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Abstract

The Magnetospheric Multiscale Spacecraft (MMS) has detected the signature of electrostatic solitary waves
(ESWs) occurring in the reconnection jet site of the Earth’s magnetotail (Liu et al.). These observations have
motivated us to explore the mechanism underlying the formation of fast- and slow-mode ion-acoustic solitary
waves in the magnetotail region. To this end, we have formulated a three-component magnetized plasma model
consisting of nonthermal electrons and two cold ion beams streaming parallel and antiparallel to the magnetic field,
respectively. In this work, we have examined the existence conditions for ion-acoustic subsonic waves in a
suprathermal space plasma comprising two counterstreaming (drifting) ion beams interacting with a suprathermal
electron background. An exact (nonperturbative) nonlinear technique has been adopted to examine the role of the
beam velocity and the spectral index on the evolution of subsonic waves. Linear analysis reveals that subsonic
waves are unstable when the beam velocity is lower than a threshold value; hence in this regime, only conventional
supersonic (fast) waves are formed. On the other hand, when the beam velocity exceeds the threshold, either
supersonic or subsonic waves may exist. The combined impact of the beam velocity and electron superthermality
on the characteristics of subsonic solitary waves has been analyzed. Our results are shown to be in good agreement
with observations of slow ESWs by the MMS spacecraft. Our findings will help to unfold the so-far unexplored
dynamical characteristics of subsonic waves that may occur in the reconnection site of Earth’s magnetotail.

Unified Astronomy Thesaurus concepts: Space plasmas (1544)

1. Introduction

Electrostatic solitary waves (ESWs) are a common
occurrence in Space plasma observations. In their most
common realization, these are identified in measurements as
bipolar electric field waveforms, associated with pulse-shaped
electrostatic potential excitations and localized electron/ion
density disturbances that (co-)propagate along the ambient
magnetic field lines, mainly. From a modeling perspective, the
main analytical tools for the study of ESWs were elaborated by
Sagdeev (1966) and Washimi & Taniuti (1966). Over the last
years, various theoretical and experimental investigations have
focused on solitary waves occurring in different plasma
environments (Baboolal et al. 1990; Berthomier et al. 1998;
Hellberg & Verheest 2008; Lakhina et al. 2011; Mahmood &
Ur-Rehman 2013; Ur-Rehman et al. 2014; Varghese & Ghosh
2020; Varghese et al. 2022). ESWs have been commonly
observed in the Earth’s magnetosphere by spacecraft missions,
e.g., Viking (Boström et al. 1988), Geotail (Matsumoto et al.
1994), the Five-hundred-meter Aperture Spherical Telescope
(Ergun et al. 1998), Cluster (Pickett et al. 2004). In addition to
near-Earth space plasma environments, planetary missions such
as Cassini and MAVEN have also observed similar
electrostatic structures (ESWs) in the magnetospheres of Saturn
(Pickett et al. 2015) and Mars (Andersson et al. 2015; Kakad
et al. 2022), respectively. These observations have inspired
plasma physicists to examine the formation of ESWs in various

space and planetary environments by theoretical models,
followed by simulation studies of solitary waves in multi-
component plasmas (Kakad et al. 2014, 2016b; Lotekar et al.
2016; Singh et al. 2020, 2021, 2022).
The existence of fast and slow ion-acoustic modes has been

established in multi-warm ion plasma models based on linear
wave theory, followed by fascinating nonlinear analyses of
plasmas permeated by two counterstreaming ion beams
(Lakhina et al. 2020; Verheest & Hellberg 2021). Recent
plasma studies, adopting a plasma-fluid formalism, have
revealed that beam-permeated plasmas may not only support
the conventional supersonic (superacoustic) electrostatic
structures (solitary waves, SWs) but also a subsonic
(subacoustic) ion-acoustic nonlinear mode propagating at a
speed below the sound speed but above a certain Mach number
threshold (Mmin; Lakhina et al. 2020; Verheest & Hellberg
2021). Interestingly, Papadopoulos et al. (1971) studied the
heating of counterpropagating ion beams propagating across an
ambient field, based on linear theory in combination with
computer simulations. It was shown that the ion–ion beam
instability is saturated above a certain threshold (i.e., when the
beam velocity exceeds the ion sound speed). In a review article,
Bret (2009) has laid out a unified description of various types
of instability (filamentation, two-stream, Buneman, Bell, etc.)
by considering a full three-dimensional dielectric tensor for a
cold relativistic electron beam in a cold plasma, thus
accounting for a guiding magnetic field: that description is
valid for any orientations of the wavevector, which
incorporates a variety of unstable modes.
An interesting new feature is that the SW amplitude may

increase as the Mach number reduces toward Mmin, below

The Astrophysical Journal, 957:96 (14pp), 2023 November 10 https://doi.org/10.3847/1538-4357/acfe6d
© 2023. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0003-3526-8085
https://orcid.org/0000-0003-3526-8085
https://orcid.org/0000-0003-3526-8085
https://orcid.org/0000-0001-5957-6598
https://orcid.org/0000-0001-5957-6598
https://orcid.org/0000-0001-5957-6598
https://orcid.org/0000-0001-6800-5789
https://orcid.org/0000-0001-6800-5789
https://orcid.org/0000-0001-6800-5789
https://orcid.org/0000-0002-4027-0166
https://orcid.org/0000-0002-4027-0166
https://orcid.org/0000-0002-4027-0166
mailto:singh.kdeep07@gmail.com
mailto:kuldeep.singh@ku.ac.ae
http://astrothesaurus.org/uat/1544
https://doi.org/10.3847/1538-4357/acfe6d
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/acfe6d&domain=pdf&date_stamp=2023-11-03
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/acfe6d&domain=pdf&date_stamp=2023-11-03
http://creativecommons.org/licenses/by/4.0/


which no solitary wave may exist. Recently, Lakhina et al.
(2021) also studied the generation mechanism of such waves in
reconnection jets by taking into account beam thermal effects
(although these were not discussed by Liu et al. 2019),
assuming ion beams with Maxwellian electrons in the
background.

A plasma-fluid model consisting of two hot counter-
streaming ion beams and Maxwellian electrons was adopted
by Lakhina et al. (2021, 2020), who were the first to show that
SWs may exist below critical Mach number, provided that
certain conditions are met. Verheest & Hellberg (2021)
subsequently revisited the same model by neglecting thermal
ion effects and pinpointed the crucial role played by the beam
speed(s)—rather than thermal effects—in subsonic solitary
wave formation. In a meticulous way, they confirmed that such
slow-mode SWs are indeed subsonic, as observed in the
laboratory frame, in both symmetric and asymmetric beam
plasma models.

Different satellite missions have established the predomi-
nance of energetic particles in various space and astrophysical
environments, wherein the electron velocity distribution
features a long-tailed trend in large arguments, accounting for
a significant suprathermal component, thus diverging from the
widely used “textbook” scenario of a thermal (Maxwell–
Boltzmann) distribution (Livadiotis 2017, 2018). Suprathermal
particles have been observed inter alia in the Earth’s
magnetospheric (Feldman et al. 1975) and auroral region(s)
(Lazar et al. 2008; Mendis & Rosenberg 1994), and also in the
magnetosphere of Mercury, as revealed by MESSENGER data
(Ho et al. 2011). A kappa-type (non-Maxwellian) distribution
was introduced for the first time as a heuristic formula by
Vasyliunas (Vasyliunas 1968), to model OGO 1 and OGO 3
spacecraft data recorded in the Earth’s magnetosphere.
Suprathermal distributions were subsequently adopted to model
particle distributions in the solar wind (Armstrong et al. 1983)
and in planetary magnetospheres (e.g., Earth’s, Saturn’s, and
Jupiter’s; Leubner 1982).

The magnetic reconnection mechanism transforms magnetic
energy into plasma kinetic energy, to be further accompanied
by alteration in the magnetic field configuration (Fu et al. 2017;
Yamada et al. 2010). In the Earth’s magnetotail, the situation
arises when two oppositely directed confined plasmas are
coupled with magnetic field lines, and then these reconnected
plasmas are ejected at high velocities from the reconnection
site. This whole scenario is referred to as reconnection jets (Cao
et al. 2013). It is now established that reconnection jets have a
vital role in plasma energization in space and in astrophysical
plasmas, e.g., in solar flares, pulsar winds, and active galactic
nuclei (Chen et al. 2019; Kirk & Skjaeraasen 2003; Lakhina
et al. 2021; Liu et al. 2019). Reconnection jets in the Earth’s
magnetotail can exhibit different kinds of plasma waves and
instabilities, in addition to electrostatic solitary waves. Recently,
Liu et al. (2019) reported the first observational evidence, by the
Magnetospheric Multiscale Spacecraft (MMS) spacecraft, that
unfolded the evolution of ESWs associated with cold ion beams
within reconnection jets of Earth’s magnetotail. The magnetotail
is abundantly permeated by counterstreaming ion beams with
relative velocity up to 2000 km s−1, along with hot electrons, and
these can act as a free energy source for the formation of ESWs,
as discussed by Liu et al. (2019). In the last decade, slow ion-
acoustic electron solitary waves were reported in the plasma
sheet boundary layer (Norgren et al. 2015) and at the

reconnection site (Graham et al. 2015). Subsequently, Kakad
et al. (2016a) adopted fluid simulations to examine the formation
of slow ion-acoustic ESWs in the plasma sheet boundary layer.
Recently, Lakhina et al. (2021) investigated the formation of fast
and slow ESWs in reconnection jets by considering the two ion
beams with thermal effects and Maxwellian electrons. The
observations of Liu et al. (2019) have confirmed the presence of
cold ion beams but give no information about the particles’
distribution function.
High-speed jets are usually produced by the magnetic

reconnection process and are one of the chief sources of
suprathermal electrons in space & astrophysical plasmas
(Vaivads et al. 2021). Many observations and computational
studies reveal that suprathermal electrons are the primary driver
in the reconnection process that allows electron acceleration in
the reconnection as well as in the outburst regions (Birn et al.
2012; Vaivads et al. 2021).
The work presented in the paper at hand was motivated by

the above considerations and focused for the first time on
subsonic ESWs occurring in reconnection jet regions in Earth’s
magnetotail plasma, where subsonic ESWs were observed by
satellites. Admittedly, very little can be found in the existing
literature along this challenging line of research. Liu et al.
(2019) did not report strong currents nor hot ions (with a
temperature of ∼10 keV) during the occurrence of ESWs.
Accordingly, in our study, we have considered two counter-
streaming (cold) ion beams in the presence of suprathermal
electrons.
In this article, we shall rely on a (Sagdeev-type) nonlinear

pseudopotential technique, in order to explore the existence
regime of subsonic waves in a plasma with suprathermal
electrons.
This investigation is, to the best of our knowledge, the first

of its kind, in that it has focused on a realistic Space plasma
situation where two counterstreaming plasmas collide, against a
background of nonthermal (kappa-distributed) electrons; this is
a ubiquitous scenario in the Earth’s magnetosphere and may
arguably also occur in other planetary magnetospheres, affected
by the solar wind, as a constant source of streaming ions in
addition to energized electrons. Earlier studies have focused
exclusively on supersonic solitary waves; as a matter of fact,
subsonic solutions are ruled out in a quiescent plasma—i.e., in
the absence of a beam—despite certain studies claiming the
opposite in the past, due to a misinterpretation of the sound
speed concept, as discussed, e.g., by Dubinov (2009).
However, slow (subacoustic) solitary waves were reportedly
detected in satellite observations, and a theoretical framework
for these was so far lacking in the literature. Our work was
based on the surprising, and arguably pioneering, recent
prediction furnished by Lakhina et al. (2021, 2020), and later
refined by Verheest & Hellberg (2021), that subsonic
electrostatic soliton may, in fact, exist in a beam-permeated
plasma.
Our results presented in this study should assist in the

interpretation of observational data from the MMS mission in
reconnection jet areas in Earth’s magnetotail.

2. A Double Beam Plasma Model

Let us consider a plasma consisting of non-Maxwellian
electrons (mass me, charge −e) and two (H+) ion-beam fluids
(mass m1=m2=mi, charge q1= q2=+ e. (We have con-
sidered a charge state Zi=+ 1, assuming we are dealing with
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proton beams, i.e., hydrogen nuclei; this does not affect the
generality of our results below, which may apply to any other
type of ions, upon a trivial change of scale.) Note that the two
beams consist of positive ions of the same kind; however, these
are treated as different fluids, in that they differ in equilibrium
fluid speed (beam velocity).

We consider electrostatic waves propagating in a direction
parallel to the ambient magnetic field (which allows us to
neglect the Larmor force in the fluid equations of motion, for
simplicity). The fluid model equations, describe the plasma
state in terms of the two ion fluid densities (nj) and the fluid
speeds (uj)—where j= 1 or 2 respectively, for each of the two
ion fluids—consist of the continuity equation(s):

˜
˜
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and Poisson’s equation:
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where f̃ is the electrostatic potential and ò0 is the permittivity of
the vacuum. (Note that the tilde, here used to denote physical—
i.e., dimensional—quantities, will be dropped later, after re-
scaling has been applied to derive a dimensionless system of
evolution equations).

The electron density entering Poisson’s equation can be
obtained by integrating the kappa velocity distribution
(Hellberg et al. 2009) as
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At equilibrium, the charge neutrality condition is

( )= = +n n n n , 5e,0 0 1,0 2,0

where nj for ( j= 1 or 2) denotes the unperturbed number
density of the ions, respectively.

For analytical simplicity in manipulating the above
algebraic equations, we shall now apply the following
normalization: ˜=n n nj j 0, ˜=n n ne e 0, ˜=u u Cj j IA ( =Cwhere IA

( )k T mB e i
1 2), ˜ ( )f f= e k TB e , ˜ l=x x De ( l =where De

( ( ))k T e nB e0
2

0
1 2 ), ˜w=t tp i, (where [ ( )]w = e n mp i i,

2
0 0

1 2 );
finally, the drifting (streaming) speed of the two ion fluids (i.e.,
the beams) is also normalized as ˜=U U Cj j IA. Note that the
scales adopted for the fluid speed, time, and space represent the
sound speed, the plasma period, and the Debye length for ion-
acoustic wave propagation in a “textbook” e-i plasma
configuration (i.e., for a single ion component). Let us
emphasize, for clarity, that these scales are not to be mistaken
for the analogous quantities in our plasma configuration, i.e.,
CIA is not the (true) sound speed in our case, as will be
discussed below, and so on.

Upon applying the above normalization, Equations (1)–(4)
become
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The charge neutrality requirement (at equilibrium) imposes
the constraint:

d d+ = 1,1 2

where d = n

n1
1,0

0
and d = n

n2
2,0

0
.

Recall that δ1≠ δ2, as the equilibrium values of the density
variables may differ, in principle, i.e., n1,0≠ n2,0.

3. Linear Analysis

Before investigating the nonlinear analysis of ion-acoustic
(IA) waves, we will examine the linear stability of the system
briefly. By linearizing Equations (6)–(9) and assuming
harmonic oscillations of angular frequency ω and wavenumber
k, we obtain the linear dispersion relation

⎛
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2
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2

This is a quartic equation (i.e., polynomial of 4th degree) with
four roots, among which two are associated with fast ion-
acoustic mode and two are slow modes. As a limiting case, if
we assume for a minute that there are no streaming velocities,
i.e., U1=U2= 0, the above relation becomes a quadratic
equation in the form:

( )w =
+
k

k a
, 112

2

2
1

where = k
k

-
-

a1
1 2

3 2
e

e
(recall that δ1+ δ2= 1). Remember that

the quantity a1 is actually related to the (kappa-dependent)
charge screening length λDebye and the sound speed Cs in non-
Maxwellian e-i plasmas, as l ~ ~C a1sDebye 1 , as discussed
by Kourakis et al. (2012) and independently by Livadiotis &
McComas (2014). (a1 tends to unity in the Maxwellian
limit κe→∞.)
Equation (10) possesses two fast IA modes (and two slow

modes), in fact propagating in opposite directions, i.e., one
propagates toward the right and the other one toward the left.
Inspired by the analysis in Lakhina et al. (2020) and

Verheest & Hellberg (2021), we proceed by assuming a
symmetric bi-ion plasma, i.e., δ1= δ2= δ= 1/2, with
U1=−U, and U2=U. Note that this choice ensures a
vanishing total charge current (as expressed in the laboratory
frame), in account of the electrostatic approximation (preclud-
ing magnetization, via Ampere’s law). Substituting into the
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dispersion relation, we are led to

⎜ ⎟ ⎜ ⎟
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and the corresponding solutions are
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a U a U

2
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2
2

1
1

2
1

2

The subscripts F and S denote the fast and slow IA modes
corresponding to the± sign, respectively.

4. Nonlinear Analysis

The possibility for the existence of solitons in the plasma
of our focus can be studied by employing the well-known

(so-called Sagdeev-type) pseudopotential technique (Sagdeev
1966; also see in Verheest & Hellberg 2009 for an exhaustive
review of the methodology in the context of Space plasma).
Equations (7)–(10) can be expressed into a stationary frame
of reference that is moving at speed V (representing the
solitary wave speed), i.e., ξ= (x−Mt) where M= V/CIA is
the normalized value of the pulse speed. (We have to point
out, for rigor, that the term “Mach number” has been adopted
here, in agreement with earlier works, even though this is
clearly not the true Mach number, as CIA is not the true sound
speed.)
Now, integrating the continuity and momentum Equations (6)

and (7) to obtain the ion densities, and taking into account
vanishing boundary conditions (for localized solutions) viz.
n1→ δ1, n2→ δ2, u1→U1=−U, u2→U2=+U and f→ 0

Figure 1. ωF in the k–U plane corresponding to the fast IA mode (a) for κe = 20 (quasi-Maxwellian) and (b) for κe = 2 (strongly nonthermal case) and for fixed
δ = 0.5. Note that only ωF > 0 is taken into account (as ωF < 0 will simply be symmetric, lying on the negative axis).

Figure 2. Growth rate Im(ωS) in the k–U plane corresponding to slow IA (unstable) mode (a) for κe = 20 (quasi-Maxwellian) and (b) for κe = 2 (strongly nonthermal
case) and for fixed δ = 0.5. Note that only ωF > 0 is taken into account (as ωF < 0 will simply be symmetric, lying on the negative axis).

Figure 3. Re(ωS) in the k–U plane corresponding to the (real part of the) slow (stable) IA mode (a) for κe = 20 (quasi-Maxwellian) and (b) for κe = 2 (highly
superthermal regime), for a fixed value δ = 0.5. Note that only Re(ωS > 0) is taken into account as Re(ωS < 0) is symmetrical in the negative axis.
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as |ξ|→±∞ , we obtain:
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The ion density functions become infinite for limiting
potentials

( ) ( )f = -M U
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2
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2
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( ) ( )f = -M U
1

2
. 17l,2 2

2

This (twofold) infinite compression limit will enable us to
determine the existence domain for soliton pulses, as this is a
limit not to be exceeded, in order for all state variables to be
real: see that the right-hand side of Equation (14) and/or the
right-hand side of Equation (15) become imaginary, if f
exceeds fl,1 and/or fl,2.

Substituting Equations (14) and (15) in Equation (8) along
with Equation (9) and then integrating with respect to f, we

find the energy balance equation:
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where the pseudopotential function S is given by
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For localized modes (solitary waves) to exist, the Sagdeev
pseudopotential S(f, M) must satisfy the following conditions:
(i) S(f, M)|f=0= 0, ( )∣f¢ =f=S M, 00 and S″(f, M)|f=0< 0,
(ii) ( ) ∣f = f f=S M, 0

0
(where the root f0 represents the soliton

amplitude), (iii) S(f, M)< 0 for 0< |f|< |f0|. In particular,
the second derivative yields

( ) ( )
( )d d k

k-
+

-
-

-

-
<

M U M U
0. 20

e

e

1

1
2

2

2
2

1

2
3

2

This will give the acoustic speeds Ms for the given plasma
system.

Figure 4. Existence diagrams for a symmetric bi-ion plasma mixture. Existence domain of fast and slow modes of IA solitary waves vs. the streaming velocity (beam
speed (U), for (a) κe = 20; (b) κe = 4; (c) κe = 3; (d) κe = 2, and for a fixed value of δ = 0.5. The fast mode is shown in blue color and the slow mode is in red. The
solid curves correspond to the sonic boundary Ms, while the dashed curves correspond to Ml. The black dotted curve representing M = U separates the fast from the
slow regime.
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Note that the latter equation could have been derived from
Equation (10) by dividing both sides by k2, setting ω/k= vph,
and then taking the limit k= a1. It is thus obvious that the
lower bound for the soliton speed—satisfying (20), that is—
coincides with ( )w klimk 0 , i.e., essentially with the true
sound speed in the given plasma configuration.

4.1. Symmetric Model

Let us now consider beams of equal strength and absolute
drift speed, by taking δ1= δ2= 1/2, U1=−U, and U2=U,
along the lines introduced by Lakhina et al. (2020) and
Verheest & Hellberg (2021). Equation (20) thus reduces to

( ) ( )
( )

k

k+
+

-
-

-

-
<

M U M U

1

2

1

2
0, 21

e

e
2 2
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which can be rewritten as
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Two roots for M2 can be computed from the above
biquadratic equation, in the form
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2
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2 1 2
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2
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2 1 2

physically representing two values for the acoustic (sound)
speed. (Recall that a1= (κe− 1/2)/(κe− 3/2).) Among the
(four) roots thus obtained for Ms, we shall retain the (two)
positive roots (the remaining two negative solutions stand for
wave propagation to the left and will be neglected). Indeed, we
need not discuss the case M< 0, as it just follows the same
behavior as M> 0 in the symmetric case. Note that the
subscript “s” has been used in the latter two expressions, to
remind us that these relations essentially provide us with the
sound speed of the fast and slow modes, respectively.
In the symmetric case, the limiting values Equations (16)–

(17) can also be rewritten as

( ) ( )f = +M U
1

2
25l,1

2

and

( ) ( )f = -M U
1

2
. 26l,2

2

For the reality of the state variables, one needs to ensure that
both inequalities S(fl,1)� 0 and S(fl,2)� 0 hold. As
(M+U)2> (M−U)2, and thus fl,2< fl,1, only fl,2 plays a
role in limiting the range of values for the soliton speed M, viz.
S(fl,2)� 0 is sufficient a condition to be imposed for reality to
be guaranteed. The Sagdeev pseudopotential in the symmetric

Figure 5. Fast-mode solitons in the symmetric model, for different κe in a beam-free plasma. (a) Pseudopotential curve profile S(f) vs. electrostatic potential f. Panels
(b) and (c), respectively, depict the (fast mode) IA electrostatic potential pulse (f) and the bipolar electric field (E) profiles vs. the traveling space coordinate ξ, for
different values of κe. We have taken U = 0, M = 1.1 and δ = 0.5. The same curve style and color has been adopted among the three panels, as a guide to the eye).
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which for f= fl,2 can be simplified as
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An analogous relation appears in (Verheest & Hellberg 2021).
This tells us that, for a given value of U, the faster soliton
regime, lying between the sound speed Ms,1 and the upper limit
Ml,1, satisfies U<Ms,1<M<Ml,1. Obviously, for M>Ml,1 no
solitons can be found.

However, there is also a group of slower solitons between
Ms,2 and Ml,2, that satisfies U>Ms,2>M>Ml,2> 0; these
slow solitons cannot propagate with speed M<Ml,2. Such
solutions will therefore travel at subsonic speed, a possibility
that did not exist in the absence of the beam. Note that there

will be no solitary wave between Ms,1 and Ms,2. This gap
indicates a stopband in the Mach number domain.

4.2. Asymmetric Model

As a matter of fact, subsonic solitons owe their very
existence to the beam—and not to the symmetric composition
of the bi-ion mixture as above, as discussed by Verheest &
Hellberg (2021). Inspired by the latter study, we shall consider
a specific composition with δ1= 2/3, δ2= 1/3, U1=−U, and
U2= 2U. This ensures that the equilibrium is charge- and
current-neutral, i.e., δ1+ δ2= 1 and δ1U1+ δ2U2= 0. (As a
matter of fact, any combination of values satisfying
U2=−U1α/(1− α) with δ1= α= 1− δ2, ∀α ä (0, 1) would
work just as well, here, to proceed with. We have chosen
α= 2/3, for comparison with the latter reference.)
The reality condition now becomes

( ) ( )
( )

k

k+
+

-
-

-

-
<

M U M U

2

3

1

3 2
0, 29

e

e
2 2

1

2
3

2

which is, again, a biquadratic equation in M. Depending on U,
there are either two or four real roots. Contrary to the fast beam
mode, which is always present—i.e., even with U= 0, the slow
mode only exists after a certain threshold value of the beam
speed U, below which it is unstable. This is also true in the

Figure 6. Fast-mode solitons in the symmetric model, for different M. (a) Pseudopotential curve profile S(f) vs. electrostatic potential f. Panels (b) and (c),
respectively, depict the (fast mode) IA electrostatic potential pulse (f) and the bipolar electric field (E) profiles vs. the traveling space coordinate ξ, for different values
of the Mach number. We have taken U = 1.5, κe = 3 and δ = 0.5. The same curve style and color has been adopted among the three panels, as a guide to the eye).
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symmetric model. This fact is illustrated in Figures 2, 4, and
10, to be discussed below.

The limiting potential values that will be used in formulating
a reality now read:

( ) ( )f = +M U
1

2
, 30l,1

2

( ) ( )f = -M U
1

2
2 . 31l,2

2

In the asymmetric case, both of these conditions are important
to evaluate the upper Mach limit from the requirements S
(fl1,M)= 0 and S(fl2,M)= 0. Therefore, for the lower branch,
in which the solutions are mostly negative, the limit is given by
Equation (30), whereas positive roots are limited by (31).

5. Parametric Analysis

Numerical analysis will now be used to illustrate the above
algebraic results, regarding the existence conditions of slow
mode subsonic solitons in non-Maxwellian plasma.

5.1. Linear Analysis

We have considered the symmetric model in dispersion
relation Equation (13) and obtained four roots, consisting of
two fast and two slow linear modes. The two panels in
Figure 1 depict the variation in the angular frequency ωF (for

the fast IA mode) in the k–U plane, corresponding to a)
κe= 20 (quasi-Maxwellian) and b) κe= 2 (i.e., a strongly
nonthermal case). The fast mode monotonically increases with
the drifting velocity U. Both the frequency and the phase
speed of this (fast IA) mode are lower for a non-Maxwellian
(kappa-) distribution (low κe)—see Figure 1(b))—than in the
thermal case (shown in Figure 1(a)). Remember that only the
positive solution ω> 0 is taken into account, as ω< 0 will
simply be a mirror image, i.e., a symmetric curve on the
negative side.
The imaginary part of the angular frequency (i.e., the linear

instability growth rate) Im(ωS) for the slow (unstable) IA mode
is shown in Figure 2 (a,b), as it varies on the k−U plane. The
same (two) cases are considered, as in the respective panels in
Figure 1. The growth rate is notably lower for low κe (non-
Maxwellian case), and the instability window is also narrower
on the streaming velocity (U) axis. (Again, only the positive
root for ωS was considered.)
Figure 3 depicts the real part of the angular frequency Re(ωS)

in the k−U plane, for the slow (stable) IA mode (the same two
κe values have been considered, as in the previous figures).
This (slow linear) mode exists (only) above a certain threshold
(value) of the beam speed U, and in fact monotonically
increases with U. Perhaps counterintuitively, the phase speed of
the slow IA mode is higher for lower κe (nonthermal) than in
the Maxwellian case (for equal k and U, that is), in the region
where it does exist.

Figure 7. Fast-mode solitons in the symmetric model, for different κe. (a) Pseudopotential curve profile S(f) vs. the electrostatic potential f. Panels (b) and (c),
respectively, depict the (fast mode) IA electrostatic potential pulse (f) and the bipolar electric field (E) profiles vs. the traveling space coordinate ξ, for different values
of κe. We have taken U = 1.5, M = 2.3 and δ = 0.5. The same curve style and color has been adopted among the three panels, as a guide to the eye).
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5.2. Nonlinear Analysis

5.2.1. Symmetric Model

The four panels in Figure 4 illustrate the existence domain of
solitary waves associated with the fast and slow IA modes,
versus the beam speed (U), for four (4) different–descending–
values of κe, assuming a symmetric bi-ion mixture. The fast
mode is depicted in blue color, while the slow mode is shown
in red. The solid curves correspond to the sonic speed limit Ms

and the dashed curves correspond to the infinite compression
limit Ml, while the black dotted curve (for M=U) separates the
fast and slow regime(s). The existence domain for the faster IA
solitary waves (given in the blue curves) is constrained between
Ms,1 (lower limit) and Ml,1 (upper limit), i.e.,
U<Ms,1<M<Ml,1. No soliton will exist for M>Ml,1. On
the other hand, the existence domain of the slow-mode IA
solitary waves (expressed by the red curves) will be confined
between Ms,2 and Ml,2, viz. U>Ms,2>M>Ml,2> 0. No such
soliton will exist for M<Ml,2. Interestingly, the existence
region for both fast and slow IA solitary waves actually
shrinks, for lower κe (nonthermal case) in comparison with the
quasi-Maxwellian (quasi-thermal) case shown in panel 4(a).
(See that the latter panel practically matches the earlier result
obtained by Verheest & Hellberg 2021; it also agrees well with
Lakhina et al. 2020, if thermal effects are ignored.)

Figure 5 shows the variation in the Sagdeev pseudopotential
profile for different values of the spectral index (κe), still for a

beam-free plasma (U= 0). Note that an e-i quiescent plasma is
essentially obtained in this case, so this model essentially
recovered the standard original case studied by Sagdeev and
coworkers (Sagdeev 1966; Verheest & Hellberg 2009). Note
that, within the plasma model adopted in our study, only
positive polarity solitary structures are predicted. Larger values
of the root—in the potential f axis—occur for smaller values of
κe, due to the presence of highly energetic electrons. This trend
is reflected in the corresponding potential pulse and (bipolar) or
the E-field profiles, respectively shown in panels (b) and (c) of
the same Figure.
Figure 6 shows the variation in the Sagdeev pseudopotential

profile associated with fast-mode IA solitary waves, for
different values of the Mach number, while the beam speed
remains fixed (i.e., U= 1.5 here). In this case, both the fast and
slow modes exist. For the fast mode, the amplitude of fast IA
solitary waves is enhanced as the Mach number increases. A
similar trend is also portrayed in the corresponding potential
and electric field profiles.
Figure 7 depicts the variation in the Sagdeev pseudopoten-

tial profile for different values of the spectral index (κe) with
fixed streaming speed (U= 1.5, here). Higher amplitudes of
IA solitary waves occur for lower κe, i.e., for strongly non-
Maxwellian electrons, due to the presence of energetic
suprathermal electron component. The same trend is
witnessed in the corresponding potential and electric field
profiles.

Figure 8. Slow-mode solitons in the symmetric model, for different M. (a) Pseudopotential curve profile S(f) vs. electrostatic potential f. Panels (b) and (c),
respectively, depict the (slow mode) IA electrostatic potential pulse (f) and the bipolar electric field (E) profiles vs. the traveling space coordinate ξ, for different
values of the Mach number. We have taken U = 1.5, κe = 3 and δ = 0.5. The same curve style and color has been adopted among the three panels, as a guide to
the eye).
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Figure 8 illustrates the variation in the Sagdeev pseudopo-
tential profile associated with slow IA solitary waves, for
different values of the Mach number (for a fixed value of the
beam speed, i.e., U= 1.5 in this plot). Rather counter-
intuitively, for the slow mode, the potential pulse amplitude
(i.e., the root of the S− function) of IA solitary waves reduces
as the Mach number increases. This surprising trend is also
reflected in the corresponding potential and electric field
profiles, obtained numerically: see panels (b) and (c) in the
same Figure.

Figure 9 portrays the variation in the Sagdeev pseudopoten-
tial profile associated with slow-mode IA solitary waves, for
different values of the spectral index (κe), keeping the beam
speed fixed at U= 1.5. Larger values of the potential pulse
amplitude of slow-mode IA solitary waves are obtained for
lower κe, as in the case of the fast mode discussed above. This
fact is also confirmed by obtaining the corresponding potential
and electric field profiles, shown in panels (b) and (c) of the
same Figure.

5.2.2. Asymmetric Model

We shall now consider an asymmetric bi-ion beam plasma
mixture. Figure 10(a–d) illustrates the existence domain(s) for
IA solitary waves associated with either of the (fast and slow)
modes, depicted versus the beam speed U, for different values
of the spectral index κe. Four different roots exist in this case,
as shown earlier. The positive and negative domains are not the
same in this case, hence the existence regions found

(numerically) for negative and positive values of M are not
mirror-symmetric anymore: see Figure 10, where values of M
on either side of the horizontal axis were considered.
The fast mode is shown in blue color while the slow mode is

in red, in Figure 10. The solid curves correspond to Ms, while
the dashed curves correspond to Ms. As discussed in the
symmetric case earlier, the existence regimes of both fast and
slow IA solitary waves shrink. Note that, in the Maxwellian
limit (of very large κe), our results agree well with those in
Verheest & Hellberg (2021), as expected.
Figure 11 illustrates the Sagdeev pseudopotential profile

associated with slow IA solitary waves, for different values of
the Mach number, in the case of an asymmetric beam pair. In
the case of the slow mode, we see that the amplitude of
solitary waves increases as the Mach number increases. This
fact is reflected in the corresponding potential (pulse) and
electric field profiles, shown in the latter two panels, in the
same Figure.
Figure 12 portrays the variation in the Sagdeev pseudopo-

tential profile describing IA solitary waves associated with the
slow mode, for different values of the spectral index κe. Larger
amplitude solitary waves will occur for lower κe, as also
witnessed and discussed in the symmetric case earlier. (Also
see panels (b) and (c), which confirm this trend.)
In this section, we explored the existence domains of

subsonic IA solitary waves and their characteristics in a more
general way by adopting symmetric as well as asymmetric ion-
beam models. Now, in the next section, we will compare the

Figure 9. Slow-mode solitons in the symmetric model, for different κe. (a) Pseudopotential curve profile S(f) vs. electrostatic potential f. Panels (b) and (c),
respectively, depict the (fast mode) IA electrostatic potential pulse (f) and the bipolar electric field (E) profiles vs. the traveling space coordinate ξ, for different values
of κe. We have taken U = 1.5, M = 0.65, and δ = 0.5 in this plot. The same curve style and color has been adopted among the three panels, as a guide to the eye.
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Figure 10. Existence diagrams for an asymmetric bi-ion plasma mixture. The existence domain of solitary waves associated with the fast and with the slow IA mode
(in the asymmetric model) are shown vs. the streaming (beam) speed U for (a) κe = 20; (b) κe = 4; (c) κe = 3; (d) κe = 2, and for fixed values of δ1 = 2δ2 = 2/3,
U1 = − U and U2 = 2U. The fast mode is shown in blue color and the slow mode is in red. The solid curves correspond to Ms, while the dashed curves correspond
to Ml.

Figure 11. Slow-mode solitons in the asymmetric model, for different M. (a) Pseudopotential curve profile S(f) vs. electrostatic potential f. Panels (b) and (c),
respectively, depict the (slow mode) IA electrostatic potential pulse (f) and the bipolar electric field (E) profiles vs. the traveling space coordinate ξ, for different
values of the Mach number. We have taken U = 1.5, κe = 3, δ1 = 2/3, and δ2 = 1/3 in this plot. The same curve style and color has been adopted among the three
panels, as a guide to the eye).
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characteristics of Slow IA waves with the observation of ESWs
in reconnection jets by Liu et al. (2019).

6. Comparison with Observations in Reconnection Jets in
the Earth’s Magnetotail

Relying on the above considerations, we have considered in
our model cold counterstreaming ion beams with suprathermal
electrons population in the background. The following
parameters corresponding to reconnection jets are used as a
numerical application, to corroborate our model:

1. the density of the first (H+) ion beam: n1= 2.6×
104 m−3 with drift speed u1=− 900 km s−1;

2. the density of the second (H+) ion beam: n2= 0.9×
104 m−3 with drift speed u2= 950 km s−1 and density
of electrons ne= 3.5× 104 m−3 with temperature
Te= 2.86 keV. The sound speed of e-i plasma is
CIA= 523 km s−1 and the Debye length λDe= 2.12 km.
Hence, the normalized parameters of the reconnection jet
are δ1= 0.74, δ2= 0.26, U1=− 1.72, and U2= 1.82.

The features of ESWs propagating antiparallel to the
ambient magnetic field B that were observed by the MMS
spacecraft in the reconnection jet region, as reported by Liu
et al. (2019), were bipolar electric fields, E∼ (5–30) mVm−1,
with positive potential f∼ (50–200) V, velocity antiparallel to
B=−650 km s−1 and width W∼ 20 km. In Table 1, we have
numerically computed the features of ESWs associated with

reconnection jet parameters (Liu et al. 2019) for the four
different modes that may exist—as discussed above—i.e., fast
and slow mode(s) for parallel or antiparallel propagation with
respect to the magnetic field. Table 1 illustrates that both the
characteristics of fast and slow modes of IA solitary waves
corresponding to parallel (antiparallel) waves with respect to
B are in good agreement with observations by Liu et al.
(2019). It is important to highlight the wave characteristics of
subsonic waves for both cases: highly suprathermal case
(κe= 3) and quasi-Maxwellian case (κe= 20) are in an
acceptable range as observed by Liu et al. (2019). (Note, for
rigor, that in the Maxwellian case, Lakhina et al. (2021)
studied this model with thermal effects, yet even then our
results are in good agreement).
The present investigation proposes an analytical mechanism

for the generation of subsonic electrostatic solitary waves in
reconnection jet sites in the Earth’s magnetotail. In a nutshell, it
shows that the drifting cold ion beams, along with suprathermal
electrons, may play a major role in the evolution of subsonic
waves in reconnection jets.
Despite the (limited) mismatches in the speed of the fast

mode, both the predicted pulse amplitude and bipolar electric
fields are acceptable in the range of magnitude, though notably
in the direction parallel to B (notice that Liu et al. 2019 only
captured signals of ESWs with antiparallel orientation). Other
reasons for this (limited) discrepancy in the agreement may be
(a) the waveforms received by different satellites were not

Figure 12. Slow-mode solitons in an asymmetric beam plasma system, for different spectral index κe. (a) Pseudopotential curve profile S(f) vs. electrostatic potential
f. Panels (b) and (c), respectively, depict the (slow mode) IA electrostatic potential pulse (f) and the bipolar electric field (E) profiles vs. the traveling space coordinate
ξ, for different values of κe. We have taken U = 1.5,M = 0.8, and δ = 0.5 in these plots. The same curve style and color has been adopted among the three panels, as a
guide to the eye).
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synchronized, (b) the ion beams observed may not be the
primary beam, and (c) the missing oxygen ion species (Lakhina
et al. 2021).

We draw the conclusion that our ab initio investigation of
subsonic ESWs is in good agreement with the observations in
the reconnection jet region(s) in Earth’s magnetotail that were
reported by Liu et al. (2019).

7. Conclusions

We have studied, from first principles, the occurrence of both
fast and slow IA subsonic waves in a non-Maxwellian space
plasma comprising two counterstreaming (drifting, at equal
absolute speed U) ion beams with kappa-distributed electrons.
Our analysis relied on the exact (nonperturbative) Sagdeev-
type pseudopotential technique, to derive an energy balance
equation, based on which we have delineated the existence
domains for subsonic solitary waves.

The impact of the beam velocity U and of the spectral index
(κe) on the existence of subsonic waves has been investigated
in detail. Linear analysis reveals that subsonic waves are
unstable when the beam velocity is less than a certain value
(that actually differs, for different values of κe); in this regime,
only conventional supersonic (fast) waves are formed. On the
other hand, when the beam speed exceeds the threshold, either
supersonic or subsonic waves may (co-) exist.

The combined parametric dependence of the beam and of the
electron statistical distribution has been analyzed, with respect
to subsonic solitary waves. Both symmetric and asymmetric
(beam) models were considered, and the results were
qualitatively not different.

Our theoretical investigation has successfully grasped the
basic features of the recent observations of subsonic ESWs in
the reconnection jet sites reported by Liu et al. (2019) in MMS
measurements. We have shown that an adequate plasma model
incorporating a suprathermal population of electrons can
explain the observed generation of slow/subsonic ESWs in
the magnetotail, both qualitatively and quantitatively. Such
subsonic waves may thermalize the ion beams and give a new
channel for ion heating inside the jet region, as suggested by
Liu et al. (2019).

This investigation is, to the best of our knowledge, the first
of its kind, in that it has focused on a realistic Space plasma
situation where two counterstreaming plasmas collide, against a

background of nonthermal (kappa-distributed) electrons; this is
a ubiquitous scenario in the Earth’s magnetosphere and may
arguably also occur in other planetary magnetospheres, affected
by the solar wind, as a constant source of streaming ions in
addition to energized electrons. As discussed above, earlier
modeling efforts have focused exclusively on supersonic
(superacoustic) solitary waves. However, slow (subacoustic)
solitary waves are apparently detected in satellite observations,
and a theoretical framework for these was so far lacking in the
literature. Our work was based on the main ideas introduced by
Lakhina et al. (2021, 2020), and later refined by Verheest &
Hellberg (2021), who argued that the “slow” waves detected by
Liu et al. (2019) were, in fact, subsonic electrostatic solitons,
which may, in fact, exist in a beam-permeated plasma. The
subsonic wave interpretation may arguably depend on the
adopted reference frame: while the subsonic modes were seen
in the laboratory frame, the mode may be seen as supersonic in
the corresponding ion frame.
It may be added, for rigor, that we have relied on the

working hypothesis the propagation was along the ambient
magnetic field. Furthermore, magnetization was “neglected” in
our model, as overall current neutrality was implicitly assumed.
Whether this was satisfied by the actual measurements—within
the actual error bars on the densities and currents/beams—was
beyond our reach to verify; however, we note that Liu et al.
(2019) stated explicitly that no currents were measured.
Our study clearly suggests that ESWs played a vital role in

jet dynamics (Liu et al. 2019). Our findings will help to unfold
the (mostly unexplored) dynamical characteristics of subsonic
waves observed in the reconnection jets of Earth’s magneto-
sphere (Lakhina et al. 2021; Liu et al. 2019).
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Table 1
The Characteristics of Ion-acoustic Solitary Waves Have Been Calculated by Using the Data Sets Associated with Reconnection Jets Observed by Liu et al. (2019)

S.No Mode Distribution M V (km s−1) f (V ) E (mV m−1) W(km)
min max

1 Fast IA mode κe = 3 2.25 2.5 1180–1307 77–715 12–431 14–4
parallel to B κe = 20 2.35 2.7 1230–1412 72–1144 8–546 21–5.1

2 Slow IA mode κe = 3 1.4 1.1 732–575 41–743 6–539 19–4
parallel to B κe = 20 1.25 0.88 653–460 171–1200 26–593 14.4–4.2

3 Fast IA mode κe = 3 −2.4 −2.7 −(1255–1410) 63–1430 5.4–1080 27–3.4
antiparallel to B κe = 20 −2.6 −2.89 −(1360–1511) 228–1780 27–840 20–5.5

4 Slow IA mode κe = 3 −1.04 −0.7 −(543–366) 43–2860 3–1106 27.5–3.6
antiparallel to B κe = 20 −0.85 −0.65 −(445–340) 114–1290 8–404 26–5.6

Note. The density of the first H+ ion (proton) beam is n1 = 2.6 × 104 m−3, with drift speed u1 = − 900 km s−1; the density of the second H+ ion (proton) beam is:
n2 = 0.9 × 104 m−3, with drift speed u2 = 950 km s−1; finally, the electron density is ne = 3.5 × 104 m−3, with temperature Te = 2.86 keV. The sound speed for e-i
plasma with the observed H+ ions and hot electrons is CIA = 523 km s−1, and the Debye length is λDe = 2.12 km. Here, f is the amplitude of the electrostatic potential
soliton pulse (in Volt), V is the phase speed (in km s−1), E is the electric field (in mV m−1) and W is the soliton width (in km).
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