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Trait – micro-environment relationships of forest herb 

communities across Europe 

Running title: Trait-environment relationships 

Abstract  

Aim: The microclimate and light conditions on the forest floor are strongly modified by tree canopies. 

Therefore, we need to better consider the micro-environment when quantifying trait-environment- 

relationships for forest understorey plants. Here, we quantify relationships between micro-

environmental conditions and plant functional traits at the community level, including intraspecific 

trait variation, and their relationship with microclimate air temperature, light and soil properties. 

Location: Deciduous temperate forests across Europe. 

Time period: 2018. 

Major taxa studied: Herbaceous vegetation. 

Methods: We sampled 225 plots across 15 regions along four complementary gradients capturing 

both macro- and microclimatic conditions including latitude, elevation, forest management and 

distance to forest edges. We related the community weighted mean of five plant functional traits 

(plant height, specific leaf area (SLA), plant carbon (C), plant nitrogen (N) and plant C:N ratio) across 

150 vascular plant species to variation in local microclimate air temperature, light and soil properties. 

We tested the effect of accounting for intraspecific variation in trait-environment relationships and 

performed variation partitioning to identify major drivers of trait variation. 

Results: Microclimate temperature, light availability and soil properties were all important predictors 

of community weighted mean functional traits. When light availability and variation in temperature 

were higher, the herb community often consisted of taller plants with a higher C:N ratio. In more 

productive environments (e.g. with high soil nitrogen availability), the community was dominated by 

individuals with resource-acquisitive traits: high SLA and N but low C:N. Including intraspecific trait 

variation increased the strength of the trait-micro-environment relationship, and increased the 

importance of light availability. 



Main conclusions: The trait-environment relationships were much stronger when the micro-

environment and intraspecific trait variation were considered. By locally steering light availability and 

temperature, forest managers can potentially impact the functional signature of the forest herb-layer 

community.  
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variation, light availability, microclimate, resource availability, soil properties, trait-environment  



1 Introduction 
Plant functional traits are morpho-, physio-, and phenological plant characteristics that affect plant 

performance through their influence on survival, growth, and reproduction (Violle et al., 2007). In 

addition, plant traits also influence ecosystem functioning (Diaz et al., 2016; Lavorel & Garnier, 2002; 

Violle et al., 2007; Wright et al., 2004). Trait-based approaches are thus ideal to study the response 

of plant communities to climate change and other environmental drivers. 

Plant communities and their traits shift along environmental gradients, such as light availability, soil 

properties and temperature (Bjorkman et al., 2018; Depauw et al., 2020; Happonen et al., 2021; 

Kemppinen et al., 2021; Maes et al., 2020; Zirbel & Brudvig, 2020). These community-level shifts in 

functional traits are caused by traits varying among (interspecific) and within (intraspecific) species 

(Bolnick et al., 2011). When the species occurring in communities change or shift in abundance along 

environmental gradients (also called species turnover), the functional shift can be attributed to 

interspecific trait variation. However, individual plants of the same species can also have different 

traits under different environmental conditions. Two complementary factors cause this intraspecific 

trait variation, i.e. phenotypic plasticity as an acclimation strategy to environmental factors, and 

inherent genetic differences between individuals (Matesanz, Horgan-Kobelski, & Sultan, 2012). As a 

consequence, intraspecific trait variation can contribute significantly to community-level trait 

variation (Siefert et al., 2015). Both species turnover (interspecific variation) and intraspecific trait 

variation thus cause shifts in community-level functional traits. Furthermore, their contributions can 

change depending on the trait and environmental gradient (Burton, Perakis, McKenzie, Lawrence, & 

Puettmann, 2017). To understand how traits change along environmental gradients, it is thus highly 

insightful to assess the separate contributions of species turnover and intraspecific trait variation. 

 

Ecologists often extract environmental data from continental or global databases such as CHELSA 

(Karger et al., 2017) and TerraClimate (Abatzoglou, Dobrowski, Parks, & Hegewisch, 2018) to predict 

changes in plant traits or vegetation structure. As a consequence, environmental heterogeneity 

inherent to fine spatial scales tends to be ignored. For example, the temperature near the ground 

can substantially differ from the temperature in the open air due to local shading, soil properties and 

topography (Lembrechts et al., 2020). Therefore, to accurately predict the effect of climate and 

anthropogenic changes on plant communities, not only macro-environmental changes, but also in 

situ fine-scale (< 1 up to 100 meter) variation in the environment should be considered (Lembrechts, 

Nijs, & Lenoir, 2019). Recent research suggests that differences in functional trait composition (both 



the means and variation) of local plant communities across large geographical extents are indeed for 

a large part explained by local-scale environmental gradients (Bruelheide et al., 2018; Kemppinen et 

al., 2021), for example forest patch-scale factors explained a much larger part of understorey trait 

variability in temperate forests than macroclimate and landscape-scale factors (Vanneste et al., 

2019). 

 

Here, we used a large environmental gradient across Europe to quantify the individual and relative 

importance of three local environmental factors (soil, light and temperature) affecting functional 

trait variation of temperate understorey plant communities. Forests are characterized by small-scale 

heterogeneity in light (Tinya & Odor, 2016) and can have highly variable top-soil chemistry 

(Falkengrengrerup, Quist, & Tyler, 1995; Lechowicz & Bell, 1991), both affecting the distribution of 

understorey species. In forest understoreys, microclimatic temperatures depend on forest structural 

complexity, canopy cover and the temperature outside the forest (Meeussen et al., 2021; Zellweger 

et al., 2019). Understorey plant communities contribute, on average, to more than 80% of total 

vascular plant species richness in temperate forests and are essential for several ecosystem functions 

such as nutrient cycling, carbon (C) dynamics and tree regeneration (Gilliam, 2007; Landuyt et al., 

2019). Accurate predictions of the effects of air temperature, light and soil properties on the 

functional signature and functional diversity of the forest understorey community are thus of critical 

importance. Previous research demonstrated that a higher light availability in forests had a positive 

effect on the community plant height and a negative effect on SLA (Dubuis et al., 2013; Perring et al., 

2018), while soil properties have often been linked to leaf stoichiometric traits such as leaf N content 

(Tian et al. 2018; Chang et al. 2022). 

 

We studied five key functional traits of 150 forest herb species (plant height, specific leaf area (SLA), 

plant C, plant nitrogen (N) and plant C:N ratio), in 225 forest plots located along 45 forest edge-to-

interior transects and a latitudinal gradient of 2300 km from central Italy (42° N) to central Norway 

(63° N) (mean annual temperature difference ≈ 13°C). We studied community weighted means of 

these traits, with or without accounting for intraspecific trait variation, using four gradients along 

both broad and small spatial scales across Europe (i.e. latitude, elevation, forest management type 

and distance to the forest edge). Our general aim was to describe how the functional traits of 

understorey plant communities throughout temperate European forests are influenced by the 

separate effects of changes in microclimate temperature, light availability and soil properties. 

Because we measured these environmental drivers in concert with intraspecific trait variation, we 

can also investigate two main hypotheses: 



 (H1) We expect that light, temperature, and soil properties are all important drivers of the functional 

signature of herb-layer plant communities, but with different drivers impacting different traits. We 

hypothesize that increasing light availability will mainly impact plant height and SLA through changed 

competitive interactions and that soil properties will steer leaf carbon and nitrogen composition (C, 

N and C:N) through the availability of nutrients; 

(H2) We hypothesize that matching trait measurements at the intraspecific level to the scale of 

locally measured environmental drivers leads to better predictions of the trait syndrome of 

understorey communities than using trait means from across multiple environments, especially for 

environmental drivers that vary at small spatial scales (light and microclimate temperature) and for 

plastic traits such as plant height, leaf N and SLA.



2 Methods 

2.1 Study design and area 

We studied the understorey of broadleaved forests in the temperate forest biome in Europe, 

including forests at the transition zone with the sub-Mediterranean and boreo-nemoral forest 

system. Our study design consists of four temperature gradients from the macro- to microscale: a (1) 

latitudinal; (2) elevational; (3) forest management / structure; and (4) edge to core gradient. 

To capture much of the environmental variation across Europe, we selected forest stands across nine 

regions along a 2300-km wide latitudinal gradient from Italy (42° N) to Norway (63° N). In Italy, 

Belgium and Norway, an elevational gradient with three levels (low [mean ± SD: 142 ± 132 m a.s.l.], 

medium [342 ± 146 m a.s.l.] and high [612 ± 198 m a.s.l.]) was included to capture macroclimatic 

variation due to elevation. A total of 15 sites were thus selected: six in regions without an elevational 

gradient and nine in three regions with three levels of elevation. At each site, three forest stands 

with different forest management and forest structure were selected: The most structurally complex 

forest type had a well-developed shrub layer and a high basal area. These forests were not managed 

during the last 10 years and generally not thinned for > 30 years. This type of forest will be referred 

to as dense forest type. The most structurally simple forest type was characterized by a high canopy 

openness and the absence of a well-developed shrub layer due to thinning activities. This type of 

forest will be referred to as open forest type. Forests with an intermediate management regime and 

structure will be referred to as intermediate forest type. The stands, with a minimum forest area of 4 

ha, were mainly dominated by oaks (Quercus robur, Q. petraea, Q. cerris), but sometimes also by 

Fagus sylvatica, Betula pubescens, Populus tremula, Ulmus glabra, Alnus incana and Carpinus 

betulus. All sites had the same type of land-use history (ancient forest, i.e. continuously forested 

since the first available land-use maps), were located in a fragmented landscape, as is typical for 

western Europe, with forests imbedded in a matrix of agricultural fields and an intermediate level of 

soil moisture (mesic). In each of the 45 forest stands, we established 100 m transects starting at the 

south-oriented forest edge and running into the forest in northward direction towards the forest 

core. Along each transect, five 3 by 3 m plots were installed at an exponentially increasing distance 

from the forest edge (at 1.5, 4.5, 12.5, 35 and 99.5 m from the edge), resulting in a total of 225 plots. 

By applying a study design with four nested environmental gradients (latitude, elevation, distance to 

edge and management intensity) we can partly disentangle the effects of temperature (that varied 



along all 4 gradients), light (that mostly varied along the local management and edge-to-core 

gradients) and soil (that mostly varied between regions and less within one forest stand).  

The study design, forest structure and site selection is explained and illustrated in detail in Govaert et 

al. (2020) and Meeussen et al. (2020). More information on the forest stands can be found in 

Appendix S1. 

 

2.2 Plant functional traits of the herb layer 

Vegetation surveys were conducted at the peak of vegetation biomass from May until early July 

2018, following the regional phenology from Italy to Norway (Govaert et al., 2020). All vascular plant 

species were identified and their percentage ground cover was visually estimated. For our analysis, 

we focus on the herb layer, which included non-woody vascular plants smaller than 1 m height. 

We measured five plant traits: 1) plant height; 2) specific leaf area (SLA); the concentration of 3) 

carbon (C) and 4) nitrogen (N) in the aboveground biomass; and 5) C:N ratio of the aboveground 

biomass. Plant height is a measure of performance, but is also strongly correlated with ecosystem 

productivity (Violle et al., 2007). Differences in plant height between individuals can also be an 

expression of asymmetric competition for light (DeMalach et al., 2016; Blondeel et al., 2020b). SLA is 

the ratio of total leaf area to total leaf dry mass and represents a trade-off between mass-based 

photosynthetic capacity and leaf life span (Wright et al. 2004). Species with thick leaves typically 

have a low SLA, but may have high area-based photosynthetic capacity and long lifespan (Evans & 

Poorter, 2001). C and N are key elements necessary for plant growth and play pivotal roles in 

nutrient cycling in ecosystems. Leaf N is an indicator of resource acquisitiveness but is also related to 

the litter quality and nutrient cycling. Similarly, the C:N ratio is an indicator of N use efficiency (Law, 

2013) and resource conservation (Reich, 2014). In addition, plants with low C:N decompose faster 

(Cornwell et al., 2008). Note that we determined the N and C concentration in all aboveground plant 

biomass (and not only in the leaves), as is often done in ecological studies (Perez-Harguindeguy et al., 

2013). However, the main focus of this study was the relative comparison of nutrient concentrations 

of forest understorey communities growing in different micro-environmental conditions. Given the 

tight correspondence (Pearsons r = 0.93) between the leaf economics spectrum and the stem and 

whole-plant economics spectra (Freschet et al., 2010), higher plant N concentrations - just like higher 

leaf N concentrations - reflect faster resource acquisition strategies. 

Plant height and SLA were measured for five individuals (or ramets in case of clonal plants) of the five 

most dominant (in terms of percentage cover) herbaceous plant species per plot, if available. A 

ramet is defined as a recognisably separately rooted, aboveground shoot (Perez-Harguindeguy et al., 



2013). In addition, we collected the aboveground biomass of the same five individuals by harvesting 

them. We selected healthy plants for the collection of traits and gave priority to seed-producing 

individuals (that still had green leaves), and then to flower-bearing individuals. Plant height was 

measured as the distance between the base of the plant and the top of the youngest fully expanded 

leaf without stretching the plants axis (Pérez-Harguindeguy et al., 2016). The biggest, healthy leaf 

was collected (or several leaves in case of small-leaved species). Leaves were dried for three days at 

40°C. Next, the leaf area was measured with a Li-Cor Portable Area Meter Li-3000 (Li-Cor Biosciences, 

Nebraska, USA). SLA was calculated by dividing the leaf area by the leaf dry mass, measured with an 

analytical balance (Mettler Toledo, model AG204 delta range). Due to the extensive field campaign 

across Europe, it was unfeasible to measure SLA on fresh leaves (as recommended by Perez-

Harguindeguy et al., 2013). However, leaf shrinkage due to drying is relatively small in most 

temperate forest plants and, since we dried all leaves prior to measurement, the comparison of 

CWM SLA between plots should be relatively unbiased.  Finally, we pooled the biomass (excluding 

the seeds and flowers) per species per plot to obtain sufficient biomass for chemical analysis and 

dried the samples for three days at 60°C. The C- and N-concentration of the biomass was then 

measured by high temperature combustion at 1150°C using an elemental analyzer (Vario MACRO 

cube CNS, Elementar, Germany) and the C:N ratio calculated. 

In total, 276 understorey herb species were identified to species level, and 19 only to the genus level 

(Appendix S2, and Govaert et al., 2020 for details on the distribution of species richness). We 

collected trait data of 150 species (6 only identified to the genus level), of which 114 species were 

sampled in at least two plots (Appendix S2). On average, the proportional cover of the sampled 

species contributed to 81.2% of the total herb-layer community cover (standard deviation (SD) 19.4). 

We assessed the robustness of the analysis with an identical analysis excluding plots for which the 

proportional cover of the sampled species contributed to less than 80% of the total herb-layer 

community cover (i.e., 84 plots out of 225 removed). These results were very similar and thus 

confirm the robustness of our findings, but notice that SLA-environment relationships were less 

significant in the reduced dataset (Appendix S10). 

2.3 Environmental predictors 

2.3.1 Air temperature 

We measured hourly air temperatures with temperature data loggers (Lascar type EasyLog EL-USB-1, 

Lascar Electronics, Whiteparish, UK; accuracy at −35 to +80°C: ± 0.5°C), which were installed in the 

centre of all 225 plots, at least 1 month prior to sampling (winter–spring 2018). Air temperature was 

measured at 1 m above the soil surface, and loggers were covered by a radiation shield to avoid 



direct incidence of sunlight (Appendix S3; Maclean et al., 2021).  For each data logger (225 in total), 

we computed the daily minimum (as the 5% percentile of the 24 daily measurements), mean and 

maximum (as the 95% percentile of the 24 daily measurements). To account for missing or incorrect 

data due to e.g. logger malfunctioning , we used a simple gap filling strategy. If more than 3 hourly 

values were missing, the daily statistic was not calculated, but replaced by the value of one plot 

closer to the forest edge, or if also missing, of the plot closer to the forest interior. We then checked 

for each month how many data loggers were missing more than 10% days per month during the 

sampling months (May-June). Only the air temperature during the month May 2018 met these 

criteria for all sensors. For each plot, we then calculated the mean and standard deviation of the daily 

minimum, mean and maximum in the month May 2018, totalling six temperature variables (Table 1). 

We assessed the robustness of the analysis based on May temperature with an identical analysis 

based on temperatures of both the months May and June (period of trait sampling), excluding plots 

with a high amount of missing data in June. This additional analysis resulted in very similar findings 

(Appendix S11). 

2.3.2 Light 

We quantified light availability using measurements of forest structure, collected at the same time as 

the trait measurement, as a proxy. Tree and shrub cover were determined as the sum of the visually 

estimated ground cover per species in the tree (higher than 7 m) and shrub (1-7 m) layer 

respectively. We used the shade casting ability (SCA) index to account for light transmission 

differences due to overstorey species identity. The SCA index is a species-specific, expert-based index 

that varies from one to five, indicating low to high shade casting ability of the canopy species 

(Verheyen et al., 2012). The SCA of the canopy (the shrub and tree layer combined) was calculated as 

a cover weighted mean of SCA scores (see Govaert et al., 2020). Lastly, canopy openness was 

calculated as the average percentage of gap fraction across the full azimuth angle 360° range and the 

zenith angle range 5-70° (May and July 2018, leaf-on conditions) with a RIEGL VZ-400 terrestrial laser 

scanner (LiDAR). More technical details on the terrestrial laser scanning procedure and data 

processing can be found in Meeussen et al. (2020). 

2.3.3 Soil 

In all 225 plots, we collected five soil samples at the same time as the trait measurements and 

pooled these into a single topsoil aggregate sample (0-10 cm depth) for chemical analyses (pH and 

soil element concentration) and into one single subsoil aggregate sample (10-20 cm depth) for 

texture analysis (% silt, clay and sand) by sieving and sedimentation with a Robinson-Köhn pipette 

(ISO 11277 (2009)). The topsoil samples were dried to constant weight at 40°C for 48 h, ground and 



sieved over a 2 mm mesh and pH-H2O was determined by shaking a 1:5 ratio soil/H2O mixture for 5 

min at 300 rpm and measuring with a pH meter Orion 920A with pH electrode model Ross sure-flow 

8172 BNWP, Thermo Scientific Orion, USA. Subsamples were combusted at 1200°C. Total N and C 

concentration was measured by a thermal conductivity detector in a CNS elemental analyser (vario 

Macro Cube, Elementar, Germany). Bioavailable phosphorus (P) which is available for plants within 

one growing season (Gilbert, Gowing, & Wallace, 2009) was measured by extraction in NaHCO3 

(POlsen; according to ISO 11263 (1994)) and colorimetric measurement according to the malachite 

green procedure (Lajtha, Driscoll, Jarrell, & Elliott, 1999). Total calcium (Ca), potassium (K) and 

magnesium (Mg) were measured by atomic absorption spectrophotometry (AA240FS, Fast 

Sequential AAS) after complete destruction of the soil samples with HClO4 (65 %), HNO3 (70 %) and 

H2SO4 (98 %) in teflon bombs for 4 h at 150°C.  

2.4 Data analysis 

Five out of 225 plots did not contain any herbaceous plant species and were omitted from the 

analyses. Canopy openness, Olsen-P, K, Mg, Ca and soil N were log-transformed to symmetrize 

skewed distributions and decrease the influence of potential outliers. 

Then we calculated the community weighted mean (CWM), i.e. mean of the trait values of the 

sampled species per plot, weighted by the percentage ground cover (EQ1).  

�̅�𝑤 =  
∑  𝑤𝑖𝑥𝑖

𝑁
𝑖=1

∑  𝑤𝑖
𝑁
𝑖=1

 (𝐸𝑄1) 

where �̅�𝑤 is the weighted mean (CWM), 𝑁 is the number of species, 𝑤𝑖 is the weight for observation 

𝑖 and 𝑥𝑖 is the trait value of observation 𝑖. This statistic was calculated in two ways: (1) excluding 

intraspecific trait variation – based on a fixed mean value per species over all the plots across the 

entire study area, hereafter called CWMfixed; (2) including intraspecific trait variation – based on a 

single specific trait value per species per plot, hereafter called CWMspecific. CWM of plant height and 

SLA were log-transformed prior to the statistical analyses to have a normal error distribution in the 

linear models. Additionally, the change in CWM due to the inclusion of ITV (CWMintravar) was 

calculated as CWMspecific – CWMfixed. 

To synthesize the environmental variation captured by the predictor variables included in this study, 

we first performed a principal component analysis (PCA) for each set of variables grouped by 

temperature (N = 6 variables), light (N = 5 variables) or soil (N = 9 variables) (Table 1). We used the 

first two axes per group as representative predictor variables in the subsequent analysis. The first 

two PC axes explained 73.7%, 80.1% and 60.6 % of the temperature, light and soil variables, 



respectively (Figure 1).  Pearson correlations between the PC axes were below 0.7 (Appendix S4) and 

variation inflation factors (VIF) were lower than 3, indicating no multicollinearity issues. The greatest 

Pearson correlation was between the first axes of the soil and temperature PCA (-0.54). We then 

fitted linear mixed‐effects models with the first and second PCA axes of each of the three groups as 

fixed effects. The response variables were the CWM of the five plant traits, namely plant height, SLA, 

plant C, plant N and plant C:N (CWMfixed, CWMspecific, CWMintravar, (Table 2). We accounted for the 

hierarchical structure of the data by selecting the optimal random structure from the beyond optimal 

model (BOM), which is the full model including all fixed effects, following Zuur, Ieno, Walker, 

Saveliev, and Smith (2009). Based on Akaike information criterion (AIC), we compared the following 

random structures (as random intercept term): ‘region’, ‘forest structure’, ‘transect ID’, ‘transect ID’ 

nested within ‘region’, ‘forest structure’ nested within ‘region’, ‘transect ID’ nested within ‘forest 

structure’ and a model without random effect. For all response variables, ‘transect ID’ was the best 

random structure to include, or the difference with the model having the random intercept ‘transect 

ID’ nested within ‘forest structure’ was less than 2 AIC. We finally used ‘transect ID’ as the random 

structure for every model, for the sake of uniformity. 

First, we investigated how the separate environmental drivers (PC axes) influenced each response 

variable (CWMfixed and CWMspecific of the 5 traits) by testing the significance of the linear relationship 

with the anova method in the package ‘lmerTest’ (Kuznetsova, Brockhoff, & Christensen, 2017). We 

further explored potential interactions or non-linear responses of traits to the environment by 

plotting the model residuals against the design variables (region, altitude, management type and 

plot) and the environmental drivers (PC axes).  

Next, to test our first hypothesis, we determined the relative contribution of each environmental 

driver by performing a variation partitioning among the three groups of explanatory variables (light, 

temperature and soil) according to Legendre and Legendre (2012). We constructed linear mixed‐

effects models containing each time the two PC axes of one, two or three groups of fixed-effect 

variables, while keeping the random structure the same (i.e., ‘transect ID’) across models, and 

determined the proportion of variation explained by the fixed factors (marginal R2; R2
m) calculated 

according to Nakagawa and Schielzeth (2013). Subsequently, we calculated the amount of variation 

explained by the unique and shared contribution of the light, temperature and soil variables, and 

expressed this relative to the total amount of variation explained by the fixed factors in the global 

model (containing all three groups of explanatory variables). 

Finally, to test our second hypothesis, we assessed the amount of variation in traits explained by 

species turnover, intraspecific trait variation or covariation based on the sum of squares of the linear 



mixed-effect models following the method described in Lepš, de Bello, Šmilauer, & Doležal (2011).  

The covariation is calculated as Total variation – species turnover – ITV. When the covariation is close 

to zero, turnover and ITV act on the trait CWM independently. When the covariation is positive, they 

act synergistically, for example ITV increases in plant C are largest when the community exists of 

species generally high in C concentrations. When the covariation is negative they act antagonistically. 

A protocol for data exploration and model evaluation was carefully followed (Zuur, Ieno, & Elphick, 

2010). All statistical analyses were performed in R using the packages ‘lme4’ (Bates, Machler, Bolker, 

& Walker, 2015), ‘lmerTest’ (Kuznetsova et al., 2017), ‘FactoMineR’ (Lê, Josse, & Husson, 2008) and 

‘eulerr’ (Larsson, 2018).   



3 Results 
(i) Trait-environment relationships 

Environmental variation 

The first axis of the PCA on the temperature data was primarily positively correlated to temperature 

variation, and negatively to minimum temperature and is referred to as TempVarPC hereafter. The 

second PC axis for temperature increased with the mean and maximum temperature (referred to as 

MeanTempPC) (Figure 1A). The first PC of the light availability variables, correlated positively with 

canopy cover and tree cover, and negatively with canopy openness (referred to as CanopyCoverPC), 

the second PC axis was positively related to shrub cover and negatively to the shade-casting ability of 

the overstorey (referred to as ShrubCoverPC)(Figure 1B). The first axis on the PCA of the soil variables 

correlated positively with Mg, Ca and pH (referred to as SoilpHPC); the second soil PC axis increased 

with soil nitrogen content and Olsen-P (referred to as SoilNPPC)(Figure 1C). 

 Temperature 

TempVarPC was an important predictor of CWM plant traits. With increasing temperature variation 

and decreasing minimum temperatures, plant height and plant C:N increased, while plant N 

decreased (Figure 3, Appendix S5). These trait-environment relationships were similar whether ITV 

was considered or not, but the effect was more pronounced when ITV was included. This was often 

the case in the different trait-environment relationships, so when not explicitly noted, effects were 

qualitatively similar with and without considering ITV. TempVarPC did not correlate linearly with any 

of the other plant trait variables, but it did moderately correlate positively with latitude (Pearson r = 

0.53, p < 0.001)(Figure 1). Pearson r values were higher and p values were lower for TempPC1 when 

comparing TempPC1 and latitude as predictors of the trait statistics (Appendix S6). SLA decreased with 

increasing MeanTempPC, but only when intraspecific trait variation was accounted for (Figure 3).  

 Light conditions 

In plots with high light availability (low values for CanopyCoverPC), CWM of plant C and C:N were 

greater, and SLA and plant N were lower than in more shaded plots (Figure 3, Appendix S5). 

However, the patterns of plant height, plant N and C:N only emerged when intraspecific trait 

variation was accounted for. CWMfixed of plant height and plant C increased with higher ShrubCoverPC 

values (Figure 3). However, when accounting for intraspecific trait variation, this relationship 

disappeared. 



Soil conditions 

When SoilpHPC values were high, CWM of SLAspecific, plant C and plant N were lower, while CWMspecific 

plant C:N were higher (Figure 3). When SoilNPPC values were high, CWM of SLA and CWMfixed plant N 

increased, and CWMfixed of plant C:N decreased (Figure 3). 

(ii) Relative importance of the environmental variables 

Variation partitioning showed that the three different environmental factors indeed influenced the 

CWM of plant traits (H1)(Figure 2). When not accounting for intraspecific trait variation (CWMfixed), 

soil and temperature were the most important predictors of functional traits. More specifically, 

temperature alone contributed to a large proportion of the explained variation of the CWMfixed of 

plant height (42.7%) and plant C:N ratio (69.2%). Soil properties also contributed a large proportion 

of the explained variation of the CWMfixed of SLA (41%), plant C (46.11%) and plant N (61.1%). 

Contrary to H1, light availability was not the most important predictor of CWMfixed plant height and 

SLA.  

However, when considering intraspecific trait variation (CWMspecific), light availability became more 

important (Figure 2). Both the unique fraction of light availability and the shared fraction with 

temperature gained importance in their relative contribution to the proportion of explained 

variation. As a consequence, light contributed the most in the proportion of explained variation of 

CWMspecific of plant C (34.6%) and plant N (38.2%). The shared fraction of temperature and light was 

the most important predictor of CWMspecific SLA (41.5%). CWMspecific of plant height was best 

explained by both temperature (39.1%) and the shared fraction of temperature and light (34.8%). 

(iii) Intraspecific trait variation 

The R²m values of the 15 models (CWMfixed, CWMspecific and CWMintravar for the five functional traits) 

ranged from 0.09 to 0.25. As hypothesised (H2), CWMspecific (including intraspecific variation) was 

better explained by our plot-level micro-environmental data than CWMfixed, for SLA (R²m of 0.10 vs. 

0.20), plant N (R²m of 0.09 vs. 0.17) and plant C:N (R²m of 0.12 vs. 0.22), and only marginally for plant 

height (R²m of 0.22 vs. 0.23) and plant C (R²m of 0.23 vs. 0.24). Especially light, but also the 

microclimate air temperature caused intraspecific changes in functional traits (Figure 2). For SLA, 

plant N and plant C:N ratio, intraspecific trait variability explained most of the variation in CWM 

(Figure 2, Figure 4, Appendix S8). Analyses of the residuals of the 15 models showed the absence of 

interactions and non-linear responses: the residuals of the 15 models showed no significant 

correlation with the design variables (region, elevation, forest type and distance to the forest edge) 



nor with the predictor variables (PC axes related to light, temperature, and soil) (analysis available in 

Appendix S12).  



4 Discussion 
Here we studied the relationship between functional traits of understorey herb communities in 

European temperate forests and air temperature, light availability and soil properties. The three 

environmental factors were important predictors of the different functional traits of the herb 

community, but the relative importance was different for every trait. Variation in plant height was 

for instance mostly driven by air temperature, while plant N was mostly explained by soil properties. 

These trait-environment relationships were often stronger for the community weighted mean 

including intraspecific variation (compared to community weighted means with a fixed trait value per 

species). 

4.1 Intraspecific trait variation plays a crucial role 

We showed that the trait-environment relationship models had a higher explanatory power for fine 

scale trait data (including intraspecific trait variation), compared to a coarser scale of trait 

measurements (excluding intraspecific variation) with the same environmental data. This supports 

our second hypothesis that intraspecific trait variation contributes significantly to community-level 

trait variation of forest herbs (Figure 3, Figure 4, Appendix S8), confirming previous research (Siefert 

et al., 2015). Intraspecific trait variation is typically high for SLA, leaf chemical traits and plant height 

(Burton et al., 2017; Siefert, Fridley, & Ritchie, 2014; Siefert et al., 2015; Thomas et al., 2020). Our 

results on SLA and chemical traits are consistent with literature, but not for plant height. Forest herbs 

showed a much greater variation in plant stature among species than within species (Figure 4). The 

community’s response of traits to light could mainly be attributed to intraspecific variation in traits, 

while responses to temperature and soil nitrogen – phosphorus status were primarily driven by 

species turnover (Appendix S5).  Note that a large proportion of variation in light conditions could be 

linked to drivers inherent to small spatial scales (among transects with different management 

intensity and with distance to the forest edge) (Appendix S9), while the greatest range in mean 

temperature was related to the largest scales (among regions and to a smaller extent among 

elevations) (Appendix S9). Naturally, species turnover and thus interspecific trait variation plays a 

larger role at large scales, while intraspecific trait variation is more important at smaller scales 

(Siefert et al., 2014). Noteworthy, trait-environment relationships were often (at least once per trait) 

only significant when intraspecific trait variation was accounted for. Studies using trait data based on 

one mean value per species, for example extracted from trait data bases such as LEDA (Kleyer et al., 

2008) and BiolFlor (Kühn, Durka, & Klotz, 2004), might thus underestimate the relationships between 

plant functional traits and environmental gradients.  



4.2 Air temperature, light and soil conditions are important predictors of plant traits 

Locally measured air temperature, soil characteristics and light availability were all important 

predictors of the functional trait signature of understorey herb communities in European temperate 

forests, in line with our first hypothesis. Previous studies have found that climate and soil are both 

important predictors of plant functional traits (Pakeman et al., 2009; Vanneste et al., 2019). 

However, our results indicate that temperature is most important for plant height and plant C:N 

ratio, while local light availability and soil properties are more important to explain SLA, plant C and 

plant N of forest herbs. 

Notably, the relative importance of light availability increased strongly when intraspecific trait 

variation was considered in our models. Even considering some genetic influence on intraspecific 

trait variation, this finding indicates that forest herbs are likely to be especially phenotypically plastic 

towards light conditions. Light conditions in a forest understorey are inherently variable. On the 

forest floor, the light conditions change daily and seasonally, because of sun position and leaf-out 

phenology of deciduous trees and shrubs (Hutchison & Matt, 1977; Lei, Tabuchi, Kitao, Takahashi, & 

Koike, 1997). Many understorey plant species are adapted to tolerate shade, but can respond rapidly 

to short-term light pulses caused by sunflecks (Chazdon, 1998; Tinya & Odor, 2016). In addition, light 

conditions can change abruptly by disturbances such as treefalls, tree breakage and harvesting 

activities. Because plants are immobile organisms, acclimation to these changing light conditions is 

thus a useful adaptation strategy (Neufeld & Young, 2014). Furthermore, the shared variation 

between light and temperature was also more important when including intraspecific trait variation. 

In forests, light and temperature are both related to elevated radiative inputs (Abd Latif & Blackburn, 

2010). Therefore, the responses of plant traits to either light or temperature alone might not always 

be predictable in observational studies because both variables are often correlated. However, due to 

our study set-up, that involved four different, independent sources of variation in of temperature, of 

which some are strongly correlated with light availability (forest structure and, to some extent, edge-

core transect) and some are not (elevation and latitude), we were able to partly disentangle the 

separate and shared effects of temperature and light. 

4.3 Temperature-trait relationships 

When mean and maximum air temperatures were high (High MeanTempPC values), community SLA 

values were low and varied less within a plot. This observation is in line with the response of 

understorey plants to mean annual (macroclimate) temperature found by Maes et al. (2020), but not 

of grasslands species in the Alps (Rosbakh, Römermann, & Poschlod, 2015) and tundra species 

(Bjorkman et al., 2018). Community SLA is also lower with higher mean annual temperatures (Moles 



et al., 2014), because plants grow smaller and have thicker leaves. Likely this is an adaptation to 

reduce transpiration as a response to drought. Likewise, Poorter, Niinemets, Poorter, Wright, & Villar 

(2009) explain low SLA at low temperature as an adaptation to freezing stress, by having a high 

density of cells per leaf surface. This suggest that the response of SLA to temperature is non-linear, 

and that a more conservative resource strategy (low SLA) is suitable for both extreme low and high 

temperatures. This trend could be related to water balance, because little water is available or 

accessible in both extreme warm and cold conditions. In this context, to further our understanding 

on the effects of extreme events, explicitly testing non-linear trait responses and tipping points 

should be considered in further research. Surprisingly, we did not detect any relationships between 

the other plant traits and mean or maximum temperature. In general, plants are taller in warmer 

conditions (Blondeel et al., 2020a; Govaert et al., 2021a; Kemppinen et al., 2021; Maes et al., 2020, 

but see De Frenne et al., 2011). This, however, was not confirmed by our analyses, possibly because 

other temperature metrics play a more significant role on the trait community. We here considered 

May (and May + June in Appendix S11) air microclimate temperatures, but the community functional 

composition might be shaped by a myriad of microclimatic conditions such as the number of freezing 

days, thermal sums or the maximum spring temperature (Körner & Hiltbrunner, 2018). More 

research is necessary to determine which microclimatic temperature metrics have the most 

significant impact on the investigated traits. 

 

Air temperature variability was negatively correlated with minimum temperature (high TempVarPC 

values), consistent with recent literature (Kermavnar & Kutnar, 2020; von Oppen et al., 2021). Thus, 

the colder the minimum temperature, the higher the temperature variability within the month May 

2018. This was likely due to colder locations having a less developed canopy in May, causing a larger 

daily variation in temperature. In these conditions, the forest herb community was taller, with lower 

concentrations of N and a higher C:N ratio. Note that there was no correlation between light 

availability and minimum temperature. These results contrast with the findings from other biomes 

like tundra, where plants get smaller towards harsher climatic conditions while the tundra 

community also becomes taller as climate is warming (Bjorkman et al., 2018). These opposite 

responses could possibly be linked to the fact that we only considered herbaceous species, while 

other studies also included woody species.  Not only the share of woody species, but also other 

factors can be confounded with the temperature statistics. For example, precipitation regimes could 

also explain the trend of taller herbaceous plants towards more variable temperature conditions. The 

most northern region, Norway, is characterized by high levels of precipitation due to the highly 

oceanic climate. Furthermore, northern latitudes are not necessarily harsh for the studied 



communities, because their main growing season is in June-July with long days of plenty of light, 

while in more southern regions the growing season is in May. 

The increase in community height with decreasing temperature was primarily associated with 

changes in species composition (Figure 3), consistent with observations of Blondeel et al. (2020a). In 

a study on understorey plants in Slovenia, Kermavnar and Kutnar (2020) detected a trend of less 

variation in plant height in more stressful conditions (high temperature variability and extreme 

minimum temperatures), implying an abiotic filter with selection of tall species.  

4.4 Light availability as a key resource 

Light availability had, as expected, strong impacts on all five sampled herb traits. When there was 

plenty of light, and independently from air temperature conditions, the community tended to be 

taller owing to the asymmetric competition for light (DeMalach, Zaady, Weiner, & Kadmon, 2016; 

Freckleton & Watkinson, 2001). In these bright conditions, community SLA was lower, because the 

plants need to invest less in leaf area to capture sufficient sunlight. Due to intraspecific responses to 

light availability, aboveground N and C concentrations were respectively lower and higher when 

there is high light availability, resulting in a greater C:N ratio. Nitrogen concentrations typically 

decrease in response to increasing light availability due to an indirect effect of plant tissue nutrient 

dilution, because plants grow faster while nutrient uptake remains nearly constant (Blondeel et al., 

2019). Our results largely confirm previously reported responses of plant height (Blondeel et al., 

2020a; Govaert et al., 2021a), SLA (Burton et al., 2017; Depauw et al., 2020), leaf nitrogen and C:N 

ratio (Blondeel et al., 2019; Sanczuk et al., 2021) of temperate forest herb communities and species 

to light. 

Our results underpin the importance of light as a key resource for forest-floor herbs. Light availability 

drives plant understorey species richness (Govaert et al., 2020; Hofmeister, Hosek, Modry, & 

Rolecek, 2009), species composition (Blondeel et al., 2020a; Govaert et al., 2021b), herb cover 

(Blondeel et al., 2020a; Depauw et al., 2020) and also functional traits (Burton et al., 2017; Chelli et 

al., 2021). 

4.5 Soil pH and nitrogen - phosphorus status 

Soil pH (SoilpHPC) was a strong predictor of the community means of plant traits. In more acidic 

conditions (low pH), community SLA and plant N were high, but C:N ratio was low. This could be 

caused by high levels of nitrogen deposition, as observed in large parts of temperate Europe, 

resulting both in a high nitrogen availability, leading to high N and low C:N in plant tissue, and in soil 

acidification through depletion of base cations (De Schrijver et al., 2011). Another possible 



explanation of the strong link with soil pH is due to changes in species composition rather than 

intraspecific variation in these traits itself (patterns also significant without considering ITV, Figure 2). 

Indeed, soil pH is a strong predictor of species occurrences, caused by the (in)tolerance of species to 

acid soils (Bruelheide & Udelhoven, 2005). In plots with low pH, and thus low concentration of Mg 

and Ca, the number of species is low (Govaert et al., 2020). Although these species-poorer 

communities can be higher in phylogenetic diversity, no significant relationship between the soil pH 

and the functional diversity was found (De Pauw et al., 2021).  

On soils containing relatively high levels of nitrogen and phosphorus (high SoilNPPC values), the 

community was dominated by species having traits related to competitive ability and fast resource 

acquisition, such as high SLA and N, but low C:N ratio. The trends in SLA and N were caused by 

changes in species composition over soil gradients, and not by intraspecific variation (Figure 2). 

However, when four species of this study were analyzed separately, the trend of high N and low C:N 

on soils rich in nitrogen and phosphorus also held for the grass Deschampsia cespitosa (Sanczuk et 

al., 2021). As atmospheric nitrogen deposition levels in many temperate forests remain high and 

surrounding croplands are fertilized year after year, nutrient-demanding species are favoured in 

European fragmented forests, resulting in biotic homogenization (Staude et al., 2020). These 

nutrient-acquisitive species are typically fast-growing, have thinner leaves with a shorter life span 

and lower C:N ratios (Grime, 2006a; Ordoñez et al., 2009; Zhang et al., 2020). In contrast, on 

nutrient-poor soils, abiotic stress is relatively high, and the community is dominated by species with 

traits related to resource conservation (such as Deschampsia cespitosa).  

4.6 Conclusions and future research 

We here investigated for the first time how locally measured soil properties, light availability and 

microclimate temperature simultaneously affect five key functional traits of forest understoreys on a 

continental scale, including the effect of intra-specific variation. Note that we only included above-

ground traits, while it is likely that below-ground traits also have a strong relationship with soil 

properties (Blonder et al., 2018). We also only focused on the community weighted mean of the trait 

value and did not include measures of trait variation, i.e. the heterogeneity of the traits within one 

community. Several mechanisms can explain these trait diversity patterns (Czortek, Orczewska, & 

Dyderski, 2021). First, based on environmental filtering theory, species within communities are 

expected to be more functionally similar because of abiotic limitations (Weiher & Keddy, 1995). 

Typically, harsh environmental conditions such as low resource availability result in lower variation of 

traits, i.e. functional trait convergence (Grime, 2006b). Second, interspecific competitive interactions 

are predicted to decrease functional similarity, as interspecific trait variation helps fill various 



available niches (limiting similarity theory; MacArthur & Levins, 1967). Studying trait variation along 

similar environmental gradients seems a promising future research avenue, but to study trait 

variation in a reliable way, it is recommended to sample approximately 10 individuals per species, to 

cover all species in the community and use nonparametric bootstrapping to infer the moments of 

trait variation of communities (Maitner et al., 2021). 

Overall and as expected, we found many significant trait-environment relationships for understorey 

communities. Soil properties, light availability and microclimate temperature were all important 

drivers of the functional signature of the community (Hypothesis 1). Contrary to our expectations, 

temperature appeared to be most important for plant height and plant C:N ratio, while local light 

availability and soil properties were more important to explain SLA, plant C and plant N of forest 

herbs. In sum, while some responses of the herb layer to micro-environmental drivers were caused 

by species turnover only, many responses were driven by trait variation within species (Hypothesis 

2).  

Because plant functional traits are indicators of ecosystem functioning, the consequences of 

anthropogenic factors on ecosystem functions might be underestimated if intraspecific trait variation 

is not considered. Trait-environment relationships were mainly as expected for soil conditions and 

light availability. Forest structure, which can be controlled by forest managers, thus emerges as an 

important determinant of the functional composition of forest understorey communities. 
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Tables 

Table 1. Overview of predictor variables used to explain community-weighted mean and variation in 

functional traits of herbaceous forest plants across a latitudinal gradient in Europe (from Italy to 

Norway). Temperature variables are based on in situ air temperature during May 2018. The range 

indicates the minimum and the maximum values. SD stands for standard deviation. 

Variable 

group 

Variable 

name 
Description Min - max (mean) Unit 

Temperature Mean Mean of the daily mean temperature 12.3-18.5 (15.5) °C 

 Max Mean of the daily maximum temperature 13.6-33.7 (22.5) °C 

 Min Mean of the daily minimum temperature 5.5-13.5 (9.8) °C 

 
Variation of 

mean  
Standard deviation (SD) of daily mean temperature 2.1-4.5 (3.4) °C 

 
Variation of 

max 
SD of daily maximum temperature 2.1-8.4 (4.8) °C 

  
Variation of 

min 
SD of daily minimum temperature 2.2-4.7 (3.2) °C 

Light Tree cover 
Visual estimation of cover of tree layer, summed 

per species 
0-190 (83) % 

 Shrub cover 
Visual estimation of cover of shrub layer, summed 

per species 
0-167 (34) % 

 Canopy cover 
Visual estimation of cover of shrub and tree layers, 

summed per species 
0-285 (117) % 

 Shade casting 

Species‐specific shade‐casting (SCA) ability based 

on (Verheyen et al., 2012), community‐level mean 

index weighted by tree and shrub species‐specific 

canopy cover 

1-5 (3.0) / 

  
Canopy 

openness 

The average percentage of gap fraction across the 

angle 5-70° 
0-0.75 (0.08) % 

Soil pH pH-H2O in topsoil (0-10cm) 3.8-7.7 (5.2) / 

 Mg  Magnesium in topsoil 12-1482 (245) mg/kg 

 Ca  Calcium in topsoil 43-11212 (1806) mg/kg 

 K  Potassium in topsoil 33-539 (158) mg/kg 



 Olsen P Olsen phosphorus in topsoil 1.3-113.1 (15) mg/kg 

 Nitrogen  Total concentration of nitrogen (N) in topsoil  0.12-1.39 (0.41) % 

 Soil C:N C/N ratio in topsoil 9.5-25.2 (15.5) / 

 Clay Percentage clay in subsoil (10-20cm) 0.5-70.2 (21.4) % 

  Sand Percentage sand in subsoil 1.7-94.2 (42.8) % 

  



Table 2. Overview of the five response variables used to explore trait – micro-environment 

relationships of forest herbs from Norway to Italy. Values indicate the range (mean). C: carbon, N: 

nitrogen, CWM: community weighted mean, fixed: based on a single mean per species (turnover), 

specific: accounted for intraspecific variation in plant traits (turnover + ITV), intravar: CWMspecific – 

CWMfixed: changes in CWM solely due to ITV. Plant height and SLA were log-transformed before the 

analysis. 

Trait (unit) CWMfixed CWMspecific CWMintravar 

Ln(Plant height (cm)) 1.74-4.31 (3.28) 1.67-4.65 (3.32) -1.15-0.73 (-0.024) 

Ln(SLA (mm²/mg)) 1.96-4.44 (3.39) 1.70-4.89 (3.39) -0.98-0.58 (-0.035)  

Plant C (mg/g) 396-466 (437) 381-480 (437) -36.14-20.96 (0.17) 

Plant N (mg/g) 14-41.7 (23.8) 10.4-54.5 (24) -12.92-18.53 (0.15) 

Plant C:N ratio 11-33.1 (20.4) 7.6-43.3 (20.5) -10.45-15.32 (0.05) 

 



Figures 

 



Figure 1. Principal components analysis plots for  (A) air temperature, (B) light availability, and (C) 

soil properties in temperate forest understoreys across Europe. The arrows indicate the relative 

loadings of each explanatory variable (scaled to a circle with radius 4 to improve visibility).  

 



Figure 2. The relative contribution of locally measured air temperature, soil characteristics and 

light availability as predictors of the functional trait signature of understorey herb communities in 

European temperate forests. The ellipses in the Venn-Euler diagrams show the independent share of 

explained variation (marginal R²; R2
m) for each variable group (i.e. air temperature, light availability 

and soil properties), in addition to the shared amount of explained variation (intersection of ellipses), 

as determined by variation partitioning. The sizes of the ellipses are, per subfigure, scaled according 

to the relative share of R2
m. The R² values below are given below each subfigure for the full models; 

R2
m describes the variation explained by fixed factors only, whereas the conditional R2

c is the 

variation explained by the fixed and random factors together. Note that negative R2
m are set to zero, 

thus the sum of proportions might not be equal to 100. When the R2
m value of the full model was 

smaller than 0.1, the subfigure was drawn more transparent. CWM stands for community weighted 

means. Fixed: based on a single mean per species (turnover), specific: accounted for intraspecific 

variation in plant traits (turnover + ITV), intravar: CWMspecific – CWMfixed: changes in CWM solely due 

to ITV. 

  



 

Figure 3. Relationship between the six PC axes summarizing variation in the environmental 

predictors (air temperature, light and soil properties) and the community weighted means (CWM) 

of five functional traits of herbaceous understorey species. Predictions with 95% confidence 

intervals from the linear mixed-effect models between trait and single environmental driver. Note 

that on each panel, two different models are plotted: one accounting for intraspecific variation 

(orange) and one without (green), only when significant in the full model (Appendix S5). Significance 

in the full model is indicated by solid (p < 0.01) and dashed (p < 0.05) lines. The mean of plant height, 

leaf area and SLA were log-transformed for the analysis and back-transformed for visualisation 



purposes. ITV stands for intraspecific trait variation. See Figure 1 for more details on the meanings of 

the PCs. 

  

Figure 4 Decomposition of total variability (sum of squares, see Appendix S8) in functional traits. 

The black horizontal line shows the total variability, while the orange and green parts of the column 

give the part of variation due to species turnover and intraspecific variability respectively (values 

standardized by total variation in CWMspecific). The space between the black line and the bar shows 

the covariation effect. When the sum of ITV and turnover approaches or surpasses 100 %, the 

covariation is positive or negative, respectively. When the sum of ITV and turnover is 100 %, species 

turnover and ITV affect the CWM independently. 

 


