1 2	Detection of Saffron Adulteration with <i>Crocus sativus</i> Style using NIR-Hyperspectral Imaging and Chemometrics							
3 4	Derick Malavi ^{1, 2} , Amin Nikkhah ^{1, 2, 3,} Pejman Alighaleh ⁴ , Soodabeh Einafshar ⁵ , Katleen Raes ¹ , Sam Van Haute ^{1, 2, *}							
5 6 7 8 9 10 11 12 13 14	¹ Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium ² Food Chemistry and Technology Research Centre, Department of Molecular Biotechnology, Environmental Technology, and Food Technology, Ghent University Global Campus, 119, Songdomunhwa-Ro, Yeonsu-Gu, Incheon, South Korea, 21985 ³ Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA ⁴ Department of Biosystems Engineering, Ferdowsi University of Mashhad, Iran ⁵ Department of Agricultural Engineering Institute, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran * Correspondence: Sam.VanHaute@ghent.ac.kr; Tel.: +82 (0) 32 6264212							
14 15	Correspondence. <u>Jam. van radice griefit.ac.Nr</u> , Tel., Toz (0) 52 0204212							

16 Abstract

17 Saffron is a valuable spice that is often adulterated. This study proposes using near-infrared 18 hyperspectral imaging (NIR-HSI) and chemometrics as a fast and cost-effective method for detecting and 19 quantifying adulteration in saffron stigmas. Adulterated saffron samples were prepared by adding Crocus 20 sativus style to pure saffron stigmas in varying concentrations (20-90%). The spectral data were pre-treated 21 using standard normal variate (SNV), and multiplicative scatter correction (MSC), while variable reduction 22 was performed by Principal Component Analysis (PCA) and Partial Least Squares (PLS). Classification was 23 done using Linear Discriminant Analysis (LDA), PLS-DA, Support Vector Machine (SVM), and Multi-layer 24 Perceptron (MLP) models, while quantification was achieved by PLS, PCA, SVM, and MLP-based regression 25 models. The HSI technique achieved correct classification rates of 95.6% to 100% in discriminating 26 authentic saffron from plant adulterants and adulterated saffron across all the models. Regression models 27 to quantify the percentage style adulteration in saffron demonstrated excellent prediction abilities with 28 almost all models achieving RPD (Residual Predictive Deviation) values of 3.0-5.4. The MLP model (1 hidden 29 layer with 3 neurons) built from SNV pre-processed and PLS reduced data (15 LVs), showed exceptional 30 predictive capabilities, with an R²p of 0.97, a Root Mean Squared Error of Prediction (RMSEP) of 4.3%, and 31 an RPD of 5.4. The results demonstrate the potential of NIR-HSI and chemometrics for rapid and 32 nondestructive detection and quantification of style in saffron stigmas.

Keywords: Food fraud; Authentication; Machine learning; Variable Reduction; Spectral Preprocessing

34

33

• ·

35

36

37 1 Introduction

38 Saffron, commonly known as 'Red Gold,' is the most expensive spice globally. It is derived from the dehydrated stigma of Crocus sativus L., a sterile triploid plant from the Iridaceae family. It is cultivated 39 40 worldwide, with an estimated global production of 300 tons annually (Morozzi et al., 2019). Iran dominates as the largest producer, contributing to 76% of the annual saffron output. Other notable producers include 41 42 Spain, Greece, Italy, Turkey, and India (Kumar et al., 2009; Hagh-Nazari & Keifi, 2007). The cultivation and 43 harvesting of saffron are meticulous and labor-intensive, relying on manual methods, which result in 44 relatively low yields. This, combined with its distinctive sensory properties, significantly contributes to its 45 premium market price, which often exceeds \$2,000 per kilogram (Shahnoushi et al., 2020).

46 Saffron is renowned for its peculiar quality, exceptional sensory attributes, and biological properties. 47 It imparts a unique color, flavor, and aroma to foods through its secondary metabolites: crocetin, 48 picrocrocin, and safranal (Moratalla-López et al., 2019). Crocins (trans-crocetin ester, di-β-gentiobiosyl) and crocetin sugar esters (8, 8'-diapocarotene-8, and 8'-dioic acid) are water-soluble apocarotenoids that 49 50 produce yellow color hues in food. The bitter taste of the spice is derived from picrocrocin, a monoterpene 51 glucoside [4-(-D-glucopyranosyloxy)-2,6,6-trimethyl-1-cyclohexane-1-carboxaldehyde], while its aroma is 52 derived from the volatile fraction, safranal (2,6,6-trimethyl-1,3-cyclohexadiene-1-carboxaldehyde) 53 (Kyriakoudi et al., 2015).

54 Unfortunately, saffron is frequently subject to adulteration, primarily driven by its high production 55 costs, premium price, and perceived value (Kumar et al., 2009; Mohiuddin, 2019; Moore et al., 2012). 56 Adulteration poses significant challenges for both consumers and traders and can manifest in various forms. 57 These include incorporating other parts of the saffron flower, substituting it with visually similar plant 58 materials, adding artificial colors, immersing fibers in honey or oils to increase mass, and illicitly mixing 59 cheaper saffron categories with premium ones (Asili & Jaroszewski, 2010; Guijarro-díez et al., 2017; Jiang 60 et al., 2014; Karimi et al., 2016; Moore et al., 2012; Moras et al., 2018; Hagh-Nazari & Keifi, 2007; Sabatino 61 et al., 2011). These fraudulent practices are employed to enhance the spice's appearance, weight, and 62 volume for financial gain, emphasizing the need for caution when purchasing saffron. Assessing the quality 63 and origin of saffron presents challenges, as its appearance can be deceptively similar, and market grading 64 is often inconsistent (Lu et al., 2019). This inconsistency further compounds the difficulty in identifying 65 genuine saffron, making it imperative for consumers and traders to exercise caution when making 66 purchases.

67 Consequently, the issue of detecting and authenticating adulterants in saffron has gained the 68 attention of traders, consumers, and researchers. It is imperative that saffron authentication and quality 69 control methods be continually developed, reviewed, improved, and implemented to classify grades 70 accurately in international markets and safeguard the interests of producers and consumers (Heidarbeigi 71 et al., 2015). This collective effort is vital for ensuring the integrity of the saffron trade and maintaining 72 trust within the industry.

Currently, the quality of saffron in international trade is assessed according to ISO 3632-2, which
 specifies UV-Vis spectrophotometric method for evaluating key quality parameters including color, taste,
 and aroma, all of which are associated with the concentrations of crocetin esters, picrocrocin, and safranal.
 These parameters are quantified at specific wavelengths: 440 nm, 257 nm, and 330 nm, respectively(ISO
 3632, 2011). Nevertheless, efforts are ongoing to develop more efficient means of assessing saffron quality

and authenticity. In this pursuit, various approaches such as molecular assays (Jiang et al., 2014; Soffritti et al., 2016), stable isotope analysis (Maggi et al., 2011; Wakefield et al., 2019), and chromatography (Bononi et al., 2015; Bouhadida et al., 2017; García-rodríguez et al., 2017; Guijarro-Díez et al., 2017; Morozzi et al., 2019; Rubert et al., 2016) have been employed to authenticate saffron and detect adulterants of plant origin. However, these methods, despite their accuracy and sensitivity, have drawbacks including being destructive, time-consuming, and requiring specialized expertise.

Spectroscopy has emerged as a more rapid, time-saving, and cost-effective method for detecting fraud in premium spices, with saffron being a notable example. Several infrared spectroscopic techniques and chemometrics have been employed to authenticate, detect, and quantify adulteration in saffron (Dowlatabadi et al., 2017; Karimi et al., 2016; Ordoudi et al., 2014; Shawky et al., 2020; Varliklioz Er et al., 2017). These methods have also proven instrumental in elucidating the chemical composition of saffron and discerning its geographical origin (Biancolillo et al., 2020; D'Archivio & Maggi, 2017; Li et al., 2018; Liu et al., 2018; Zalacain et al., 2005).

91 Spectroscopic methods, despite relying on the precision and accuracy of the reference method, 92 particularly in the case of NIR spectroscopy, are known for their superior reproducibility in measurements 93 and predictions. However, spectroscopic techniques inherently lack the capability to provide spatial 94 information about objects, rendering them less efficient when applied to heterogeneous food samples. 95 (Huang et al., 2014; Prieto et al., 2009). For instance, NIR spectroscopy generates a mean spectrum, 96 representing an averaged measurement of the entire sample, irrespective of the scanned area. 97 Consequently, this results in the loss of spatial information regarding the distribution of constituents within 98 the sample (Manley, 2014). Other methods, such as computer vision (Alighaleh et al., 2022; Kiani & Minaei, 99 2016), are limited to working with visible bands (RGB) and cannot provide information on spectral 100 characteristics (Kiani et al., 2018). In response to these challenges, alternative techniques, such as 101 hyperspectral imaging, have gained attention as promising tools for detecting fraud in food spices (Cruz-102 Tirado et al., 2023; Hashemi-Nasab & Parastar, 2022; Lima et al., 2020; Orrillo et al., 2019).

103 Hyperspectral imaging (HSI) offers a potential approach to overcome the limitations of traditional 104 spectroscopic methods in detecting fraud and authenticating saffron. HSI technology seamlessly integrates 105 conventional imaging and spectroscopy, thereby providing both spatial (localization) and spectral 106 (identification) information on samples across the ultraviolet-visible (UV-Vis) and near-infrared (NIR) 107 regions (ElMasry & Sun, 2010; Huang et al., 2014; Manley, 2014). With HSI, the spectrum of each pixel 108 within the image is captured, a unique capability that enables HSI to potentially map out the distribution of constituents within a given sample. This makes it particularly well-suited for analyzing heterogeneous 109 110 samples (Nobari Moghaddam et al., 2022).

111 While HSI technology has been explored for the authentication of spices such as nutmeg (Kiani et al., 112 2019), cumin powder (Florián-Huamán et al., 2022), cinnamon (Cruz-Tirado et al., 2023), and black pepper 113 (Orrillo et al., 2019), research on its application for authenticating saffron stigmas is limited. In a study by 114 Lu et al. (2019), hyperspectral imaging and multivariate spectral analysis were successfully employed to 115 determine the authenticity, quality, and origin of different samples of saffron. The HSI spectral data and propagation neural network models could distinguish authentic saffron from saffron adulterated with 116 117 safflower. In a recent study by Hashemi-Nasab & Parastar (2022), authentication of saffron using Vis-NIR 118 (400–950 nm) HSI combined with mean-field independent component analysis was also reported to be 119 successful.

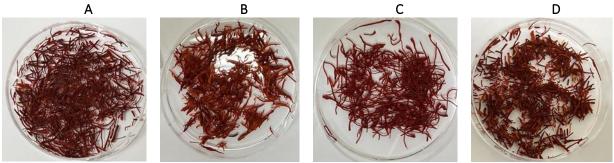
120 Adulteration in saffron is a well-known problem, as other parts of the flower, such as the style that 121 links the three stigmas to the rest of the plant, are often blended in due to their similar appearance. Using 122 near-infrared hyperspectral imaging (NIR-HSI) to detect and quantify the presence of style as an adulterant 123 in saffron stigmas is a promising solution. However, there is currently insufficient evidence to fully support 124 its effectiveness. Furthermore, except for safflower, there is little information on using NIR-HSI to 125 distinguish saffron from other plant-based adulterants. To address the specific research gap concerning the 126 presence of style as an adulterant in saffron stigmas, the current study proposes employing HSI and 127 chemometrics to rapidly authenticate and quantify this form of adulteration.

128 Therefore, the objective of this study were: (i) to assess the efficacy of spectral preprocessing 129 methods and variable reduction techniques in enhancing model performance, (ii) to explore the potential 130 of chemometric models, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), 131 Partial Least Squares-Discriminant Analysis (PLS-DA), Support Vector Machines (SVM), and Multi-Layer 132 Perceptron (MLP), when utilizing hyperspectral imaging (HSI) for the rapid authentication and classification 133 of saffron, its adulterants, and adulterated saffron, and (iii) to develop predictive models, using HSI and regression techniques based on PLS, PCA, SVM, and MLP, to estimate the concentration of the style 134 135 (adulterant) within saffron stigmas.

136 2 Materials and Methods

137 *2.1 Plant materials*

The saffron samples, which had undergone microwave drying, and the adulterants (safflower, saffron style, fiber, Citrus aurantium, and a mixture of style and konj) (**Figure 1**) used in this study were sourced from Zaveh County in Khorasan Razavi province, Iran. These specific samples were chosen to represent commonly encountered plant materials that are often fraudulently marketed as genuine saffron. To maintain their integrity, all samples were carefully stored at 25 °C, shielded from light and moisture, until analysis.



- Figure 1. RGB images of A: Authentic saffron stigmas, B: Saffron Styles; C: Style + Konj, and D: Adulterated
 Saffron stigmas (20% saffron stigmas + 80% saffron styles)
- **146** *2.2 Preparation of adulteration mixtures*

Saffron stigmas were mixed with style to create adulterated mixtures. Admixtures were made by adding various levels of style to saffron stigmas at eight different percentages: 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of the total weight of the sample. Notably, 20% was selected as the lowest level of adulteration, in alignment with the market principle that suggests adding less than 20% of adulterants to saffron is not economically feasible (Hashemi-Nasab & Parastar, 2022; Petrakis et al., 2015). A total of 84
samples, including 6 pure saffron, 30 adulterants (6 samples each for safflower, *Citrus aurantium*, saffronstyle, fiber, and konj mix), and 48 adulterated saffron samples (with adulterations ranging from 20% to
90%), were prepared for hyperspectral image analysis.

155 2.3 Hyperspectral imaging system

A hyperspectral imaging system was employed for data acquisition. This system operated in the nearinfrared region, spanning from 900 to 1700 nm, and consisted of a computer, Fx17e Specim spectral camera, light sources, an InGAs detector, and an electric displacement platform measuring 40 cm by 20 cm (Specim Lab Scanner, Spectral Imaging Oy Ltd, Finland). The acquisition, normalization, and processing of hyperspectral images were performed using Lumo Scanner, Classic ENVI (IDL 8.7.2), and ENVI (version 5.5.2) software, respectively.

162 2.4 Acquisition of HSI images and spectral data

163 The samples were evenly spread on a 60 mm diameter dish. Subsequently, the images were acquired 164 for each sample using hyperspectral imaging. The optimal parameters for acquiring clear and undistorted 165 spectral images were determined through repeated experiments. These parameters included a camera 166 exposure time of 7.00 ms, a frame rate of 19.50 Hz, a platform speed of 2.6 mm/s, a platform distance of 167 40 cm, a distance between the sample and the lens of 15 cm, and an image resolution of 672 x 512 pixels. 168 The operation was performed in a dark chamber to eliminate external light interference. The sample was 169 positioned on the platform before capturing the image across the NIR spectral range from 900 to 1700 nm, 170 resulting in an average spectral interval of 3.5 nm, producing 224 reflectance bands. The hyperspectral 171 images were calibrated using black and white reference images to remove noise caused by uneven dark 172 and illumination distribution by the hyperspectral camera, as per equation 1.

173
$$R = (I - B)/(W - B)$$

The calibrated hyperspectral image of the sample (R) was calculated using the raw hyperspectral image of the sample (I), the white reference image from the standard white calibration board (W, \sim 99.9% reflectance), and the black reference image obtained by closing the lens of the camera (B, \sim 0% reflectance). The images were masked to eliminate the background and other redundant parts due to Petri dishes. The average reflectance value was obtained by selecting the whole image as the region of interest

(1)

179 (ROI).

180 *2.5 Spectral processing*

181 Hyperspectral imaging generates a hypercube that contains a large number of variables. 182 Chemometrics is essential for extracting and interpreting relevant information from this spectral data 183 (Nobari Moghaddam et al., 2022). Nonetheless, the original spectra obtained from hyperspectral imaging 184 can be affected by issues such as scattering effects, random noise, and system noise, all of which can 185 weaken the spectral signal and reduce the performance of models. Solid samples often feature non-186 uniform surfaces and can scatter light during diffuse reflection, resulting in additive and multiplicative 187 effects. These light scattering effects can be corrected by the Standard Normal Variate (SNV) and 188 Multiplicative Scatter Correction (MSC) algorithms (Kiani et al., 2019).

In this study, the SNV and MSC filters were applied individually to the HSI spectra. By employing the
 SNV and MSC algorithms, which are chemometric techniques, the quality of the spectral data can be
 improved, thereby enhancing the performance of classification and regression models.

192 2.6 Statistical Modeling

193 The samples were randomly divided into two sets using a train-test split method to facilitate model 194 training and testing. Specifically, the calibration model was constructed using 70% of the total samples (n 195 = 61 for classification and n = 44 for regression models). The remaining 30% of the samples (n = 23 for classification and n = 16 for regression models) were set aside for evaluating the model's accuracy in 196 197 predicting the characteristics of randomly selected samples, serving as the test set. It's important to note 198 that classification models were assessed using all available samples (n = 84), while the regression models 199 were specifically evaluated using authentic saffron samples and saffron adulterated with saffron-style (n = 200 60).

201 Validation processes are essential for building chemometric models (Nicolaï et al., 2007). In our 202 present study, all the calibration models were constructed using 10-fold cross-validation and ten 203 repetitions, with samples randomly assigned without replacement. The calibration set samples were 204 divided into 10 folds, employing 9 folds (k-1) for model training, and reserving 1-fold for cross-validation. 205 This cross-validation process was iterated 10 times. Its purpose was twofold: (i) allow estimation of the 206 number of latent variables (LVs)/factors for optimal models, which require estimation of the standard error 207 of prediction (SE), and (ii) improve the estimation of the prediction error classification and regression 208 models. The optimal-performing model was chosen based on the fewest factors possible factors and 209 minimizing the error for k-fold cross-validation to prevent overfitting. The cross-validated model was then 210 used to predict the external test set.

The process of extracting chemical information from spectral data presents challenges, primarily due to many input variables (NIR wavelengths) that exhibit multi-collinearity. This scenario is not suitable for traditional Multilinear Regression (MLR). To address this issue, statistical methods that incorporate latent variables (LVs)/factors, such as Principal Component Analysis (PCA) and Partial Least Squares (PLS), are employed for dimension reduction. Striking a balance between the number of components used is crucial since too few components may lead to the loss of valuable information (underfitting), while an excessive number of factors may introduce noise (overfitting) (Leardi, 2018).

218 Our study employed a variety of chemometric techniques to classify and quantify adulteration in 219 saffron stigmas. The analysis was initiated by Principal Component Analysis (PCA) for data exploration. 220 Supervised classification was performed using Linear Discriminant Analysis (LDA), Partial Least Square-221 Discriminant Analysis (PLS-DA), Support Vector Machines (SVM), and Multi-Layer Perceptron (MLP). 222 Additionally, regression models were developed employing PCA, PLS, SVM, and MLP to predict the extent 223 of adulteration in saffron stigmas. These techniques are fundamental tools in multivariate data analysis for 224 food fraud detection (Nobari Moghaddam et al., 2022). It is common practice to employ multiple 225 classification techniques and assess their performance, as highlighted by Callao & Ruisánchez, (2018). This 226 approach does not significantly increase the overall research expenses once the research problem is well 227 defined.

228 2.6.1 Principal Component Analysis (PCA) and Principal Component Regression (PCR)

PCA, a valuable data projection technique for sample clustering, feature selection and dimension reduction (Nobari Moghaddam et al., 2022), involves transforming the original variables into a new collection of uncorrelated variables known as principal components (PCs). These PCs capture the maximum variation in the data (Härdle & Simar, 2013). PCR takes this concept a step further by reducing the number of predictor variables, using the first few PCs instead of the original variables. This approach simplifies the regression model, enhances its interpretability, and helps prevent overfitting (Leardi, 2018).

To determine the optimal number of PCs for constructing the PCR model, the *Forward selection* approach was employed. In this technique, the regression equation is initially built with one predictor (PC), and each new predictor is individually added to the model until there is no further improvement in the error, i.e., RMSEP (Root Mean Square Error of Prediction) (Lima et al., 2020). The best model results were obtained by determining the optimum number of factors (PCs) that resulted in the lowest RMSECV.

240 2.6.2 Linear Discriminant Analysis (LDA)

LDA, a statistical method for classification and dimensionality reduction, serves two primary purposes. In classification, LDA identifies linear combinations of features that effectively separate classes within a dataset (Sánchez-López et al., 2016). n dimensionality reduction, it projects high-dimensional data onto a lower-dimensional space while preserving as much class-discriminatory information as possible (Hastie, 2009).

In this study, a combination of PCA and LDA, known as PCA-LDA, was utilized for classification. Initially, PCA was employed to reduce the dimensionality of the data. Subsequently, the optimal number of principal components (PCs) was used to construct the LDA model, determining linear combinations of features referred to as discriminant functions (DFs) that best distinguished the classes. Similarly, the selection of the best LDA model was based on the fewest DFs that resulted in the highest classification accuracy (CC) and minimized standard error (SE).

252 2.6.3 Partial Least Squares (PLS)

In the present study, PLS regression was employed to predict the concentration of style in saffron stigmas. PLS, a statistical technique widely used in chemometrics for regression, proves particularly valuable when dealing with datasets where the number of independent variables (predictors) exceeds the number of samples, as observed in this study. PLS achieves this by generating latent variables that maximize the covariance between predictor variables (spectral data) and response variables (Uncu & Ozen, 2019). By prioritizing latent variables based on their contribution to the predictive quality of the regression model, PLS facilitates the selection of a simplified model without the risk of overfitting.

In addition to PLS regression, a PLS-DA model (Partial Least Squares Discriminant Analysis) was employed to classify authentic saffron from adulterated samples. PLS-DA, a variant of PLS, is specifically designed for classification problems, particularly when dealing with datasets containing numerous predictor variables and a limited number of observations. Unlike PLSR, PLS-DA is suited for cases where the dependent variable is categorical, as exemplified in our study with saffron and plant adulterants. The optimum number of latent variables were selected based on the "one standard error rule" approach as described by Hastie (2009). This method helps in selecting the best-performing model while simultaneously minimizing the number of latent variables. It takes into account either achieving a low RMSEP or attaining the highest percentage of classification accuracy (CC).

269 2.6.4 Support Vector Machines (SVM)

In the current study, Support Vector Machines (SVM) as a machine learning algorithm, employed for classification and regression tasks. SVM is renowned for its robustness and its ability to handle highdimensional data without undue sensitivity. It's particularly well-suited for classification and regression tasks with limited training samples in high-dimensional spaces. This algorithm seeks to find a hyperplane that maximizes the distance between itself and the closest samples from each of the two classes (Deng et al., 2013).

To prevent overfitting, SVM adjusts the classification decision function based on the principle of structural risk minimization, rather than simply minimizing the misclassification error on the training set (Chen et al., 2007). The optimal parameters for the SVM regression model were estimated as per the method outlined by Zeng et al. (2019).

A linear kernel function was chosen for the SVM models. The grid search was performed by varying the epsilon parameter (ϵ) and the "cost of constraints violation" parameter (C) to determine the best settings for the SVM models. Specifically, the epsilon parameter (ϵ) varied over a range of 0.9, 0.7, 0.5, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, and 0.001. Similarly, the cost of constraints violation (C) parameter was set at 0.01, 0.1, 0.5, 0.75, 1, 3, 5, 7, 10, 25, and followed by increments of 25 to 300.

The tolerance margin, represented by the symbol ε, allows the training instances in the regression to deviate from the hyperplane by a certain value before a penalty is imposed. A high error tolerance (i.e., a large ε value) can lead to certain data patterns being disregarded and not considered in the model, resulting in underfitting. Conversely, a smaller ε value permits a smaller error tolerance but may result in overfitting.

289 The C parameter controls the penalty for cases outside the regression tolerance margin established 290 based on the ε value. A high value of C results in cases outside the tolerance margin being heavily penalized, 291 thereby reducing training bias but increasing prediction variance and potentially leading to overfitting. In 292 contrast, low values of C may increase training bias (Zeng et al., 2019).

293 2.6.5 Multi-layer perceptron (MLP)

A Multilayer Perceptron is a fully connected, feedforward artificial neural network that uses layers of neurons (software nodes) to establish connections between inputs and outputs. It mimics the features of samples and predicts new tasks through training data. MLP is heavily reliant on multiple sets of parameters, such as the input layer, which passes the input vector to the network, the computation layer, and an output layer. These layers work in tandem to produce an output value (Farah et al., 2021).

In our current study, MLP was employed with two activation functions: "tansig" for the hidden layer,
 and "linear" for the output layer. To train the network, several training cycles (also known as epochs) were
 conducted, whereby the neural network was trained on all the training data for each cycle. One hidden

layer was used with the number of neurons ranging from 1 to 15. A grid search was performed to determine
 the optimal number of neurons. Additionally, the number of epochs was increased incrementally by 5 until
 a total of 200 training epochs were achieved.

305 2.7 Classification and prediction of adulteration by spectral angle mapper

The Spectral Angle Mapper (SAM) algorithm, integrated within the ENVI IDL software, played a pivotal role in classifying and quantifying adulteration using HSI imaging data. In our approach, the preprocessed HSI images were subjected to SAM for identification of adulterant in saffron stigmas. SAM compares the spectra of an image directly to a known target spectrum, which is commonly referred to as the endmember (Lohumi et al., 2019).

To create a spectral library, random regions of interest, each consisting of 10x10 pixels, were selected from various preprocessed images of pure saffron and saffron-style adulterant. Subsequently, the HSI images from the adulterated samples were fed into the SAM classifier. The algorithm calculated the spectral angle for each adulterant, and rule images were generated for each concentration. In the rule images, a small angle between two spectra indicated high similarity, resulting in darker regions. Conversely, pixels with high angles indicated low similarity and appeared with high intensity in the SAM rule image (Lohumi et al., 2019).

The combined use of R©Colordistance and R©Countcolors packages was then employed to select regions of pure saffron and the adulterant (saffron-style) from the SAM rule image. The process entailed randomly selecting pixels from the mapping image and treating each pixel as a point in a three-dimensional space based on its Red (R), Green (G), and Blue (B) values. The pixels were then divided into two clusters, with red indicating saffron stigmas and blue representing the adulterant. The intensity of each cluster was counted by R©Countcolors (Pessanha et al., 2023).

324 2.8 Assessment of model performance

325 A robust classification model was selected based on the average highest correct classification 326 percentage and minimized standard error of the test set. Similarly, the performance of regression models 327 was assessed using different parameters such as the coefficient of determination of prediction (R^2p), the 328 root mean square of prediction (RMSEP), and the residual predictive deviation (RPD) (Shawky et al., 2020). Models with a higher R^2 value (closer to 1) are reliable and accurate for prediction. Contrarily, the lower 329 330 the RMSEP, the more reliable the model is. Residual Predictive Deviation (RPD), a ratio of the standard 331 measured deviation of the reference data to RMSEP, was also determined to compare the models in the 332 current study with those of other studies. A model with an RPD value of < 2.5 is considered poor and can 333 only be appropriate for very rough screening; 2.5–3.0 illustrates a good predictive model, and values > 3.0 334 indicate an excellent model for prediction (Florián-Huamán et al., 2022). Additionally, the slope and the 335 intercept values of the fitted line between predicted and measured values were calculated to assess the 336 proximity of the predicted values to the perfect fit line. The standard errors (SE) of all performance 337 parameters for the cross-validation (R²cv, RMESCV, and RPDcv) were estimated using ten times repeated 338 10-fold cross-validation.

339 2.9 Statistical Modelling Software

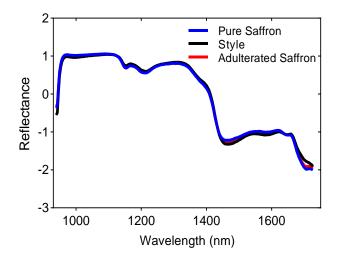
340 Spectral preprocessing was performed using Unscrambler X, CAMO Software AS (version 10.4, Oslo, 341 Norway). Classification and prediction models on raw and preprocessed data were constructed and 342 executed in RStudio version 1.4.1106. Data partitions (10 times repeated for 10-fold cross-validation) were 343 done with "createMultiFolds" in the "hsdar" package of RStudio (Lehnert et al., 2022). PLS-DA models were 344 built via the "plsgenomics" package (Boulesteix et al., 2018), PLS via the package "pls" (Liland et al., 2022), 345 PCA and PCR by the "stats" package (R Core Team, 2022) while SVM and MLP models were implemented 346 via the packages "e1071" (Meyer et al., 2022) and "monmlp" (Cannon, 2022), respectively. R packages 347 "countcolors", "colordistance", and "pixmap" were used for analysis of HSI SAM images based on their spatial information (Pessanha et al., 2023). 348

One-way analysis of variance (ANOVA) was employed to ascertain whether there were any statistically significant differences in the RPD values based on the factors of preprocessing, regression tool, and variable reduction. Subsequently, post hoc analysis was conducted using the Tukey's HSD procedure. Prior to performing ANOVA, the data was tested for normality using the Shapiro–Wilk test and homogeneity of variance using Levene's test. Statistical significance was considered at p < 0.05. Tests for normality, homogeneity of variance, and ANOVA were also performed in R using the packages 'stats', 'car', and base R functions.

356 3 Results and Discussion

357 *3.1 Visual spectral analysis*

Figure 2 depicts the average SNV preprocessed spectra of pure saffron, style (adulterant), and adulterated saffron. As Figure 2 indicates, visual examination of the spectral profile makes it difficult to discern genuine saffron from contaminated saffron or saffron styles. It is, therefore, critical to use chemometrics methods to extract relevant information from HSI spectral data.



362

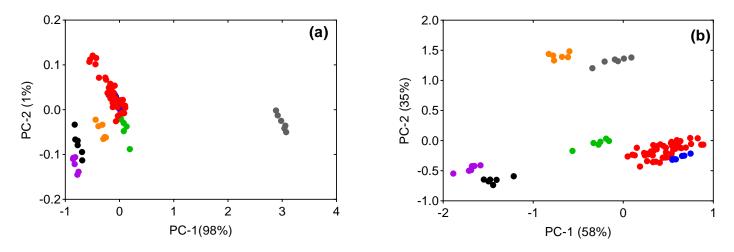
Figure 2. Average SNV preprocessed hyperspectral-imaging spectra of pure saffron, style (adulterant) and
 90% adulterated saffron

365 3.2 Explorative data analysis - Principal Component Analysis (PCA)

Although PCA cannot be used as a classification tool, it remains valuable for visualizing data patterns and clusters in reduced-dimensional spaces. PCA score plots were generated to unveil clusters of authentic saffron, adulterants, and adulterated saffron. The first two principal components, PC1 and PC2, accounted for 99% of the variation based on HSI raw spectra data. However, PCA could not sufficiently separate authentic saffron, style, and adulterated saffron from each other (**Figure 3a**).

371 To improve separation, MSC and SNV transformations were applied to the raw spectral data to remove 372 artifacts and scattering effects (Dharmawan et al., 2023), as portrayed in the PC plots in Figures 3b and 3c. 373 The first two principal components (PC1 & PC2) explained 93% of the variance for MSC and SNV 374 preprocessed HSI data. Both PC score plots revealed clear discrimination between authentic saffron and 375 the other plant adulterants without overlaps along PC1. Additionally, safflower and Citrus aurantium were 376 distinguishable from other contaminants and pure saffron by PC2. These distinctions are due to spectral 377 reflectance differences attributed to different chemical compositions among the samples. Although the 378 separation between pure and impure saffron is subtle, it remains discernible.

Identifying the critical wavelengths that contribute to the variation in the data is essential. In this study, the effective wavelengths were identified using x-loadings results from PCA analysis. These wavelengths are concentrated in specific spectral regions such as 1120-1156 nm, 1200-1227 nm, 1375 nm, 1425 nm, and 1635 nm, corresponding to vibrations of C-H, C-C, and N-H bonds associated with various chemical compounds, including oils, carbohydrates, and proteins in the samples. Figure 3d illustrates this information, displaying the spectral regions that contributed to the separation of grouped samples.



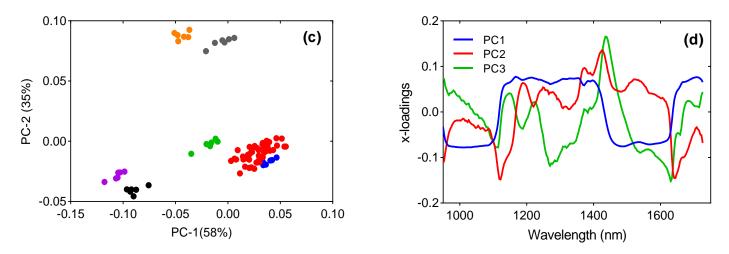


Figure 3. Principal Component Analysis scores scatter plot for the first and second principal components
 (PCs). The PC scores display significant separation between saffron and other plant adulterants. (a)
 Unprocessed/raw spectra; (b) SNV pre-processed spectra (c) MSC pre-processed spectra; (d) PC x-loadings
 showing major wavelengths contributing to the separation of authentic saffron, adulterants and
 adulterated saffron on the PC plot. Groups on the PC plots: • Pure Saffron; • Adulterated saffron; •
 Safflower; • Style; • Fiber; • Citrus aurantium; • Style + Konj

391 According to Luo et al. (2021), agro-foods possess a complex chemical composition, leading to spectra 392 characterized by numerous strong absorption bands originating from various constituents. Additionally, a 393 significant number of overlapping absorption peaks exist, which presents a challenge in directly associating 394 spectral features with individual chemical components. In the current study, specific spectral characteristics 395 have been identified. The peaks within the wavelength ranges of 1120-1156 nm and 1200-1227 nm are 396 attributed to the relative proportions of C-H bonds and the second overtone of C-H stretching. These 397 features are primarily influenced by essential oils (Florián-Huamán et al., 2022). The peak at 1375 nm, 398 associated with the second aromatic C-H combination band for CH₃, could potentially be influenced by 399 crocins and carotenoids in saffron stigmas.

Typically, the spectral region around 1400 nm is related to the O-H first overtone of water. However, it's important to note that the moisture content of saffron is less than 12%. Therefore, the band at 1425 nm can be attributed to compounds such as cellulose and organic acids. Finally, the peak at around 1635 nm can be associated with the first overtones of C-H stretching and N-H bonds in flavones and proteins, as demonstrated in previous studies (Castro et al., 2021; Li et al., 2018).

405 3.3 Discrimination of genuine saffron, plant adulterants and adulterated saffron

406 Our study aimed to address the crucial challenge of detecting adulteration in saffron stigmas, which is 407 vital for ensuring product integrity of this high-value spice. To achieve this objective, a rapid methodology 408 that combines near-infrared (NIR) hyperspectral imaging and chemometrics was developed. The purpose 409 was to discriminate between authentic saffron, plant adulterants (such as safflower, Citrus aurantium, 410 saffron style, fiber, style, and konj mix), and saffron samples adulterated with saffron-style. Specifically, the 411 efficacy of different preprocessing techniques and variable reduction methods to enhance the performance 412 of the models were evaluated. The results of the investigation, including the optimized parameters and 413 correct classification rates (%CC) for each model, are presented in **Table 1**.

Spectra		Variable				
Preprocessing	Model Reduction Details		Details	%CCcv	%CCp	
Unprocessed	LDA	PCA	PCs=3	98.2	95.7	
	PLS-DA	PLS	LVs=8	98.7	100	
	MLP	none	Iterations=200, nodes=6	97.7	100	
	MLP	PCA	Iterations=125, PCs=3, nodes=10	99.2	100	
	MLP	PLS	Iterations=100, nodes=9, LVs=8	99.5	100	
	SVM	none	kernel=linear, epsilon=0.9, cost=10, SVs=30	96.7	95.7	
	SVM	PCA	kernel=linear, epsilon=0.8, cost=1, PCs=12, SVs=47	99.0	100	
	SVM	PLS	kernel=linear, epsilon 0.8, cost =10, LVs=8, SVs=39	98.9	100	
SNV	LDA	PCA	PCs=4	98.0	100	
	PLS-DA	PLS	LVs=5	98.3	100	
	MLP	none	Iterations=50, nodes=9	99.3	100	
	MLP	PCA	Iterations=125, nodes=6, PCs=6	100	100	
	MLP	PLS	Iterations=100, nodes=7, LVs=8	100	100	
	SVM	none	kernel=linear, epsilon=0.9, cost=0.05, SVs=30	100	100	
	SVM	PCA	kernel=linear, epsilon=0.8, cost=1, PCs=6, SVs=33	100	100	
	SVM	PLS	kernel=linear, epsilon 0.8, cost 1, LVs=8, SVs=38	100	100	
MSC	LDA	PCA	PCs=4	98.0	100	
	PLS-DA	PLS	LVs=5	98.4	100	
	MLP	none	Iterations=50, nodes=10	99.5	100	
	MLP	PCA	Iterations=75, nodes=8, PCs=6	100	100	
	MLP	PLS	Iterations=100, nodes=7, LVs=8	100	100	
	SVM	none	kernel=linear, epsilon=0.9, cost=0.05, SVs=29	100	100	
	SVM	PCA	kernel=linear, epsilon =0.8, cost=1, PCs=6, SVs=33	100	100	
	SVM	PLS	kernel=linear, epsilon 0.8, cost =1, LVs=8, SVs=38	100	100	

Table 1. Average correct classification rates (%CC) for LDA, PLS-DA, MLP and SVM discriminant models for cross-validation and test sets

416 The values represent average rate of correct classification (%CC) ± SE (Standard Error) of prediction; SNV = Standard
417 Normal Variate; MSC = Multiplicative Scatter Correction; PCA = Principal Component Analysis; LDA = Linear
418 Discriminant Analysis; PLS-DA = Partial Least Squares-discriminant analysis; SVM = Support Vector Machines; MLP =
419 Multilayer Perceptron; PCs = Principal Components; LVs = Latent Variables, SVs = Support Vectors; %CCcv = correct

420 classification for cross-validation; %CCp = correct classification for the prediction/test set

421 Based on the findings presented in **Table 1**, it is evident that all the tested models consistently achieved 422 impressive classification accuracy rates, ranging from 95.7% to a perfect 100%. Various discriminant 423 models, including LDA, PLS-DA, MLP, and SVM, consistently demonstrate strong performance under 424 different preprocessing and variable reduction strategies. LDA consistently achieves %CCcv results of 98% 425 and %CCp of 95.7% to 100%. PLS-DA attains a perfect %CCp of 100% even with unprocessed HSI spectra 426 data. MLP excels with %CCcv and %CCp often reaching 100%, especially when appropriate preprocessing 427 and variable reduction methods are applied. SVM, is particularly effective when combined with PCA or PLS 428 for variable reduction, consistently achieves %CCcv and %CCp values of 100%. These results collectively 429 highlight the robustness of these discriminant models across different data processing approaches.

However, while achieving impressive classification accuracies, the data reveals occasional
 misclassifications, particularly in cases involving unprocessed spectra. Specifically, misclassifications on the
 test sets were observed with PCA-LDA and SVM-*no-variable-reduction* models using unprocessed spectra.
 In both cases, one instance of adulterated saffron was falsely classified as authentic saffron. Similarly, their
 equivalent cross-validation models misclassified adulterated saffron as pure saffron. The SVM model

erroneously classified 10 out of a total of 350 cases, while the PCA-LDA model, on the other hand,
incorrectly classified 11 cases out of the same total of 350 cases. These misclassifications may arise from
spectral similarities between authentic saffron and adulterated samples, highlighting the models'
limitations in discerning these similarities (Mishra et al., 2018).

439 It was also observed that the SVM-no-variable-cross-validation model, when applied to unprocessed 440 spectra, misclassified one-third of style+konj cases (10 cases) as fiber. Such misclassifications may be 441 partially attributed to challenges related to dimensionality reduction techniques. Linear methods used 442 during dimension reduction may not accurately estimate the intrinsic dimensionality of the data, potentially 443 leading to the removal of critical information necessary for precise classification. This limitation likely 444 contributed to the observed misclassifications, particularly in cases involving unprocessed spectra (Luo et 445 al., 2021). These findings accentuate the importance of working with preprocessed data when using SVM 446 models in cases where variable reduction techniques are not employed.

447 The cross-validated models on unprocessed data generally perform well, achieving %CCcv ranging 448 from 96.7% to 99.5% and a %CCp range of 95.7% to 100%. However, the %CCp for the unprocessed spectra 449 is slightly lower when compared to SNV and MSC preprocessed data, suggesting the potential presence of 450 modelling noise in the unprocessed data. The application of SNV and MSC preprocessing techniques 451 generally improved %CCp, resulting in more consistent model performance. All models using these 452 preprocessing techniques achieved a classification accuracy of 100% on the external test set. SNV and MSC 453 were effective in potentially eliminating random noise and light scattering effects from the HSI spectra 454 signal, ultimately enhancing the performance of classification models. These results match those observed 455 by Li et al. (2018c), who reported exceptional performance for SNV and MSC-NIR preprocessing when 456 geographically classifying saffron using PLS-DA models.

457 Variable reduction techniques, such as PCA and PLS, were employed to reduce the number of features 458 in the HSI spectral data and enhance the performance of discriminant models. As observed from the results, 459 these techniques yielded parsimonious models, as indicated by a low number of PCs/LVs, especially for the 460 linear discriminant models. PCA, through the retention of optimal number of principal components (PCs), 461 consistently leads to outstanding results, with %CCcv and %CCp often reaching 100%. Similarly, PLS 462 demonstrates exceptional performance when reducing latent variables (LVs), mirroring the success of PCA 463 with %CCcv and %CCp commonly reaching 100%. For instance, MLP models achieve better results %CCcv results with either PCA or PLS reduced data as compared to the full spectra. These results suggest that use 464 465 of techniques such as PCA for variable reduction improves the performance of classification models such as MLP, as demonstrated by Minaei et al. (2017). These findings also corroborate the results obtained by 466 467 Dharmawan et al. (2023), which showed the superiority of MLP models integrated by PCA for verifying the 468 origin of Arabica coffee. It can also be observed that combining LDA and PCA as a variable reduction 469 technique resulted in a 100% correct classification rate (CCp) for SNV (3 PCs), and MSC (4 PCs) preprocessed 470 data, as shown in Table 1. Similarly, SVM, when combined with both PCA and PLS, achieved a 100% correct 471 classification (CC) for all the three sets of spectral data (unprocessed, SNV, and MSC). The perfect 472 classification results can be attributed to PCA and PLS's ability to enhance the signal-to-noise ratio, 473 eliminate redundant information (noise) by selecting optimal components/latent variables, and 474 subsequently improve the models' performance (Leardi, 2018).

The current study's findings demonstrate that all the models accurately classified the data, with mostachieving a 100% correct classification rate (CC). This CC range aligns with the average rates reported in

477 previous successful authentication studies of spices such as saffron, black pepper, cinnamon, and nutmeg, 478 which employed HSI and discriminant models like PLS-DA and SVM (Hashemi-Nasab & Parastar, 2022; Kiani 479 et al., 2019; Lu et al., 2019; Orrillo et al., 2019). Our CC results are also comparable with those of Cruz-480 Tirado et al. (2023), who reported accuracies of 96.7% for PLS-DA and SVM models in their study using NIR-481 hyperspectral imaging for cinnamon authentication. Furthermore, our MLP-%CC results closely compare 482 with those of Dharmawan et al. (2023), who reported %CC of 90-100% in authenticating Arabica coffee 483 origins using PCA-MLP models based on visible and shortwave near infrared spectroscopy. This study 484 demonstrates that multiple models and preprocessing methods can achieve high classification accuracy, 485 consistent with the findings of Li et al. (2018).

486 Furthermore, the SVM models demonstrated robustness and lower sensitivity to variable reduction 487 methods compared to other models. They consistently achieved a perfect classification rate of 100% for 488 both cross-validation and test data with preprocessed spectra, regardless of whether PCA or PLS was used 489 for variable reduction. This resilience can be attributed to SVM's capability to leverage the linear kernel, 490 allowing it to maintain simplicity and interpretability by operating directly in the original feature space while 491 still effectively classifying data with a linear decision boundary. In accordance with the present results, 492 previous studies by Luo et al. (2021) and Mishra et al. (2018) have demonstrated regression techniques, 493 such as SVM, have the capacity to extract more critical information for classifying complex food matrices. 494 It is also interesting to note that SVM models achieve high classification accuracy even with the simple 495 linear kernel in our study. These SVM models were able to maintain excellent performance even with a 496 relatively small cost parameter, which controls the trade-off between maximizing and minimizing 497 classification errors (Zeng et al., 2019).

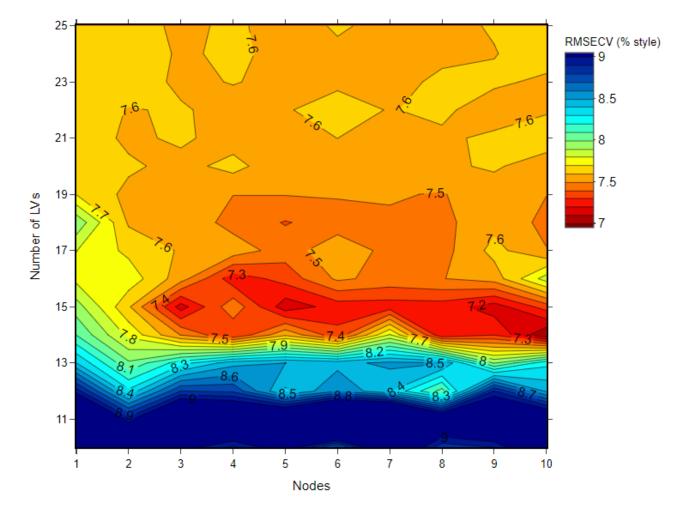
Overall, the results suggest that using appropriate preprocessing techniques and variable reduction methods can enhance the performance of discriminant models. Additionally, some models, such as MLP and SVM, perform exceptionally well when the right combination of techniques is applied, achieving perfect classification rates. However, it is worth noting that all models achieved high classification rates, suggesting that using NIR-hyperspectral imaging with chemometrics is a promising method for the rapid authentication and detection of adulteration in saffron stigmas.

504 *3.4 Prediction of adulteration levels in saffron stigmas with style based on HSI*

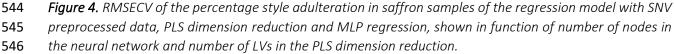
505 The untapped potential of hyperspectral imaging, extending its application beyond mere classification, 506 was also explored in the current study. Specifically, the focus was on harnessing its capabilities to accurately 507 quantify the extent of adulteration in saffron stigmas from contamination by saffron-style (20-90%). 508 Regression models including PCR, PLSR, SVM-R, and MLP-R, were employed to achieve this goal. The 509 efficacy of regression models was evaluated by examining the impact of spectral preprocessing and variable 510 reduction, as shown in Table 2. Most models demonstrated excellent prediction abilities with high R²p (0.90 511 to 0.97), robust RPD values (3.0–5.4), and low RMSEP (4.26% to 7.26%). Only one model had an RPD value 512 of 2.3, which was an exception.

The impact of spectral preprocessing on models designed specifically for predicting saffron adulteration with *Crocus sativus* style was investigated. Three variants were investigated: the use of Standard Normal Variate (SNV) preprocessing, Multiplicative Scatter Correction (MSC) preprocessing, and the utilization of unprocessed spectra. Contrary to the findings of previous studies by Feng & Sun (2013), Florián-Huamán et al. (2022) and Orrillo et al. (2019), which suggested that preprocessing techniques, particularly SNV, enhanced model performance by addressing scatter effects in hyperspectral imaging (HSI)
spectra, our findings revealed that these techniques did not consistently outperform the use of
unprocessed data (p = 0.684 and F-value = 0.387). However, the MLP model without variable reduction was
the best-performing model in the 'unprocessed' category, with an RPD value of 3.38 and an RMSEP of
6.81%.

523 In addition to exploring spectral processing techniques, this study aimed to investigate various 524 regression tools for predicting saffron adulteration, including linear models such as Partial Least Squares 525 (PLS) and Principal Component Regression (PCR), as well as Support Vector Machine (SVM) and Multi-Layer 526 Perceptron (MLP) models. Based on our findings, the choice of regression tool had an insignificant impact 527 on model performance (p = 0.622 and F-value = 0.486). Notably, the MLP model that employed SNV 528 preprocessing and PLS for dimension reduction achieved the best results. The optimized MLP model (R^2p = 529 0.97, RPD = 5.40) utilized 15 PLS latent variables (LVs) as input and featured a hidden layer with 3 nodes, 530 resulting in minimal RMSEP of 4.26%. The exceptional predictive capabilities of the MLP model can be 531 attributed to its versatility in handling both linear and non-linear data relationships. Its adaptive nature 532 allowed it to effectively address the complexity of saffron adulteration detection. Furthermore, the MLP's 533 architecture, specifically, one hidden layer with 3 neurons (Figure 4), was selected through a thorough 534 evaluation process, ultimately yielding the highest level of predictive accuracy (without overfitting) among 535 the models tested. These findings closely relate to those of Basile et al. (2022), who reported better results 536 in the prediction of grape texture using NIR combined with PLS and ANN. Conversely, the poorest-537 performing model was also an MLP model, but it utilized SNV preprocessing and unprocessed spectral data. 538 This poor performance can be attributed to the model's inability to fully extract meaningful information or 539 remove noise from the full spectral data. These findings agree with those of Dharmawan et al. (2023), who 540 emphasized the importance of compressing a large amount of spectral data into a smaller number of 541 variables before feeding it into an ANN model. Overall, our findings indicate that both linear and non-linear 542 methods can effectively be used to detect the levels of style as an adulterant in saffron stigmas.



543



547 Regression models that utilize the entire spectrum may unintentionally include redundant 548 information, such as noise, collinearity, and overfitting, which can diminish their predictive capacity (Orrillo 549 et al., 2019). To enhance predictive capabilities, it is crucial to incorporate variable reduction techniques 550 such as Principal Component Analysis (PCA) and Partial Least Squares (PLS), which effectively eliminate 551 redundant information from spectral data. Our findings demonstrate a significant enhancement in model 552 performance through variable reduction ($p = 1.86 \times 10^{-4}$, F-value = 13.29). Specifically, PLS outperforms PCA 553 $(p = 1.21 \times 10^{-3})$ and the "no variable reduction" approach (4.60×10^{-4}) . PLS proves to be significantly superior 554 in reducing spectral variables while extracting critical information for subsequent use by regression tools 555 as compared to PCA. There was no significant difference (p = 0.677) in performance for models using PCA-556 reduced variable and full-length spectra variables. While PCA is instrumental for reduction dimensionality, 557 it might fail to capture vital information correlated with the variable being predicted (Dharmawan et al., 558 2023).

As indicated by our study findings in **Table 2**, the top seven best-performing models were constructed using compressed variables from PLS. The R²p and RMSEP for these models ranged from 0.94 to 0.97 and 4.26% to 5.57%, respectively, while their RPD values were > 4. On the contrary, the least-performing model,
with an RPD value of 2.3, was built using full HSI spectra. Our findings corroborate the results by Basile et
al. (2022) that emphasize on the significance of reducing the number of predictors through the PLS
technique for development of more precise models and improved performance.

Valuable insights on the effectiveness of variable reduction techniques in enhancing the accuracy and 565 566 reliability of models used to detect adulteration in saffron stigmas have been demonstrated in this study. 567 Surprisingly, it was found that neither spectral preprocessing nor regression tools influenced the model's 568 performance. Overall, all models except one performed exceptionally well, with PLS-based models 569 achieving higher RPD values (> 4). These findings demonstrate that HSI is a promising approach for 570 detecting and predicting saffron stigma adulteration with style. Our research emphasizes the importance 571 of employing variable reduction techniques, such as PLS, to enhance the development of reliable models 572 for detecting adulteration in saffron stigma.

573 3.5 Classification and prediction of adulteration based on spectral angle mapper (SAM) and image574 analysis

575 As depicted in Figure 5, the SAM algorithm demonstrates remarkable potential in distinguishing 576 between genuine saffron stigmas and saffron adulterated with style by utilizing spatial information. It's 577 noteworthy that the pixel color intensity within the images increases with higher concentrations of the 578 adulterant, as expected. Our findings are consistent with those of Lohumi et al. (2019) who reported 579 effective visualization of adulterants in wheat flour using Raman hyperspectral imaging and SAM 580 classification. However, it's essential to acknowledge that no classification algorithm is entirely error-free. 581 In one instance, an authentic saffron sample was misclassified as adulterated, highlighting a limitation of the SAM classifier. This suggests that similarities in certain spectral regions between saffron and the 582 583 adulterant may result in a reduced spectral angle, leading to misclassifications.

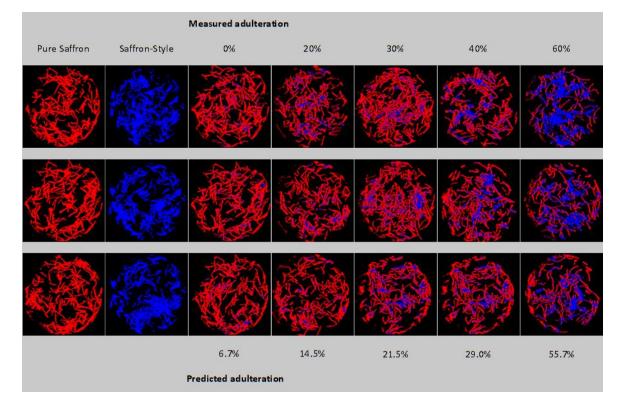


Figure 5. Resultant images for identification of saffron-style (adulterant) pixels based on spectral similarity
analyses. Regions with red color intensity represent pixels of saffron stigmas, while the bluish regions
indicate pixels of the adulterant (saffron-style).

588 Further examination of the pixel intensity from the SAM rule images was conducted to predict the 589 levels of adulteration in saffron stigmas, as shown in Figure 5. The findings indicate that, on average, the 590 predicted values tend to be lower compared to the measured values, except in the case of false positives. For example, a measured adulteration level of 20% was predicted as 14.5%, while an actual adulteration 591 592 level of 30% was predicted as 21.5%. This discrepancy may be attributed to the potential challenges in 593 capturing pixel information from saffron-style strands that might be concealed by saffron stigmas within 594 the mixture. Our findings slightly deviate from those of Cheng et al. (2018), who reported superior 595 performance of PLSR-SAM models in characterizing the degree of myofibrils' cold structural deformation 596 in frozen pork samples using hyperspectral imaging. Therefore, it is imperative for future research 597 endeavors to enhance SAM's performance by incorporating it with other conventional regression 598 algorithms for the precise quantification of adulterants within saffron.

599 While the SAM method may not be well-suited for precise quantification, it exhibits potential for 600 binary (yes/no) analysis in detecting adulteration. One advantage of this method is its independence from 601 information derived from mixed adulterated samples, which reduces the labor-intensive process of 602 constructing a model using a wide range of adulterated saffron samples. Instead, the development of a 603 SAM model requires two sets of samples: (i) authentic saffron samples and (ii) potential adulterants. 604 However, given the simplicity of the SAM classifier, further research is necessary to explore its applicability 605 in authenticating saffron with other common adulterants, as well as its potential for analyzing other 606 premium food spices. Investigating the SAM method in a broader context will contribute to an enhanced 607 understanding of its capabilities and limitations in the realm of effective food authentication.

608 4 Conclusion

609 This study demonstrates the effectiveness of NIR-hyperspectral imaging in tandem with chemometrics 610 for detecting adulteration in saffron stigmas. The high accuracy rates achieved in all models tested, with the majority achieving a perfect classification rate of 100%, provide compelling evidence for the potential 611 612 of hyperspectral imaging as a rapid method for the authentication and detection of adulteration in saffron. 613 Moreover, the study suggests that the choice of variable reduction and preprocessing techniques 614 potentially affect classification accuracy at the studied adulteration levels in the saffron sample matrix. The 615 study also highlights the resilience and lower sensitivity of SVM models to variable reduction methods, 616 making them a reliable option in such cases.

Additionally, the potential of hyperspectral imaging for predicting the degree of saffron stigma adulteration with style was explored. The results suggest that PLS is the most effective tool for variable reduction. The MLP model coupled with SNV preprocessing and PLS for variable reduction was identified as the best-performing model for predicting adulteration in saffron. Future research with larger sample sizes is needed to validate the findings. Overall, this study provides a foundation for further research to develop hyperspectral imaging-based methods for the authentication and detection of adulteration in saffron and other high-value spices.

624

625 CRediT authorship contribution statement

Derick Malavi: Conceptualization, Methodology, Investigation, Formal analysis, Writing-Original Draft, and
Visualization. Amin Nikkah: Writing-Review & Editing. Pejman Alighaleh: Writing-Review & Editing.
Soodabeh Einafshar: Writing-Review & Editing. Katleen Raes: Supervision, Writing-Review & Editing. Sam
Van Haute: Conceptualization, Formal analysis, Writing-Review & Editing, Supervision, Project
administration.

631 Conflicts of interest

632 Authors declare no conflict of interest

633 Acknowledgements

634 The authors acknowledge the financial support provided by Ghent University Global Campus.

635

Preprocessing	Regression tool	Variable Reduction	Details	R ² cv	R ² p	RMSECV	RMSEP	RPDcv	RPDp
Unprocessed	Linear	PCA	PCs=35	0.93	0.94	8.90	5.72	3.73	4.02
	Linear	PLS	LVs=14	0.93	0.96	8.71	5.39	3.82	4.27
	MLP	none	Iterations=200, nodes=2	0.84	0.92	13.50	6.81	2.49	3.38
	MLP	PCA	Iterations=10, nodes=4, PCs=18	0.92	0.90	9.53	7.76	3.49	2.97
	MLP	PLS	Iterations=300, nodes=2, LVs=11	0.96	0.92	6.56	6.95	5.09	3.31
	SVM	none	kernel=linear, epsilon=0.1, cost=50, SVs=35	0.93	0.91	8.56	7.12	3.89	3.23
	SVM	PCA	kernel=linear, epsilon=0.1, cost=0.1, PCs=28, SVs=33	0.92	0.91	9.12	7.03	3.65	3.27
	SVM	PLS	kernel=linear, epsilon=0.05, cost=1, LVs=16, SVs=23	0.93	0.96	8.52	5.03	3.90	4.58
SNV	Linear	PCA	PCs=23	0.93	0.93	8.76	7.26	3.80	3.17
	Linear	PLS	LVs=16	0.94	0.96	7.90	4.71	4.23	4.89
	MLP	none	Iterations=100, nodes=3	0.85	0.89	13.10	10.02	2.62	2.30
	MLP	PCA	Iterations=10, nodes=6, PCs=24	0.93	0.93	8.50	6.06	3.92	3.79
	MLP	PLS	Iterations=200, nodes=3, LVs=15	0.95	0.97	7.15	4.26	4.71	5.40
	SVM	none	kernel=linear, epsilon=0.05, cost=0.5, SVs=38	0.93	0.94	8.80	6.27	3.78	3.67
	SVM	PCA	kernel=linear, epsilon=0.1, cost=0.1, PCs=23; SVs=34	0.93	0.94	8.84	7.07	3.76	3.27
	SVM	PLS	kernel=linear, epsilon=0.03, cost=10, LVs=16, SVs=25	0.94	0.97	7.89	4.57	4.24	5.03
MSC	Linear	PCA	PCs=23	0.93	0.93	8.76	7.26	3.80	3.17
	Linear	PLS	LVs=17	0.94	0.95	7.92	5.27	4.21	4.37
	MLP	none	Iterations=100, nodes=11	0.87	0.95	12.10	7.02	2.76	3.28
	MLP	PCA	Iterations=5, nodes=10, PCs=23	0.94	0.95	8.10	5.79	4.10	3.97
	MLP	PLS	Iterations=300, nodes=3, LVs=15	0.95	0.94	7.29	5.85	4.59	3.93
	SVM	none	kernel=linear, epsilon=0.1, cost=0.5, SVs=31	0.93	0.93	8.71	6.84	3.82	3.37
	SVM	PCA	kernel=linear, epsilon=0.1, cost=0.1, PCs=22, SVs=35	0.93	0.95	8.60	7.04	3.87	3.27
	SVM	PLS	kernel=linear, epsilon=0.03, cost=10, LVs=16, SVs=26	0.94	0.94	7.96	5.57	4.19	4.13

 Table 2. Model Parameters for Predicting the Concentration of Saffron-Style in Adulterated Saffron Using NIR-HSI: PLS, PCR, SVM, and MLP Regression Models for cross-validation and test sets

SNV = Standard Normal Variate; MSC = Multiplicative Scatter Correction; PLS = Partial Least Squares regression; PCR = Principal Component Regression; SVM = Support Vector Machine; MLP = Multilayer Perceptron; PCs = Principal Components (PCs); LVs = Latent Variables; SVs = Support Vectors; $R^2cv = coefficient$ of determination for the test set; RMSECV = root mean square error of cross-validation; RMSEP = root mean square of prediction; RPDcv = residual predictive deviation for cross-validation; RPDp = residual predictive deviation set

References

- Alighaleh, P., Khosravi, H., Rohani, A., Saeidirad, M. H., & Einafshar, S. (2022). The detection of saffron adulterants using a deep neural network approach based on RGB images taken under uncontrolled conditions. *Expert Systems with Applications*, 198(October 2021), 116890. https://doi.org/10.1016/j.eswa.2022.116890
- Armona, M. A. C., La, I. N. B., Zquez, Ä., Simidou, M. A. Z. T., Lonso, G. O. L. A., Zalacain, A., Ordoudi, S. A., Díaz-Plaza, E. M., Carmona, M., Blázquez, I., Tsimidou, M. Z., & Alonso, G. L. (2005). Near-infrared spectroscopy in saffron quality control: Determination of chemical composition and geographical origin. *Journal of Agricultural and Food Chemistry*, 53(24), 9337–9341. https://doi.org/10.1021/jf050846s
- Asili, J., & Jaroszewski, J. W. (2010). *H NMR metabolic fingerprinting of saffron extracts*. 511–517. https://doi.org/10.1007/s11306-010-0221-z
- Basile, T., Marsico, A. D., & Perniola, R. (2022). Use of Artificial Neural Networks and NIR Spectroscopy for Non-Destructive Grape Texture Prediction. *Foods*, 11(3). https://doi.org/10.3390/foods11030281
- Biancolillo, A., Foschi, M., & D'Archivio, A. A. (2020). Geographical Classification of Italian Saffron (Crocus sativus L.) by Multi-Block Treatments of UV-Vis and IR Spectroscopic Data. *Molecules*, 25(10). https://doi.org/10.3390/molecules25102332
- Bononi, M., Milella, P., & Tateo, F. (2015). Gas chromatography of safranal as preferable method for the commercial grading of saffron (Crocus sativus L.). *Food Chemistry*, *176*, 17–21. https://doi.org/10.1016/j.foodchem.2014.12.047
- Bouhadida, N., Garcíá-Rodríguez, M. V., Moratalla-López, N., Salinas, M. R., Oueslati, S., & Alonso, G. L. (2017). Correlation between the high performance liquid chromatography with diode array detection (HPLC-DAD) and the sensory analysis based on saffron color, odor, aroma and bitterness. *Acta Horticulturae*, 1184, 273–278. https://doi.org/10.17660/ActaHortic.2017.1184.39
- Boulesteix, A.-L., Durif, G., Lambert-Lacroix, S., Peyre, J., & Strimmer., K. (2018). *plsgenomics: PLS Analyses for Genomics*. https://cran.r-project.org/package=plsgenomics
- Callao, M. P., & Ruisánchez, I. (2018). An overview of multivariate qualitative methods for food fraud detection. *Food Control, 86,* 283–293. https://doi.org/10.1016/j.foodcont.2017.11.034
- Cannon, M. A. J. (2022). monmlp: Multi-Layer Perceptron Neural Network with Optional Monotonicity Constraints. https://doi.org/10.1007/11550907
- Castro, R. C., Ribeiro, D. S. M., Santos, J. L. M., & Páscoa, R. N. M. J. (2021). Near infrared spectroscopy coupled to MCR-ALS for the identification and quantification of saffron adulterants: Application to complex mixtures. *Food Control, 123*(November 2020). https://doi.org/10.1016/j.foodcont.2020.107776
- Chen, Q., Zhao, J., Fang, C. H., & Wang, D. (2007). Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM). Spectrochimica Acta -Part A: Molecular and Biomolecular Spectroscopy, 66(3), 568–574. https://doi.org/10.1016/j.saa.2006.03.038
- Cheng, W., Sun, D. W., Pu, H., & Wei, Q. (2018). Characterization of myofibrils cold structural deformation degrees of frozen pork using hyperspectral imaging coupled with spectral angle mapping algorithm. *Food Chemistry*, 239, 1001–1008. https://doi.org/10.1016/j.foodchem.2017.07.011
- Cruz-Tirado, J. P., Lima Brasil, Y., Freitas Lima, A., Alva Pretel, H., Teixeira Godoy, H., Barbin, D., & Siche, R. (2023). Rapid and non-destructive cinnamon authentication by NIR-hyperspectral imaging and classification

chemometrics tools. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 289(November 2022). https://doi.org/10.1016/j.saa.2022.122226

- D'Archivio, A. A., & Maggi, M. A. (2017). Geographical identification of saffron (Crocus sativus L.) by linear discriminant analysis applied to the UV–visible spectra of aqueous extracts. *Food Chemistry*, *219*, 408–413. https://doi.org/10.1016/j.foodchem.2016.09.169
- Deng, S., Xu, Y., Li, L., Li, X., & He, Y. (2013). A feature-selection algorithm based on Support Vector Machine-Multiclass for hyperspectral visible spectral analysis. *Journal of Food Engineering*, *119*(1), 159–166. https://doi.org/10.1016/j.jfoodeng.2013.05.024
- Dharmawan, A., Masithoh, R. E., & Amanah, H. Z. (2023). Development of PCA-MLP Model Based on Visible and Shortwave Near Infrared Spectroscopy for Authenticating Arabica Coffee Origins. *Foods*, *12*(11). https://doi.org/10.3390/foods12112112
- Dowlatabadi, R., Farshidfar, F., Zare, Z., Pirali, M., Rabiei, M., Khoshayand, M. R., & Vogel, H. J. (2017). Detection of adulteration in Iranian saffron samples by 1H NMR spectroscopy and multivariate data analysis techniques. *Metabolomics*, *13*(2), 1–11. https://doi.org/10.1007/s11306-016-1155-x
- ElMasry, G., & Sun, D. W. (2010). Principles of Hyperspectral Imaging Technology. *Hyperspectral Imaging for Food Quality Analysis and Control*, 3–43. https://doi.org/10.1016/B978-0-12-374753-2.10001-2
- Farah, J. S., Cavalcanti, R. N., Guimarães, J. T., Balthazar, C. F., Coimbra, P. T., Pimentel, T. C., Esmerino, E. A., Duarte, M. C. K. H., Freitas, M. Q., Granato, D., Neto, R. P. C., Tavares, M. I. B., Calado, V., Silva, M. C., & Cruz, A. G. (2021). Differential scanning calorimetry coupled with machine learning technique: An effective approach to determine the milk authenticity. *Food Control*, *121*(July 2020). https://doi.org/10.1016/j.foodcont.2020.107585
- Feng, Y. Z., & Sun, D. W. (2013). Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of Pseudomonas loads in chicken fillets. *Talanta*, 109, 74–83. https://doi.org/10.1016/j.talanta.2013.01.057
- Florián-Huamán, J., Cruz-Tirado, J. P., Fernandes Barbin, D., & Siche, R. (2022). Detection of nutshells in cumin powder using NIR hyperspectral imaging and chemometrics tools. *Journal of Food Composition and Analysis*, 108(January). https://doi.org/10.1016/j.jfca.2022.104407
- García-rodríguez, M. V., López-córcoles, H., Alonso, G. L., Pappas, C. S., Polissiou, M. G., & Tarantilis, P. A. (2017). Comparative evaluation of an ISO 3632 method and an HPLC-DAD method for safranal quantity determination in saffron. *Food Chemistry*, *221*, 838–843. https://doi.org/10.1016/j.foodchem.2016.11.089
- Guijarro-díez, M., Castro-puyana, M., Crego, A. L., & Marina, M. L. (2017). Journal of Food Composition and Analysis Detection of saffron adulteration with gardenia extracts through the determination of geniposide by liquid chromatography – mass spectrometry. *Journal of Food Composition and Analysis*, 55, 30–37. https://doi.org/10.1016/j.jfca.2016.11.004
- Guijarro-Díez, M., Castro-Puyana, M., Crego, A. L., & Marina, M. L. (2017). A novel method for the quality control of saffron through the simultaneous analysis of authenticity and adulteration markers by liquid chromatography-(quadrupole-time of flight)-mass spectrometry. *Food Chemistry*, 228, 403–410. https://doi.org/10.1016/j.foodchem.2017.02.015
- Härdle, W. K., & Simar, L. (2013). Applied multivariate statistical analysis. In *Applied Multivariate Statistical Analysis*. https://doi.org/10.1007/978-3-642-17229-8
- Hashemi-Nasab, F. S., & Parastar, H. (2022). Vis-NIR hyperspectral imaging coupled with independent component analysis for saffron authentication. *Food Chemistry*, 393(June), 133450.

https://doi.org/10.1016/j.foodchem.2022.133450

- Hastie, T. et. all. (2009). Springer Series in Statistics The Elements of Statistical Learning. *The Mathematical Intelligencer*, 27(2), 83–85. http://www.springerlink.com/index/D7X7KX6772HQ2135.pdf
- Heidarbeigi, K., Mohtasebi, S. S., Foroughirad, A., Rafiee, S., & Rezaei, K. (2015). Detection of Adulteration in Saffron Samples Using Electronic Nose Detection of Adulteration in Saffron Samples Using Electronic Nose. *International Journal of Food Properties*, 18(7), 1391–1401. https://doi.org/10.1080/10942912.2014.915850
- Huang, H., Liu, L., & Ngadi, M. O. (2014). Recent Developments in Hyperspectral Imaging for Assessment of Food Quality and Safety. 7248–7276. https://doi.org/10.3390/s140407248
- Jiang, C., Cao, L., Yuan, Y., Chen, M., Jin, Y., & Huang, L. (2014). Barcoding melting curve analysis for rapid, sensitive, and discriminating authentication of saffron (Crocus sativus L.) from its adulterants. *BioMed Research International*, 2014. https://doi.org/10.1155/2014/809037
- Karimi, S., Feizy, J., Mehrjo, F., & Farrokhnia, M. (2016). Detection and quantification of food colorant adulteration in saffron sample using chemometric analysis of FT-IR spectra. *RSC Advances*, *6*(27), 23085–23093. https://doi.org/10.1039/c5ra25983e
- Kiani, S., & Minaei, S. (2016). Potential application of machine vision technology to saffron (Crocus sativus L.) quality characterization. *Food Chemistry*, *212*, 392–394. https://doi.org/10.1016/j.foodchem.2016.04.132
- Kiani, S., Ruth, S. M. Van, & Minaei, S. (2018). Hyperspectral imaging, a non-destructive technique in medicinal and aromatic plant products industry: Current status and potential future applications. *Computers and Electronics in Agriculture*, 152(May), 9–18. https://doi.org/10.1016/j.compag.2018.06.025
- Kiani, S., van Ruth, S. M., van Raamsdonk, L. W. D., & Minaei, S. (2019). Hyperspectral imaging as a novel system for the authentication of spices: A nutmeg case study. *Lwt*, *104*(January), 61–69. https://doi.org/10.1016/j.lwt.2019.01.045
- Kumar, R., Singh, V., Devi, K., Sharma, M., Singh, M. K., & Ahuja, P. S. (2009). State of art of saffron (Crocus sativus L.) agronomy: A comprehensive review. In *Food Reviews International* (Vol. 25, Issue 1). https://doi.org/10.1080/87559120802458503
- Kyriakoudi, A., Ordoudi, S. A., & Tsimidou, M. Z. (2015). Saffron, A Functional Spice. 3(1).
- Leardi, R. (2018). Chemometric Methods in Food Authentication. In *Modern Techniques for Food Authentication* (2nd ed.). Elsevier Inc. https://doi.org/10.1016/b978-0-12-814264-6.00017-7
- Lehnert, L. W., Meyer, H., & Bendix, J. (2022). *hsdar: Manage, analyse and simulate hyperspectral data in R.* https://cran.r-project.org/package=hsdar. Accessed 20 Sept 2022
- Li, S., Shao, Q., Lu, Z., Duan, C., Yi, H., & Su, L. (2018). Rapid determination of crocins in saffron by near-infrared spectroscopy combined with chemometric techniques. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 190, 283–289. https://doi.org/10.1016/j.saa.2017.09.030
- Liland, K. H., Mevik, B. H., Wehrens, R., Hiemstra, P., Liland, M. K. H., & Suggests, M. A. S. S. (2022). *{pls}: Partial Least Squares and Principal Component regression*. https://cran.ms.unimelb.edu.au/web/packages/pls.pdf
- Lima, A. B. S. de, Batista, A. S., Jesus, J. C. de, Silva, J. de J., Araújo, A. C. M. de, & Santos, L. S. (2020). Fast quantitative detection of black pepper and cumin adulterations by near-infrared spectroscopy and multivariate modeling. *Food Control*, *107*(July 2019), 106802. https://doi.org/10.1016/j.foodcont.2019.106802

- Liu, J., Chen, N., Yang, J., Yang, B., Ouyang, Z., Wu, C., Yuan, Y., Wang, W., & Chen, M. (2018). An integrated approach combining HPLC, GC/MS, NIRS, and chemometrics for the geographical discrimination and commercial categorization of saffron. *Food Chemistry*, 253(August 2017), 284–292. https://doi.org/10.1016/j.foodchem.2018.01.140
- Lohumi, S., Lee, H., Kim, M. S., Qin, J., & Cho, B. K. (2019). Raman hyperspectral imaging and spectral similarity analysis for quantitative detection of multiple adulterants in wheat flour. *Biosystems Engineering*, *181*, 103–113. https://doi.org/10.1016/j.biosystemseng.2019.03.006
- Lu, X., Xia, Z., Qu, F., Zhu, Z., & Li, S. (2019). Identification of authenticity , quality and origin of saffron using hyperspectral imaging and multivariate spectral analysis. *Spectroscopy Letters*, *O*(0), 1–10. https://doi.org/10.1080/00387010.2019.1693403
- Luo, N., Yang, X., Sun, C., Xing, B., Han, J., & Zhao, C. (2021). Visualization of vibrational spectroscopy for agro-food samples using t-Distributed Stochastic Neighbor Embedding. *Food Control*, 126(October 2020). https://doi.org/10.1016/j.foodcont.2020.107812
- Maggi, L., Carmona, M., Kelly, S. D., Marigheto, N., & Alonso, G. L. (2011). Geographical origin differentiation of saffron spice (Crocus sativus L. stigmas) Preliminary investigation using chemical and multi-element (H, C, N) stable isotope analysis. *Food Chemistry*, *128*(2), 543–548. https://doi.org/10.1016/j.foodchem.2011.03.063
- Manley, M. (2014). Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. *Chemical Society Reviews*, 43(24), 8200–8214. https://doi.org/10.1039/c4cs00062e
- Meyer, D., & Dimitriadou, Evgenia, Kurt Hornik, Andreas Weingessel, Friedrich Leisch, Chih-Chung Chang, C.-C. L. (2022). *Package 'e1071.'* https://cran.r-project.org/web/packages/e1071/index.html
- Minaei, S., Kiani, S., Ayyari, M., & Ghasemi-Varnamkhasti, M. (2017). A portable computer-vision-based expert system for saffron color quality characterization. *Journal of Applied Research on Medicinal and Aromatic Plants*, 7(December 2016), 124–130. https://doi.org/10.1016/j.jarmap.2017.07.004
- Mishra, P., Nordon, A., Tschannerl, J., Lian, G., Redfern, S., & Marshall, S. (2018). Near-infrared hyperspectral imaging for non-destructive classification of commercial tea products. *Journal of Food Engineering*, *238*(June), 70–77. https://doi.org/10.1016/j.jfoodeng.2018.06.015
- Mohiuddin, A. K. (2019). Health Hazards with Adulterated Spices : Save t he "Onion Tears ." 1(3), 1–6.
- Moore, J. C., Spink, J., & Lipp, M. (2012). Development and Application of a Database of Food Ingredient Fraud and Economically Motivated Adulteration from 1980 to 2010. *Journal of Food Science*, 77(4). https://doi.org/10.1111/j.1750-3841.2012.02657.x
- Moras, B., Loffredo, L., & Rey, S. (2018). Quality assessment of saffron (Crocus sativus L.) extracts via UHPLC-DAD-MS analysis and detection of adulteration using gardenia fruit extract (Gardenia jasminoides Ellis). *Food Chemistry*, 257(March), 325–332. https://doi.org/10.1016/j.foodchem.2018.03.025
- Moratalla-López, N., Bagur, M. J., Lorenzo, C., Martínez-Navarro, M. E., Rosario Salinas, M., & Alonso, G. L. (2019). Bioactivity and Bioavailability of the Major Metabolites of Crocus sativus L. Flower. *Molecules*, *24*(15), 1–24. https://doi.org/10.3390/molecules24152827
- Morozzi, P., Zappi, A., Gottardi, F., Locatelli, M., & Melucci, D. (2019). A quick and efficient non-targeted screening test for saffron authentication: Application of chemometrics to gas-chromatographic data. *Molecules*, 24(14), 1–13. https://doi.org/10.3390/molecules24142602
- Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., & Lammertyn, J. (2007). Nondestructive

measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. *Postharvest Biology and Technology*, *46*(2), 99–118. https://doi.org/10.1016/j.postharvbio.2007.06.024

- Nobari Moghaddam, H., Tamiji, Z., Akbari Lakeh, M., Khoshayand, M. R., & Haji Mahmoodi, M. (2022). Multivariate analysis of food fraud: A review of NIR based instruments in tandem with chemometrics. *Journal of Food Composition and Analysis, 107*(December 2021). https://doi.org/10.1016/j.jfca.2021.104343
- Ordoudi, S. A., De Los Mozos Pascual, M., & Tsimidou, M. Z. (2014). On the quality control of traded saffron by means of transmission Fourier-transform mid-infrared (FT-MIR) spectroscopy and chemometrics. *Food Chemistry*, *150*(2014), 414–421. https://doi.org/10.1016/j.foodchem.2013.11.014
- Orrillo, I., Cruz-Tirado, J. P., Cardenas, A., Oruna, M., Carnero, A., Barbin, D. F., & Siche, R. (2019). Hyperspectral imaging as a powerful tool for identification of papaya seeds in black pepper. *Food Control*, 101(February), 45– 52. https://doi.org/10.1016/j.foodcont.2019.02.036
- Pessanha, S., Braga, D., Ensina, A., Silva, J., Vilchez, J., Montenegro, C., Barbosa, S., Carvalho, M. L., & Dias, A. (2023). A non-destructive X-ray fluorescence method of analysis of formalin fixed-paraffin embedded biopsied samples for biomarkers for breast and colon cancer. *Talanta*, *260*(March). https://doi.org/10.1016/j.talanta.2023.124605
- Petrakis, E. A., Cagliani, L. R., Polissiou, M. G., & Consonni, R. (2015). Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by1H NMR metabolite fingerprinting. *Food Chemistry*, *173*, 890–896. https://doi.org/10.1016/j.foodchem.2014.10.107
- Prieto, N., Roehe, R., Lavín, P., Batten, G., & Andrés, S. (2009). Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. *Meat Science*, *83*(2), 175–186. https://doi.org/10.1016/j.meatsci.2009.04.016
- R Core Team. (2022). The R Stats Package. https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
- Rubert, J., Lacina, O., Zachariasova, M., & Hajslova, J. (2016). Saffron authentication based on liquid chromatography high resolution tandem mass spectrometry and multivariate data analysis. *Food Chemistry*, *204*, 201–209. https://doi.org/10.1016/j.foodchem.2016.01.003
- S.Hagh-Nazari N.Keifi. (2007). Saffron and Various Fraud Manners in its Production and Trades. 411–416.
- Sabatino, L., Scordino, M., Gargano, M., Belligno, A., Traulo, P., & Gagliano, G. (2011). HPLC/PDA/ESI-MS evaluation of saffron (Crocus sativus L.) adulteration. *Natural Product Communications*, 6(12), 1873–1876. https://doi.org/10.1177/1934578x1100601220
- Sánchez-López, E., Sánchez-Rodríguez, M. I., Marinas, A., Marinas, J. M., Urbano, F. J., Caridad, J. M., & Moalem, M. (2016). Chemometric study of Andalusian extra virgin olive oils Raman spectra: Qualitative and quantitative information. *Talanta*, 156–157, 180–190. https://doi.org/10.1016/j.talanta.2016.05.014
- Shahnoushi, N., Abolhassani, L., Kavakebi, V., Reed, M., & Saghaian, S. (2020). Economic analysis of saffron production. In *Saffron*. INC. https://doi.org/10.1016/b978-0-12-818638-1.00021-6
- Shawky, E., Abu El-Khair, R. A., & Selim, D. A. (2020). NIR spectroscopy-multivariate analysis for rapid authentication, detection and quantification of common plant adulterants in saffron (Crocus sativus L.) stigmas. *Lwt*, *122*(January), 109032. https://doi.org/10.1016/j.lwt.2020.109032
- Soffritti, G., Busconi, M., Sánchez, R. A., Thiercelin, J., Polissiou, M., Roldán, M., & Fernández, J. A. (2016). *Genetic and Epigenetic Approaches for the Possible Detection of Adulteration and Auto-Adulteration in Saffron (Crocus sativus L .) Spice*. 1–16. https://doi.org/10.3390/molecules21030343

Standardization, I. O. for. (2011). Iso 3632-2. 2010.

- Uncu, O., & Ozen, B. (2019). A comparative study of mid-infrared, UV–Visible and fluorescence spectroscopy in combination with chemometrics for the detection of adulteration of fresh olive oils with old olive oils. *Food Control, 105*(April), 209–218. https://doi.org/10.1016/j.foodcont.2019.06.013
- Varliklioz Er, S., Eksi-Kocak, H., Yetim, H., & Boyaci, I. H. (2017). Novel Spectroscopic Method for Determination and Quantification of Saffron Adulteration. *Food Analytical Methods*, *10*(5), 1547–1555. https://doi.org/10.1007/s12161-016-0710-4
- Wakefield, J., McComb, K., Ehtesham, E., Van Hale, R., Barr, D., Hoogewerff, J., & Frew, R. (2019). Chemical profiling of saffron for authentication of origin. *Food Control*, *106*(June). https://doi.org/10.1016/j.foodcont.2019.06.025
- Zeng, Tan, Matsunaga, & Shirai. (2019). Generalization of Parameter Selection of SVM and LS-SVM for Regression. Machine Learning and Knowledge Extraction, 1(2), 745–755. https://doi.org/10.3390/make1020043