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Abstract: Fucosylation, or the attachment of a fucose moiety to a glycan or protein by the action of fucosyltransferases, 
happens extensively in all living organisms. It plays a vital role in multiple biological processes from development to 
immunity, and is thought to be highly associated with the occurrence of many human diseases. While the general prin-
ciples of fucosylation are similar in all organisms, most insects synthesize less processed fucosylated glycans compared to 
humans. Recent studies in insects show that disruption of fucosylation causes developmental defects leading to lethality, 
suggesting an essential role in insects. However, because of the limited information available, the molecular mechanisms 
behind these phenotypes remain unresolved. This review provides an overview on insect fucosylation, including the prin-
ciple and function of fucosylation, the phylogenesis of the fucosyltransferases, and the diversity and abundance of fucosyl-
ated glycans. To provide a better understanding of the different roles of fucosylation in insects, knowledge on fucosylation 
in mammals or other invertebrates is discussed. As the dynamic requirement for fucosylation in insects needs more research 
to elucidate the underlying mechanisms, we hope this overview of fucosylation could provide new insights into its role in 
insects for future studies.
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1 Introduction

Post-translational modification (PTM) of proteins by oli-
gosaccharides occurs commonly in all eukaryote organ-
isms, it is estimated that more than half of all proteins are 
glycosylated (Apweiler et al. 1999). N-glycosylation and 
O-glycosylation are two major and common types of pro-
tein glycosylation. In N-glycosylation, a dolychol-linked 
precursor sugar chain (Glc3Man9GlcNAc2) is attached to 
an asparagine (Asn) residue of nascent polypeptides in the 
endoplasmic reticulum (ER) in an Asn-X-Ser/Thr consen-
sus sequence (with X any amino acid except Pro) (Stanley 
et al. 2022). After attachment, the resulting N-glycans are 
sequentially processed by a number of enzymes in the ER 
and Golgi apparatus to generate different glycans (Rini et al. 
2022). Briefly, the first step is the stepwise removal of the 
three glucoses from Glc3Man9GlcNAc2 to form a high man-
nose glycan (Man9GlcNAc2), this processing is important 
for protein quality control and correct folding. If the protein 
is misfolding, the glycan will be reglucosylated for another 
round of folding. Correctly folding proteins are subsequently 
transported to the Golgi apparatus where the α-1,2-mannoses 
are trimmed, generating Man5GlcNAc2. The Man5GlcNAc2 
structure can be further modified with one GlcNAc to pro-

duce hybrid glycans (GlcNAcMan5GlcNAc2) or trimmed to 
form paucimannose glycan (Man3–4GlcNAc2). Once substi-
tuted by GlcNAc, the glycan can be further modified with 
other sugar moieties at the core and antenna. One of these 
modifications is the addition of fucose residues, or fucosyl-
ation, catalyzed by fucosyltransferases (FucTs) (Fig. 1A–B). 
In O-glycosylation, monosaccharides are sequentially 
attached to a serine or threonine residue of polypeptides 
(Holdener & Haltiwanger 2019). Many O-linked glycans are 
initiated with the addition of a GalNAc-moiety and are sub-
sequently extended with Gal, GlcNAc, Fuc, or Sia-residues 
(Brockhausen et al. 2022). In addition, fucose moieties can 
be directly attached to a serine or threonine residue of the 
polypeptide, this O-fucosylation is catalyzed through the 
action of O-FucTs (Fig. 1C). In the human genome, thir-
teen genes encoding FucTs were identified and expected to 
be involved in fucosylation (de Vries et al. 2001, Schneider 
et al. 2017). Based on the linkage by which the fucose is 
added, these enzymes can be classified into α-1,2-, α-1,3/4-, 
and α-1,6-FucTs as well as O-FucTs (Li et al. 2018). In the 
genome of the nematode Caenorhabditis elegans, 40 genes 
encoding FucTs (20 α-1,2-FucTs, 17 α-1,3/4-FucTs, one 
α-1,6-FucT, and two O-FucTs) are identified (https://worm-
base.org, version WS287). However, in the genome of the 
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Fig. 1. Schematic of N-fucosylation. (A) Core fucosylation in insect, nematode, and human. The core of N-glycans is commonly com-
prised of Man3GlcNAc2. Nematode FUT1 and FUT6, α-1,3-fucosyltransferase. Nematode and human FUT8, α-1,6-fucosyltransferase. 
(B) Fucosylation-related N-glycosylation pathway in insects. GCS1/GCS2, glucosidases I and II. Man1a/Man1b, mannosidases 
class I. Man2a/Man2b, mannosidases class II. Mgat1/2/4, mannosyl (α-1,3-)-glycoprotein β-1,2-N-acetylglucosaminyltransferase 
1/2/4. FucTA, α-1,3-fucosyltransferase. FucT6, α-1,6-fucosyltransferase. Fdl, N-acetylhexosaminidase. High mannose glycans carry 
five to nine mannose residues, Man5-9GlcNAc2. Pauci-mannose (also called short mannose) glycans carry two to four mannose, 
Man2-4GlcNAc2. Hybrid glycans includes one of branches substituted by GlcNAc. Complex glycans contain the branch substituted 
by two or more GlcNAc. (C) O-fucosylation in insects. O-FucT1 is involved in the left pathway while O-FucT2 is involved in the right 
pathway. Data adapted from Li et al. (2020).
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insect model Drosophila melanogaster, only seven FucTs 
(four α-1,3-FucTs, one α-1,6-FucT, and two O-FucTs) are 
identified (https://flybase.org, version FB2023_01 released 
on February 15, 2023).

Fucosylation gained attention because of its involvement 
in the occurrence of many human diseases, including inflam-
mation, cancers, and tumors, and its role in the immune 
response (Fujita et al. 2021b, Li et al. 2018, Tong et al. 2022, 
Tu et al. 2017, Wang et al. 2023, Wu et al. 2022). Alteration 
in the fucosylation profile is clinically used as an indicator 
for diseases. For example, the expression of FucTs or the 
fucosylation profile of proteins can be used as prognostic 
marker and therapeutic target for cancer patients (Geng et al. 
2004, Loong et al. 2021, Luo et al. 2023). The fucosylation 
of antibodies also plays an important role in the treatment 
or diagnosis of diseases (Bournazos et al. 2021, Wang & 
Ravetch 2019). The “less or more” fucosylation is a dynamic 
balance and is required depending on physiological condi-
tions (e.g. individuals or diseases). Non-fucosylated anti-
bodies show protective immunity against malaria and HIV, 

however, it increases the severity of COVID-19 and dengue 
fever patients (Larsen et al. 2021, Oosterhoff et al. 2022, 
Šuštić et al. 2022). In addition to its role in diseases and 
immunity, fucosylation also plays a crucial role in develop-
ment. In many organisms, such as mice, zebrafish, and nem-
atodes, mutation of α-1,6-FucT (FUT8) resulted in growth 
defects and death (Hayashiji et al. 2022, Wang et al. 2006a, 
Wang et al. 2005). In insects, the knowledge generated in 
the model Drosophila melanogaster reveals that fucosyl-
ation is needed for normal insect development and the loss 
of fucosylation is accompanied with serious consequences, 
such as reduced growth and lethality (Rendić et al. 2010, 
Yamamoto-Hino et al. 2015). α-1,6-FucT (FucT6) has been 
reported to be essential for the development of Nilaparvata 
lugens, where the silencing of FucT6 caused a failure of 
embryonal katatrepsis and nymphal ecdysis events, resulting 
in a complete lethality in embryos and nymphs (Yang et al. 
2022, 2023). However, these phenotypes are not observed 
in the studies in D. melanogaster, Tribolium castaneum and 
Leptinotarsa decemlineata (Liu et al. 2022, Walski et al. 
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2016, Yamamoto-Hino et al. 2015). These discrepancies 
in phenotypes suggest that FucT6 plays a different role in 
different insect species, and that conclusions from one spe-
cies cannot be readily translated to other insects. Therefore, 
knowing the role of FucTs in a variety of species is needed. 
In this review, we discuss FucTs and the general principles of 
fucosylation, summarizing the recent advances in the study 
of fucosylation in insects, aiming to better understand the 
role of fucosylation in insects.

2  Fucosylation and biosynthesis of 
fucosylated glycans

Fucosylation has been summarily discussed in a few recent 
reviews regarding insect glycosylation (Li et al. 2020, Ten 
Hagen et al. 2022, Walski et al. 2017), however, the informa-
tion in these reviews was mainly limited to the model insect 
D. melanogaster. As a model D. melanogaster has received 
more attentions on both N-glycosylation and O-glycosylation 
(Katoh & Tiemeyer 2013, Nishihara 2020, Ten Hagen et al. 
2009). Among the FucTs, FucTA (α-1,3-fucosyltransferase) 
and FucT6 (α-1,6-fucosyltransferase) are known to cata-
lyze core α-1,3- and α-1,6-fucosylation, respectively, and 
FucTC (α-1,3-fucosyltransferase) is involved in terminal 
α-1,3-fucosylation. The exact enzyme activity of FucTB 
and FucTD (α-1,3-fucosyltransferases), however, remains 
unclear (Fabini et al. 2001, Kurz et al. 2016, Rendić et al. 
2007, Rendić et al. 2006). In a previous study, Roos et al. 
(2002) characterized the Drosophila FucTs involved in the 
synthesis of fucosylated glycans. This study revealed that 
while genes encoding α-1,3-FucTs and α-1,6-FucTs were 
found, no genes encoding α-1,2-FucTs and α-1,4-FucTs 
were identified, suggesting insect fucosylation is different 
from other invertebrates, such as nematodes, and vertebrates. 
While the knowledge of insect fucosylation is still limited, 
the information obtained in vertebrate systems on biosynthe-
sis and function of fucosylated glycans can be helpful for the 
understanding of insect fucosylation (Becker & Lowe 2003, 
Ma et al. 2006, Schneider et al. 2017).

Table 1. Lists of known fucosyltransferases in humans and insects (adapted from Schneider et al. 2017 and Ma et al. 2006).

FucT types Addition site of fucose Abbreviation in  
human genome

Abbreviation in  
D. melanogaster genome

α-1,2-fucosyltransferase terminal α-1,2-linkage of N-glycan FUT1, FUT2
α-1,3-fucosyltransferase α-1,3-linkage of N-glycan FUT3-7, FUT9-111 FucTA-D2

α-1,4-fucosyltransferase terminal α-1,4-linkage of N-glycan FUT3, FUT5
α-1,6-fucosyltransferase core α-1,6-linkage of N-glycan FUT8 FucT6

O-fucosyltransferase O-glycans FUT12/POFUT1,  
FUT13/POFUT2 O-FucT1, O-FucT2

1 α-1,3-fucosylation in the core of N-glycan is absent in humans.
2 FucTA is the only enzyme catalyzing core α-1,3-fucosylation in D. melanogaster.

2.1 Terminal fucosylation
Terminal fucosylation in insects is not common and is 
largely dependent on the species. For example, in D. mela-
nogaster no FucTs have been functionally proven to catalyze 
terminal fucosylation (Fabini et al. 2001, Rendic et al. 2006). 
However, in the honey bee Apis mellifera and the mosquito 
Anopheles gambiae, terminal fucosylation, yielding Lewis-
type α-1,3-FucT structures, has been shown to be catalyzed 
by FucTC (Kurz et al. 2016, Rendić et al. 2007). In contrast 
to insects, terminal fucosylation in humans is more com-
mon and more complex, the antenna of both N-glycans and 
O-glycans can be modified with fucose moieties in an α-1,2-, 
α-1,3-, and α-1,4-linkage (Table 1). The addition of fucose 
in an α-1,2-linkage is catalyzed by α-1,2-FucTs (FUT1 and 
FUT2), while the introduction of fucose in an α-1,3-linkage 
is catalyzed by FUT4–7 and FUT9. FUT10 and FUT11 con-
tain the characteristic α-1,3-FucT motif and share homology 
with α-1,3-FucT from Drosophila, suggesting these are puta-
tive fucosyltransferases, however, their function has not yet 
been defined (Ma et al. 2006). In addition to adding fucose 
in an α-1,3-linkage, FUT3 and FUT5 also add fucose in an 
α-1,4-linkage (Schneider et al. 2017) (Table 1).

2.2 Core fucosylation
The modification of the core structure of N-glycans in 
insects is catalyzed by FucT6 (α-1,6-FucT), adding fucose 
in an α-1,6-linkage, or/and by FucTA (α-1,3-FucT), adding 
fucose in an α-1,3-linkage (Fig. 1B), leading to up to two 
fucoses on the proximal GlcNAc residue of the core. Among 
the four α-1,3-FucTs identified in D. melanogaster, only 
FucTA is shown to play a role in core α-1,3-fucosylation 
(Fabini et al. 2001, Kurz et al. 2016, Rendić et al. 2006, 
2007). Monofucosylation of the core in an α-1,3-linkage is 
rare, while fucosylation in an α-1,6-linkage is quite com-
mon. Difucosylation always occurs first in the α-1,6-linkage, 
as FucT6 cannot act at the core of α-1,3-fucosylated glycans 
while FucTA can be active at the core of α-1,6-fucosylated 
glycans (Kurz et al. 2016, Paschinger et al. 2005, Staudacher 
& Marz 1998). Noteworthy, core fucosylation appears to be 
different in Manduca sexta, where the fucose residue can be 
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added to the distal GlcNAc of the core in an α-1,3-linkage. 
Such modification is also seen in other invertebrates, such 
as the nematode C. elegans whose N-glycans are more com-
plex, with up to three (Yan et al. 2013) or even five fucose 
residues to the core (Yan et al. 2018). The presence of a 
GlcNAc residue on the core α-1,3-mannose has been thought 
to be a prerequisite for core α-1,6-fucosylation by α-1,6-
FucT. However, recently, it was shown that human FUT8 
(α-1,6-FucT, the sole enzyme catalyzing core fucosylation 
of human N-glycans) also can use N-glycans lacking an 
α-1,3-arm GlcNAc as substrate for core fucosylation (Yang 
et al. 2017). Similarly, in insects such as Lepidopteran lar-
vae (e.g. Trichoplusia ni and Lymantria dispar), the high 
mannose N-glycan Man7GlcNAc2 was observed to be core 
α-1,6-fucosylated, supporting the hypothesis that α-1,6-
FucT may have a relaxed substrate specificity and a GlcNAc 
residue on the core α-1,3-mannose is not absolutely required 
(Stanton et al. 2017). However, how FUT8 or FucT6 mod-
ulates such fucosylation is still unknown. Fucosylation of 
N-glycans in an α-1,6-linkage is conserved in all animal 
organisms and is the most preferred compared to any of the 
other linkages.

2.3 O-fucosylation
To date, there are two O-FucTs, O-FucT1 and O-FucT2, 
identified in the D. melanogaster genome. O-FucT1 is 
known to add fucose to properly folded epidermal growth 
factor-like (EGF) repeats with the consensus sequence 
C2-X-X-X-X-Ser/Thr-C3 (X is any amino acid and C2 and 
C3 are the second and third conserved cysteines of the EGF 
repeat), while O-FucT2 is responsible for the addition of 
fucose to thrombospondin type 1 repeats (TSRs) with the 
consensus sequence C1-X-X-S/T-C2 in TSRs group 1 and 
C2-X-X-S/T-C3 in TSRs group 2 (Haltiwanger et al. 2022). 
Compared to vertebrates, where O-fucoses comprise 50% 
of the O-glycome, the proportion of O-fucose in inver-
tebrates is significantly lower (28%) (Thomès & Bojar 
2021). In insects, studies on O-glycosylation are rare. The 
available data shows that O-GlcNAc-type O-glycans (also 
known as mucin type glycan) dominate the O-glycan profile 
(Brockhausen et al. 2022), while O-fucose comprises only a 
minor fraction of the insect O-glycome (Aoki et al. 2008, Li 
et al. 2020, Walski et al. 2017).

3 Phylogenetic analysis of FucTs

To better understand the phylogenetic relationship between 
the FucTs in insects, the protein sequences of Drosophila 
FucTs were used as queries for searches against the NCBI 
protein database, with the setting of max target sequence 
> 200 amino acid sequence and e-value cutoff of 1e-6, in 
other representative species across different insect orders. 
Homologs of α-1,3/6-FucTs and O-FucTs from human Homo 
sapiens (vertebrate) and nematode C. elegans (invertebrate) 

were included in the phylogenetic analysis. The generated 
tree clearly reveals the differentiation of an α-1,3-FucT, 
α-1,6-FucT, and O-FucT cluster, and the conservation of 
these enzymes in the different organisms (Fig. 2). There are 
apparent divergences between α-1,3-FucTs, revealing the 
discrepancies of insect FucTA, FucTB, and FucTC. Human 
FUT10 and FUT11 are evolutionarily incorporated into the 
insect FucTB clade, while other α-1,3-FucTs from human 
and nematode are evolutionarily related to insect FucTA and 
FucTC. Analysis of the phylogenetic tree suggests FucTA is 
probably evolved from FucTC. As no orthologs of the D. 
melanogaster FucTD could be identified in other insect spe-
cies, it is assumed that FucTD is specific to Drosophila, and 
was excluded from the phylogenetic analysis. Surprisingly, 
N. lugens FucT6 and Apis mellifera FucT6 show a differ-
ence from other insects’ FucT6 at amino acid level, locat-
ing them at the outer side of the insect α-1,6-FucT cluster. 
Compared with other insects, an expansion of α-1,3-FucT 
and α-1,6-FucT seems to be present in the hemipterous 
aphids. More research is still needed for confirmation of 
these observations.

4 Fucose-containing glycans in insect

4.1 Fucosylated glycans across insect species
While insects account for 80% of all known living species, 
knowledge of their fucosylation is very limited. Thomès 
& Bojar (2021) collected a dataset of glycan structures 
assembled from public databases [GlyTouCan (Fujita et al. 
2021a), GlyCosmos (Yamada et al. 2020), CSDB (Toukach 
& Egorova 2016)], together with glycan structures manu-
ally extracted from the peer-reviewed literature. The dataset 
is released and is freely accessible via https://github.com/
BojarLab/glycowork. This database includes fucose-con-
taining glycans from more than 20 insect species, distrib-
uted over six orders, including Hymenoptera, Hemiptera, 
Lepidoptera, Coleoptera, Diptera and Orthoptera (Fig. 3), 
and comprises at least 280 fucosylated glycans within insects. 
Among these species, Apis mellifera (Hymenoptera) has the 
largest number of fucosylated glycans (152), followed by 
T. ni (Lepidoptera) (75) and L. dispar (Lepidoptera) (51) as 
well as Anopheles gambiae (Diptera) (45) and Aedes aegypti 
(Diptera) (42) (Diptera). In the other species, the total num-
ber of fucose-containing glycans is relatively smaller. For 
example, 27 fucose-containing glycans have been found 
in D. melanogaster (Diptera), 12 in both Bombyx mori 
(Lepidoptera) and N. lugens (Hemiptera), nine in T. casta-
neum (Coleoptera), seven in L. decemlineata (Coleoptera), 
and five in Locusta migratoria (Orthoptera).

The binding of the fucose residue in the glycans appears 
to vary depending on species. The occurrence of monofu-
cosylated glycans with their fucose unit in an α-1,6-linkage 
of N-fucosylated glycans is conserved in insects, and pres-
ence of core difucosylated N-glycan structures occurs exten-
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Fig. 2. Phylogenetic analysis of FucTs. D. melanogaster FucTs were downloaded from FlyBase (https://flybase.org) and used as que-
ries searching against NCBI by BlastP with the setting of max target sequence > 200 amino acid and E-value cutoff of 1e-6, to find the 
homologs in other insect species, including Diptera (A. aegypti and A. gambiae), Hymenoptera (A. mellifera), Hemiptera (N. lugens, 
Myzus persicae, Acyrthosiphon pisum), Coleoptera (T. castaneum and L. decemlineata), Lepidoptera (T. ni, B. mori, and M. sexta), 
Orthoptera (L. migratoria, no homologs were found). The α-1,3/6-FucTs and O-FucTs from human Home sapiens and nematode C. 
elegans were downloaded from UniProt (https://www.uniprot.org) and included in the analysis as well. All sequences of FucTs were 
aligned by MUSCLE in MEGA 11 and the phylogenetic analysis was performed in Mega 11 using Maximum Likelihood method with 
the default settings. In the phylogenetic tree, insect FucTs were simplified using the abbreviation of species name, followed by FucT 
name (and isoform), and NCBI accession number.

sively in insects as well. However, the presence of one 
fucose unit at either the core or the antenna of N-glycans in 
an α-1,3-binding appears to be species-specific (Table 2). Of 
note, N-glycans of M. sexta (Lepidoptera) can even be modi-
fied with up to four fucose units in an α-1,3-linkage, two at 
the core and two at the antenna. In T. ni and L. dispar, core 
monofucosylation in an α-1,6-linkage is the most prevalent, 
and terminal fucosylation with a single fucose in an α-1,3 
linkage is observed. Core α-1,6-monofucosylation is the 

most prevalent in mosquitos, while no terminal fucose was 
observed in the fucosylated glycans of A. aegypti and only 
two structures were found with one α-1,3 terminal fucose in 
that of A. gambiae. There is no terminal fucose found in the 
fucosylated glycans of D. melanogaster, B. mori, N. lugens, 
L. decemlineata, and T. castaneum. Noteworthy, in Vespa 
crabro and Vespula germanica glycans are observed modi-
fied with α-1,2-fucose (Garenaux et al. 2011), suggesting 
α-1,2-FucTs might be present in such species.
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Fig. 3. Fucose-containing glycans in insects. Holometabolous insects: Diptera, Lepidoptera, Hymenoptera, and Coleoptera. 
Hemimetabolous insects: Hemiptera and Orthoptera. Data obtained from Thomès & Bojar (2021).

4.2  Abundance of fucosylated glycans in insect 
glycome

During the N-glycosylation pathway (Fig. 1B), the sugar 
moieties are sequentially removed from or added to the 
N-glycans generating high mannose, paucimannose, hybrid, 
and complex type glycans. Of which, paucimannose, hybrid 
and complex type glycans can be modified with fucoses by 
the α-1,3-FucTs and FucT6. Overall, insect N-glycans are 
dominated by high mannose and paucimannose (includ-
ing fucosylated) glycans, accounting for > 85% of total 
N-glycome (Hagen et al. 2022, Scheys et al. 2019, Walski 
et al. 2016).

During the embryonic stage of D. melanogaster, the 
abundance of fucosylated glycans increases in the late 
embryo compared to the early embryo (Aoki et al. 2007). 
Overall, the N-glycome of D. melanogaster embryos is 
dominated by high mannose glycans, accounting for half of 
the total number of N-glycans while the fucosylated glycans 
comprise about 30% of the N-glycome (Aoki et al. 2007). In 
the larval stage, D. melanogaster has similar proportions in 

both high mannose and fucosylated glycans (Williams et al. 
1991). In comparison, T. castaneum larvae carry more high 
mannose glycans (63%) and less fucosylated glycans (26%) 
(Walski et al. 2016). However, N. lugens nymphs carry as 
many fucosylated glycans (36%) as high mannose glycans 
(36%) (Scheys et al. 2019). In the adult stage, D. melano-
gaster carries more fucosylated glycans (41%) but still less 
than high mannose glycans (49%) (Fabini et al. 2001). In 
contrast, T. castaneum adults carry more fucosylated gly-
cans (47%) than high mannose (38%) (Walski et al. 2016). 
Interestingly, N. lugens adults revealed an unexpected sex 
specificity in their N-glycome, where fucosylated glycans 
comprise only 8% of the N-glycome of females but 43% 
of the N-glycome of males. The N-glycan profiles of most 
insects including A. mellifera, D. melanogaster, and N. 
lugens revealed that monofucosylation with α-1,6-fucose is 
dominant in their N-glycome while difucosylated glycans 
account for only about 1% of total N-glycome (Fabini et al. 
2001, Hykollari et al. 2019, Scheys et al. 2019). However, 
T. castaneum appears to have more difucosylated glycans in 
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Table 2. Summary of fucose in insect glycans. (1) Kurz et al. (2015), (2) Hykollari et al. (2018), (3) Hykollari et al. (2019), (4) Kim 
et al. (2003), (5) Ahn et al. (2019), (6) Kajiura et al. (2022), (7) Kubelka et al. (1994), (8) Aoki et al. (2007), (9) Aoki et al. (2008),  
(10) Kozak et al. (2021), (11) Cabrera et al. (2016), (12) Liu et al. (2019) (13) Hard et al. (1993), (14) Mondragon-Shem et al. (2020), 
(15) Stanton et al. (2017), (16) Abeytunga et al. (2008), (17) Stephens et al. (2004), (18) Scheys et al. (2019), (19) Scheys et al. 
(2020), (20) Gaunitz et al. (2013), (21) Li et al. (2021), (22) Walski et al. (2016), (23) Garenaux et al. (2011), (24) Kolarich et al. (2005).

Insect species Core α-1,6 Core α-1,3 Core α-1,3  
& α-1,6 Terminal α-1,3 O-fucose References

A. aegypti Yes Yes Yes × × (1)
A. gambiae Yes Yes Yes Yes × (1)
A. mellifera Yes Yes Yes Yes# – (2), (3)
Antheraea pernyi Yes × × × – (4)
Bombus ignitus Yes × × × – (5)
B. mori Yes Yes Yes × – (4), (6), (7)
D. melanogaster Yes × Yes × Yes† (8), (9)
Glossina morsitans Yes × × × – (10)
Hylesia metabus Yes × × × – (11)
L. decemlineata Yes Yes Yes × – (12)
L. migratoria Yes × × × – (13)
Lutzomyia longipalpis Yes × × × – (14)
L. dispar Yes × × Yes – (15)
Mamestra brassicae Yes Yes Yes × – (7)
M. sexta ? Yes# × Yes# – (16), (17)
N. lugens Yes × Yes × – (18), (19)
Spodoptera frugiperda Yes Yes Yes × Yes‡ (7), (20)
T. castaneum Yes × Yes × Yes† (21), (22)
T. ni Yes × Yes Yes Yes‡ (15), (20)
V. crabro – – – – Yes‡ (23)
V. germanica Yes × Yes × Yes‡ (23), (24)
Vespula vulgaris Yes × Yes × – (24)

“Yes” fucose found, “×” no fucose found, “–” unknown or no data available, “?” unclear, “#” two fucoses found, Column “terminal α-1,3” 
only includes N-linked α-1,3-fucose, “†” indicates only O-fucose found and “‡” indicates only terminal O-linked fucose found, α-1,2-fucose 
is found in the O-glycans of V. crabro and V. germanica.

its N-glycome, accounting for 9~14% of total N-glycome 
(Walski et al. 2016). Compared to the above-mentioned spe-
cies, the N-glycans of A. mellifera are well understood, with 
the largest group of fucosylated glycans among all insects. In 
the larval stage of A. mellifera, fucosylated glycans are the 
most abundant and almost all glycans carry an α-1,6-fucose 
(Hykollari et al. 2019). Although the glycans in its royal jelly 
and venom are highly fucosylated with α-1,6-fucose and 
α-1,3-fucose, the total abundance of fucosylated glycans in 
these samples is lower than in whole larvae (Hykollari et al. 
2019). An investigation of the N-glycan profile of the peri-
trophic membrane in the larva of the Colorado potato beetle, 
Leptinotarsa decemlineata, revealed that the fucosylated gly-
cans are the most abundant group, accounting for about 37% 
of the total N-glycome. (Liu et al. 2019). Compared to the 
N-glycome, studies on the insect O-glycome are extremely 
limited. In D. melanogaster embryos, O-fucosylated glycans 

comprise 11~16% of the O-glycome (Aoki et al. 2008, Li 
et al. 2022). In contrast to D. melanogaster, T. castaneum 
embryos carry more O-fucosylated glycans, accounting for 
27% of total O-glycome (Li et al. 2022). While in the larval 
and pupal stage of T. castaneum, the fraction is reduced to 
13% and 7%, respectively. In the adult stage, this fraction is 
increased to 18%. Altogether, these results suggest that both 
N- and O-fucosylated glycans are dynamically changed dur-
ing insect development, there is significant variation between 
species, between sexes, and between tissues.

5 Fucosylation in development

5.1 In non-insect organisms
Fucosylation has been shown to play an essential role in the 
normal development of many organisms. For example, in 
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Table 3. Overview of the available phenotypes in insects with loss of fucosyltransferases. (1) Ten Hagen et al. (2022), (2) Walski et al. 
(2016), (3) Liu et al. (2022), (4) Yang et al. (2022), (5) Yamamoto-Hino et al. (2015), (6) Yang et al. (2023), (7) Mortimer et al. (2012), 
(8) Li et al. (2021).
Gene Species Treatment Phenotype Reference
α-1,3-FucTs
FucTA D. melanogaster Mutation Altered glycosylation in larval, pupal, and adult 

central nervous system
(1)

FucTA T. castaneum RNAi in 4th instar larva No obvious effects (2)
FucTA L. decemlineata RNAi in 3rd instar larva No obvious effects (3)
FucTA N. lugens RNAi in 3rd instar nymph Increased mortality (4)
FucTB D. melanogaster RNAi Lethality (5)
α-1,6-FucT
FucT6 N. lugens RNAi in 3rd instar nymph Complete lethality in nymphs, > 60% insects show 

ecdysis defect.
(4)

FucT6 N. lugens RNAi in adult Increased mortality in females but not males; no 
effects on egg production of females.

(6)

FucT6 N. lugens Parental RNAi Complete lethality in embryos; abnormal embryo 
with posterior mislocalization of eyespots; low 
hatching rate of the eggs.

(6)

FucT6 D. melanogaster Mutation in larvae Impaired immune response to wasp infection (7)
FucT6 D. melanogaster RNAi Lethal before adult eclosion or specific defects 

depending on studies
(5)

FucT6 L. decemlineata RNAi in 3rd instar larva No obvious effects (3)
O-FucTs
O-FucT1 D. melanogaster Mutation Notch-like defects in cellular differentiation (1)
O-FucT1 D. melanogaster RNAi Lethality before adult eclosion or specific defects 

depending on studies
(5)

O-FucT1 T. castaneum RNAi Severe effects with an abnormal pupal and adult 
elytra and high mortality

(8)

mice, disruption of FUT8 causes severe growth retardation, 
early death during postnatal development, and emphysema‐
like changes in the lung (Wang et al. 2005). In zebrafish, dis-
ruption of FUT8 results in obvious developmental defects, 
including a smaller body size, abnormal muscle structures, 
and mortality in earlier developmental stages (Hayashiji 
et al. 2022). In C. elegans, RNAi or overexpression of pad-2 
(O-fucosyltransferase) led to abnormal development, sug-
gesting that pad-2 is required for normal development of C. 
elegans (Menzel et al. 2004).

5.2 In insects
While the knowledge of fucosylation in insect development 
is almost entirely generated in the insect model D. melano-
gaster, a few recent studies generated in other insect spe-
cies are able to bring a new insight into our understanding 
of the biological role of fucosylation. In D. melanogaster, 
disruption of FucTA caused mild defects in the wing and 
neural development (Rendić et al. 2010, Yamamoto-Hino 
et al. 2010) (Table 3). In contrast, no negative effects were 
observed when silencing FucTA in the beetles T. castaneum 

and L. decemlineata (Liu et al. 2022, Walski et al. 2016) 
(Table 3). Although silencing of FucTA in the hemimetabo-
lous insect N. lugens did not yield any obvious phenotype, it 
did cause an increased mortality (Yang et al. 2022). In con-
trast to the relative mild effects of FucTA silencing, silencing 
of FucT6 caused severe developmental defects in N. lugens 
leading to complete mortality (Yang et al. 2022, Yang et al. 
2023) (Table 3). Specifically, RNAi-mediated silencing of 
FucT6 in N. lugens nymphs led to a block of the next ecdysis 
event, trapping the insects in their old cuticle during nymphal 
transition (Yang et al. 2022). In addition, parental RNAi of 
FucT6 resulted in a failure of the katatrepsis event during 
N. lugens embryonal development (Yang et al. 2023). These 
phenotypes suggest an essential role of α-1,6-fucosylation 
in this insect. However, these observations are in grave con-
trast with the observations in holometabolous insect, where 
silencing of FucT6 in T. castaneum and L. decemlineata did 
not cause any observed negative effects (Liu et al. 2022, 
Walski et al. 2016), while in D. melanogaster, some lethality 
was reported in one study but not in another (Liu et al. 2022, 
Walski et al. 2016, Yamamoto-Hino et al. 2015) (Table 3). 
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However, it is worth to mention that embryonal effects were 
not investigated in the holometabolous studies. Studies on 
O-FucTs are limited to D. melanogaster and T. castaneum. 
In the former, deficiency of O-FucT1 led to Notch-like 
defects (Okajima & Irvine 2002, Sasamura et al. 2003) or 
mild effects on survival and wing development (Yamamoto-
Hino et al. 2015). In the latter, silencing of O-FucT1 caused 
severe defects on the pupal and adult development, while no 
negative effects were observed when silencing O-FucT2 (Li 
et al. 2021).

Altogether, these results suggest that FucT6 plays a dif-
ferent role between insect species, and this might be related 
to the abundance of fucosylated glycans in the N-glycome 
of the juvenile development stage in the insects mentioned 
above (e.g., D. melanogaster, T. castaneum, and N. lugens). 
Though the biological role of FucT6 has not been analyzed 
in the embryonal stage of other insects, the strong effects 
and the significant upregulation of transcript levels in the late 
embryo (after the embryonal katatrepsis process) compared 
to the early embryo (before the embryonal katatrepsis pro-
cess) suggests the involvement of FucT6 in the embryonal 
katatrepsis event and its indispensable role in the embryonic 
development of N. lugens (Yang et al. 2023). Similarly, the 
N-glycan profile of D. melanogaster embryos showed that 
fucosylated glycans are increased in the late embryonal stage 
compared to the early embryo, which suggests FucT6 might 
be involved in the embryonic development of D. melanogas-
ter as well (Aoki et al. 2007).

6 Fucosylation in immune response

6.1 In humans
In humans, the study fucosylation has gotten much attention 
for its role in the antigenic epitopes of blood types and its 
involvement in many human diseases (Jajosky et al. 2023). 
For example, the formation of the H-type and Lewis-type 
antigens are associated with the introduction of terminal 
fucoses by α-1,2, α-1,3 and α-1,4-fucosyltransferaseses at the 
antenna of hybrid and complex type glycans (de Vries et al. 
2001, Ma et al. 2006, Schneider et al. 2017). Furthermore, 
aberrant fucosylation has been extensively reported to be 
associated with many biological processes of disease occur-
rence, including inflammation, tumors, and cancers (Bastian 
et al. 2021, Caldwell et al. 2021, Domino et al. 2009, Fujita 
et al. 2021b). Recently, non-fucosylation of IgG-antibodies 
was reported to be related to the severity of symptoms in 
COVID-19 patients (Larsen et al. 2021). FUT4-mediated 
Lewis-type antigens play a crucial role in the progression 
and development of gastric cancer (Aziz et al. 2022). FUT8-
mediated core fucosylation is essential for evoking a proper 
immune response (Sun et al. 2022). These results suggest 
the importance of fucosylation in the human immune sys-
tem. Over the years, increasing studies also highlight the 

vital role of fucosylation-related immunotherapies (Adhikari 
et al. 2022, Liao et al. 2021, Oosterhoff et al. 2022). It is 
known that fucosylated N-glycans of insects and plants can 
be immunogenic in vertebrates. These epitopes can be rec-
ognized by immunoglobulin E (IgE) from patients allergic 
to plant foods and pollen, as well as by antisera generated 
against plant and insect glycoproteins. Minimizing fucosyl-
ation can reduce their binding to IgE antibodies (Palmberger 
et al. 2014). Of interest, it has been observed that terminal 
fucose is always present in those glycans causing health 
problems to people and animals (Boukouvala et al. 2022). 
Therefore, terminal fucosylated glycans might be an interest-
ing marker in medicine to assess allergenic insects.

6.2 In insects
Compared to humans, the study of the role of fucosylation 
in insect immunity is seriously lagging behind. Among 
the FucTs is FucTA that produces core α-1,3-fucosylated 
N-glycans recognized by anti-horseradish peroxidase (HRP) 
antisera, providing a marker for neural tissue (Rendić et al. 
2006). In D. melanogaster, it has been shown that knock-
down of FucTA increased the susceptibility to Candida infec-
tion (Glittenberg et al. 2022). In addition, FucT6-mutant D. 
melanogaster larvae exhibit a somewhat impaired immune 
response to parasitoid wasp infection, leading to a decreased 
encapsulation rate (Mortimer et al. 2012). In our recent study 
on N. lugens (Yang et al. 2023), we observed that FucT6RNAi-
eggs were prone to be infected by fungi during embryonic 
development (data not shown). These observations suggest 
that similar to human immunity, fucosylation might have an 
important role in modulating the insect immune response, 
though further research is needed to elucidate the underlying 
molecular mechanisms of fucosylation in the defense against 
pathogens. In view of pest control, the negative effects on 
the insect immunity caused by a deficiency of fucosylation 
opens perspectives for novel strategies for future pest con-
trol. In such strategies, carbohydrate binding proteins, or lec-
tins, with a specificity for fucosylated glycans, e.g., F-type 
lectins (Vasta et al. 2017, Vasta & Feng 2020) could be used 
to disrupt the insect immune response against parasitoids or 
fungal or microbial agents. The role of lectins in the insect 
immune system have recently been summarized (Chen et al. 
2021, Ming et al. 2023). In addition to the model D. melano-
gaster, the study of honeybees is gaining more attention as 
its royal jelly is a natural antimicrobial agent (Fratini et al. 
2016), while its venom is allergenic (Pucca et al. 2019).

7  Fucosylation in the regulation of cellular 
signaling

As many proteins, present at the surface of the cells, are gly-
cosylated, it is no surprise that glycans, and indeed fucosyl-
ated glycans, play a role in cellular communication. For 
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example, studies in mice, reveal that FUT8-mediated core 
fucosylation regulates the biological function of the epider-
mal growth factor receptor (EGFR) by impacting the bind-
ing affinity of epidermal growth factor (EGF) to EGFR and 
the phosphorylation status of EGFR (Wang et al. 2006b). By 
modulating this interaction between EGF and its receptor, 
fucosylation can influence cell growth and division. In the 
Wnt/β-catenin signaling pathway, fucosylation modulates 
Wnt activity by regulating the endocytosis of lipoprotein 
receptor-related protein 6 (LRP6) (Hong et al. 2020). Similar 
to the effects of the fucosylated N-glycans, the modification 
of the EGF repeats of Notch with O-fucose is required for 
the activation of the Notch signaling pathway and endocytic 
transportation of Notch in mice (Ge & Stanley 2008) and 
D. melanogaster (Okajima & Irvine 2002, Sasamura et al. 
2007). Collectively, fucosylated glycans have been shown 
to modulate cellular biological processes by e.g. affecting 
the binding affinity of ligands to receptors, altering the phos-
phorylation status of receptors or by influencing the endo-
cytosis of the receptors, and thus regulating the downstream 
signaling cascades of the receptors.

8  Fucosylation in microbe-host 
interactions

Next to their role in communication, the presence of gly-
cans at the surface of the cell makes them potent markers for 
cellular and pathogen-host interactions. For example, glyco-
sylated glycans are important for the entry of SARS-CoV-2 
viruses into their host cells, but at the same time they are 
also involved in the protection of the host cell from viral 
infection (Gong et al. 2021). Similarly, fucosylated glycans 
are required for the binding of the Cholera toxin to its recep-
tors on the host cell surface (Wands et al. 2015). Also in 
insects, glycosylation-mediated microbe-host interactions 
have been studied, e.g. α-mannosidase II-a (Man2a), a gly-
cozyme involved in the trimming of lower arm mannoses on 
the core N-glycans (Fig. 1B), was reported to be involved 
in the interaction between mosquito (Aedes aegypti) and 
dengue virus (DENV) (Sigle et al. 2022). Similarly, the 
O-fucosyltransferase (POFUT2) in the parasite Plasmodium 
falciparum was reported to play an important role in its 
transmission to mosquitoes and infection of the human 
host (Lopaticki et al. 2017). From this aspect, investigating 
fucosylation (or glycosylation as a whole) in those patho-
genic vectors is of great significance to elucidate its roles in 
microbe-host interaction.

9 Conclusion

Protein fucosylation plays pivotal roles from development 
to immunity in insects. Disruption of FucT activity can lead 
to serious consequences in insects as well as in non-insect 

species. While some phenotypes after disruption of fucos-
yltransferase activity seem to be conserved between mam-
mals and insects, and knowledge from the former can help 
to understand the processes in the latter, some phenotypes 
are not found in other animals. For example, the phenotype 
observed during molting, a process absent in mammals, sug-
gests a unique role in insects. The diversity of fucosylation 
and differential abundance of fucosylated glycans in insect 
species, developmental stages, and tissues suggest a dynamic 
requirement for fucosylation, but also poses challenges for 
its study. In addition, these differences between species in 
abundance and type of fucosylation and in phenotypes upon 
disruption suggests that information generated from one spe-
cies cannot always be easily translated to another species. As 
the limited knowledge of fucosylation in insects is hamper-
ing the insight into the mechanisms behind observed phe-
notypes in insects, more research is needed to elucidate the 
underlying mechanisms of fucosylation in the future.
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