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Abstract—A computational model that quantifies the statisti-
cal distributions of the electromagnetic field scattered by a breast
with random variations in its complex permittivity profile is
presented. It involves the construction of a sparse hyperbolically
truncated polynomial chaos expansion for the scattered field
at each receiving antenna with the modified cross-validation
least-angle regression method and requires significantly less
deterministic model evaluations than Monte-Carlo sampling.
Tumor detectability, via the Cramér-von Mises criterion, is
studied for a simplified and a more realistic two-dimensional
breast model. In the latter case, the Karhunen-Loéve transform
is applied to reduce the stochastic dimensionality resulting from
a large number of correlated permittivity values.

Index Terms—microwave tomography, breast cancer, polyno-
mial chaos, sparse regression

I. INTRODUCTION

Microwave tomography is considered a promising alterna-
tive to mammography screening, particularly since electro-
magnetic waves in the microwave range are non-ionizing [1].
In practice, antennas are arranged around the surface of the
breast to collect the electric fields resulting from interactions
of the breast’s complex permittivity profile with different
transmitted waves. The data can be processed numerically
to provide an image of the breast interior [2]. The present
paper focuses on a statistical solution of the forward scattering
problem, to study the effects of random variations in the
tissues’ complex permittivity on the scattered field. Quan-
tifying the statistical distributions can provide new insights
on tumor detectability. One way to analyze the statistics is to
perform Monte-Carlo (MC) simulations for a large number of
permittivity profiles, leading to a huge computational effort
when a full-wave forward solver is employed. An alternative
is to compute the scattered field from a polynomial chaos (PC)
expansion. Whereas in antenna design the number of uncorre-
lated random variables (RVs) may be small enough to achieve
a substantial gain in computational effort [3], this is much
less the case in microwave tomography. Therefore we adopt

a sparse Hyperbolically Truncated PC expansion (HTPC),
constructed by the Modified Cross-Validation (MCV) Least-
Angle Regression (LAR) method [4]. We optimize and val-
idate the method by comparing the output distributions of
the sparse HTPC expansions and MC simulations performed
with a deterministic full-wave solver. Next, we study tumor
detectability by comparing the output distributions for profiles
with and without a tumor. The underlying idea is to observe
the differences between the cumulative distribution functions,
accomplished via the Cramér-von Mises criterion [5]. The
paper is organized as follows. In Section II the configuration
and methods are described. The results are discussed in
Section III. Section IV concludes the paper.

II. METHODS

Assume a two-dimensional (2D) breast model Ω char-
acterized by a relative complex permittivity εr(r) that is
invariant along the z-direction. It is surrounded by a coupling
medium to increase the microwave energy coupled into the
breast. As in [6], there are 16 receiving antenna locations
rR on a circle with diameter 0.15m around Ω, which are
numbered counterclockwise. Only the first location, rR1 =
(0.075m, 0) = rS = (xS, yS), is used also for transmitting.
The source emits a time-harmonic electromagnetic wave at
a frequency of 1.1GHz. The multiple receivers measure the
total electric field E. When Ω is not present, E corresponds
to the incident field Ei. The presence of Ω influences the
total field, which is written as E = Ei + Es, thereby
defining the scattered electric field. The source is a line source
and generates a Transverse Magnetically (TM) polarized
cylindrical wave Ei = Eiuz . Consequently all fields are TM-
polarized and are denoted further by their complex amplitudes
E, Ei and Es, where the time-depence ejωt is omitted. The
exact relation between the permittivity profile εr(r) and the



scattered field at a receiver location can be expressed by the
integral

Es(rR) = k2
0

∫
Ω

(εr(r
′)− εr,b)E(r′)Gb(r

R − r′)dr′, (1)

with k0 the propagation constant of vacuum, εr,b the relative
complex permittivity of the coupling medium and Gb the 2D
scalar Green’s function. Eq. (1) is employed for the exact
numerical computation of the scattered field by a Method
of Moments (MoM) discretized full-wave forward solver
[7]. The speed of the solver is significantly enhanced by
the iterative Bi-CGSTAB-FFT technique [8]. The solver is
instrumental in building and validating the stochastic model
and will be referred to as the deterministic solver.

Consider a rectangular domain D in the xy-plane with
Ω ⊂ D. The relative complex permittivity εr(r) = εrer (r) +
jεimr (r), with re and im the real and imaginary parts, respec-
tively, is discretized on D into N = Nx × Ny square cells
with centers rn, n = 1, ..., N and size ∆. Consequently, the
permittivity assumes a constant value within each cell, that
depends on the type of tissue (or coupling medium) assigned
to that cell. The discretized permittivity profile is represented
by a real vector εεε = [εre1 , ..., ε

re
N , ε

im
1 , ..., εimN ] of dimension

2N , where for simplicity the subscript r is omitted. In our
examples, we adopt a square domain D and in view of the Fast
Fourier Transform (FFT) implementation, we set the number
of cells in each direction equal to Nx = Ny = 8 × 2r + 1,
with r a positive integer. We choose the cell size ∆ sufficiently
small to secure a discretization error on the scattered fields
below 0.3%. The scattered field computed by the deterministic
solver then is considered as the exact scattered field.

The breast tissues employed in this paper and their mean
relative complex permittivity values at 1.1GHz [9] are listed in
Table I. The coupling medium is a 80:20 glycerin:water liquid
with complex permittivity 23.3− j18.46 [10] that mimics the
average constitutive parameters of the breast.

The stochastic variation of the permittivity vector εεε is
accomplished through a set of m uncorrelated RVs X =
(x1, . . . , xm). In εεε(X), only the permittivity values εren , ε

im
n

of cells with a center rn inside the breast depend on X ,
since the coupling medium is excluded from the random
variation. We assume a standard normal distribution N (0, 1)
for each uncorrelated RV. As such, different realizations of
εεε are obtained by Gaussian sampling of X . The MCV-LAR
method is formulated for real variables, hence we employ the
notation Es,pa, where pa stands for the real or imaginary part.

A. Monte-Carlo simulations
A straightforward method to extend the deterministic solver

for stochastic modeling is the Monte-Carlo method. The
exact computation of the scattered field Es in the receiver
locations is repeated for a large number NMC of different
permittivity vector realizations ε(X). For a valid stochastic
output distribution Es,pa(X, rRrRrR), at least 10000 samples are
typically required, since the rate of convergence of MC is
O(
√
NMC). We set NMC = 20000 for all MC simulations

performed with the deterministic solver.

TABLE I
RELATIVE COMPLEX PERMITTIVITY OF BREAST TISSUES AT 1.1GHZ

Tissue skin fat gland tumor
εrer 35 12.6 32.7 53.4
εimr -23 -10.13 -20.92 -18.8

B. Polynomial chaos

As an alternative to a time-consuming Monte-Carlo analy-
sis, the PC method provides a computational advantage when
the number m of uncorrelated RVs X = (x1, ..., xm) is
sufficiently small. The scattered field Es,pa(X) at a given
receiver position is expressed as an infinite expansion of
orthogonal polynomials φk(X) of the uncorrelated RVs. The
polynomials have to form a complete set and are selected to
yield optimal convergence. To make the method computation-
ally tractable, the expansion is truncated to K + 1 terms,

Es,pa(rRrRrR,X) =

K∑
k=0

cpa
k (rRrRrR)φk(X), (2)

where the coefficients cpa
k are real numbers and the depen-

dence of Es,pa on X is fully captured by the polynomials. In
the following, the dependencies on rRrRrR are omitted. According
to the Wiener-Askey scheme [11], the optimal polynomials
for standard normally distributed input RVs are products of
univariate probabilists’ Hermite polynomials,

φk(X) =

m∏
i=1

φki(xi) =

m∏
i=1

Hki(xi), (3)

with Hki the probabilists’ Hermite polynomial of order ki
related to the ith uncorrelated RV. Let p denote the maximum
degree that is allowed for the product of the polynomials in
(2). It follows that for each term

∑m
i=1 ki ≤ p. For given

values of m and p, the total number of terms in (2) then is
K + 1 = (p+m)!

p!m! , which grows extremely fast with m and p.

C. Cramér-von Mises criterion

To assess whether two output distributions, in the form
of cumulative distribution functions (CDFs), are to be
considered identical or different, we use the Cramér-von
Mises (CVM) criterion [5]. The null hypothesis of the CVM
criterion states that two arrays of values stem from the same
distribution. The test of significance assesses the strength
of the evidence against the null hypothesis. Thereto, we
compute Tnorm, i.e., the normalized T -value for the case
of two large arrays. The value of Tnorm corresponding
to a specific significance level α is denoted by tnorm,α.
Consider for example a significance level of α = 5%. The
value tnorm,5% = 0.461 is chosen as the threshold for the
CVM criterion. Under the null hypothesis, the probability
of obtaining a Tnorm value larger than or equal to tnorm,5%

is 5%. If the Tnorm value calculated from both arrays
is smaller than 0.461, the null hypothesis is accepted and
the distributions are considered equal, otherwise it is rejected.



D. Modified cross-validation least-angle regression

The MCV-LAR method yields a sparse expansion by iter-
atively selecting the polynomials φk that affect the output
values most [4]. The computational effort of the method
depends on the number of candidate polynomials. To reduce
the number of candidate polynomials, a hyperbolic truncation
scheme is applied. The polynomials φk thus have to satisfy
the condition (

∑m
i=1 k

Q
i )1/Q ≤ p, with k = (k1, ..., km) the

multi-index of φk, Q the Q-quasi norm and p a maximum
value used in the truncation. The selected indices k are
collected in the set denoted by Am,pQ with cardinality K ′. The
total number of terms in the HTPC expansion is denoted by
K ′ + 1. The MCV-LAR method is based on L deterministic
model evaluations. Firstly, the LAR algorithm is applied
to select the predictors, i.e., the polynomials in the HTPC
expansion with a non-zero coefficient. The HTPC coefficients
ck are all initialized to 0 and the current residual is equal to
the vector of L deterministic model evaluations denoted by
Y . In every iteration t, the polynomial that is most correlated
with the current residual is transferred from [A(t)]c to A(t),
with [A(t)]c = Am,pQ \A(t), where [A(t)]c and A(t) denote the
set of candidate and active indices, respectively. At the start
(t = 0), the active set is empty. After t iterations, (K ′+1−t)
indices remain in the candidate set. At the start of the tth

iteration, [K ′ + 1 − (t − 1)] indices remain in the candidate
set and the current residual is equal to Y −Y t−1. The vector
Y t−1 represents the predicted values in the L data points
based on the metamodel constructed by the (t − 1) active
polynomials and non-zero coefficients. The correlations of the
[K ′ + 1 − (t − 1)] candidate polynomials with the current
residual Y −Y t−1 are computed, after which the polynomial
with the highest correlation is selected. Next, the coefficients
have to be updated. They are moved towards the least-square
coefficients of the active predictors on the current residual
until the new polynomial from [A(t)]c has an equal correlation
with the current residual as the active set has. The two steps
are repeated until t = tmax = min(K ′ + 1, L). Secondly, the
MCV method is applied to the tmax metamodels delivered by
the LAR method. Their coefficients are recomputed with ordi-
nary least-squares regression. The metamodel corresponding
to the lowest value of the corrected Leave-One-Out error is
retained and constitutes the stochastic solution for Es,pa.

III. RESULTS

A schematic breast tissue profile that is representative for
the profiles in this paper is shown in Fig. 1. Its diameter is
0.12m and it comprises the four tissues listed in Table I: a
thin layer of skin on a concentric layer of fat, containing a
tumor with diameter 0.02m positioned at the bottom nearby
the source, and in the center a circular region made up of
randomly ordered cells of gland and fat. The square domain
is discretized into N = 257 × 257 = 66049 cells with size
∆ = 0.000547m, hence the number of cells inside the breast
equals 37825. We verified by means of analytical solutions
that the maximum discretization error over a wide range of
tissue properties for cylinders of this size is 3 · 10−3.

Fig. 1. Breast tissue profile.

In a first step we optimize the parameters of the HTPC
MCV-LAR method in terms of the trade-off between accuracy
and computational speed. This means selecting adequate
values for Q and p in the HTPC expansion and for the
number L of deterministic evaluations of Es,pa needed by
the MCV-LAR method. The value of Q influences the number
of candidate indices K ′ + 1 allowed in the HTPC expansion
and thereby the computational cost, which is of the order
O(L(K ′ + 1)2 + (K ′ + 1)3)) for the LAR method. We set
Q = 0.4. The values of p and L are optimized for the profile
of Fig. 1. Next we validate the optimized method on additional
profiles and apply it to the detection of a tumor.

The optimization is achieved by comparing the output
distributions of candidate sparse HTPC expansions as a
function of the parameter under investigation with the output
distribution from Monte-Carlo simulations performed with
the deterministic forward solver. Each output distribution is
generated with 20000 input samples X . The CVM criterion
with α = 1% is used to decide whether both arrays—each
of 20000 CDF values—stem from the same distribution. An
accurate sparse HTPC expansion then corresponds to a Tnorm
value below tnorm,1% = 0.743.

A. Profiles with a limited number of uncorrelated RVs

We first consider a simple stochastic permittivity model
by letting all breast cells in the grid that belong to one
tissue adopt the same permittivity value εpa

tissue = µpa
tissue +

σpa
tissue x

pa
tissue, where µpa

tissue and σpa
tissue are the mean value

(Table I) and the standard deviation, respectively, and where
xpa
tissue is one of the m = 8 uncorrelated RVs in X , with
m equal to twice the number of tissues present in the breast.
The variance σ2 is set to 10% of the mean value µ, hence

εreskin = 35 + 1.87x1 εimskin = −23 + 1.52x2

εrefat = 12.6 + 1.12x3 εimfat = −10.13 + 1.01x4

εregland = 32.7 + 1.81x5 εimgland = −20.92 + 1.45x6

εretumor = 53.4 + 2.31x7 εimtumor = −18.8 + 1.37x8 (4)



Fig. 2. Validation of the optimized parameters: Tnorm for Es,re (upper)
and Es,im (lower), for profiles without a tumor (red crosses) and with a
tumor in the center (blue circles). The horizontal line is at tnorm,1%.

To optimize the value of p, sparse HTPC expansions
Es,pa(X) are computed for a range of p-values between
5 and 15 for L = 250, 500, 750. For each expansion, an
output CDF is generated, as mentioned above. The maximum
values over all receivers of Tnorm appear to be smallest (lower
than 0.4) for p = 15. The computation time for constructing
the HTPC expansions is nearly proportional to L and is
nearly independent of p. This is due to the low number of
uncorrelated RVs m, hence of card(Am,pQ ), which implies
that the computation time of the LAR method is negligible
compared with the time needed for the L deterministic
evaluations. Consequently selecting p = 15 yields the most
accurate approximation and has no negative impact on the
computation time. Next, sparse HTPC expansions with p = 15
are computed for a range of L-values between 50 and 500.
The maximum values over all receivers of Tnorm reach a
minimum value of 0.26 < tnorm,1% at L = 250. We thus set
Q = 0.4, p = 15 and L = 250 as optimal parameters for the
the following.

The optimized HTPC MCV-LAR method is validated on
two additional profiles. Starting from Fig. 1, one profile
is obtained by removing the tumor and another one by
moving the tumor to the center into the glandular region.
Fig. 2 shows Tnorm at the different receivers, obtained by

applying the CVM criterion to the output distributions from
the sparse HTPC expansions and the Monte-Carlo simulations
with the deterministic solver. The tnorm,1% threshold is
never exceeded, hence the sparse HTPC expansions can be
considered as accurate. It was observed that the HTPC MCV-
LAR method was approximately 50 times faster than Monte-
Carlo sampling. For larger values of m, the computation time
increases significantly.

We finally discuss tumor detectability for two scenarios: a
tumor with diameter d is located either at the bottom of the
breast near the source (Fig. 1), or in the center of the breast.
The diameter of the tumor is varied from d = 0.02m down
to d = 0.005m in three equal steps, while the position of its
center is not altered. The number of receivers is increased to
160 to improve the resolution of the plots.

Tumor detectability is studied by comparing the profiles
with and without a tumor in two ways: stochastically and
deterministically. We now choose to expand the amplitude
|Es|, since it is experimentally harder to accurately measure
the phase. On the one hand, |Es,tumor| and |Es,notumor| are
expanded with the optimized HTPC MCV-LAR method. Both
output distributions are compared with each other using the
CVM criterion. The resulting values for Tnorm are shown in
the upper figures of Figs. 3 and 4 for the tumor in the center
and at the bottom, respectively. Note that a significance level
is not indicated, due to a lack of a relation between Tnorm
and the discretization error. On the other hand, |Es,tumor| and
|Es,notumor| are computed with the deterministic solver for
the mean permittivity values, i.e., with X = (x1, ..., xm) = 0.
The relative amplitude difference for the problem with and
without a tumor is defined by

∆AMPL,0 =

∣∣∣∣ |Es,tumor(0)| − |Es,notumor(0)|
|Es,notumor(0)|

∣∣∣∣ . (5)

The values of ∆AMPL,0 are shown in the lower figures of
Figs. 3 and 4. Detection of the tumor is only possible if they
exceed the discretization error of 3 · 10−3, indicated by the
horizontal line.

Firstly, consider the scenario with the tumor at the bottom
near the source. In Fig. 4 the tumor is detectable at almost
every receiver for all considered tumor sizes. It is more
detectable at the receivers close to it. When it is not detectable
at a certain receiver, that receiver is located at the other side of
the breast with respect to the tumor and source and its exact
location depends on the size of the tumor. Next, consider the
scenario with the tumor at the center. In Fig. 3 the values
of Tnorm and the number of receivers where ∆AMPL,0 is
larger than the discretization error decrease with decreasing
size d, but even the smallest tumor with size d = 0.005m is
detectable at some receivers further away from the source; it
is the least detectable at the receivers close to the source. In
reality, when trying to detect a tumor, every antenna location
once serves as a source location. Tumor tissue at the center of
the breast thus may be the hardest to detect, since the wave
has to travel the longest distance.



Fig. 3. Detectability of a tumor in the center, with tumor sizes 0.02m,
0.015m, 0.01m and 0.005m: Tnorm based on |Es,tumor| and |Es,notumor|
(upper) and ∆AMPL,0 (lower) as a function of the receiver position. The
horizontal line indicates the discretization error.

B. Profiles with a larger number of uncorrelated RVs

We now consider a more realistic stochastic permittivity
model by letting each grid cell inside the breast take a
different complex permittivity value, represented by two RVs,
one for the real and one for the imaginary part. For the profile
of Fig. 1 with 37825 cells inside the breast, there are a total
of M = 75650 RVs. In reality, the permittivity values of
cells that belong to a same tissue are spatially correlated.
The behavior of their RVs is characterized by their spatial
correlation profile, which we assume to be Gaussian. The
covariance matrix is defined as

ΣΣΣij = σiσj exp

(
−|rrri − rrrj |2

L2
c

)
, (6)

with i, j = 1, ...,M , where M denotes the total number of
correlated RVs, where σi and σj are the standard deviations
and rrri and rrrj the position vectors of the grid cells correspond-
ing to the ith and jth correlated RV, respectively, and where Lc
is the correlation length. The correlation length depends on the
type of tissue and is chosen as Lc = λtissue/5, with λtissue
the wavelength in the tissue. There is no correlation between
different tissue types and the variances are as previously.

A PC expansion is based on m uncorrelated RVs and
the run-time of the MCV-LAR method is dependent on m.

Fig. 4. Detectability of a tumor at the bottom, with tumor sizes 0.02m,
0.015m, 0.01m and 0.005m: Tnorm based on |Es,tumor| and |Es,notumor|
(upper) and ∆AMPL,0 (lower) as a function of the receiver position. The
horizontal line indicates the discretization error.

The aim is to reduce the number M of correlated RVs
significantly without loss of vital information. To reduce
the dimensionality of the stochastic behavior, we apply the
Karhunen-Loéve Transform (KLT), which is based on an
eigenvalue decomposition of the covariance matrix

εεεT = µµµT + UΛ1/2XT (7)

where T stands for transpose, µµµ is the mean of the permittivity
vector εεε, Λ is the m×m eigenvalue matrix corresponding to
the m largest eigenvalues, U is the M×m eigenvector matrix
and X denotes the vector of m uncorrelated RVs retained
by KLT. The uncorrelated RVs corresponding to the largest
eigenvalues contain the highest amount of information.

Considering the profile of Fig. 1, applying an eigenvalue
decomposition to a 75650 × 75650 covariance matrix ΣΣΣ
requires an excessive amount of memory. Since with the
chosen cell size ∆ = 0.000547m the correlation between
the correlated RVs of neighboring cells is very strong, it is
possible to approximate the distributions of 75650 correlated
RVs by 18898 correlated RVs, i.e., on a coarser grid with a
cell size ∆ = 0.001094m, without significantly influencing
the approximations of the scattered field distributions at
the receivers. Consequently, the KLT is performed on the
smaller covariance matrix and afterwards, the matrix UΛ1/2



Fig. 5. ACR class 2 breast profile without (left) and with (right) a tumor
added.

is extended again to M = 75650 rows, in order not to increase
the discretization error.

The optimization of the HTPC MCV-LAR parameters p,
Q, L and now also m is conducted in a similar way to that
in the previous examples. The optimal settings are found to
be Q = 0.4, p = 6 and L = 1300, while for m the values
depend on the location of the receiver: m = 100 for receivers
nearby the source and m = 50 for receivers opposite to the
source.

We validate the optimized HTPC MCV-LAR method for a
more realistic breast profile, that is based on a ACR class 2
(scattered fibroglandular) numerical breast phantom from the
UWCEM database [12]. A coronal slice is shown in the left
figure of Fig. 5. The originally different types of glandular
tissues and the transitional tissue are grouped together into
one single tissue gland and the different types of fatty tissues
into one single tissue fat and the permittivity values from
Table I are adopted. We construct a sparse HTPC expansion
and perform Monte-Carlo simulations with the deterministic
solver for m = 1000 uncorrelated RVs. Both output distribu-
tions, represented by 20000 samples each, are compared with
the CVM criterion. For all receivers, the resulting values of
Tnorm are below tnorm,1%.

We now examine tumor detectability for two different
profiles: starting from the profile in the left figure of Fig. 5
a tumor with diameter d = 0.02m is positioned either in the
center (right figure of Fig. 5), or at the bottom near the source.
The scattered fields |Es,tumor| and |Es,notumor| are expanded
with the optimized HTPC MCV-LAR method. Both output
distributions are compared with each other using the CVM
criterion. The values of Tnorm are shown in Fig. 6. Similar
to the results from the previous examples, the tumor located
near the source is the most easily detectable.

CONCLUSION

Sparse hyperbolically truncated polynomial chaos expan-
sions of the electric field scattered by a breast with ran-
dom variations in its complex permittivity profile were con-
structed with the modified cross-validation least-angle regres-
sion method, which required significantly less deterministic
model evaluations than Monte-Carlo sampling. The method
was optimized and validated for breast permittivity profiles
involving a limited as well as a large number of random

Fig. 6. Tumor detectability for ACR class 2 profiles: Tnorm based on
Es,tumor and Es,notumor for a tumor with size 0.02m in the center (red
circles) and at the bottom (green crosses), as a function of the receiver
position.

variables. In the latter case the Karhunen-Loéve transform
was applied to reduce the stochastic dimensionality. Tumor
detectability via the Cramér-von Mises criterion was illus-
trated for tumor sizes down to 0.005m.
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