ARTICLE TEMPLATE

An AutomationML extension towards interoperability of 3D virtual
commissioning software applications

a,b a,b

Jiagi Zhao®*P, El-Houssaine Aghezzaf and Johannes Cottyn

aDepartment of Industrial Systems Engineering and Product Design, Ghent University,
Technologiepark 46, Gent-Zwijnaarde, 9052, Belgium; PIndustrial Systems Engineering
(ISyE), Flanders Make, www.FlandersMake.be, Belgium

ARTICLE HISTORY
Compiled October 10, 2023

ABSTRACT

To achieve interoperability between different 3D virtual commissioning software, a
generic virtual commissioning data model is required. AutomationML is a standard
neutral format for interoperability in the engineering phase. However, the current
AutomationML standard is not sufficient for full-scope 3D-based virtual commission-
ing data exchange, as attributes and modeling method of 3D virtual commissioning-
related sensors, actuators and signal connections are not standardized in Automa-
tionML. To fill this gap, the authors suggest extending AutomationML for interop-
erability in 3D virtual commissioning. In this paper, a case-driven iterative approach
is introduced to evolve towards an AutomationML extension. This extension is grad-
ually developed by taking the union of all virtual commissioning-related functions
and attributes of 3D virtual commissioning software. During the iteration, nam-
ing rules are applied when a new attribute is added to the extension. With this
approach, an initial AutomationML extension is created by implementing a first
iteration. The interoperability performance of this extension is subsequently evalu-
ated by conducting data exchange of a representative set of 3D emulation models
between two 3D virtual commissioning software, namely Siemens NX and Visual
Components, via self-developed “Import” and “Export” plug-ins. It shows that Au-
tomationML extension-based data exchange converts 70% more attributes than that
only based on AutomationML.

KEYWORDS
Virtual commissioning; AutomationML; Generic data model; Data exchange;
Interoperability; Case-driven iterative approach

1. Introduction

Digital Twin (DT) is gaining increasing attention in Industry 4.0 (Tao et al. |[2018}
Lattanzi et al|[2021), and Virtual Commissioning (VC) is crucial in building DT
systems (Barbieri et al.|2021)). With VC, cost and time in real commissioning will be
significantly reduced, since errors can be detected and modified during the emulation
phase (Metzner et al.|2022)). Due to these advantages, various 3D virtual model-based
VC (3D VC) software applications have been developed (Hoffmann et al. [2010). As
each of these software applications has its own specific functionalities, to make the best
performance of VC, more than one 3D VC software might be used in industrial practice.

CONTACT Jiaqi Zhao. Email: Jiaqi.Zhao@QUGent.be

https://orcid.org/0000-0003-0112-952X
https://orcid.org/0000-0003-3849-2218
https://orcid.org/0000-0002-1668-3331

This fuels the need for interoperability between different 3D VC software applications.
However, interoperability between 3D VC software applications is still challenging as
each software is developed in compliance with its own principle. In this respect, no
common standard has been published yet for describing 3D VC data comprehensively
and accurately (Ugarte et al.[2022). This builds a big obstacle for different 3D VC
software end users to collaborate, as 3D emulation models must be created manually
in each 3D VC software application, which is extremely time-consuming (Thongnuch,
Fay, and Drath|2018]).

Although for some 3D VC software applications, 3D Computer-Aided Design (CAD)
models can be imported and created automatically via a common standard such as
Standard for the Exchange of Product Data (STEP) (Wang and Xu|2015)), other
information including physics, kinematics, sensors, actuators and signal connections,
still must be created manually. If a generic data model is developed and 3D emulation
models can be fully automatically built in different VC software applications via this
software-independent data model, manual remodeling work of 3D emulation models
will be significantly reduced in the VC phase, and thus the overall cost of establishing
a DT will drastically decrease (Schamp et al.[2018). Under this circumstance, a generic
3D VC-oriented data model is urgently in demand.

AutomationML (AML) is a good way to solve this problem (Liider, Schmidt, and
Rosendahl|2015). AML is short for “Automation Markup Language”, which is a stan-
dardized data format aimed at integrating multi-disciplinary data and steering data
exchange between multiple engineering disciplines (Drath|[2021b)). It can integrate het-
erogeneous information into a standard data structure (Drath et al. 2008). To date,
geometry, physics and kinematics information can be expressed in the Collada format
and integrated into AML (Li et al.|2015; |AutomationML 2017b)); AML can also be
used to model communication-related sensors, actuators and logical devices (Automa-
tionML|[2014, 2017a, 2021). However, the current AML standard libraries are not com-
prehensive enough to achieve full-scope 3D VC-oriented data exchange (Thongnuch
and Fay||2017; |AutomationML]2023). On one hand, the attributes of 3D VC-related
sensors, actuators and signal connections are still not standardized in AML; On the
other hand, the linking method between these elements (3D VC-related sensors, actua-
tors and signal connections) and 3D virtual models are unclear. Thus, the current AML
standard (AML itself) is not comprehensive enough to realize full-scope interoperabil-
ity in 3D VC. In this case, the authors suggest extending the current AML standard
to make a generic data model to improve the interoperability between different 3D VC
software applications. With this extension, VC software developers can develop their
software-specific “Import” and “Export” plug-ins, which will significantly reduce the
workload of software users when exchanging 3D emulation models between different
3D VC software applications.

The remainder of the paper is structured as follows. In Section [2] the state of the art
is illustrated. In accordance with this, it infers that no generic data model exists for the
data exchange between different 3D VC software applications, and an extension of the
current AML standard is suggested to fill this gap. In Section [3], a case-driven iterative
approach is introduced to continuously enrich and improve a generic VC data model,
and the attribute naming rules of this data model are also proposed. In Section {4} an
initial version of the AML extension is created and its interoperability performance
is evaluated. In Section [5] the results are analyzed and discussed. Finally, conclusion
and outlook are described in Section [6l

2. State of the art

This section describes the state of the art. In Section contemporary industrial
standards and neutral data formats for exchanging 3D virtual models are presented.
Furthermore, the current research status on the automatic generation of VC models
and the realization of 3D emulation model data exchange between different 3D VC
software applications is elaborated in Section

2.1. RAMI 4.0 and AML

In Industry 4.0, heterogeneous multi-disciplinary data are interrelated throughout the
product life cycle (Xu, Xu, and Li/[2018), and a unified industry-recognized standard
data model is required to achieve a coherent and no-data-loss workflow (Nagorny
et al.|2020)). For this purpose, Reference Architectural Model for Industry 4.0 (RAMI
4.0) was introduced to bridge this gap (Miiller et al.|2022). RAMI 4.0 was developed
by the German Mechanical Engineering Industry Association (VDMA), the German
Electrical and Electronic Manufacturers’ Association (ZVEI) and the German Digital
Association (Bitkom) (Yli-Ojanpera et al.[2019). It came into the public in 2015 (Han-
kel and Rexroth|[2015). The aim of RAMI 4.0 is to link all crucial data of Industry
4.0 by a 3D architecture, and all the participants in Industry 4.0 can understand each
other by speaking the same RAMI 4.0 language (Schweichhart |2016). As is shown
in Figure (1} the architecture of RAMI 4.0 consists of three axes (Xu et al. 2021)):
the “Hierarchy Levels” axis, the “Life Cycle & Value Stream” axis and the “Layers”
axis. The “Hierarchy Levels” axis, namely “horizontal integration”, describes the con-
nections between resources and facilities within factories. The “Life Cycle & Value
Stream” axis, namely “end-to-end integration”, expresses the life cycle of a product
from conceptual design to finished product. The “Layers” axis, namely “vertical in-
tegration”, is divided into six different layers, which shows how data are transferred
between the physical layer and the digital layer. The “Information” layer is to define
all the information of devices in the manufacturing process throughout the product
life cycle, and AML is a standard neutral data format recommended to model and
exchange data in RAMI 4.0 (Adolphs et al.|[2015; |Beisheim et al. 2020; Fraile et al.
2019; Drath et al. [2023).

AML was initialized by Daimler AG in 2006 and published at the Hannover fair in
2008 (Luder et al.[2014]). AML aims to solve the “heterogeneous tool landscape” among
multiple different engineering disciplines throughout the product life cycle (Drath et al.
2008) and it is regarded as the leading data exchange format for interoperability be-
tween engineering tools (ZVEI 2022)). Because of its strength in data modeling and
data exchange, AML is obtaining growing attention (Zhao et al.[2021). The data struc-
ture of AML is based on Computer Aided Engineering Exchange (CAEX), which is an
Extensible Markup Language (XML)-based data format. For CAEX version 2, AML
data structure can be divided into four parts: Instance Hierarchy (IH), System Unit
Class Library (SUCL), Role Class Library (RCL) and Interface Class Library (ICL).
IH is the core structure of AML, made up of numerous Internal Element (IE), which
contains the main data contents of the project. Each IE is referred to as a Role Class
(RC) in RCL to specify the type of each IE, by adding a role-referenced (RR) node in
the sub-level of IE. SUCL is a collection of System Unit Class (SUC), which is used
to quickly create the IEs in the structure of IH by dragging and dropping. Interface
Class (IC), located in ICL, is referred to by an External Interface (EI) which is a sub-

Layers

Business

P -
. P e
Functional <8 St
- e -
o . o e -
Pl - e e i

Eiab TN
- -
. ng
. -~
. -
- LTS
- -
- LYo
- -
8

Information

o® e
-
-®
-

Communication
Integration

Asset

Figure 1. AML in RAMI 4.0 architecture.

node of IE, to link IE with heterogeneous data including geometry and kinematics,
logic and behavior, and others (Liider and Schmidt/2017). Among them, geometry and
kinematics information is described in the format of Collada, while logic and behav-
ior information is illustrated in the format of PLCopen XML . Collada
came into public in 2008, and it is an XML-based interchange format for interactive
3D applications, where kinematics data are included since version 1.5
. PLCopen XML was developed by PLCopen, and it represents logic and
behavior information based on XML format (Estévez et al.|2010).

Notably, all AML-related data formats are standardized, of which CAEX, Collada
and PLCopen XML belong to IEC 62424, ISO/PAS 17506 and IEC 61131-10 respec-
tively (Holm et al.[2012; Berardinelli et al|2015; An et al.|2020). AML also belongs
to an IEC standard, which is IEC 62714 (Henfen and Schleipen|2014)). To date, there
are five sub-standards in IEC 62714: Architecture and general requirements of AML,
Semantics libraries of AML, Geometry and kinematics of AML, Logic of AML and
Communication of AML. Therefore, it can be concluded that AML is a standardized
data format to model data and do data exchange.

Although AML is a standardized data format to integrate geometry and kinematics
information, however, 3D VC-related sensors, actuators and signal connections are
still not comprehensively included in the current AML standard. Besides, as AML is
standardized since 2015 (IEC 62714-2, Edition 1.0), it has not been widely utilized to
exchange data by most 3D commercial software (Babcinschi et al.|2019)). In addition to
AML, there are various kinds of neutral formats for 3D virtual model data exchange.
Nevertheless, these formats are not comprehensive enough to exchange 3D emulation
models between different 3D VC software applications (Zhao, Aghezzaf, and Cottyn|

2023).

2.2. Related work on VC model generation and data exchange

At this moment, VC can be done in two different ways: Dynamic model-based VC
(also known as “1D VC”) and 3D VC (Hoffmann et al.||2010; Jackson|2020). 1D VC

can test the system based on the real-time values in the behavior models, while 3D
VC can verify the feasibility of the automation system based on the movement of 3D
geometrical models (Suf, Strahilov, and Diedrich|2015). According to this, VC model
generation is divided into two directions: (1) Automatic generation of dynamic models,
(2) Automatic generation of 3D emulation models.

For 1D VC, the Functional Mock-up Interface (FMI) is widely used for exchanging
dynamic models between different dynamic simulation software tools, such as Simulink
and Dymola (FMI|2023; Gunnarsson| 2016; |Graeser et al. |2011). However, the FMI
is mainly aimed at the data exchange of dynamic models, instead of 3D emulation
models (Jackson|2019).

For 3D VC, various software applications have been developed in their own
cores (Adnan, Daud, and Saud|2014). Under this circumstance, neutral data formats
for the interoperability of different 3D software applications were demanded. Since
1960, various 3D neutral data exchange formats have been developed, but they only
target on the data exchange of geometry information (Pratt|2001)). With the develop-
ment of 3D simulation software, neutral formats have been developed and improved,
and kinematics information has been integrated (Wardhani and Xu/|2016). Since 2010,
3D VC software has been introduced (Drath, Weber, and Mauser|[2008]). A comprehen-
sive 3D emulation model contains not only geometry and kinematics information but
also sensors, actuators and signal connections information (Ayani, Ganeback, and Ng
2018). In this case, it requires more information integrated into the neutral formats.
In addition, the standardization of neutral formats is also a key factor. If a neutral
format is standardized, it is reliable and can be used directly. According to this, five
criteria are chosen to categorize these works, which are as follows:

/C1/ The VC-related data exchange in the work is based on 3D geometrical models.

/C2/ Besides geometry, kinematics information is also included in the data exchange
format.

/C3/ Besides geometry and kinematics information, 3D VC-related sensors, actua-
tors and signal connections are also included.

/C4/ The data exchange format is generic and neutral.

/C5/ The data exchange format is developed according to industrial standards.

To automatically generate and exchange VC models, several studies have been con-
ducted. Based on the criteria above, a table of relevant studies is created to intuitively
display the analysis results, as shown in Table

As listed in Table [I} no solutions have been found on realizing full-scope interop-
erability between different 3D VC software applications (according to the results in
Column “/C3/”). Therefore, a generic VC data model is crucial to solving this prob-
lem. According to the experiment results (Zhao, Aghezzaf, and Cottyn|2023), AML
is considered as the best starting point for 3D emulation model generation in 3D
VC software applications. Accordingly, the authors dedicate themselves to extending
the existing AML standard and proposing a generic VC data model for achieving 3D
VC-related interoperability, and this data model is named “AML-VC extension”. The
location of the AML-VC extension in RAMI 4.0 architecture is shown in Figure

As depicted in Figure[2] the AML-VC extension is located throughout the “Informa-
tion” layer, “Communication” layer and “Integration” layer of RAMI 4.0 architecture.
The “Information” layer contains geometry and kinematics information, the “Com-
munication” layer describes signal connection information, and the “Integration” layer
includes the information of sensors and controllers. Besides, the AML-VC extension
covers the whole “Life Cycle & Value Stream” axis. It means that the AML-VC ex-
tension not only can automatically create 3D emulation models in 3D VC software

Table 1. An analysis of the studies on VC model generation and data exchange.

Authors (Publish Year)

Contributions

/C1/ /C2/ /C3/ /C4/ /C5/

[Westkamper et al, (2012)

[Barth and Fay| (2013)

|Oppelt et al.| (2014))

[Hoernicke, Fay, and Barth|

(2015)
@7

[Martinez et al, (2018)

Schyja, Bartelt, and Kuh-|

lenkotter| (2014])
@7

|Zhang,

(2020))

[Beisheim et al.| (2021)

Yan, and Wen|

|[Kaiser, Reichle, and Verl|

(2022)

|Li, Tian, and Vogel-Heuser|

(2019)

[Breckle et al|(2017)

[Schopper et al.| (2021))

[Yemenicioglu| (2016))

Thongnuch,
Drath| (2018

ongnuch| (2021)

Fay, and|

Automatic generation of a process simulation
model based on an Electronic Computer-Aided
Design (ECAD) model

Automatic generation of simulation models
based on Piping and Instrumentation Dia-
grams (P&ID) and CAEX

Automatic generation of a simulation model
from plant engineering data based on P&ID
and XML

Generating simulation models for brown-field
projects based on Human-Machine Interface
(HMI) graphics and CAEX

Automatic generation of qualitative plant sim-
ulation models based on P&ID and AML

An automated generation flow of simulation
models for checking control/monitoring sys-
tem based on P&ID and XML

Automatic generation of a high-fidelity dy-
namic thermal-hydraulic process simulation
model based on an Mechanical CAD (MCAD)
plant model and Comma Separated Value
(CSV)

Automatic generation of a plant simulation
model from the symbol table of a Pro-
grammable Logic Controller (PLC) program
Data exchange between heterogeneous engi-
neering tools by utilizing AML-based “Smart
Components”

Automatic generation of VC models based on
Graph-Based Design Language (GBDL) and
AML

An information modeling approach for Cyber-
physical Production System (CPPS) based on
AML

Generating DTs of tooling machines by using
GBDL and AML

AML-based automatic generation of DT mod-
els for reconfigurable manufacturing systems
in timber construction
AML-based data
SysML4Mechatronics
ric

Automatic generation of 3D layouts based on
GBDL

Automatic generation of simulation models
by using a GBDL-based model called “Exe-
cutable Integrative Product-Production Model
(EIPPM)”

An AML-based framework for the automatic
generation of a 3D material handling handling
system VC model based on Product-Process-
Resource (PPR) concept

Semi-automatic generation of a virtual repre-
sentation of a production cell based on AML
AML-based generation of kinematics-included
VC models by automatically recognizing the
component mate information of MCAD

exchange between
and Creo Paramet-

NS

Y: Yes, N: No, P: Partially, U:

Unclear, /: Not required.

Layers

Business

Functional

Information

Communication

Figure 2. The “AML-VC extension” in RAMI 4.0 architecture.

applications during the product design phase, but also can be generated with real-
time data from a 3D VC software application (used as a “digital shadow”) during
the real manufacturing process. When it comes to the axis of “Hierarchy Levels”, the
AML-VC extension covers all categories in the engineering field, including “Product”,
“Field Device”, “Control Device”, “Station” and “Work Centers”. As “Enterprise”
and “Connected World” contain more information beyond the scope of engineering,
they are not included in the AML-VC extension.

3. Methodology

To develop the AML-VC extension, a methodology is needed. In Section [3.1] a case-
driven iterative approach is introduced to continuously evolve towards a comprehen-
sive AML-VC extension. During the iteration, a comparison of attribute names is
conducted and attribute naming rules are presented in Section

3.1. A case-driven iterative approach to developing an AML-VC
extension

An AML-VC extension is a generic VC data model, which is a 3D VC-oriented, yet
software-independent data structure, containing interrelated information, including
geometry, physics, kinematics, sensors, actuators and signal connections. Based on
this AML-VC extension, 3D emulation models can be created in a 3D VC software
application automatically by developing AML-VC extension-oriented “Import” and
“Export” plug-ins with Application Programming Interface (API), regardless of which
3D VC software application is used as the modeling environment.

To create such a comprehensive data model, a case-driven iterative approach is
proposed, which is shown in Figure [3] In this approach, the generic VC data model is
continuously improved based on new cases. Each case is composed of two aspects: (1) A
particular 3D VC software application, which must have never been used previously to

develop the generic VC data model; (2) Several application-specific emulation models,
among which all the VC modeling-relevant functions of this software application have
been used.

e “
Generic data model
mCalgrary'l =1, m=m+]1—
A Element 1 t=1, =1, m=1
e Attribute 1 ylr A
: Altribuled Compare "Attribute | in Function m" with f&—1=I+1—
o Attribute i, i€[3,4,...x] all attributes in generic data model
L
® Attribute x
A Element 2
A .. o JAttribute i in Element j in Category k
A Element], j€[34,....y] in generic data model has the same definition
A with "Attribute | in Function m" ?
A Elementy
m Category 2
- Yes
m Category k, k€[3.4,...,2] l No
T
Optimize the name of Aftribute i in Element j in
- Category z v Category k based on the workflow in Fig.4.
g D
Case t: Application t Create an Attribute in the generic data model which
is equal to "Attribute | in Function m"
% Function 1 (also create Category and Element if needed)
o Attribute 1
e Attribute 2
e ...
o Attribute L, 1€[3,4,....u] e—
..
® Attribute u No
* Function 2
x* ..
* Function m, me[3,4,....v] m=v? e
%* i
* Function v No,
- v

Figure 3. A framework to develop a generic data model in accordance with a case-driven iterative approach.

As depicted in Figure [3] the hierarchy of the generic data model is divided into
three levels: “Category”, “Element” and “Attribute”. These categories, elements and
attributes are well structured and linked with each other in the generic data model.
Based on this, an arbitrary 3D emulation model can be created in a 3D VC software
application. Furthermore, 3D VC software applications contribute to developing the
generic VC data model. In each case, there is a particular 3D VC software application,
containing a variety of functions that are utilized to create software-specific emulation
models. Like the hierarchy of the generic data model, there are also various attributes
in different functions. These data structures are illustrated in detail with examples in
the literature (Zhao, Aghezzaf, and Cottyn! [2023]).

Besides, a framework for gradually developing a generic VC data model is also de-
scribed in Figure 3] Based on this framework, the generic data model is continuously
evolved by comparing its own attributes with all the VC-modeling function attributes
of the 3D VC software application individually. This can be illustrated in a mathe-
matical way. For a generic data model, suppose the quantity of categories is z, and
there is a Category k (k € [1, z]), which contains y elements. For one of these elements,

Element j (j € [1,y]), there are x attributes attached to it. Similarly, for an arbitrary
case t, there is a VC software application ¢, in which there are v VC-modeling-relevant
functions. During the procedure of individual comparison, Function m (m € [1,v]) is
one of these functions, and it contains u attributes. If there is an Attribute [(I € [1, u])
in Function m, which has the same definition with an Attribute i (i € [1,z]) in Ele-
ment j in Category k, then the name of the Attribute 7 is to be optimized according
to the workflow defined in Section On the contrary, if no attributes of the generic
data model have the same definition with the Attribute ! of the application, a new
attribute is to be supplemented in the right place of the generic data model, and a
new category or element can also be created if necessary. In this way, the generic VC
data model is getting increasingly comprehensive as more cases are added.

3.2. The naming rules of generic VC data model attributes

As illustrated in Section the name of Attribute ¢ in Element j in Category k is
required to be optimized when it has the same definition as Attribute [in Function
m of a VC software application. The workflow of optimizing a generic VC data model
attribute name is described in Figure [4]

The name of Attribute 1 in Element j in Category k
= the one of "Attribute | in Function m" ?

Change the name of Attribute i in

Element j in Category k according

to the one defined in the Industrial
Standard / Whitepaper

The definition of the
attribute is included in an Industrial
Standard / Whitepaper ?

No
¥

Rename Attribute i in Element j in
Category k in consideration of the
name of "Attribute | in Function m"

I End I

. - J

Figure 4. The workflow of optimizing a generic data model attribute name.

The procedure starts with the comparison of both attribute names. If their names
are exactly the same, then the name of Attribute ¢ in Element j in Category k is not
obliged to change. If not, the name of the Attribute ¢ is to be changed.

Subsequently, if the name of the Attribute i is suggested to change, industrial stan-
dards (related whitepapers) are carefully checked. If there is a similar definition of this
attribute, then the Attribute ¢ is renamed according to the one defined in industry
standards (related whitepapers). For example, there is an attribute called “Sliding”
in the generic data model, while there is a so-called “Translational” attribute in a 3D
VC software application, both attributes represent the same definition, namely a kind
of joint type. To solve this problem, an attribute called “Prismatic” is found in an
industrial standard (ISO 17506: 2022). In this case, the relevant generic data model

attribute is renamed to “Prismatic” instead of “Sliding” or “Translational”.

However, if no definition of this attribute can be found in industrial standards
(related whitepapers), the generic data model attribute is renewed by considering the
attribute name located in the 3D VC software application and making a compromise.
For instance, there are two similar definition attributes, which are from the generic
data model and a 3D VC software application respectively. One attribute is called
“Private Key”, while the name of the other attribute is “Use Private Key File”. As
a result, “Use Private Key” is used to renew the attribute name in the generic data
model.

Based on these naming rules, the attributes of the generic data model are renamed.

4. AML-VC extension

In this section, an initial version of the AML-VC extension is developed, utilized and
evaluated. In Section a first iteration of the proposed approach is implemented
using two 3D VC software applications as cases, namely Siemens NX (SNX) and
Visual Components (VCO). Based on this, an initial version of the AML extension
is created. Next, an AML-VC extension-based data exchange method between SNX
and VCO is described and verified in Section The interoperability performance
is subsequently evaluated by exchanging 10 3D emulation models between SNX and
VCO via this extension in Section (4.3l

4.1. Creation of an AML-VC extension based on a first iteration

As proposed in Section [2] an AML-VC extension is considered a suitable data format
to build a VC data model and to do data exchange between different 3D VC software
applications. Thus, based on the case-driven iterative approach (Section and the
attribute naming rules (Section , a preliminary AML-VC extension is created by
using AML and two 3D VC software applications, namely SNX and VCO, as cases for
this first iteration.

During the iteration phase, an AML-VC extension is gradually developed by taking
the union of all the VC-related functions and attributes of SNX and VCO. Among
them, 92 VC-related functions and 1350 relevant attributes exist in SNX, while the
numbers are 34 and 381 respectively in VCO. After the iteration including attribute
name optimization, a first version of the AML-VC extension is created, with 7 cate-
gories, 115 elements and 1670 attributes. The data structure of the initial AML-VC
extension is briefly shown in Figure

As depicted in Figure [5] a set of libraries has been created, including Role Class
Library “AutomationMLVirtualCommissioningRoleClassLib”, Interface Class Library
“AutomationMLVirtualCommissioningInterfaceClassLib” and Attribute Type Library
“AutomationMLVirtualCommissioningAttributeTypeLib”. In these libraries, a variety
of 3D VC-related elements have been defined. Moreover, a large amount of 3D VC-
related information is composed in these elements, not only geometry, physics and
kinematics information but also information of sensors, actuators and signal connec-
tions. Furthermore, the elements in these libraries are linked with each other, which
makes the AML-VC extension relatively comprehensive to express 3D emulation mod-
els.

As 3D VC-related sensors, actuators and signal connections are additional elements
in this AML-VC extension, how to integrate these kinds of information on the IE and

10

4 AutomationMLVirtualCommissioningRoleClassLib

Assembly

Basic Physics

Advanced Joints
Constraints

4 [&9 Sensors

[Collision Sensor

[d Distance Sensor

[Position Sensor

[7d Velocity Sensor

[’ Accelerometer

[Fd Inclinometer

[2D Laser Scanner

[Light Curtain

[d Limit Switch

[Fd Relay

4 Actuators

[d Linear Speed Control
[d Angular Speed Control
[d Linear Position Control
[Angular Position Control
[d Transport Surface

[Force Control

[d Torque Control

e Hydraulic Cylinder

[Hydraulic Valve

[Pneumatic Cylinder

[d Pneumatic Valve

[Runtime Button

[Display Changer

[d Read Device

[Write Device

[d Online Inverse Kinematics
[d Offline Inverse Kinematics

4 AutomationMLVirtualCommissioninglnterfaceClassLib 4 AutomationMLVirtualCommissioningAttributeTypeLib

Geometryinterface
[ic] Effectinterface
[i€] Nodelnterface
Jointinterface
PhysicsMateriallnterface
4 [ic] BasicPhysicsInterface
[ObjectSourcelnterface
[i€] ObjectSinkinterface
[€] DynamicMateriallnterface
DynamicMaterialCutterinterface
4 ensorandActuatorinterface
4 [i] Sensorlinterface
I CollisionSensorinterface
I [ig] DistanceSensorinterface
[id] PositionSensorinterface
[i€] VelocitySensorinterface
4 Actuatorinterface
[ic] SpeedControlinterface
PositionControlinterface
HydraulicCylinderinterface
[i€] HydraulicValvelnterface
[i€] PneumaticCylinderinterface
[i€] PneumaticValvelnterface
[ic] DisplayChangerinterface
[i€) ReadWriteDevicelnterface
4 i) SimulationTaginterface
[€] TagTablelnterface
[€] TagForminterface
[i€] TagFormValueListinterface
4 Signalinterface
[ic] SimulationSignalinterface
ExternalSignalinterface
MotionProfilelnterface

ComponentAttributes

[& BasicPhysicsAttributes

[AdvancedJointAttributes

[&] ConstraintAttributes

4 [x7 SensorAttributes
CollisionSensorAttributes
DistanceSensorAttributes
PositionSensorAttributes
[[] VelocitySensorAttributes
AccelerometerAttributes
InclinometerAttributes
2DLaserScannerAttributes
LightCurtainAttributes
LimitSwitchAttributes
RelayAttributes
4 [&] ActuatorAttributes

LinearSpeedControlAttributes
AngularSpeedControlAttributes
LinearPositionControlAttributes
AngularPositionControlAttributes
TransportSurfaceAttributes
[&] ForceControlAttributes
[5] TorqueControlAttributes
HydraulicCylinderAttributes
HydraulicValveAttributes
PneumaticCylinderAttributes
PneumaticValveAttributes
RuntimeButtonAttributes
[[] DisplayChangerAttributes
ReadDeviceAttributes
WriteDeviceAttributes
OnlinelnverseKinematicsAttributes
OfflinelnverseKinematicsAttributes

Simulation Tags [i€] TargetPositionListinterface [&1 ServerAttributes

Simulation Signals [& DataFlowDirectionAttributes
External Signals InterfaceAttributes

Signal Connection

Figure 5. An AML-VC extension created by the iteration of two cases, SNX and VCO.

attach them to IH is also crucial.

In terms of 3D VC-related sensor information, three kinds of sensors are taken as
an example, which are “Distance Sensor”, “Position Sensor” and “Velocity Sensor”.
The information of the sensors is structured into AML instead of Collada. One reason
is that there has not been an update in Collada since 2008, while the other reason
is that the additional information can be a new RC in RCL, which provides great
convenience for quickly building AML-based data models. Figure [6] shows the data
structure of “Distance Sensor”, “Position Sensor” and “Velocity Sensor” in the AML-
VC extension. Based on the principle of taking union described in Section the
attributes of these three kinds of sensors in both SNX and VCO are combined and
structured into AML. As Figure [6] shows, each sensor is a sub-IE under its parent IE
“Sensors”. The sub-IE “Distance sensor” refers to a “Raycast Sensor” in VC, while it is
a “Distance Sensor” in SNX. The distance sensor can be attached to a certain assembly
link, which can be referred to as a “node” in Collada, and real-time distance value
and trigger value can be linked to relevant simulation signals via Internal Link (IL)s.
The start point and the direction of the distance sensor are defined by the attribute
“Frame”, in which “x”, “y”, and “z” of the frame are the start point and the positive
Z-axis of the frame in the direction. The other attributes of the “Distance Sensor” in
an AML-VC extension are taken from both SNX and VCO. Besides, position sensors
and velocity sensors can indicate the real-time position and speed of joints. Thus, EI is
used to refer to the relevant joint in Collada. At the same time, IL is used to connect
the sensor to a simulation signal. It is worth noting that no concrete definitions of
a position sensor or a velocity sensor in VCO can be found while there are relevant
definition modules in SNX. Therefore, all attributes of “Position Sensor” and “Velocity
Sensor” are defined according to the definitions of the relevant modules in SNX.

11

4 [E] Sensors {Role: Sensors} L &5 Attributes: Node
4 [E] ToolChanger_robpt_side_2_RaycastSensor {Rele: Distance Sensor) .
== TriggerSignal [Class: SimulationSignallnterface }
== DistanceSignal [Class: SimulationSignallnterfate | MName = Def
2 Node (Clags: Nodelnterface) refURl /dae/ xsanyUR -
F# AutomatjonMLVirtualCommissioningRoleClassLib/Sensors/Distance Sensor Base_2.dae#Tool
4 [E] Base_2_Basé_2_Link_1_PositionSensor {Role: Position Sensor) ;""”9‘9'—"’““'-5'
le_2_ToolChange
- 4 L 2] g
Signal [Class: SifiujationSignalinterface) F robot side 2 T
*2 Joint {Class: Jointintérface } aolChanger_robo
F#] AutgmationMLVirtualCofmmissioningReleClassLib/Sensors/Position Sensor t_side 2
a [E] Base_2/Base_2 Link_1_SpeedSerisar {Role: Velocity Sensec) refType implicit implicit xs:8tring -
+¢ Signal {Class: SimulatjonSignallntarface)
“2 Jpint{Class: Jointinterface | L85 Attributes: Joint
] AutomationMLVirtualCorynissioningRol&€lassLib/Sensors/Velocity Sensor —
= AytomationMLVirtualCommissigningRoleClassLitySensors x .
=57 Aftributes: ToolChanger_robot_side_2\RaycastSensor target ./inst joint 0 xs3tring -
e . refURl / xsanyURI -
J Base 2.dae#Base
B = Value Default atalye -2 kinmodel
fTy implicit implicit i
~ UseSampling 7 7 xs:boolean = ee F . RESND
SampleTime 0.01 0.0% xsdouble T Attributes: Base_2_Base_2_Link_1_PositionSensor
UpdateScene 7 7 xsboolean X .
TestParent [xsboolean Nan -
v Tii olaan:.
Show During Simulation 7 & xsboolean e xsboolean
UpperTrimRange o 0 xs:double
~ Scale gsboolean
~ Scale xsboolean ~
~ MeasureType Voitage Voltage xs3tring v - MeasureType Voltage Voltage EString
UpperOutputRange 10 10 xsdouble UpperQutputRange A L ws:double
LowerOutputRange 0 0 xs:double LowerOutputRange 0 0 xdouble ~
OpeningAngle 1 1 b LowerTimRange 0 0 xsdouble
MaxRange 1000 1000 xsdouble 5 Attributes: Base_2_Base 2 Link_1 SpeedSensor
~ Frame Empty X .
z 1.817 xs:double N: =
y 0.645 xs:double v - Tim xsboolean =
3 0 (1] touk
X 1244 vedcibia UpperTrimRange 0 xsdouble
~ Scale usboolean =
(73 150.001 xs:double -
w MeasureType Voltage Valtage xs:string
0
v andcuble UpperOutputRange 10 i
™ 180 xsdouble LowerOutputRange 0 0
DetectionThreshold 1000 1000 xs:double LowerTrimRange o o wgouble

Figure 6. 3D VC-related distance sensor, position sensor and velocity sensor-related definitions in the AML-
VC extension.

In terms of 3D VC-related actuators, like the definition of sensors, each actuator
is a sub-IE under the parent IE “Actuators”. As shown in Figure[7, “Speed Control”
is taken as an example of actuators. As each actuator is attached to a joint, an EI
is added to the IE of “Speed Control”, and the EI is referred to the relevant joint
in Collada. An IL can also be added to connect the “Speed Control” with an input
signal of the simulation model so that the value of “Speed Control” can be changed
in real time according to the input signal value. The attributes of “Speed Control”
are stored in both AML and Collada. The reason is that some attributes of “Speed
Control” are already a part of the standard data structure under the “motion” of
“library_articulated_systems” in Collada, and these attributes are regarded as motion
attributes of kinematic joints. Therefore, the new attributes of “Speed Control” from
SNX and VCO are added to “newparam” nodes of relevant joint axes in Collada,
such as “forward limit”, “reverse limit”, “lag time” and “settle time”. However, the
execution speed of “Speed Control” does not belong to a joint attribute, so it is added
to an attribute of “Speed Control” IE in AML.

Besides sensors and actuators, 3D VC-related signal connections also play an impor-
tant role. For signal connections, OPC United Architecture (OPC UA) communication
protocol is taken as an example. As is shown in Figure [8] sensors and actuators on
this model are connected to an OPC server via the OPC UA communication protocol.
At the same time, the sensors and actuators on this model are mapped with different

12

4 [iE] Actuators (Role: Actuators} <axis_info sid="inst_joint 0 _motioninfo"

4 [iE] Base_2 Base 2 Link_1_servo (Role: Speed Control) <speed>
+2 Signal {Class: SimulationSignalinterface } | <float>100</float>
*g Joint {Class: JointInterface } </speed>
AutomationMLVirtualCommissioningRoleClassLib/Actuators/Speed Control <acceleration>
AutomationMLVirtualCommissioningRoleClassLib/Actuators <float>500</float>

</acceleration>

=7 Attributes: Base_2_Base 2 Link_1_servo :
<deceleration>

%] . <float>500</float>
s T T PO TIeI, </deceleration>
Name Value Default DataType <jerk>
Speed 0 0 mm/s wdoubla; <float>0</float>
</jerk>

<newparam sid="forward limit">
<float>0</float>

— . </newparam>

=7 Attributes Joint

TR AT <newparam sid="reverse limit">
DataType <float>0</float>

refType implicit implicit - </newparam> Added
P Ksuing <newparam sid="lag time"> Parameters
refURI J xsanyURl <float>0</float>
Base_2.dae# </newparam>
Base_2_kinm <newparam sid="settle time">
odel <float>0</float>
target Jinst_joint 0 xsistring v </newparam>

Figure 7. 3D VC-related speed control definitions in the AML-VC extension.

tags in the Open Platform Communications (OPC) server by signal mapping. In this
case, the real-time values of the sensors can be read from the tags on the OPC server,
while the speed controls on this model can also be driven in real time according to
the values of the tags on the OPC server. As signal connections are not a part of
kinematics, the information of signal connections is recommended to be structured
into AML instead of Collada. Like the hierarchies of “Sensors” and “Actuators” in
AML, the IE of “OPC UA” is a sub-IE of “Connectivity” IE. Furthermore, the IEs of
“OPCUAserver” are sub-IEs of the “OPC UA” IE as it is possible for several OPC
servers to connect to the VC model via OPC UA. Based on the signal data flow, An
IE of “Simulation to server” and an IE of “Server to simulation” are located under the
IE “OPCUAserver”. The signal data flow of “Simulation to server” means the signal
values on the simulation model are sent to the tags on the OPC server, while the signal
data flow of “Server to simulation” means the values of the tags on the OPC server
are sent to the simulation model. Under each data flow IE, the IE of “Simulation Sig-
nals” and the IE of “External Signals” are attached respectively. Both have sub-IEs
of “Simulation Signal”s and “External Signal”s, and ILs are used to pair the relevant
signals respectively. Based on this, the signals on the sensors belong to the sub-IEs
under the “Simulation to server” IE, while the signals on the actuators belong to the
“Server to simulation” IE. Moreover, the attributes of the “OPCUAserver” IE and
the two signal data flows are structured based on the union method between SNX and
VCO.

Based on the definitions of 3D VC-related sensors, actuators and signal connections,
a general data structure of an AML-VC extension is created. The IH is the root node
of the AML-VC extension, which is the collection of all the data in the 3D VC model.
The data connection IH contains four different kinds of IEs, namely “Component”,
“Sensors”, “Actuators” and “Connectivity”. The IE of “Component” represents the
assembly hierarchy of the 3D VC model, and it can contain several sub-IEs. All these
IEs can refer to different Collada files via EI, and the geometry and kinematics infor-
mation is stored in Collada. As it is illustrated above, the IEs of “Sensors”, “Actuators”
and “Connectivity” contain the additional necessary information in the 3D VC model,
namely the information of sensors, actuators and signal connections. Based on this, a

13

i3 Attributes : OPCUAServer
IR

4 [Connectivity {Role: Signal Connection)
4 [E] OPC UA (Role: OPC UA}

4 [E] OPCUAServer [Role: OPCUA Server} Use Secure Connection ssboolean ¥
4 [E] Simulation to server {Role: Simulation To Server) Subscription Timeout 1 ssdoutle ~
4 [iE] Simulation Signals {Role: Simulation Signals} ServerUil e — sdkiing .
4 [€] Base_2.Base 2 Base 2 Link_1_PositionSensor [Rele™Simulation Signal) localhost:
=o Pasition Sensor [Class: PositionSensorinterface |} [49320
- External Signal [Class: ExternalSignalinterface | 4 ReadWrite Timeout 1 xsdouble -
AutomationMLVirtualCommissioningRoleClassLib/SimulatiorSignals/Simulation Signal Connected xcboolean *
4 [€] Base_2.Base 2 Base 2 Link_1_SpeedSensor [Rele: Simulation Signal | Browse Timecet 10 e
= Velocity Sensor (Class: VelocitySensorinterface | i ehod »
=e External Signal (Class: ExternalSignalinterface | T i xestring T
AutomationMLVirtualCommissioningRoleClassLib/Simulation Signals/Simulatiofr&ignal Usemname xsstring -
4 [i€] ToolChanger_robot side_2RealSignal [Role: Simulation Signal} Privatekey wsanyURl +
=0 Distance Sensor Distance {Class: DistanceSensorDistancelnterface } Password string 5

-o External Signal {Class: ExternalSignalinterface }
AutomationMLVinualCommissioningRoleClassLib/Simulation Signals/Simulation Signal
4 [E] ToolChanger_robot_side_2.BooleanSignal (Role: Simulation Signal} =
== Distance Sensor Trigger {Class: DistanceSensorTriggerinterface } X .
= External Signal {Class: ExternalSignalinterface § [R
AutomationMLVirtualCommissioningRoleClassLib/Simulation Signals/Simulation Signal

25 Attributes : Simulation to server

B AutomationMLVirtualCommissioningRoleClassLib/Simulation Signals bk rar i Cyclic asstring v

4 [E] External Signals {Rele: External Signals) Cyclicupdateinterval 0 asdouble
4 [i] ns=2;s=AMLininfraflexSimulationToServer.INBasePosition {Role: External Signal } Enabled (5 o e

=e Simulation Signal [Class: SimulationSignalinterface | 4 DelsyamingThaesnol i T

[AutomationMLVirtualCommissioningRoleClassLib/Extemnal Signals/External Signal
[E] ns=2Z;s=AMLinInfraflex.SimulationToServer.INBaseSpeed [Role: External Signal}
[E] ns=2;s=AMLininfraflex.SimulationToServer.INDistanceSensorDistance [Rele: External Signal} [
[E] ns=2;s=AMLinInfraflex.SimulationToServer.INDistanceSensorTriggered (Role: External Signal}

DelayEmorThreshold 5000 xsdouble =

=% Antribates : Server to simulation

B AutomationMLVirtualCommissioningRoleClassLib/External Signals [x] B
& AutomationMLVirtualCommissieningRoleClassLib/Sianal Connection/Data-HaWw Direction/Simulation To R =
Server ————————————————
4 [E] Server to simulation {Role: Server To Simulation) ¥ UpdateMethod Cyclic xsstring -
[E] Simulation Signals (Role: Simulation Signals) ValueMaximumAge 1 xsdouble
[E] External Signals {Rele: External Signals) Samplinglnterval (] wdouble. *
AutomationMLVirtualCommissioningRoleClassLib/Signal Connection/Data Flow Direction/Server To QueveSize 10 ssdouble .
Simulation
[AutomationMLVirtualCommissioningRoleClassLib/Signal Connection/Server/OPCUA Server B x ssdouble
[AutomationMLVirtualCommissioning RoleClassLib/Signal Connection/CommunicationProtocols/OPC UA CyclicUpdatelnterval 50 wsdouble =
B AutomationMLVirtualCommissioningRoleClassLib/Signal Connection Enabled F) xboolean *
DelayWarning Theeshold 100 xsdouble ~
DelayEmorThreshold 5000 wdouble v
AssumeExclusiveWrite Fi xsboclean ~

Figure 8. 3D VC-related OPC UA signal connection definitions in the AML-VC extension.

first version of the AML-VC extension is created.

4.2. AML-VC extension-based data exchange between SNX and VCO

A comprehensive AML-VC extension contributes to representing 3D emulation mod-
els. Nevertheless, due to the commercial competition among different 3D VC software
companies, each 3D VC software company develops its own 3D VC model format, and
the specific 3D VC model format can only be loaded and displayed by the correspond-
ing 3D VC software application. Under this circumstance, an AML-VC extension can
neither be successfully evaluated nor be widely promoted if there are difficulties in
generating it from VC software applications. To solve this problem, a method for re-
alizing data exchange between different VC software applications based on AML-VC
extension is required.

In this case, two 3D VC software applications, SNX and VCO, are chosen to develop
the method for exchanging 3D emulation models between different 3D VC software
applications. Both of these software applications are capable to do VC, but they are
developed by different software companies and they have different software cores. SNX
is integrated with various function modules, which include many different aspects, such
as product design, machining design, mechatronics design and process simulation.
In these models, the module “Mechatronics Concept Designer (MCD)” is aimed at

14

conducting VC. Contrary to SNX, VCO is mainly focused on quickly building virtual
automation systems and conducting manufacturing process simulation. To realize the

AML-VC extension-based data exchange between SNX and VCO, a method has been
developed, which is shown in Figure [0

Self-developed
“Import” button
= e - ! Senso, / .
Q =4 i<AutomationML/> E Actuatons
pc\“a;(;d(\ﬂ“\; (lncI.Extension) ‘ cO”ﬂecf/l//'ty
3
(A
o (Colof) — N4
Kinem?
Effect (Color) - &e\d
Physics o'
Kinematics
2ometry
3 v
VISUAL
COMPONENTS siIEMENS NX

Figure 9. A method for AML-VC extension-based data transmission from VCO to SNX.

As depicted in Figure [0 a method for AML-VC extension-based data transmission
from VCO to SNX is described. As the AML format is not recognized by these two
kinds of software, “Import” and “Export” plug-ins are developed in both software
applications respectively with their software-specific APIs according to the AML-VC
extension data structure. In this method, an AML-VC extension is generated from
VCO by clicking the self-defined “Export” button. In this model, geometry, color,
physics, and kinematics information is stored in Collada files, while the sensors, ac-
tuators and signal connection information is contained in the AML file. The Collada
files are linked to the AML file via Els. Then, the AML-VC extension is imported into
SNX via the self-developed “Import” button in SNX, and the relevant 3D emulation
model is generated in SNX. During the import, geometry information is firstly con-
verted into STL format, then loaded into SNX, as the import of STL files can save
a lot of time in comparison with creating the mesh points by coding. Similarly, the
AML-VC extension-based data transmission from SNX to VCO is exactly an inversion
of this method.

To verify the applicability of the AML-VC extension-based data exchange method,
a 3D emulation model of a “Flexible Assembly Work Cell (FAWC)” is taken as an
example to do data exchange between SNX and VCO. The VC-related descriptions
of this emulation model are shown in Figure In this model, a distance sensor, a
position sensor and a velocity sensor are attached to detect the real-time data on the
work cell, while several actuators are also deployed on it to control execution speeds of
corresponding prismatic joints and revolute joints. Input and output signals are also
defined in this model, and the signals are mapped with the tags in the OPC server via
OPC UA communication protocol. Based on this, real-time parameters of the sensors
can be observed in the OPC server while execution speeds of the actuators in the
VC model can also be in real-time control by changing the values of tags in the OPC
server.

The FAWC-based verification procedure is executed according to the data exchange

15

6-axis robot Base
& 6-axis robot. Category D Type Category D Type
&~ 6-
J1 Revolute Joint Joint L1 Prismatic Joint
Compressor
(Product f'::r assembly) /..--""n,\ Joint J2 Revolute Joint Velocity Actuator | VB Input Signal
Raycasﬁ\‘ p Various grippers m " VRN with J3 Revolute Joint Speed Sensor | SS | Output Signal
sensor’ / \ _
4 N & ety [Revolute Joint -
| .- = H Actuator Gripper for clamp
1y fJ e J5 Revolute Joint
\ i # / Category D Type
e s Revolute Joint c1 Prismatic Joint
Lightweight robot arm = Distanee | = s Ime:‘r:ﬁ:ta‘ed c2 Prismatic Joint
p - Sensor [ps | Distance Signal (Out)) i
Lightweight robot arm Velocity ve Input Signal
Actuator
Category D Type
A1 Revolute Joint Gripper for screw
A2 Revolute Joint Category D Type
Joint
with A3 Revolute Joint S1 Prismatic Joint
" Joint
Velocity A4 Revolute Joint s2 Revolute Joint
Actuator
A5 Revolute Joint Velocity V1 Input Signal
A6 Revolute Joint Actuator V2 Input Signal

Figure 10. The FAWC model and its VC-related definitions.

framework illustrated in Figure [0 Firstly, a FAWC emulation model is manually cre-
ated in VCO. Secondly, the AML-VC extension of FAWC is generated by clicking the
“Export” button in VCO. Thirdly, the AML-VC extension of FAWC is imported into
SNX by clicking the ”Import” button in SNX. Finally, a new 3D emulation model of
FAWC including exactly the same functions and attributes is automatically created
in SNX. After this, real-time verification has been conducted. Figure [11] shows the
real-time running comparison of the two FAWC emulation models in SNX and VCO
during emulation. The newly generated FAWC model in SNX is moving in the same
way as the original FAWC model in VCO, and the movements of both models are
driven by the tag values in the OPC server (KEPServerEX). The success of this verifi-
cation indicates that the method for AML-VC extension-based data exchange between
SNX and VCO is feasiblel[l]

55 0PC Quick Client - Untitied * - o x

Fie £t View Tools Help
DM usaF sBEX
B Infraflex Base A [tem ID [Data Type [Value [Timestamp | Quality [U A
 InfraflexBase. System|{l [SinfrafiexBigRobotBispeed Double 5 184022818 Good 1
‘& Infrafiex.BigRobot I LBJ; ed _Double 19:11: 2; bod 414
e
5 - — e
A
R =
£
@ A
& =l=
& flm
-] |
O v
il =
e
@
(S
St 5
T w« VISUAL
o sz SIEMENS NX ‘ COMPONENTS

Figure 11. Real-time running comparison of the FAWC model in SNX and VCO.

1 A recorded video of the execution process is accessible at: https://www.youtube.com/watch?v=PRJ1umTEKqo

16

https://www.youtube.com/watch?v=PRJ1umTEKqo

4.3. Interoperability performance evaluation of the AML-VC extension
based on two cases

To evaluate the interoperability performance of the AML-VC extension, two 3D VC
software applications, SNX and VCO, are employed as cases. In each case, five 3D
emulation models covering the most diverse VC-related functions are selected from
the modeling libraries of SNX and VCO respectively (Zhao, Aghezzaf, and Cottyn
2023)). Based on this, an interoperability performance evaluation is subsequently con-
ducted by exchanging the 10 selected 3D emulation models between SNX and VCO
via the AML-VC extension. With the self-developed “Import” and “Export” plug-ins
in SNX and VCO, AML-VC extension-based data exchange between SNX and VCO
is achieved. According to the case-based evaluation framework described in the lit-
erature (Zhao, Aghezzaf, and Cottyn|[2023), the interoperability performance of the
AMIL-VC extension can be evaluated by the attribute conversion rates of the emula-
tion models during AML-VC extension-based data exchange between SNX and VCO.
The attribute conversion rates of emulation models emerge during the “Import” and
“Export” interaction between the AML-VC extension and a 3D VC software appli-
cation. The interoperability performance between the AML-VC extension and a 3D
VC software application is positively correlated with the average attribute conversion
rates of the emulation models during data exchange.

After conducting the evaluation experiment, the attribute quantities and conversion
rates of five emulation models during AML-VC extension-based data exchange from
SNX to VCO are listed in Table[2, while those of the other five emulation models during
AML-VC extension-based data exchange from VCO to SNX are listed in Table [3| In
order to present an intuitive comparison, the attribute quantities and conversion rates
of the same 10 emulation models during data exchange between SNX and VCO via
AML (without extension) are also presented in Table 2/ and Table [3| respectively.

Table 2. Attribute quantities and conversion rates of five SNX emulation models during data exchange
from SNX to VCO based on AML and AML-VC extension.

Emulation model number 1 2 3 4 5)

Attribute quantity in SNX 557 1331 737 984 2684
Attribute quantity in AML 151 459 317 351 1094
Attribute quantity in AML-VC extension 544 1306 732 964 2589

Attribute quantity in VCO converted via AML 126 389 282 235 823
Attribute quantity in VCO converted via AML- 317 771 399 500 1609
VC extension

Conversion rate from SNX to AML (%) 271 345 43.0 35.7 40.8
Conversion rate from SNX to AML-VC exten- 97.7 981 99.3 98.0 96.5
sion (%)

Conversion rate from SNX to VCO via AML (%) 22.6 29.2 383 239 30.7
Conversion rate from SNX to VCO via AML- 56.9 579 54.1 50.8 60.0
VC extension (%)

For AML-VC extension-based data exchange, as shown in Table [2] the average
attribute conversion rate from SNX to AML-VC extension is 97.9%, while that from
SNX to VCO is 56.0%. Similarly, as shown in Table [3| the percentage from VCO to

17

Table 3. Attribute quantities and conversion rates of five VCO emulation models during data exchange
from VCO to SNX based on AML and AML-VC extension.

Emulation model number 6 7 8 9 10
Attribute quantity in VCO 792 410 526 629 235
Attribute quantity in AML 158 81 246 78 0

Attribute quantity in AML-VC extension 775 406 485 612 229

Attribute quantity in SNX converted via AML 142 80 228 72 0
Attribute quantity in SNX converted via AML- 378 142 271 280 101
VC extension

Conversion rate from VCO to AML (%) 20.0 19.8 46.8 124 0.0
Conversion rate from VCO to AML-VC exten- 97.9 99.0 92.2 973 97.5
sion (%)

Conversion rate from VCO to SNX via AML (%) 179 19.5 434 11.5 0.0
Conversion rate from VCO to SNX via AML- 47.7 34.6 51.5 44.5 43.0
VC extension (%)

AML-VC extension is 97.0%, while that from VCO to SNX is 46.1%. When it comes
to AML-based data exchange, as listed in Table [2, the attribute average conversion
rate from SNX to AML is 36.2%, while that from SNX to VCO is 28.9%. Likewise,
the percentage from VCO to AML is 19.8% and that from VCO to SNX is 18.5%,
according to Table

5. Discussion

According to the results in Section the average attribute conversion rates from
SNX to AML-VC extension and that from VCO to AML-VC extension are over 97%,
which are much higher than the values via AML (36.2% and 19.8% respectively). It
shows that AML-VC extension-based data exchange makes significant progress in the
interoperability between SNX and VCO, compared to the data exchange via AML. As
the AML-VC extension is created by taking the union of all functions and attributes
in SNX and VCO, the attribute conversion rates of the emulation models during the
data exchange between the AML-VC extension and SNX (or VCO) should logically
be 100%. However, due to the limitations of the current APIs in SNX and VCO,
some VC-related functions and attributes are not accessible. Because of this, these
functions and attributes cannot be converted and attached to the structure of the
AML-VC extension, which causes a decrease in the attribute conversion rates. Besides,
script-based attribute definition is also a reason for low attribute conversion rates. For
instance, as for emulation model 8, the attribute conversion rate from VCO to AML-
VC extension is 92.2%, which is around 5% lower than the rates of other percentages
at the same level. The reason is that more “python script” functions are included in
emulation model 8 than in the other VCO emulation models. As the syntax in “python
script” function is not structured in a fixed format, it is extremely difficult to locate
and identify relevant attribute values. Due to this, these script-based attributes are
also missing in the AML-VC extension.

As shown in the results, around half of the attributes can be automatically con-

18

verted between SNX and VCO by using AML-VC extension and application-specific
plug-ins. It demonstrates that the interoperability performance between SNX and
VCO is around 50% by means of AML-VC extension, which is more than 25% higher
than AML-based data exchange (23.7%). It is clear that AML-VC extension-based
data exchange converts more attributes during the data exchange between different
3D VC software applications compared to that via AML. The reason is that AML-VC
extension integrates more 3D VC-related information, such as sensors, actuators and
signal connections, which is included in the current AML standard. It can also be con-
cluded that the attribute similarity between SNX and VCO is around 50%, as about
half of the attributes in SNX (or VCO) can be represented in VCO (or SNX). From
another perspective, nearly half of the attributes from one VC application are not
applicable to the other application. For example, a “Cylinder” shaped collision body
can be defined in SNX, but it is not supported in VCO. On the contrary, an elastomer
is possible to be described in VCO, while it is extremely difficult to be expressed in
SNX. The reason is that SNX and VCO have their own target customers and they
are developed in different software cores. SNX contains more VC-related user-defined
function modules for making 3D emulation models, while more script-based attribute
definition is used in VCO. Furthermore, VCO is a library-based VC software applica-
tion, in which a 3D emulation model can be easily created by dragging and dropping
sub-models from the emulation model library. However, in SNX, 3D emulation mod-
els are usually created by defining VC-related functions based on manually created
3D models. Therefore, as each application has its own target users and specific core,
attribute conversion rates vary from different pairs of VC software applications. The
attribute conversion rate between two VC software applications is proportional to the
attribute similarity between them. As the AML-VC extension is developed by taking
the union from each case (3D VC software), it contains as many VC-related functions
and attributes as possible. This comprehensive extension contributes to the reuse of
data when exchanging 3D emulation models between different 3D VC software. To
indicate those non-convertible functions and attributes during the data exchange, log
files are generated.

6. Conclusion and outlook

In this paper, a first implementation of AML-VC extension for data exchange between
different 3D VC software applications is presented. The AML-VC extension is devel-
oped by extending the current AML standard. The AML-VC extension contains not
only geometry, physics and kinematics information, but also 3D VC-related additional
information, such as sensors, actuators and signal connections. A case-driven iterative
approach is proposed to continuously improve the comprehensiveness of the AML-VC
extension. In this approach, 3D VC software applications are used as cases to fur-
ther define the AML-VC extension. Moreover, naming rules for AML-VC extension
attributes are also introduced. Based on the case-driven iterative approach and the
attribute naming rules, an initial version of the AML-VC extension is developed by
taking the unions of functions and attributes in two 3D VC software applications,
SNX and VCO. To build the AML-VC extension-based data exchange “bridge” be-
tween SNX and VCO, plug-ins are developed in SNX and VCO respectively. Due
to the limitations of current software-specific APIs and script-based attribute defini-
tion, about 3% of 3D VC-related attributes in SNX and VCO cannot be extracted
into the AML-VC extension by the plug-ins. The interoperability performance of the

19

AML-VC extension is subsequently evaluated by exchanging 10 3D emulation models
between SNX and VCO via the plug-ins. The experiment results show that AML-VC
extension-based data exchange converts an average of nearly 70% more attributes than
that based on AML (without extension). It can be concluded that an AML-VC ex-
tension makes significant contributions to exchanging 3D emulation models between
different 3D VC software applications.

The AML-VC extension-based data exchange creates a new way for interoperability
between different 3D VC software applications. The traditional method is to convert
a 3D emulation model into STEP format and import it into another 3D VC software
application. With this method, all VC-related non-geometry information will be lost.
An AML-VC extension can solve this problem by keeping more VC-related information
during the data exchange. Besides, the AML-VC extension is completely open source,
as it is a combination of AML and Collada formats, which are both XML-based and
machine-readable. In this case, the AML-VC extension can be easily read and edited
via a text-oriented editor instead of a 3D VC software application. Furthermore, the
AMIL-VC extension can be referenced by 3D VC software companies to develop AML-
VC extension-based data exchange plug-ins for their software applications. Based on
the plug-ins, 3D emulation models can be automatically generated in relevant 3D VC
software by “one button play”, which greatly improves efficiency and saves time. In this
paper, the AML-VC extension-based data exchange plug-ins have been successfully
developed in SNX and VCO, which gives benefits for the AML-VC extension-based
data exchange between both software applications. In addition, a case-driven iterative
approach has been proposed to continuously improve the comprehensiveness of the
AML-VC extension.

Nevertheless, some challenges and uncertainties still exist in the development of the
AML-VC extension. Firstly, as an important part of the AML-VC extension, the Col-
lada format has not been updated since 2008. Though kinematics information can be
integrated into Collada, it is really difficult to find relevant software that can preview
Collada kinematics. This creates a great impediment to the development of the AML-
VC extension. Secondly, few 3D VC software applications contemporarily support
AML-oriented interfaces. In this case, to realize AML-VC extension-based interop-
erability between different 3D VC software applications, developing software-specific
plug-ins is a must. As different kinds of 3D VC software are developed by various soft-
ware companies, the software architectures and development languages of these VC
software applications also vary, which is extremely cumbersome for “bridge” builders
to develop all kinds of “Import” and “Export” interfaces. The required effort in devel-
oping such interfaces varies from person to person, depending on the familiarity with
the relevant 3D VC software, AML, Collada and programming skills. Thirdly, to create
plug-ins, the openness of the software’s API library is very critical. If the API library
of the software does not support enough development functions, the corresponding
plug-in cannot be successfully developed. Additionally, plug-in development also con-
sumes a lot of time in learning the relevant development methods and APT functions.
Fourthly, it takes effort to improve the comprehensiveness of the AML-VC extension
during each case by manually checking standards. However, it is even challenging to
conduct it in an automatic way, as synonyms are difficult to be automatically distin-
guished. Fifthly, so far there is no rule-based checking mechanism for the AML-VC
extension. For example, the names of the assembly nodes in VCO must be different
from each other, which cannot be detected at this moment.

In future work, a third 3D VC software application will be introduced to evaluate
the comprehensiveness of the current AML-VC extension by comparing attribute dif-

20

ferences between the 3D VC software and the AML-VC extension. After this, more
software applications with their software-specific emulation models will be utilized to
continuously improve the AML-VC extension based on the case-driven iterative ap-
proach. As the attribute naming rules in the case-driven iterative approach are manual
and error-prone, a knowledge-based automatic attribute naming strategy will be devel-
oped to automatically give naming cues based on existing data relationships. Besides,
a rule-based checking mechanism for the AML-VC extension is to be developed. The
ultimate goal of the authors is to make this extension part of a common industry
standard, which will require some more formal process.

Disclosure statement

The authors have no relevant financial or non-financial interests to disclose.

Funding

This work was funded by the China Scholarship Council (CSC), which is a non-profit
institution affiliated with the Ministry of Education of China.

References

Adnan, Mohd Fahmi, Mohd Fadzil Daud, and Muhammad Sukri Saud. 2014. “Contextual
Knowledge in Three Dimensional Computer Aided Design (3D CAD) Modeling: A Literature
Review and Conceptual Framework.” In 2014 International Conference on Teaching and
Learning in Computing and Engineering, apr. IEEE. https://doi.org/10.1109/1atice.
2014.41.

Adolphs, Peter, Heinz Bedenbender, Dagmar Dirzus, M Ehlich, U Epple, M Han-
kel, R Heidel, et al. 2015. “Status report-reference architecture model industrie
4.0 (ramid.0).” VDI-Verein Deutscher Ingenieure eV and ZVEI-German FElectri-
cal and Electronic Manufacturers Association, Tech. Rep https://www.zvei.org/
fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_
Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_
/GMA-Status-Report-RAMI-40-July-2015.pdf.

An, Yameng, Feiwei Qin, Baiping Chen, Rene Simon, and Huifeng Wu. 2020. “OntoPLC:
semantic model of PLC programs for code exchange and software reuse.” IEEE Transac-
tions on Industrial Informatics 17 (3): 1702-1711. https://doi.org/10.1109/TII.2020.
2997360.

Arroyo, Esteban, Mario Hoernicke, Pablo Rodriguez, and Alexander Fay. 2016. “Automatic
derivation of qualitative plant simulation models from legacy piping and instrumentation
diagrams.” Computers & Chemical Engineering 92: 112-132. https://doi.org/10.1016/
j .compchemeng.2016.04.040.

AutomationML. 2014. Whitepaper Part 5 - Communication. Technical Report. Au-
tomationML consortium. https://www.automationml.org/wp-content/uploads/2021/
06/WP_Communication_V1.0.0.zipl

AutomationML. 2017a. Best Practice Recommendation: DataVariable. Technical Report. Au-
tomationML consortium. https://www.automationml.org/wp-content/uploads/2022/
05/BPR_OO7E_BPR_DataVariable_V1.0.0.zipl

AutomationML. 2017b. Whitepaper Part 3 - Geometry and Kinematics. Technical Report. Au-

21

https://doi.org/10.1109/latice.2014.41
https://doi.org/10.1109/latice.2014.41
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_/GMA-Status-Report-RAMI-40-July-2015.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_/GMA-Status-Report-RAMI-40-July-2015.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_/GMA-Status-Report-RAMI-40-July-2015.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_/GMA-Status-Report-RAMI-40-July-2015.pdf
https://doi.org/10.1109/TII.2020.2997360
https://doi.org/10.1109/TII.2020.2997360
https://doi.org/10.1016/j.compchemeng.2016.04.040
https://doi.org/10.1016/j.compchemeng.2016.04.040
https://www.automationml.org/wp-content/uploads/2021/06/WP_Communication_V1.0.0.zip
https://www.automationml.org/wp-content/uploads/2021/06/WP_Communication_V1.0.0.zip
https://www.automationml.org/wp-content/uploads/2022/05/BPR_007E_BPR_DataVariable_V1.0.0.zip
https://www.automationml.org/wp-content/uploads/2022/05/BPR_007E_BPR_DataVariable_V1.0.0.zip

tomationML consortium. https://www.automationml.org/wp-content/uploads/2021/
06/AML_Whitepaper_GeometryKinematics_V2.0.0.zip.

AutomationML. 2021. Application Recommendations: Automation Project Configura-
tion. Technical Report. AutomationML consortium. https://www.automationml.org/
wp-content/uploads/2021/11/AR-APC-1_3_0.zip.

AutomationML. 2023. Application Recommendation: Toolchain. Technical Report. Au-
tomationML consortium. https://www.automationml.org/wp-content/uploads/2023/
06/AR_Toolchain.pdf.

Ayani, M., M. Ganebéck, and Amos H.C. Ng. 2018. “Digital Twin: Applying emulation for
machine reconditioning.” In 51st CIRP Conference on Manufacturing Systems, Vol. 72,
243-248. https://doi.org/10.1016/j.procir.2018.03.139.

Babcinschi, Mihail, Bernardo Freire, Pedro Neto, Lucia Alonso Ferreira, Baltasar Lodeiro
Senaris, and Félix Vidal. 2019. “AutomationML for Data Exchange in the Robotic Process of
Metal Additive Manufacturing.” In 2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), 65-70. IEEE. https://doi.org/10.1109/
ETFA.2019.8869079.

Barbieri, Giacomo, Alberto Bertuzzi, Andrea Capriotti, Lorenzo Ragazzini, David Gutierrez,
Elisa Negri, and Luca Fumagalli. 2021. “A virtual commissioning based methodology to
integrate digital twins into manufacturing systems.” Production Engineering 15 (3): 397—
412. https://doi.org/10.1007/s11740-021-01037-3|

Barnes, Mark, and Ellen Levy Finch. 2008. “COLLADA-digital asset schema release 1.5.0.”
Specification, Khronos Group https://www.khronos.org/files/collada_spec_1_5.pdf|

Barth, Mike, and Alexander Fay. 2013. “Automated generation of simulation models for control
code tests.” Control Engineering Practice 21 (2): 218-230. https://doi.org/10.1016/j.
conengprac.2012.09.022.

Beisheim, Nicolai, Markus Kiesel, Markus Linde, and Tobias Ott. 2020. “Using AutomationML
and Graph-Based Design Languages for Automatic Generation of Digital Twins of Cyber-
Physical Systems.” In Transdisciplinary Engineering for Complex Socio-technical Systems—
Real-life Applications, 135-142. 10S Press. https://doi.org/10.3233/ATDE200070.

Beisheim, Nicolai, Markus Linde, Tobias Ott, and Sebastian Amann. 2021. “Using Automa-
tionML to Generate Digital Twins of Tooling Machines for the Purpose of Developing Energy
Efficient Production Systems.” In Transdisciplinary Engineering for Resilience: Responding
to System Disruptions, 141-150. I0S Press. https://doi.org/10.3233/atde210092.

Berardinelli, Luca, Stefan Biffl, Emanuel Maetzler, Tanja Mayerhofer, and Manuel Wimmer.
2015. “Model-based co-evolution of production systems and their libraries with Automa-
tionML.” In 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation
(ETFA), 1-8. IEEE. https://doi.org/10.1109/ETFA.2015.7301483.

Breckle, Theresa, Jens Kiefer, Stephan Rudolph, Martin Manns, et al. 2017. “Engineering
of assembly systems using graph-based design languages.” In DS 87-1 Proceedings of the
21st International Conference on Engineering Design (ICED 17) Vol 1: Resource Sen-
sitive Design, Design Research Applications and Case Studies, Vancouver, Canada, 21-
25.08. 2017, 519-528. https://www.designsociety.org/download-publication/39551/
Engineeringt+of+assembly+systems+using+graph-based+design+languages.

Drath, Rainer. 2021a. AutomationML: A Practical Guide. Walter de Gruyter GmbH & Co
KG. https://doi.org/10.1515/9783110746235.

Drath, Rainer. 2021b. AutomationML: the industrial cookbook. Walter de Gruyter GmbH &
Co KG. https://doi.org/10.1515/9783110745979.

Drath, Rainer, Arndt Luder, Jorn Peschke, and Lorenz Hundt. 2008. “AutomationML-the glue
for seamless automation engineering.” In 2008 IEEE International Conference on Emerging
Technologies and Factory Automation, 616-623. IEEE. https://doi.org/10.1109/ETFA.
2008.4638461.

Drath, Rainer, Christian Mosch, Stefan Hoppe, Andreas Faath, FErich Barnstedt,
Bernd Fiebiger, and Wolfgang Schlogl. 2023. Diskussionspapier — Interoperabilitat
mit der Verwaltungsschale, OPC UA wund AutomationML. Technical Report. Au-

22

https://www.automationml.org/wp-content/uploads/2021/06/AML_Whitepaper_GeometryKinematics_V2.0.0.zip
https://www.automationml.org/wp-content/uploads/2021/06/AML_Whitepaper_GeometryKinematics_V2.0.0.zip
https://www.automationml.org/wp-content/uploads/2021/11/AR-APC-1_3_0.zip
https://www.automationml.org/wp-content/uploads/2021/11/AR-APC-1_3_0.zip
https://www.automationml.org/wp-content/uploads/2023/06/AR_Toolchain.pdf
https://www.automationml.org/wp-content/uploads/2023/06/AR_Toolchain.pdf
https://doi.org/10.1016/j.procir.2018.03.139
https://doi.org/10.1109/ETFA.2019.8869079
https://doi.org/10.1109/ETFA.2019.8869079
https://doi.org/10.1007/s11740-021-01037-3
https://www.khronos.org/files/collada_spec_1_5.pdf
https://doi.org/10.1016/j.conengprac.2012.09.022
https://doi.org/10.1016/j.conengprac.2012.09.022
https://doi.org/10.3233/ATDE200070
https://doi.org/10.3233/atde210092
https://doi.org/10.1109/ETFA.2015.7301483
https://www.designsociety.org/download-publication/39551/Engineering+of+assembly+systems+using+graph-based+design+languages
https://www.designsociety.org/download-publication/39551/Engineering+of+assembly+systems+using+graph-based+design+languages
https://doi.org/10.1515/9783110746235
https://doi.org/10.1515/9783110745979
https://doi.org/10.1109/ETFA.2008.4638461
https://doi.org/10.1109/ETFA.2008.4638461

tomationML e.V and Industrial Digital Twin Association (IDTA) and OPC Foun-

dation and VDMA. https://www.automationml.org/wp-content/uploads/2023/04/
Diskussionspapier-Zielbild-und-Handlungsempfehlungen-fuer-industrielle-Interoperabilitaet-5.
3.pdfl

Drath, Rainer, Peter Weber, and Nicolas Mauser. 2008. “An evolutionary approach for the in-
dustrial introduction of virtual commissioning.” In 2008 IEEE International Conference on
Emerging Technologies and Factory Automation, sep. IEEE. https://doi.org/10.1109/
etfa.2008.4638359.

Estévez, E, Marga Marcos, Arndt Liider, and Lorenz Hundt. 2010. “PLCopen for achieving
interoperability between development phases.” In 2010 IEEE 15th Conference on Emerging
Technologies & Factory Automation (ETFA 2010), 1-8. IEEE. https://doi.org/10.1109/
ETFA.2010.5641359.

FMI. 2023. “FMI standard.” https://fmi-standard.org. Accessed: 2023-06-29.

Fraile, Francisco, Raquel Sanchis, Raul Poler, and Angel Ortiz. 2019. “Reference models for
digital manufacturing platforms.” Applied Sciences 9 (20): 4433. https://doi.org/10.
3390/app9204433|

Graeser, Olaf, Barath Kumar, Oliver Niggemann, Natalia Moriz, and Alexander Maier. 2011.
“AutomationML as a Basis for Offline - And Realtime-simulation - Planning, Simulation and
Diagnosis of Automation Systems.” In International Conference on Informatics in Control,
Automation and Robotics, IEEE. https://doi.org/10.5220/0003537403590368|

Gunnarsson, Sara. 2016. “Evaluation of FMI-based workflow for simulation and testing of in-
dustrial automation applications.” Master Thesis https://www.lu.se/lup/publication/
8776878l

Hankel, Martin, and Bosch Rexroth. 2015. “The reference architectural model industrie
4.0 (rami 4.0).” Zvei 2 (2): 4-9. https://www.zvei.org/fileadmin/user_upload/
Presse_und_Medien/Publikationen/2015/april/Das_Referenzarchitekturmodell_
Industrie_4.0__RAMI_4.0_/ZVEI-Industrie-40-RAMI-40-English.pdf.

Henflen, Robert, and Miriam Schleipen. 2014. “Interoperability between OPC UA and Au-
tomationML.” In 8th International Conference on Digital Enterprise Technology - DET
2014 Disruptive Innovation in Manufacturing Engineering towards the 4th Industrial Rev-
olution, Vol. 25, 297-304. https://doi.org/10.1016/j.procir.2014.10.042.

Hoernicke, Mario, Alexander Fay, and Mike Barth. 2015. “Virtual plants for brown-field
projects.” In 2015 IEEE 20th Conference on Emerging Technologies & Factory Au-
tomation (ETFA), sep. IEEE. https://doi.org/10.1109/etfa.2015.7301462.

Hoffmann, Peter, Reimar Schumann, Talal MA Maksoud, and Giuliano C Premier. 2010.
“Virtual commissioning of manufacturing systems a review and new approaches for sim-
plification.” In ECMS, 175-181. Kuala Lumpur, Malaysia. https://doi.org/10.7148/
2010-0175-0181.

Holm, Thomas, Lars Christiansen, Markus Goring, Tobias Jéger, and Alexander Fay. 2012.
“ISO 15926 vs. IEC 62424—Comparison of plant structure modeling concepts.” In Pro-
ceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory
Automation (ETFA 2012), 1-8. IEEE. https://doi.org/10.1109/ETFA.2012.6489662.

Jackson, Chad. 2019. “What is FMI? How is it related to
Virtual Commissioning?” https://virtualcommissioning.com/
what-is-fmi-how-is-it-related-to-virtual-commissioning. Accessed: 2023-06-
29.

Jackson, Chad. 2020. “Digital Twins of Production Systems: 1D?

3D? What is the Best Fit?” https://virtualcommissioning.com/
digital-twins-of-production-systems-1d-3d-what-is-the-best-fit. Accessed:
2023-06-29.

Kaiser, Benjamin, Alexander Reichle, and Alexander Verl. 2022. “Model-based automatic
generation of digital twin models for the simulation of reconfigurable manufacturing sys-
tems for timber construction.” In Leading manufacturing systems transformation — Pro-
ceedings of the 55th CIRP Conference on Manufacturing Systems 2022, Vol. 107, 387—-392.

23

https://www.automationml.org/wp-content/uploads/2023/04/Diskussionspapier-Zielbild-und-Handlungsempfehlungen-fuer-industrielle-Interoperabilitaet-5.3.pdf
https://www.automationml.org/wp-content/uploads/2023/04/Diskussionspapier-Zielbild-und-Handlungsempfehlungen-fuer-industrielle-Interoperabilitaet-5.3.pdf
https://www.automationml.org/wp-content/uploads/2023/04/Diskussionspapier-Zielbild-und-Handlungsempfehlungen-fuer-industrielle-Interoperabilitaet-5.3.pdf
https://doi.org/10.1109/etfa.2008.4638359
https://doi.org/10.1109/etfa.2008.4638359
https://doi.org/10.1109/ETFA.2010.5641359
https://doi.org/10.1109/ETFA.2010.5641359
https://fmi-standard.org
https://doi.org/10.3390/app9204433
https://doi.org/10.3390/app9204433
https://doi.org/10.5220/0003537403590368
https://www.lu.se/lup/publication/8776878
https://www.lu.se/lup/publication/8776878
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2015/april/Das_Referenzarchitekturmodell_Industrie_4.0__RAMI_4.0_/ZVEI-Industrie-40-RAMI-40-English.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2015/april/Das_Referenzarchitekturmodell_Industrie_4.0__RAMI_4.0_/ZVEI-Industrie-40-RAMI-40-English.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2015/april/Das_Referenzarchitekturmodell_Industrie_4.0__RAMI_4.0_/ZVEI-Industrie-40-RAMI-40-English.pdf
https://doi.org/10.1016/j.procir.2014.10.042
https://doi.org/10.1109/etfa.2015.7301462
https://doi.org/10.7148/2010-0175-0181
https://doi.org/10.7148/2010-0175-0181
https://doi.org/10.1109/ETFA.2012.6489662
https://virtualcommissioning.com/what-is-fmi-how-is-it-related-to-virtual-commissioning
https://virtualcommissioning.com/what-is-fmi-how-is-it-related-to-virtual-commissioning
https://virtualcommissioning.com/digital-twins-of-production-systems-1d-3d-what-is-the-best-fit
https://virtualcommissioning.com/digital-twins-of-production-systems-1d-3d-what-is-the-best-fit

https://doi.org/10.1016/j.procir.2022.04.063.

Kiesel, Markus, Philipp Klimant, Nicolai Beisheim, Stephan Rudolph, and Matthias Putz.
2017. “Using Graph-based Design Languages to Enhance the Creation of Virtual Commis-
sioning Models.” In Complex Systems Engineering and Development Proceedings of the 27th
CIRP Design Conference, Vol. 60, 279-283. https://doi.org/10.1016/j.procir.2017.
01.047.

Lattanzi, Luca, Roberto Raffaeli, Margherita Peruzzini, and Marcello Pellicciari. 2021. “Digi-
tal twin for smart manufacturing: a review of concepts towards a practical industrial imple-
mentation.” International Journal of Computer Integrated Manufacturing 34 (6): 567-597.
https://doi.org/10.1080/0951192X.2021.1911003.

Li, Huaxia, Long Tian, and Birgit Vogel-Heuser. 2019. “Automatic Synchronization of Me-
chanical CAD Models and a SysML-based Mechatronic Model using AutomationML.” In
2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), oct. IEEE.
https://doi.org/10.1109/smc.2019.8913908.

Li, Yujiang, Mikael Hedlind, Torsten Kjellberg, and Gunilla Sivard. 2015. “System integration
for kinematic data exchange.” International Journal of Computer Integrated Manufacturing
28 (1): 87-97. https://doi.org/10.1080/0951192X.2014.941937.

Liider, Arndt, and Nicole Schmidt. 2017. “AutomationML in a Nutshell.” In Handbuch Indus-
trie 4.0 Bd. 2, 213-258. Springer. https://doi.org/10.1007/978-3-662-53248-5_61.
Liider, Arndt, Nicole Schmidt, and Ronald Rosendahl. 2015. “Data exchange toward PLC
programming and virtual commissioning: Is AutomationML an appropriate data exchange
format?” In 2015 IEEE 13th International Conference on Industrial Informatics (INDIN),

jul. IEEE. https://doi.org/10.1109/indin.2015.7281783.

Liider, Arndt, Nicole Schmidt, Ronald Rosendahl, and Michael John. 2014. “Integrating dif-
ferent information types within AutomationML.” In Proceedings of the 2014 IEEE Emerg-
ing Technology and Factory Automation (ETFA), 1-5. IEEE. https://doi.org/10.1109/
ETFA.2014.7005275.

Martinez, Gerardo Santillan, Seppo A. Sierla, Tommi A. Karhela, Jari Lappalainen, and Va-
leriy Vyatkin. 2018. “Automatic Generation of a High-Fidelity Dynamic Thermal-Hydraulic
Process Simulation Model From a 3D Plant Model.” IEEE Access 6: 45217-45232. https:
//doi.org/10.1109/access.2018.2865206!

Metzner, Maximilian, Felix Albrecht, Michael Fiegert, Bastian Bauer, Susanne Martin, Engin
Karlidag, Andreas Blank, and Jorg Franke. 2022. “Virtual training and commissioning of
industrial bin picking systems using synthetic sensor data and simulation.” International
Journal of Computer Integrated Manufacturing 35 (4-5): 483-492. https://doi.org/10.
1080/0951192X.2021.2004618.

Miiller, Timo, Simon Kamm, Andreas Locklin, Dustin White, Marius Mellinger, Nasser Jazdi,
and Michael Weyrich. 2022. “Architecture and knowledge modelling for self-organized re-
configuration management of cyber-physical production systems.” International Journal of
Computer Integrated Manufacturing 0 (0): 1-22. https://doi.org/10.1080/0951192X.
2022.2121425.

Nagorny, Kevin, Sebastian Scholze, Armando Walter Colombo, and José Barata Oliveira. 2020.
“A DIN Spec 91345 RAMI 4.0 compliant data pipelining model: An approach to support
data understanding and data acquisition in smart manufacturing environments.” IEFE Ac-
cess 8: 223114-223129. https://doi.org/10.1109/ACCESS.2020.3045111,

Oppelt, Mathias, Gerrit Wolf, Oliver Drumm, Benjamin Lutz, Markus St68, and Leon Urbas.
2014. “Automatic Model Generation for Virtual Commissioning based on Plant Engineer-
ing Data.” IFAC Proceedings Volumes 47 (3): 11635-11640. https://doi.org/10.3182/
20140824-6-2za-1003.01512,

Park, Hyeong-Tae, Jong-Geun Kwak, Gi-Nam Wang, and Sang C. Park. 2009. “Plant model
generation for PLC simulation.” International Journal of Production Research 48 (5): 1517—
1529. https://doi.org/10.1080/00207540802577961.

Prat, Sophie, Jérémy Cavron, Djamal Kesraoui, Philippe Rauffet, Pascal Berruet, and Alain
Bignon. 2017. “An Automated Generation Approach of Simulation Models for Checking

24

https://doi.org/10.1016/j.procir.2022.04.063
https://doi.org/10.1016/j.procir.2017.01.047
https://doi.org/10.1016/j.procir.2017.01.047
https://doi.org/10.1080/0951192X.2021.1911003
https://doi.org/10.1109/smc.2019.8913908
https://doi.org/10.1080/0951192X.2014.941937
https://doi.org/10.1007/978-3-662-53248-5_61
https://doi.org/10.1109/indin.2015.7281783
https://doi.org/10.1109/ETFA.2014.7005275
https://doi.org/10.1109/ETFA.2014.7005275
https://doi.org/10.1109/access.2018.2865206
https://doi.org/10.1109/access.2018.2865206
https://doi.org/10.1080/0951192X.2021.2004618
https://doi.org/10.1080/0951192X.2021.2004618
https://doi.org/10.1080/0951192X.2022.2121425
https://doi.org/10.1080/0951192X.2022.2121425
https://doi.org/10.1109/ACCESS.2020.3045111
https://doi.org/10.3182/20140824-6-za-1003.01512
https://doi.org/10.3182/20140824-6-za-1003.01512
https://doi.org/10.1080/00207540802577961

Control/Monitoring System.” IFAC-PapersOnLine 50 (1): 6202-6207. https://doi.org/
10.1016/j.ifacol.2017.08.1014.

Pratt, Michael J. 2001. “Introduction to ISO 10303—the STEP Standard for Product Data
Exchange.” Journal of Computing and Information Science in Engineering 1 (1): 102-103.
https://doi.org/10.1115/1.1354995|

Schamp, Matthias, Steven Hoedt, Arno Claeys, El-Houssaine Aghezzaf, and Johannes Cottyn.
2018. “Impact of a virtual twin on commissioning time and quality.” IFAC-PapersOnlLine
51 (11): 1047-1052. https://doi.org/10.1016/j.ifacol.2018.08.469.

Schopper, Dominik, Karl Kiibler, Stephan Rudolph, and Oliver Riedel. 2021. “EIPPM—The
Executable Integrative Product-Production Model.” Computers 10 (6): 72. https://doi.
org/10.3390/computers10060072.

Schweichhart, Karsten. 2016. “Reference architectural model industrie 4.0 (rami 4.0).”
https://imgh.custompublish.com/getfile.php/3901260.2265.akzillql7uuipz/
RAMEI+4.0.pdf!

Schyja, Adrian, Matthias Bartelt, and Bernd Kuhlenkétter. 2014. “From Conception Phase up
to Virtual Verification Using AutomationML.” Procedia CIRP 23: 171-177. https://doi.
org/10.1016/j.procir.2014.10.067.

Siif}, Sebastian, Anton Strahilov, and Christian Diedrich. 2015. “Behaviour simulation for
virtual commissioning using co-simulation.” In 2015 IEEE 20th Conference on Emerg-
ing Technologies € Factory Automation (ETFA), 1-8. IEEE. https://doi.org/10.1109/
ETFA.2015.7301427.

Tao, Fei, He Zhang, Ang Liu, and Andrew YC Nee. 2018. “Digital twin in industry: State-
of-the-art.” IEEFE Transactions on industrial informatics 15 (4): 2405-2415. https://doi.
org/10.1109/TII.2018.2873186.

Thongnuch, M Sc Suthida. 2021. “An approach to generating high-fidelity models for the vir-
tual commissioning of specialized production machines and cells using MCAD models.” PhD
diss., Universitétsbibliothek der HSU/UniBwH. http://dx.doi.org/10.24405/13877.

Thongnuch, Suthida, and Alexander Fay. 2017. “A practical simulation model generation for
virtual commissioning.” In 2017 IEEE International Conference on Advanced Intelligent
Mechatronics (AIM), 1077-1082. IEEE. https://doi.org/10.1109/AIM.2017.8014162.

Thongnuch, Suthida, Alexander Fay, and Rainer Drath. 2018. “Semi-automatic generation of
a virtual representation of a production cell.” at-Automatisierungstechnik 66 (5): 372-384.
https://doi.org/10.1515/auto-2017-0108.

Ugarte, Miriam, Leire Etxeberria, Gorka Unamuno, Jose Luis Bellanco, and Eneko Ugalde.
2022. “Implementation of Digital Twin-based Virtual Commissioning in Machine Tool Man-
ufacturing.” In 3rd International Conference on Industry 4.0 and Smart Manufacturing, Vol.
200, 527-536. https://doi.org/10.1016/j.procs.2022.01.250.

Wang, Xi Vincent, and Xun W Xu. 2015. “A collaborative product data exchange environment
based on STEP.” International Journal of Computer Integrated Manufacturing 28 (1): 75—
86. https://doi.org/10.1080/0951192X.2013.785028.

Wardhani, Rivai, and Xun Xu. 2016. “Model-based manufacturing based on STEP AP242.” In
2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems
and Applications (MESA), aug. IEEE. https://doi.org/10.1109/mesa.2016.7587187.

Westkamper, Engelbert, Thomas Baudisch, Wolfgang Schlégl, and Gernot Frank. 2012. “Au-
tomatic model generation for virtual commissioning of specialized production machines.”
Softwaretechnik-Trends: Vol. 32, No. 2 https://doi.org/10.1007/b£03323491|

Xu, Lida, Eric Xu, and Ling Li. 2018. “Industry 4.0: state of the art and future trends.”
International journal of production research 56 (8): 2941-2962. https://doi.org/10.1080/
00207543.2018.144480.

Xu, Xun, Yugian Lu, Birgit Vogel-Heuser, and Lihui Wang. 2021. “Industry 4.0 and Industry
5.0—Inception, conception and perception.” Journal of Manufacturing Systems 61: 530-535.
https://doi.org/10.1016/j.jmsy.2021.10.006.

Yemenicioglu, Ender. 2016. “Data exchange for the physics-based simulation of material han-
dling systems in the digital factory.” PhD diss., Dissertation, Magdeburg, Universitét, 2016.

25

https://doi.org/10.1016/j.ifacol.2017.08.1014
https://doi.org/10.1016/j.ifacol.2017.08.1014
https://doi.org/10.1115/1.1354995
https://doi.org/10.1016/j.ifacol.2018.08.469
https://doi.org/10.3390/computers10060072
https://doi.org/10.3390/computers10060072
https://img5.custompublish.com/getfile.php/3901260.2265.akzillql7uuipz/RAMEI+4.0.pdf
https://img5.custompublish.com/getfile.php/3901260.2265.akzillql7uuipz/RAMEI+4.0.pdf
https://doi.org/10.1016/j.procir.2014.10.067
https://doi.org/10.1016/j.procir.2014.10.067
https://doi.org/10.1109/ETFA.2015.7301427
https://doi.org/10.1109/ETFA.2015.7301427
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TII.2018.2873186
http://dx.doi.org/10.24405/13877
https://doi.org/10.1109/AIM.2017.8014162
https://doi.org/10.1515/auto-2017-0108
https://doi.org/10.1016/j.procs.2022.01.250
https://doi.org/10.1080/0951192X.2013.785028
https://doi.org/10.1109/mesa.2016.7587187
https://doi.org/10.1007/bf03323491
https://doi.org/10.1080/00207543.2018.144480
https://doi.org/10.1080/00207543.2018.144480
https://doi.org/10.1016/j.jmsy.2021.10.006

http://dx.doi.org/10.25673/4588.

Yli-Ojanpera, Matti, Seppo Sierla, Nikolaos Papakonstantinou, and Valeriy Vyatkin. 2019.
“Adapting an agile manufacturing concept to the reference architecture model industry
4.0: A survey and case study.” Journal of industrial information integration 15: 147-160.
https://doi.org/10.1016/5.jii.2018.12.002

Zhang, Haijun, Qiong Yan, and Zhenghua Wen. 2020. “Information modeling for cyber-physical
production system based on digital twin and AutomationML.” The International Journal
of Advanced Manufacturing Technology 107 (3-4): 1927-1945. https://doi.org/10.1007/
s00170-020-05056-9.

Zhao, Jiaqi, El-Houssaine Aghezzaf, and Johannes Cottyn. 2023. “A framework for evalu-
ating a generic virtual commissioning data model.” In CIRP Design Conference, Syd-
ney, Australia. Elsevier. (In Publishing), https://drive.google.com/file/d/1bvyH_
ES5YNV3BaT037pgCAO897EeGBt09.

Zhao, Jiaqi, Matthias Schamp, Steven Hoedt, El-Houssaine Aghezzaf, and Johannes Cot-
tyn. 2021. “AutomationML in Industry 4.0 Environment: A Systematic Literature Re-
view.” Advances in Automotive Production Technology—Theory and Application 162-169.
https://doi.org/10.1007/978-3-662-62962-8_19.

ZVEI. 2022. “Discussion Paper: Electrical Drive Design with the Digital Twin, Standardised
Submodel of the Asset Administration Shell.” https://www.zvei.org/fileadmin/user_
upload/Presse_und_Medien/Publikationen/2022/Mai/Diskussionspapier_Digital_
Engineering/Diskussionspapier_Digital_Engineering_ final.pdfl

26

http://dx.doi.org/10.25673/4588
https://doi.org/10.1016/j.jii.2018.12.002
https://doi.org/10.1007/s00170-020-05056-9
https://doi.org/10.1007/s00170-020-05056-9
https://drive.google.com/file/d/1bvyH_E5YNV3BaT037pgCAO897EeGBt09
https://drive.google.com/file/d/1bvyH_E5YNV3BaT037pgCAO897EeGBt09
https://doi.org/10.1007/978-3-662-62962-8_19
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2022/Mai/Diskussionspapier_Digital_Engineering/Diskussionspapier_Digital_Engineering_final.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2022/Mai/Diskussionspapier_Digital_Engineering/Diskussionspapier_Digital_Engineering_final.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2022/Mai/Diskussionspapier_Digital_Engineering/Diskussionspapier_Digital_Engineering_final.pdf

	Introduction
	State of the art
	RAMI 4.0 and AML
	Related work on VC model generation and data exchange

	Methodology
	A case-driven iterative approach to developing an AML-VC extension
	The naming rules of generic VC data model attributes

	AML-VC extension
	Creation of an AML-VC extension based on a first iteration
	AML-VC extension-based data exchange between SNX and VCO
	Interoperability performance evaluation of the AML-VC extension based on two cases

	Discussion
	Conclusion and outlook

