several open issues for schema and data trans-
formations and their corresponding systems:

Current data transformations do not provide support for
conditional generation or post-processing of the generated
RDF. Conditions allow mapping languages to specify if cer-
tain RDF graphs must be generated or not based upon the
result of a data transformation. We observed that applying
conditions are only vaguely described among data transfor-
mations. Conditions appeared in D2RQ but they were dis-
carded in R2RMLwhich is nowadays the reference mapping
language. However, conditions might be useful in a map-
ping language beyond data transformations. Data transfor-
mations can only be applied before or during the RDF gener-
ation, but not after the RDF was generated. Currently, con-
ditions and post-processing are an active topic of discussion
in the W3C’s Knowledge Graph Construction Community
Group64.

Web APIs as a data source are currently supported by
different schema transformations, such as RML [128] and
SPARQL-Generate [86]. However, data derived from a web
API cannot be re-used to request data from other webAPIs in
any mapping language discussed in this systematic literature
review. This limits access to web APIs since some web APIs
need multiple requests to retrieve their data. A solution is
currently being investigated in theW3C’s Knowledge Graph
Construction Community Group65.

All systems evaluated in this systematic literature review
support eithermaterialization or virtualization, but not a com-
bination of both. Some systems support both, but not at the
same time and not optimized.
Worth mentioning This systematic literature review fol-
lows the survey methodology (Section 3) which excluded
several schema transformations and systems. Several map-
ping languages which significantly influenced the evolution
ofmapping languages are not included in the surveymethod-
ology. We would like to mention D2RQ [33] mapping lan-
guage which is the predecessor of R2RML [35], the W3C-
recommended mapping language to generate RDF graphs
from data in relational databases. These two languages are
not included in our systematic literature review because they
do not refer to heterogeneous data. Similarly, the Ontop
Mapping Language [22] was also not included in the cri-
teria for the same reasons as D2RQ, but we consider worth
mentioning because of its active use for over a decade and
its broad adoption. Last, other serializations of mapping lan-
guages, such as YARRRML [60], which was proposed as an
alternative for a human-friendly representation of RML was
also excluded since it was only presented as a demo. We

64https://www.w3.org/community/kg-construct/, last accessed
10/11/2021

65https://www.w3.org/community/kg-construct/, last accessed
10/11/2021

consider it worth mentioning as it is broadly adopted by the
community that works with RML.
Automation Given that the special issue is related to “au-
tomating” the knowledge graph generation, it is worth men-
tioning that the automation of the mapping rules’ definition
and knowledge graph generation is not broadly investigated
so far. A few of themost recent systems look into automating
the planning for optimal mapping rules execution, such as
RMLStreamer [54], FunMap [70], and SDM-RDFizer [64],
but there is still room for further investigation.

Despite the declarative nature of schema and data trans-
formations, that decouples the mapping rules from their sys-
tem, only few solutions aim to (semi-)automate the defini-
tion of mapping rules, or keep in some cases the human-in-
the-loop too. MIRROR [97], AutoMap4OBDA [119], and
BootOX [69] are a few of the most well-known approaches
which automate the generation of mapping rules. Most so-
lutions nowadays aim to automate the knowledge graph gen-
eration without considering the declarative description with
mapping rules, see, for instance, the solutions proposed for
the SemTab challenge [67, 66, 68]. The lack of automated
solutions for mapping rules definition and the adjustment of
existing automated solutions to generate first the mapping
rules and then the knowlede graph is discussed in a position
paper [44] where some preliminary thoughts on the exten-
sion of existing automation approaches to align with declar-
ative mapping languages are discussed.
Future The schema and data transformations of different
mapping languages, as well as the corresponding systems
discussed in this systematic literature review are subject of
theW3C’sKnowledgeGraphConstructionCommunityGroup66.
The goal of the community group is to introduce a new rec-
ommendation, as a successor of R2RML, but for heteroge-
neous data sources. Our aim is to support the community
group’s activities with this systematic literature review and
provide an online version 67 that will be actively maintained
by the community group in the long term.
Completion time We started with this systematic literature
review in 2019 and finished it in November 2021. A system-
atic literature review helps other researchers to establish a
baseline for their future research on schema and data trans-
formations for heterogeneous (semi-)structured data.

8. Conclusion
Previous studies and surveys focused on generating RDF

graphs from relational databases [57, 59, 50], a certain type
of systems, i.e., only on virtualization [133] approaches, but
no materialization approaches, or how the integration is per-
formed between data, but not the generation of RDF graphs [102].
So far, there is no systematic literature review that provides
an overview of RDF graph generation from heterogeneous

66https://www.w3.org/community/kg-construct/, last accessed
10/11/2021

67https://w3id.org/kg-construct/survey, last accessed 22/05/2022
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data. The significant number ofmapping languages that were
listed and the different approaches for performing schema
and data transformations as well as the high number of sys-
tems prove that the systematic study of the domain is re-
quired. Our systematic literature review provides an overview
of the last 20 years of research around mapping languages,
providing a closer look on their schema and data transforma-
tions, as well as their systems. We discuss for each of them
a set of characteristics to provide an overview for other re-
searchers. We observed an evolution in maturity of schema
and data transformations and their corresponding systems.
However, there is still room for improvement and experi-
mentation.

Since this is an active research domain, new approaches
are frequently discovered which would not be discussed in
this systematic literature review. To address this, we pro-
vide an online version68 where new approaches can be easily
added to keep this overview up-to-date.
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T1: Datasource
File 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

SQL RDB 3 3 3 3 3 3 3 3 3 3

NoSQL DB 3 3

Kafka stream 3

WebSocket stream 3

MQTT stream 3 3

TCP stream 3

SPARQL endpoint 3 3

Web API 3 3 3

Apache Hadoop
T2: Data format

CSV format 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

JSON format 3 3 3 3 3 3 3 3 3 3 3 3 3 3

XML format 3 3 3 3 3 3 3 3 3 3 3 3 3

TSV format 3 3 3 3 3 3 3

ODS format 3 3

XLSX format 3 3

GeoJSON format 3 3

KML format 3

Shapefiles 3

SQL query 3 3 3 3 3 3 3 3 3 3

NoSQL query 3 3

SPARQL query 3 3

CBOR format 3

HDT format 3

RDF format 3

plain text 3 3

HTML format 3 3

Archives 3

EXIF encoded 3

NetCDF 3 3

T3: Output Data
File 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Kafka stream 3

WebSocket stream 3 3

MQTT stream 3 3

TCP stream 3

SPARQL endpoint 3 3 3

Web API 3 3

T4: Output Data formats
N-Triples 3 3 3 3 3 ⋆ 3 ⋆ 3 3 3 3

N-Quads 3 3 ⋆ 3 ⋆ 3 3 3 3

Turtle 3 3 3 3 3 ⋆ 3 3 ⋆ 3 3 3 3

N3 3 3 3 3 ⋆ ⋆ 3 3 3 3

RDF/XML 3 3 3 3 ⋆ ⋆ 3 3 3 3

RDF/JSON ⋆ ⋆ 3 3 3

JSON-LD 3 3 3 3 3 ⋆ 3 ⋆ 3 3 3 3

HDT 3 ⋆ ⋆ 3 3

TriX 3 ⋆ ⋆ 3 3 3 3

TriG 3 ⋆ ⋆ 3 3 3 3

D-REPR JSON ⋆ 3 ⋆

Table 4
System characteristics applied on the discussed materialization systems. Systems which
do not provide their source code are excluded. Some systems (⋆) can be combined with
others, thus support depends on its combination.
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Materialization
implementa-

tion
T5 T6 T7 T8 T9 and

T10 T11 T13a T13b

Karma KR2RML
Python
code

snippets

together,
during schema
transformation

Python CLI Apache-
2.0 None ETL

Morph-RDB R2RML No NA Scala CLI Apache-
2.0

Self-join and subquery
elimination ETL

Morph-
xR2RML xR2RML No NA Scala

CLI,
SPARQL
endpoint

Apache-
2.0

Inherited from
Morph-RDB ETL

TripleWave R2RML Hardcoded
together,

pre-processing
of input data

NodeJS CLI Apache-
2.0 Vertical scaling Streaming

GeoTriples

RML
with

GeoTriples
exten-
sions

GeoSPARQL
&

stSPARQL
functions

together,
during schema
transformation

Java CLI,
webapp

Apache-
2.0 None ETL

RMLMapper RML FnO
together,

during schema
transformation

Java
CLI,

library,
Docker

MIT None ETL

RMLStreamer RML FnO
together,

during schema
transformation

Scala CLI,
Docker MIT Horizontal and vertical

scaling Streaming

MapSDI RML NA NA Python CLI Apache-
2.0

Removal of unused and
duplicate data,
relational algebra

Inherited
from

mapping
rule

processor

RocketRML RML FnO
together,

during schema
transformation

NodeJS

CLI,
library,
Docker,
webapp

CC-BY-
SA-4.0 Multiple XML parsers ETL

SDM-RDFizer RML No NA Python
CLI,

library,
Docker

Apache-
2.0

Removal of unused and
duplicate data,

relational algebra,
memory optimizations

Batch
process-

ing

D-REPR D-REPR
Python
code

snippets

together,
pre-processing
of input data

Python
& Rust

CLI,
webapp,
Docker

MIT
Execution plans, core
processing in native

programming language
ETL

FunMap RML FnO
separately,

before schema
transformation

Python CLI Apache-
2.0

Function preprocessing,
vertical scaling

Inherited
from

mapping
rule

processor

Chimera RML FnO
together,

during schema
transformation

Java CLI Apache-
2.0

Mapping rules without
joins optimizations,
vertical scaling

Batch
process-

ing

SPARQL-
Generate

SPARQL-
Generate

SPARQL
Functions

together,
during schema
transformation

Java

CLI,
library,
webapp,
Sublime
Text in-
tegration

Apache-
2.0 None ETL

SPARQL-
Anything Facade-X SPARQL

Functions

together,
during schema
transformation

Java
CLI,

SPARQL
endpoint

Apache-
2.0 None ETL

ShExML ShExML No NA Scala
CLI,

library,
webapp

MIT None ETL

Table 5
System characteristics applied on materialization implementations. Systems without avail-
able source code are excluded. Some systems have characteristics which does not apply
to them, these characteristics are marked as ’Not Applicable’ (NA).
T5: Schema transformation language, T6: Data transformation language, T7: Applica-
bility, T8: Programming language, T9: Integration, T10: Interface, T11: License, T13a:
Optimizations, T13b: Scaling
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Virtualization
implementa-

tion
T5 T6 T7 T8 T9 and

T10 T11 T13a T13b

morph-
streams++ R2RML No NA Scala CLI No license Processing on

DSMS engine No

Ontop

R2RML or
Ontop

Mapping
Language

No NA Java CLI Apache-2.0

SQL &
virtualization
optimizations,
aggregation on
databases,
ontological
entailement

with
Denodo,
Dremio or

Teiid

Morph-RDB R2RML No NA Scala CLI,
Docker Apache-2.0 SQL

optimizations No

Morph-
xR2RML xR2RML No NA Scala

CLI,
SPARQL
end-
point

Apache-2.0 Inherited from
Morph-RDB No

SparqlMap-M R2RML
R2RML
custom
extension

together,
during
schema

transforma-
tion

Java

CLI,
SPARQL
end-
point

No license

Query
normalization &

analysis,
mapping
binding,

execute on
database engine

No

Squerall RML FnO

together,
during
schema

transforma-
tion

Java CLI,
GUI Apache-2.0

Spark or Presto
processing,

aggregation on
data sources

with Spark
or Presto

Ontario RML No NA Python CLI GPL-2.0

Star shape
subqueries on
data sources,
locally joined

SPARQL
federation

Morph-RDB
extension S2O No NA Scala CLI,

Docker Apache-2.0 Inherited from
Morph-RDB

with
SNEEql

XGSN SSN
ontology

Hardcoded
in wrapper

together,
pre-

processing
of input
data

Java

CLI,
we-
bapp,
API

GPL-3.0

Access
delegated to
RDF stream
processor

No

Obi-Wan
custom
GLAV

mapping
No NA Java CLI,

webapp MIT Ontology
entailment

with
Tatooine

Table 6
System characteristics applied on the discussed virtualization implementations. Systems
which do not provide their source code are excluded.
T5: Schema transformation language, T6: Data transformation language, T7: Applica-
bility, T8: Programming language, T9: Integration, T10: Interface, T11: License, T13a:
Features, T13b: Federation
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Characteristic
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T1: Data source
File 3 3 3 3 3 3 3

SQL RDB 3 3 3 3 3 3 3 3 3

NoSQL DB 3 3 3 3 3 3

OpenGIS 3

Graph DB 3

Triple Store 3

Kafka stream
WebSocket stream
MQTT stream
TCP stream
UDP stream 3

SPARQL endpoint
Web API

Apache Hadoop 3

Esper 3

GSN 3 3

Apache Parquet 3

Serial 3

CoAP 3

USB 3

T2: Data format
CSV format 3 3 3 3 3 3 3 3 3

JSON format 3

XML format 3 3

TSV format 3

ODS format
XLSX format

GeoJSON format
KML format
Shapefiles
SQL query 3 3 3 3 3 3 3 3 3 3 3

NoSQL query 3 3 3 3 3

SPARQL query 3 3

CBOR format
HDT format
RDF format
plain text

HTML format 3

Archives
Neo4J graph 3

EXIF encoded
RSS 3

ESRI Grid ASCII 3

Images 3

T3: Output Data & T4:
Output Data formats

SPARQLStream query result 3 3

SPARQL query result 3 3 3 3 3 3 3 3

CQELS query result 3

GraphQL query result 3

Table 7
Data sources supported by the discussed virtualization systems. Systems which do not
provide their source code are excluded.
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