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Abstract

The ever-growing repertoire of genomic techniques continues to expand our understanding of the true diversity and richness of
prokaryotic genomes. Riboproteogenomics laid the foundation for dynamic studies of previously overlooked genomic elements. Most
strikingly, bacterial genomes were revealed to harbor robust repertoires of small open reading frames (sORFs) encoding a diverse
and broadly expressed range of small proteins, or sORF-encoded polypeptides (SEPs). In recent years, continuous efforts led to great
improvements in the annotation and characterization of such proteins, yet many challenges remain to fully comprehend the pervasive
nature of small proteins and their impact on bacterial biology. In this work, we review the recent developments in the dynamic field of
bacterial genome reannotation, catalog the important biological roles carried out by small proteins and identify challenges obstructing
the way to full understanding of these elusive proteins.
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Introduction

In the continuous effort to improve bacterial genome annotations,
the development of ribosome profiling by next-generation se-
quencing (Ingolia et al. 2009), Ribo-seq in short, permitted the re-
cent discovery of a plethora of small open reading frames (SORFs).
Classified as open reading frames built of no more than 300 nu-
cleotides (nt), these newly discovered genes potentially give rise
to their encoded small proteins; referred to as sORF-encoded
polypeptides (SEPs). By providing direct translation evidence of
numerous sORFs (Ingolia et al. 2009, 2011, Guo et al. 2010), Ribo-
seq no longer penalized these specific ORFs for their short lengths
in the process of gene prediction and genome annotation. Cur-
rently, multiple Ribo-seq datasets have been published for model
bacterial species like the Gram-negative Escherichia coli (Li et al.
2014, Hucker et al. 2017, VanOrsdel et al. 2018, Weaver et al. 2019)
and the Gram-positive Bacillus subtilis (Li et al. 2012). Similar ef-
forts were also reported for specific bacterial human pathogens
including the model species Salmonella enterica subspecies enter-
ica serovar Typhimurium (Baek et al. 2017, Ndah et al. 2017, Ven-
turini et al. 2020) and more recently for Streptococcus pneumoniae
(Laczkovich et al. 2022), Mycobacterium tuberculosis (Smith et al.
2022), Staphylococcus aureus (Bartholomaus et al. 2021), and Campy-
lobacter jejuni (Froschauer et al. 2022). A comprehensive overview
of available prokaryotic ribosome profiling studies has recently
been compiled by Vazquez-Laslop et al. (2022) and ribosome pro-
files corresponding to (some of) these and other studies can be
consulted via the online genome browser GWIPS-viz (Michel et al.
2014).

Since the aforementioned studies report on the discovery of
novel, putative sORFs, these recent efforts all contributed to a now
exhaustive list of hypothetical bacterial SEPs. In aid of gene an-

notation, Ribo-seq studies can provide evidence for the transla-
tion of in silico-predicted sORFs by demonstrating ribosome inter-
action of their transcripts, making their consideration in genome
(re-)annotation efforts more straightforward. However, functional
characterization has only been reported for a small portion of pu-
tative sORFs and their encoding SEPs, leaving an enormous world
of the sORFeome uncharted. With documented bacterial SEP func-
tions falling within diverse categories of basic and essential bacte-
rial physiology (Wanget al. 2017, Aratijo-Bazén et al. 2019, Xu et al.
2019, Yoshitani et al. 2019, Burby and Simmons 2020, Sweet et al.
2021) as well as infection biology (Olvera et al. 2019, Williams et al.
2019, Yadavalli et al. 2020, Sur et al. 2022), the need for more large-
scale validation and functional characterization efforts is high. In
this context, it is noteworthy that difficulties in biochemical de-
tection and therefore validation of SEPs are known and have been
extensively documented (Fijalkowski et al. 2021, 2022, Gray et al.
2021), but that also recent bacterial SEP validation studies fail to
fully address many of the challenges in small protein detection
(Fijalkowski et al. 2022), such as their proposed low expression
or low stability (Stringer et al. 2022). Nonetheless, as detection
of protein expression is a prerequisite for functional investiga-
tions, further improvement in SEP detection might turn out to be
of great value in expanding our current understanding of bacte-
rial (infection) biology. Fundamentally, because of the lack of stan-
dard workflows to go from computationally predicted sORFs to
functionally annotated SEPs, a whole piece might be missing from
the puzzle the bacterial life is known to be. While independent of
mRNA, small proteins may be generated by proteolytic action or
nonribosomal synthesis (i.e. nonribosomal peptides), the focus of
this review is on the small protein load of bacterial life encoded
by sORFs. More specifically, besides reporting on their cataloged
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biological functions, and following an elaborate discussion on
genomic sORF discovery and classification, we highlight the tech-
nical SEP-inherent validation challenges that mark the path to-
ward full bacterial SEP annotation, ranging from experimental ex-
pression validation by standard protein detection methods [i.e.
mass spectrometry and (immuno)blotting] toward uncovering
their biological roles.

Studying bacterial biology in the genomics
era

Sequencing revolution demands annotation
evolution

To date, 25 years after the first genome was sequenced, advances
in sequencing techniques under the form of high-throughput,
next-generation sequencing, and supporting bioinformatics have
resulted in an exponential increase in the number of bacte-
rial genomes available by significantly lowering both sequenc-
ing time and costs (Land et al. 2015, Loman and Pallen 2015,
Dorado et al. 2021). In the meantime, genome sequencing tech-
nologies already reached the third revolution (van Dijk et al.
2018), which was initiated with the advent of high-resolution,
single-molecule, long-read sequencing. Genome sequences serve
as a starting point for a better understanding of bacterial func-
tioning, evolution, and interaction with the environment. The
ever-augmenting number of available gene sequences evoked a
switch from forward to reverse genetics approaches (Fels et al.
2020). However, the massive accumulation of genome sequences
entailed a new hurdle. Data on microbial genomes are gen-
erated faster than they can be manually processed to extract
valuable information from, making automatization of annota-
tion an urging challenge for the current revolution in sequencing
technology.

Automatic genome annotation requires manual
curation: a frustrating paradox

The applied principles in popular, prokaryotic annotation tools
(e.g. RAST, Prokka, and PGAP; Dong et al. 2021) illustrate the cen-
tral idea of automatic genome annotation, which is the search for
homology with database-annotated genes, proteins or domains.
Hence, annotation of newly sequenced genomes is strongly in-
fluenced by the available information in databases and conse-
quently, is steered by the annotation principles that have been
used thus far. Once introduced, annotation errors propagate in
these databases (Danchin et al. 2018), illustrating why the “au-
tomatic” character of widely applied annotation pipelines is not
that absolute, as human intervention or metadata is still heav-
ily required to manually curate their performance (Dziurzynski
et al. 2021). Lobb et al. (2020) demonstrated the incompleteness
of bacterial genome annotations by determining the percentage
of the average bacterial proteome that can be functionally anno-
tated based on homology with database-annotated proteins and
domains, indicating a range between 52% and 79%, depending on
the annotation tool used. Because of these inherent shortcom-
ings to automatic genome annotation, (ribo)proteogenomics (i.e.
the combination of systematic complementary ribosome profil-
ing, proteomics, and genomics for studying translational land-
scapes; Willems et al. 2022) has become an invaluable approach
for gene annotation as it already links gene prediction to expres-
sion (Fijalkowska et al. 2020, 2022, Cao et al. 2021, Willems et al.
2022).

sORFs: the weak spots of automated
bacterial genome annotation

The annotation bias is especially challenging when it comes to
the detection of sORFs. These coding sequences of arbitrarily no
more than 150-300 nt encode small proteins or SEPs, with the in-
terpretation for “small” ranging from smaller than (or equal to)
50 (Hemm et al. 2010, Storz et al. 2014) to 100 amino acids (AA)
(Andrews and Rothnagel 2014). SEPs distinguish themselves from
canonical small peptides by the fact that their origin is trans-
lational and no proteolytic processing step is required to make
them this small. In this way, the typical length cut-offs for gene
prediction and annotation, chosen based on the strong original
belief that genes should be of sufficient length to be functional,
turned out to be too short-sighted thereby obstructing sORF iden-
tification. Within existing genome annotations, a vast majority of
SORFs encode ribosomal SEPs, which are significantly more con-
served than the sORFs that are currently being discovered in large
numbers because of the introduction of riboproteogenomics for
the reanalysis of bacterial genomes (Gray et al. 2021). One pos-
sible explanation for the general lower degree of conservation of
such translated sORFs might be due to their relatively rapid de
novo evolvement in bacterial genomes (Gray et al. 2021).

In line with previous ORF annotations, newly discovered sORFs
can be classified as intergenic sORFs, upstream (overlapping)
(regulatory) sORFs [u(0)sORFs], internal (out-of-frame) sORFs
(intsORFs) or downstream (out-of-frame) (overlapping) (regula-
tory) sORFs [d(0)sORFs]; a classification based on the relation be-
tween the genome-orientation of the newly discovered sORF and
existing gene annotations (Fig. 1A) (Gray et al. 2021, Mudge et al.
2022, Stringer et al. 2022). For bacterial genomes, the genomic po-
sitioning of annotations is especially informative in the case of
polycistronic mRNAs, frequently encoding gene product(s) with a
strong functional interplay. Further, existing (s)ORF annotations
are also frequently updated (i.e. SORF reannotations) (Fig. 1B).

SORFs were generally overlooked until increasingly more SEPs
were identified - rather by chance - across all domains of life
as well as viruses (Finkel et al. 2018). Moreover, sORFs and their
encoding SEPs turned out to be of considerable biological im-
portance for the respective organisms, further strengthened by
Lluch-Senaretal. (2015) who identified the genomic class of sSORFs
as being the most frequently essential one in the case of the
genome-reduced bacterium Mycoplasma pneumoniae (Lluch-Senar
et al. 2015). Bacterial SEPs are, among other functions, known
to be involved in basic (essential) processes underlying bacterial
functioning, including cell division [e.g. Blr (Karimova et al. 2012),
MciZ (Aratjo-Bazan et al. 2019)], transport of molecules [e.g. AcrZ
(Hobbs et al. 2012), KdpF (Sweet et al. 2021)], and signal transduc-
tion [e.g. MgrB (Xu et al. 2019), SafA (Yoshitani et al. 2019)] and to
act as chaperones [e.g. YThB (Ahn et al. 2012), MntS (Martin et al.
2015)] (Fig. 2). The discovery of the unexpected coding potential of
bacterial sSRNAs - not surprisingly — took place through mining the
E. coli genome (Wassarman et al. 2001, Hemm et al. 2010, Hemm
et al. 2020). In this regard, the bacterial operon gene structure
surely deserves some credit for the initial, unintended discovery
of the functional potential of small proteins. In 1999, Gagel et al.
(1999) discovered, at that time, the smallest E. coli protein KdpF (29
AA) through extensive examination of the K*-transporter com-
plex encoding KdpABC operon, and copurified KdpF with the com-
plex emphasizing the possibility for small proteins to take active
roles in protein complexation and bacterial functioning (Gaflel
et al. 1999).
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Figure 1. Categorization of unannotated sORFs and reannotations of sORFs discovered by riboproteogenomics. (A) The annotation of newly discovered
sORFs is based on the relation between the genomic location of the novel sORF (green) and existing (s)ORF annotations (black). Especially for the
typical bacterial polycistronic gene organization, positional ORF annotations in the context of transcripts are meaningful as the interaction of the
resulting gene products can be regulatory in nature. (B) The implementation of riboproteogenomics for genome annotation can also result in the
(conditional) reannotation of previously annotated ORFs. When ORFs appear as 3’ [3' tr(sORF)] or 5" [5" tr(sORF)]-truncated variants, previous ORF
annotations can turn into sORF annotations (green diagonal upward pattern fill), or sORFs into shorter sORF annotations. For sORFs, 5’ extensions
result in N-terminally extended translation products [here 5 ext(sORF)].
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Figure 2. Examples of SEPs involved in basic (and essential) biological processes in the model species S. Typhimurium (strain SL1344). Some recurring
functional categories can be distinguished among characterized bacterial SEPs, such as “Molecular transport” (e.g. KdpF, MgtS, and AcrZ), “Cell
division” (e.g. Blr, ZapB, and MinE), “Signal transduction” (e.g. MgrB, YeaQ, and PmrD), and “Chaperones”(e.g. NapD, Ssak, and GroES). AlphaFold
predicted structures are given for corresponding S. Typhimurium SEPs [(KdpF (AOAOH3P1CO), MgtS (AOA719A915), AcrZ (AOAOH3NEG?2), Blr
(AOAOH3NXY9), ZapB (AOA718Z7K1), MinE (AOAOH3NHJ8), NapD (AOA718RT46), SsaE (AOAOH3NKV4), GroES (AOAOH3NPHO), yeaQ (AOAOH3NKGS), MgrB

(AOA718YD36), and PmrD (AOAOH3NDT1)]. Transmembrane helix-containing SEPs are underlined. aa = amino acids.

SEPs as a novel research hotspot for the
study of bacterial biology

SEPs as accomplices in bacterial (infection)
biology

With existing examples of SEPs acting as virulence factors and
toxins (Fozo et al. 2008, Andresen et al. 2020, Wang et al. 2021),
functional investigations of SEPs belonging to the proteome of
pathogenic bacterial species paved the way for research endeav-
ors focussing on SEPs as potential novel therapeutic targets. For
Listeria monocytogenes, N-terminal proteomics linked the small
membrane protein Prli42 (31 AA) to survival in macrophages by
tethering the stressosome component RsbR — hypothesized to act
as the sensor of stress signals — to the membrane (Impens et al.
2017, Williams et al. 2019). Another human pathogen, S. aureus, ex-
presses the membrane peptide toxin PepAl (31 AA) that has been
postulated to be implicated in the regulation of survival after in-
ternalization into immune cells by driving selection of the slowly
dividing bacterial population through the lysis of rapidly divid-
ing bacteria (Schuster and Bertram 2016). Moreover, the 59 AA
SEP Yp1 encoded by the bubonic plague pathogen Yersinia pestis
was found to regulate virulence through expression modulation of
type III secretion system components. In the same study, conser-
vation of SEPs was shown to be high between different pathogenic

Yersinia strains, so SEPs can be expected to confer pathogenesis-
related benefits (Cao et al. 2021). Intriguingly, numerous novel
SEPs are predicted transmembrane proteins (VanOrsdel et al.
2018, Miravet-Verde et al. 2019, Laczkovich et al. 2022). The in-
creased prevalence of transmembrane localization of SEPs (Garai
and Blanc-Potard 2020, Yadavalli and Yuan 2022) suggests a link
with their involvement in host-pathogen interactions as these are
initiated upon contact between pathogen and host membranes
(Cao et al. 2021).

The SEP arsenal of Salmonella

Salmonella Typhimurium has served as a model species for the
study of SEP expression in general and within the framework
of bacteria-host interactions (Baek et al. 2017, Giess et al. 2017,
Ndah et al. 2017, Venturini et al. 2020, Fijalkowski et al. 2022).
The divergence of the genus Salmonella from E. coli, estimated to
have taken place 160-120 million years ago (Ochman et al. 1999),
was established through multiple horizontal gene transfer events,
which left their marks in the genome in the shape of Salmonella
pathogenicity islands and gave the genus the capacity to develop
into the successful pathogen as we know it today. In addition
to local gastroenteritis, S. Typhimurium leads to systemic dis-
ease in mice reminiscent of typhoid and paratyphoid fever caused
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exclusively in humans by S. enterica subspecies enterica serovar Ty-
phi and S. enterica subspecies enterica serovar Paratyphi, respec-
tively. As such, S. Typhimurium infection in mice has been exten-
sively used as a model system mimicking human typhoid fever
(Chaudhuri et al. 2018).

For Salmonella, some of the few functionally characterized SEPs
represent convincing links with virulence. As a first Salmonella SEP
study case, MgtR (30 AA) was shown to be indirectly involved in in-
tramacrophage survival by functioning as a regulator of the degra-
dation of the virulence protein MgtC (Olvera et al. 2019). Further,
the two cold shock proteins CspC (69 AA) and CspE (70 AA); im-
plicated in diverse processes like response to membrane stress,
motility, and biofilm formation; were proven to relate to Salmonella
pathogenicity after observing noninfectiveness for double mu-
tant S. Typhimurium (Michaux et al. 2017). For MgrB (47 AA), it
has been shown that it binds and thereby inhibits the PhoQ ki-
nase (Yadavalli et al. 2020), which takes part in the PhoPQ two-
component system involved in regulation of virulence. Recently,
a direct link between MgrB and virulence has been demonstrated
through the creation of an AmgrB mutant, which failed in infect-
ingmacrophages and epithelial cells (Venturini et al. 2020). What'’s
more, Venturini et al. (2020) showed more than half of the SEPs
identified in their study to be differentially expressed upon infec-
tion, which is evident in the case of the type III secretion system
apparatus or injectisome protein members SsaS (88 AA) and Ssal
(82 AA). Accordingly, a great deal of studies found the expression
of a significant part of previously unannotated sORFs of bacterial
pathogens to follow infection-relevant expression patterns (Baek
et al. 2017, Ndah et al. 2017, Fijalkowski et al. 2022).

Ribo-seq: a game changer for genome
(re)annotation

The intriguing bacterial SEP functions reported further highlight
the need for new advances to “enrich” bacterial genome anno-
tations for sORFs. Ribo-seq revolutionized the study of transla-
tion by deep sequencing of ribosome-protected mRNA fragments
(Wang et al. 2020). Ribosomes cover ~30 nt when bound onto
mRNA, causing these “ribosome protected parts” to be resistant
toward nuclease degradation (Fig. 3). Sequencing of these foot-
prints gives clues on the whereabouts of ribosomes along trans-
lated mRNAs while additionally enabling to demarcate bound-
aries of translation, and thus delineation of translated ORFs
(Fig. 3B). Recently, Ribo-seq was tailored toward identification of
prokaryotic translation initiation sites by stalling initiating ribo-
somes through the action of the pleuromutilin antibiotic reta-
pamulin (Ribo-RET) (Fig. 3A) or alternatively, the newer pleuro-
mutilin lefamulin, as especially in Gram-negative bacteria lefa-
mulin was shown to exceed retapamulin activity (Weaver et al.
2019, Vazquez-Laslop et al. 2022). More recently, Ribo-seq pro-
tocols were developed to search the genome for ribosomal ac-
tivity at stop codons (Fig. 3C) using the terminating ribosome
bound release factor sequestrator apidaecin (Ribo-API) in combi-
nation with puromyecin, a protein synthesis inhibitor causing pre-
mature chain termination during translation to remedy the obsta-
cles of stop codon read through and ribosome queuing inherent
to the use of apidaecin (Froschauer et al. 2022, Stringer et al. 2022,
Vazquez-Laslop et al. 2022).

The more precise delineation of translation initiation sites fur-
ther enabled the discovery of overlapping (u)(s)ORFs besides the
discovery of (s)ORFs translated as distinct protein isoforms or N-
terminal proteoforms (Fig. 4) (Weaver et al. 2019, Fijalkowska et al.
2020), features that challenge standard annotation algorithms

(Pavesi et al. 2018, Wright et al. 2022) and that are widespread
among sORFs. Ribo-RET together with Ribo-seq data is at the
heart of (conditional) gene reannotation (Fig. 1B) (Ndah et al. 2017,
Willems et al. 2020, Fijalkowski et al. 2022). Besides revealing dif-
ferential expression, conditional Ribo-seq and -RET profiles (e.g.
when comparing diverse bacterial growth conditions) can fur-
ther disclose the existence of (conditional) gene extensions and
truncations by showing differential Ribo-seq coverage patterns (3’
truncations and 5’ extensions) or alternative translations starts (5
truncations and 5’ extensions) across the tested conditions (Fig. 4).

Since ribosomal protection does not necessarily point to trans-
lation, combining Ribo-RET with Ribo-API data (Fig. 3D) may
prove valuable for the precise delineation of truly translated ORFs
(Stringer et al. 2022), while additionally enabling the discovery
of translational particularities such as ribosomal frameshifting
events and internal sORFs [e.g. int(sORF) in E. coli sfsA (Mey-
dan et al. 2019)] (Fig. 1A). Ribo-seq data, in turn, can fuel de
novo machine learning algorithms like ribosome profiling assisted
(re)annotation (REPARATION) (Ndah et al. 2017) and the modular
algorithm smORFer (Bartholomaus et al. 2021) for the delineation
of translated prokaryotic ORFs. In particular for sORFs, that are
so difficult to find in genomes through standard annotation tools,
Ribo-seq has thus been proven instrumental in uncovering their
translation potential (Baek etal. 2017,Ndah et al. 2017, Fijalkowski
etal. 2022, Laczkovich et al. 2022, Vazquez-Laslop et al. 2022). Sm-
Prot offers a dedicated platform for the structured database stor-
age of SEPs from diverse model organisms, including E. coli SEPs,
which have been experimentally or computationally identified (by
Ribo-seq) (Olexiouk et al. 2018).

SEPs: the thorns in the eye of standard
protein detection methods

Empirical SEP discovery is hindered by
biochemical peculiarities

From a biochemical perspective, SEPs are inherently more diffi-
cult to study than average-sized proteins, a statement also ap-
plying to proteins significantly larger than average. Traditional
two-dimensional gel electrophoresis (2DE), a technique profiting
from the charge- and molecular weight (MW)-based separation
of proteins respectively by isoelectric focusing and sodium do-
decyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), fails
in detecting proteins of extreme sizes, at both ends of the spec-
trum (Meleady 2018, Lee et al. 2020), while the category of larger
proteins in regular gel-free shotgun proteomics is rather over-
represented by the theoretical increased peptide coverage. The
relatively higher hydrophobicity indices in the class of recently
discovered SEPs (Garai and Blanc-Potard 2020, Fijalkowski et al.
2022, Yadavalli and Yuan 2022) on the other hand, offers yet an-
other explanation for their absence on 2DE gels (Meleady 2018,
Lee et al. 2020, Kielkopf et al. 2021) and proteomics datasets in
general. The fact that 9 out of the 10 most hydrophobic Salmonella
proteins fall within the category of SEPs definitely supports the
previous observations (Fijalkowski et al. 2022).

With respect to mass spectrometry (MS), the short size of
SEPs heavily constraints the number of peptides produced after
trypsin digestion (Fijalkowski et al. 2022), as this scarcity of pep-
tides is outnumbered by the peptides originating from larger non-
SEPs in the complete pool of tryptic peptides. While SEPs with
lengths shorter than 100 AA are accountable for 10% of database-
annotated S. Typhimurium proteins, the theoretically identifiable
tryptic peptides originating from SEPs merely compose 2.5% of
the totality of identified tryptic peptides in Salmonella (Fijalkowski
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Figure 3. Ribo-seq toolset for the discovery of translated sORFs in bacterial genomes. In general, ribosome profiling by sequencing (Ribo-seq) (B) relies
on the binding of ribosomes onto translated mRNA molecules as evidence for their translation into proteins (Ingolia et al. 2009). When performing
bacterial Ribo-seq, micrococcal nuclease (MNase) is added to (ribosome-bound) mRNA. Nuclease digestion by MNase proceeds when no ribosomes are
bound onto the mRNA molecule. Deep sequencing of isolated, ribosome-protected intact mRNA fragments enables delineation of translated genomic
regions. Retapamulin-assisted Ribo-seq (Ribo-RET) (A) (Weaver et al. 2019) and apidaecin-assisted Ribo-seq (Ribo-API) (C) (Froschauer et al. 2022) are
variants of the standard Ribo-seq protocol, which make use of the antibiotic retapamulin and the antimicrobial peptide apidaecin (Api137) for the
specific halting of initiating (green) and terminating (blue) ribosomes by and large eliminating the signal from elongating (yellow) ribosomes, thereby
allowing for the more accurate assignment of translation initiation and termination sites, respectively. Recently, the pleuromutilin lefamulin has been
introduced as an alternative to retapamulin with higher activity in Gram-negative bacteria, and therefore likely more general and wider applicability
(Vazquez-Laslop et al. 2022). Combining Ribo-seq deep sequencing patterns with Ribo-RET and Ribo-API-derived profiles can be used to more precisely

delineate the start and stop codons of newly discovered (small) ORFs. (D) Ribo-seq traces corresponding to a hypothetical unannotated sORF (red
annotation) obtained through Ribo-RET (green), Ribo-seq (yellow), and Ribo-API (blue) and with the profiles for a 5" end of a hypothetical annotated
ORF (gray annotation) indicated in gray. “...” indicates partial coding sequence annotations.

et al. 2022). The significant technical limitations that SEPs bring
along for empirical protein discovery methods like 2DE and MS,
are further accountable for the long-time ignorance towards SEPs,
again explaining the under-representation of sORFs in genome an-
notations.

Experimental SEP validation suffers the same
flaws

Independent from their empirical discovery, the aforementioned
SEP-specific peculiarities have also hindered experimental vali-
dation, either through MS- or blotting-based detection, and even
Ribo-seg-based sORF predictions. Computational analysis of ri-
boproteogenomics data on putative translated sORFs and iden-
tified SEPs provided insights into the intrinsic MS-detectability of
SEPs with specific attention to correlations with SEP size, abun-
dance, stability, and hydrophobicity (Fijalkowski et al. 2022). Based
on an S. Typhimurium dataset of complementary translatomics
(Ribo-seq and -RET) and shotgun proteomics data (Willems et
al. 2022), AP3 - an algorithm designed for the prediction of MS-
detectability of theoretical peptides (Gao et al. 2019) — was im-
plemented in an attempt to explain the obvious discrepancy be-
tween these two experimental omics datasets, i.e. the hits of the

proteomic pipeline only covered 65% of the translated proteome
identified by Ribo-seq. The trend observed showed a clear correla-
tion between the number of theoretically detectable peptides and
the length of the protein from which the theoretical peptide de-
scends, a conclusion logically linking SEP detection difficulties to
size.

Protocols aiming at high-molecular-weight protein depletion
(Cassidy et al. 2019) or low-molecular-weight protein enrichment
(Fijalkowski et al. 2021) have been proposed to increase pep-
tide identification rate and coverage of the limited theoretically
identifiable peptide arsenal originating from SEPs (Becher et al.
2020), but these technologies forego the quantitative aspect of
proteomics data, and are therefore not generally applicable. Also,
the use of a more diverse set of MS-sequencing proteases for
proteome digestion might benefit SEP identification through in-
creased sequence coverage as was done during a recent proteoge-
nomic study of the Y. pestis genome (Cao et al. 2021). For exam-
ple, for S. Typhimurium, choosing chymotrypsin over the stan-
dardly used trypsin, 30% more SEPs could in theory be picked
up through shotgun proteomics (Fijalkowski et al. 2022). Do’s and
don'ts for MS-based small protein discovery were comprehen-
sively reviewed by Ahrens et al. (2022).
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Figure 4. Riboproteogenomics-supported novel and reannotated Salmonella sORFs. Ribo-seq/Ribo-RET profiles of S. Typhimurium (strain SL1344) are
shown. (A) mgtA regulatory leader peptide MgtL was delineated as a new sORF in the SL1344 genome by its matching annotations in related genomes
(Ndah et al. 2017). Moreover, matching peptide evidence is available for MgtL (Ndah et al. 2017). (B) VapB and VapC, SEPs encoded by an upstream and
downstream osORF, respectively, take part in the plasmid-encoded Vap toxin-antitoxin system and were only recently annotated in the SL1344
genome (Willems et al. 2020). (C) For the pseudogene glpR, a 3'-truncated version of GIpR (GlpRx) was predicted with the same start site (Willems et al.
2020). (D) cspA was found to have an in-frame upstream alternative start encoding a 5'-extended proteoform (CspAx), supported by peptide evidence
(Ndah et al. 2017). * is indicative of an ORF reannotation. Sense and antisense encoded (s)ORFs are in blue and red color, respectively, with a diagonal
upward pattern fill in case of newly discovered sORFs. “..." indicates partial coding sequence annotations.

Unlike the proteome-wide characteristic of MS, immunoblot-
ting is a common go-to for the detection and quantification of
epitope-tagged proteins, but here, the initial fractionation of
the proteins by means of 1D SDS-PAGE, is already troublesome
when dealing with SEPs (Kielkopf et al. 2021) as mentioned for
2DE (Meleady 2018, Lee et al. 2020). On top, the ensuing blotting
step is also problematic as the small size of the SEPs permits
them to more easily move through the blotting membrane, a
phenomenon known as membrane blow-through (Kurien and
Hal Scofield 2015). Moreover, the associated incubation steps
for the purpose of immunodetection, which often take place
under shaking conditions in voluminous incubation and washing
solutions, make the conventional immunoblotting procedure far
less favorable for SEP detection. Low MW proteins distinguish
themselves under these conditions by the ability to easily detach
from the membrane and to get lost in the discarded incubation
fluids (Tomisawa et al. 2013).

All considered, SEPs can generally blame their small sizes for
giving gene prediction, expression and validation analyses a hard
time. Some voices, however, state that sORFs specifically come
with low expression levels translating into a low SEP abundance
(Olexiouk et al. 2016, Baek et al. 2017, Miravet-Verde et al. 2019,
Peeters and Menschaert 2020). On top of that, SEPs are postulated
to be highly unstable because of rapid (conditional-dependent)
SEP degradation (Baek et al. 2017, Smith et al. 2022, Stringer et
al. 2022), a feature that again links to low protein abundances,
which in turn might explain why these proteins are often missed
by standard protein detection methods. Experiments exploring
the positive effect of the ClpP protease inhibitor bortezomib on
blotting-based SEP expression validation attempts seemed to cor-
roborate the SEP instability assumption as inhibitor usage allowed
the blotting-based validation of three additional SEPs under study
(Stringer et al. 2022). A more critical view of the presented data,
however, should acknowledge a more general instead of a SEP-
specific protein stabilization of the compound (Fijalkowski et al.

2022). Nonetheless, conformational studies of bacterial and ar-
chaeal SEPs by means of NMR spectroscopy may be in support of
this decreased stability assumption as the results suggested the
majority of studied SEPs to go through life without a well-defined
structure (Kubatova et al. 2020) and intrinsically disordered pro-
teins have been experimentally linked to higher proteolytic degra-
dation susceptibility (Uversky 2017).

Contrastingly, based on bioinformatics predictions, Kubatova
et al. (2020) reported that folding of the SEPs might require
complexation and so not all these apparently unstructured
SEPs are intrinsically disordered under physiologically relevant
conditions. The fact that many SEPs have been found to engage
in larger cytosolic and membrane protein complexes is further
supportive of this (Storz et al. 2014, Venturini et al. 2020). New
light on this discussion was moreover shed by the use of a
multivariate logistic regression model for the prediction of SEP
MS-detection probability including the number and detectability
(AP3 score) of SEP tryptic peptides and translational abundance
(Ribo-seq expression values in RPKM), stability (instability index),
and hydrophobicity of the SEPs. Here, 75% of the variation in the
model was explained by the scarcity of (unique) tryptic peptides
and poor peptide detectability as the major factors limiting
MS-detectability of SEPs (Fijalkowski et al. 2022), at least pointing
toward stability not being the main driver when considering
detection of the SEPs under study.

Current trends in dealing with sORFs and
their encoded SEPs

State-of-the-art in the genomic discovery of
sORFs

Currently, Ribo-seq is considered the most comprehensive
method to scan genomes for expressed sORFs (Table 1). Ribo-seq
offers a plethora of advantages over all other techniques that have
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been exploited to improve genome annotations, with its main
strengths being the genome-wide and high-throughput charac-
ter complemented by its independence from existing annotations
(Venturini et al. 2020). Moreover, the knowledge obtained on sORFs
on behalf of Ribo-seq approaches created opportunities for the
development of dedicated (s)ORF prediction algorithms (Yu et al.
2021), like REPARATION (Ndah et al. 2017). The wealth of data
on putative translated sORFs, however, brings the strong need for
experimental validation for Ribo-seq (and computationally) pre-
dicted sORFs (Fremin and Bhatt 2020) as resistance toward MNase
degradation can be due to complex secondary structures of reg-
ulatory (small) noncoding ((s)nc)RNAs and translation of sORFs
may serve a purely regulatory function asis the case for u(o)sORFs
(Cabrera-Quio et al. 2016), meaning that ribosomal protection of
mRNA per se cannot be considered as a proxy for the identification
of functional SEPs. While viewing their generally less conserved
nature, it is still not possible to distinguish intrinsically nontrans-
lated from translated sORFs in silico, the inspection of the transla-
tional initiation context, dynamic transcript expression patterns
in conjunction with Ribo-seq data can already be very informative
in this regard (Cabrera-Quio et al. 2016). In contrast to Ribo-seq,
however, only MS and alternative biochemical protein-based val-
idation [e.g. (immuno)blotting] can truly affirm the existence of
the according proteins as the ultimate products of the translation
of a transcript and can therefore be used to filter out likely false
positive SEP candidates (Fremin and Bhatt 2020).

Viewing the clear and noncircumventable irreconcilability be-
tween SEPs and MS- or (immuno)blotting-based expression val-
idation (Table 1) (Tomisawa et al. 2013, Kurien and Hal Scofield
2015, Kielkopf et al. 2021, Fijalkowski et al. 2022), and because of
the computational complications inherent to Ribo-seq data anal-
ysis (Gelhausen et al. 2022), it can be stated that comprehensive
and robust sORF and SEP detection technologies are still lacking.
This is especially so in the case of bacterial Ribo-seq data, be-
cause of the generally poorer resolution and resulting inadequacy
of translation-specific features like its inherent triplet periodicity
(Mohammad et al. 2019). It is well-established that prokaryotic ri-
bosomal footprints display less-consistent lengths over their eu-
karyotic counterparts, a phenomenon attributed to both intrinsic
properties of bacterial ribosomes and sequence specificity of em-
ployed nucleases. Clearly, both experimental and computational
improvements of the technology are needed to fully address these
challenges.

State-of-the-art in experimental SEP validation
and functional SEP studies

Some of the molecular size-related detection obstacles for SEPs
are conveniently circumvented by using protein tags or trans-
lational reporters (e.g. superfolder green fluorescent protein;
Laczkovich et al. 2022), often with corresponding MWs making
the translational fusions exceeding the class of SEPs. Based on the
literature on bacterial SEP validation and characterization, the
sequential peptide affinity (SPA) tag has been the go-to epitope
tag for immunodetection of putative (bacterial) SEPs (Hemm et al.
2010, Baek et al. 2017, VanOrsdel et al. 2018, Weaver et al. 2019,
Venturini et al. 2020, Froschauer et al. 2022). Studies resorting
to this tag reported the epitope to permit the visualization of
the expression of many reported SEPs. The tag combines the
calmodulin-binding peptide (CBP) and three consecutive FLAG-
tags (Hopp et al. 1988), separated by a tobacco etch virus (TEV)
protease cleavage site, together accounting for an MW increase
of about 6.3 kDa (Zeghouf et al. 2004). When dealing with SEPs,

a tag of 6.3 kDa will often be as voluminous as - if not more
voluminous than - the protein under study. However, while aiding
detection, such a tag may alertly interfere with the physiological
function/localization of the SEP (Vandemoortele et al. 2019). Nev-
ertheless, epitope interference has also been reported for smaller
peptide tags like the highly positively charged His-tag (Booth et al.
2018, Munadziroh et al. 2020), while contrarily, large (globular)
tags were frequently shown to be innocuous (Vandemoortele
et al. 2019).

The ultimate aim: functional
characterization of validated bacterial SEPs

As only a few SEP validations corroborate genome-wide bac-
terial SEP discoveries, there is a need for more general, unbi-
ased sORFeome-wide validation efforts. For example, an extensive
study of the translational landscape of S. pneumoniae connected
the SEP of only one of their newly discovered sORFs, ri03, to bacte-
rial host colonization through targeted endogenous mutagenesis
(Table 1) (Laczkovich et al. 2022), as also done in the pathogenic
bacterium Y. pestis and in the extremophilic bacterium Deinococcus
radiodurans for the functional characterization of SEP-yp1 and SEP-
yp2 (Cao et al. 2021) and SEP068184 (Zhou et al. 2022), respectively
implicating these SEPs in regulation of antiphagocytic capability
and regulation of oxidative resistance.

Prior to functional studies, motif, domain, or structural predic-
tion might provide a first hint toward the biological implication of
the newly discovered SEPs (Table 1). Bioinformatics prediction of
hydrophobic transmembrane motifs is relatively straightforward
and widely exploited for the exploratory study of novel SEPs (Cao
et al. 2021, Fijalkowski et al. 2022, Froschauer et al. 2022, Zhou
et al. 2022). The short primary SEP structures are, however, no
ideal subjects for functional domain searches (Weaver et al. 2019,
Hemm et al. 2020, Stringer et al. 2022), which is explained by the
average size of protein domains coinciding with the upper length
threshold of SEPs (100 AA) (Xiong 2006). When contrasting bacte-
rial domain annotations of SEPs versus non-SEPs for the SL1344
and LT2 S. Typhimurium strains as well as the K12 E. coli strain
(Fig. 5), the domain annotation ranged from 7% to 18% for SEPs,
while for non-SEPs these percentages varied from 28% to 62%.
While remarkably big discrepancies in the percentages of domain
annotations between these related species/strains could be ob-
served, SEP versus non-SEP domain annotations were in each case
shown to be 3- to 4-fold lower. Large-scale SEP studies reporting
Pfam domain predictions for high-confidence, novel SEPs are in
line with these lower percentages of domain annotation (Cao et al.
2021, Zhou et al. 2022).

Also, experimental structure determination has been explored
to unravel SEP functionalities, for example through cryoelectron
microscopy (Impens et al. 2017) or NMR (Kubatova et al. 2020).
Importantly, in the case of small (rigid) proteins, the accuracies
of structural predictions by AlphaFold were shown to equal those
obtained through solution NMR (Tejero et al. 2022), making struc-
ture prediction an interesting alternative when domain prediction
fails. Unfortunately, less conserved proteins —enriched in the class
of newly discovered SEPs — are inherently prone to less good Al-
phaFold folding predictions due to poor multiple-sequence align-
ment, thus far hindering large-scale SEP structure prediction ef-
forts. Conservation analysis (Hucker et al. 2017, Stringer et al.
2022) of (the genomic surrounding of) predicted sORFs (e.g. gene
co-occurrence in case of polycistrons) might also help to priori-
tize functional conserved SEPs (Table 1) (Gray et al. 2021). For the
genomic context of the putative sORF start codons, higher RNA
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Figure 5. Domain annotations for bacterial SEPs compared to non-SEPs. Database protein entries of S. Typhimurium strains SL1344 (#4659,
UP000008962) and LT2 (#4533, UP000001014), and E. coli K12 (#4448, UP000000625) were interrogated for domain annotations in the category of SEPs
and non-SEPs with the % domain annotation color coded (blue scale). Categorical percentages of proteome occurrence for SEPs and non-SEPs are

indicated in the corresponding pie charts.

secondary structure predictions (as compared to the start codon
region itself) may further also serve as indicators of translation
initiation (Stringer et al. 2022).

Specifically for sORF discovery in pathogenic bacteria, explor-
ing putative SEP sequences for transmembrane domains and sig-
nal peptidesis commonly exerted (Cao et al. 2021, Laczkovich et al.
2022) as cell contact and secreted molecules are the major inter-
action routes between bacterial pathogens and their host cells
(Cao et al. 2021). These predictions are also used for the discovery
of novel quorum-sensing systems and players in Gram-negatives,
for which peptides are known to fulfil the role of quorum-sensing
pheromones (Laczkovich et al. 2022). Cao et al. (2021) performed
differential expression analysis of a set of putative sORFs inter-
rogating different host environment-mimicking conditions. The
same principle can be applied to all kinds of alternative stress
conditions to find SEPs involved in different bacterial defense
mechanisms and responses (Gray et al. 2021, Zhou et al. 2022), but
also expression differences over standard growth conditions may
suggest a biological impact (Hucker et al. 2017). A recent study on
SEP profiling specifically focussed on the identification of stress
response SEPs through the choice of the extremophilic bacterium
D. radiodurans. Being a model organism for studying bacterial
extreme stress responses, bacteria were subjected to ionizing
radiation and oxidative stress resulting in the identification of
19 and 11 out of 109 newly identified SEPs as being upregulated
under the respective stress condition (Zhou et al. 2022).

Discussion and conclusion

Ribo-seg-based mapping of bacterial translatomes has been
drawing attention to sORFs, which still represent an underan-
notated class of genomic elements, as new and promising study
subjects in the context of general microbiology as well as bacte-
rial infection biology. Ribo-seq efforts should be appreciated for
the contributions they made to the wealth of (putative) SEPs un-
covered over the past years. However, experimental SEP valida-
tion is deemed required before including them in existing bacte-
rial genome annotations, with epitope protein tagging and MS as
the most commonly used methods. Besides the inherently small
size and often hydrophobic nature of SEPs as confounding fea-
tures hindering their detection, the — sometimes highly specific -
expression conditions of SEPs might further complicate the val-
idation process (Baek et al. 2017). Conditional gene expression
programs of Salmonella are clearly illustrated in the continuous
cataloging effort — the SalCom repository (Srikumar et al. 2015).

Whether the common assumption of lower stability and abun-
dance of SEPs serves as a general additional hindering factor, how-
ever, remains to be firmly established. Of note for SEP validation is
that the rapid development of more sensitive high-throughput MS
developments (e.g. data-independent acquisition and ion mobility
MS) is expected to further aid bottom-up as well as top-down SEP
detection (Kitata et al. 2022).

While nonetheless both go hand-in-hand, overcoming the ob-
stacles of SEP validation is one thing, but framing these small
proteins within the host’s biology is another. Studies hunting for
SEPs in diverse bacterial proteomes often focus on the functional
investigation of one or few individual SEPs through targeted en-
dogenous mutagenesis and no efforts to collectively address the
functionality of the small proteome have been undertaken (Cao
et al. 2021, Laczkovich et al. 2022, Zhou et al. 2022). There is, con-
sequently, no doubt that the largest part of the sORFeome remains
to be functionally explored. However, when discussing biologically
meaningful SEPs, not too much emphasis must be placed on the
word “function,” a term used for proteins that contribute to cell
fitness and that are under purifying selection (Keeling et al. 2019),
as even merely the act of translating a sORF can influence the
expression of its genomic context, like regulatory u(o)sORFs (e.g.
the threonine operon uORF thrL) (Weaver et al. 2019, Hemm et al.
2020). These ORFs, which are located upstream of the coding se-
quence of a gene (Samal 2013) are often exclusively regulatory in
nature (Cabrera-Quio et al. 2016) and only occasionally exert an
encoding role. Defined based on their impact on gene regulation
typically in an operon setting, leader peptides represent a special
case of u(o)sORFs in case the translated peptide is shorter than
100 AA. Obtained MS-based peptide evidence of leader peptides,
like for the mgtA leader MgtL (Fig. 4A), has changed the exclusively
regulatory perception of this type of genomic element as stable
protein levels appear to be produced (Ndah et al. 2017), thereby
introducing leader peptides as a category within the class of SEPs.

With the functional knowledge at hand, and irrespective of
ribosomal SEPs, bacterial SEPs can be concluded to be exten-
sively engaged in protein complexation with an important frac-
tion represented by (trans)membrane complexes (Hemm et al.
2020). Many of the known small proteins function through the
binding and regulation of standard-sized proteins (Weaver et al.
2019) and according to gradient profiling by sequencing (Grad-seq)
(coupled to MS), the majority of uncharacterized Salmonella SEPs
engage in stable molecular interactions (Venturini et al. 2020) (Ta-
ble 1). From this viewpoint, the current missing factor in bacterial
SEP characterization is an interactomics-oriented approach. As
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Figure 6. Multiple variable bubble plot representations of significantly over- or under-represented protein classes in the category of annotated S.
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corresponding to the indicated PANTHER protein class (the smallest bubble size corresponds to seven members) and the color code represents the

P-value scale.

protein—protein interactions might in particular play an impor-
tant role for SEPs containing transmembrane domains, the un-
derrepresentation of members of the e.g. (transmembrane) trans-
porter protein class and domain annotations in general for
UniProt SEP annotations (Fig. 5) might again indicate that the bio-
logical occupations of (transmembrane) SEPs rather goes through
binding and regulation of other proteins or protein complexes, as
also evident from the over-representation of transfer/carrier pro-
teins among SEPs (Fig. 6), while the same analysis also revealed
that unclassified proteins were about 2-fold overrepresented in
the category of SEPs, providing an interesting niche for future
functional SEP discoveries. Also, established E. coli SEP interac-
tomes show the SEP players to be located on the periphery of com-
plexes, suggesting SEPs take part in transient and differing inter-
actions in multiple complexes, again providing evidence for SEPs
as regulators (Hemm et al. 2020).

The interactome-associated SEP characteristics “hydrophobic-
ity” and “transientness” eventually bring the concept of in vivo
proximity-dependent biotinylation (PDB) to the forefront. Unlike
affinity purification (coupled to MS), PDB approaches have the
power to capture weak and transient protein-protein interactions
and - equally important for the SEP protein class shown to be en-
riched for transmembrane proteins — are capable of handling less
soluble proteins viewing its compatibility with the solubilization
of membrane-(associated) proteins (Liu et al. 2020, Samavarchi-
Tehrani et al. 2020). Ascorbate peroxidase (APEX)-based proxim-
ity labeling, a PDB method exploiting the enzymatic activity of
peroxidases for the biotinylation of proteins (Samavarchi-Tehrani
et al. 2020), was recently successfully applied in bacteria for the
elucidation of the type VI secretion biogenesis process in E. coli
(Santin et al. 2018). BioID, standing for proximity-dependent bi-
otin identification, is another implementation of the PDB princi-
ple and requires the translational fusion of the protein of interest
to a promiscuous biotin ligase for the biotinylation of proximal
and interacting proteins and was very recently applied for inter-
actome mapping in bacteria (Herfurth et al. 2023). As the over-

lap between APEX and BioID interactomes has been claimed to
be limited, BiolD is thus likely to offer interesting complementary
perspectives into bacterial SEP biology (Samavarchi-Tehrani et al.
2020) (Table 1). In parallel with the discussion on the importance
of the size of epitope tags used for expression analysis of SEPs,
the potential harmful effect of translationally fusing small pro-
teins to the relatively large enzymes APEX2 (MW = 27 kDa) or
BirAx (MW = 35 kDa) on SEP localization and function needs to
be borne in mind, but variant approaches derived from the origi-
nal BioID protocol have been reported that may circumvent such
problems [e.g. Off-the-shelf BioID (Santos-Barriopedro et al. 2021)
and split-TurboID (Cho et al. 2020)].

High-throughput phenotypic screening is also emerging as an
initiative to characterize gene products through the use of pheno-
typic microarrays interrogating the metabolization of compounds
deterministic for unique molecular pathways (Guard 2022). The
construction of knock-out libraries through CRISPR/Cas9 or alter-
native recombineering strategies could offer a valuable approach
to enable sORF/SEP phenotyping at larger scales (Fels et al.
2020, Todor et al. 2021). Alternatively, profiting from the sORFs
uncovered by Ribo-seq, existing transposon insertion sequencing
(Tn-seq) datasets can be revisited for phenotyping and can even
guide toward essential sORFs (Cain et al. 2020). In a broader
context, large-scale annotation of sORFs in bacterial genome
annotations permits re-exploration of available omics and other
sequencing data (e.g. Chip-seq), with the aim to link features to
novel sORFs (Myers et al. 2015). The combination of information
from both existing and new omics data should enable small
protein research to finally piece together the functionalities of
bacterial SEPs encoded by newly discovered sORFs in support of
full genomic ORF annotation.
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