
Query Pep�des

Blood

Brain parenchyma

BBB+ BBB-

Machine Learning Dimensionality Reduc�on Pep�de Classifica�on

BrainPepPass
Page 1 of 70

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



1

1 BrainPepPass: A Framework Based on Supervised 

2 Dimensionality Reduction for Predicting Blood-

3 Brain Barrier-Penetrating Peptides

4 Ewerton Cristhian Lima de Oliveira1,5*, Hannah Hirmz2*, Evelien Wynendaele2, Juliana

5 Auzier Seixas Feio1, Igor Matheus Souza Moreira1, Kauê Santana da Costa3, ‡, Anderson

6 H. Lima4, Bart De Spiegeleer2, ‡, Claudomiro de Souza de Sales Júnior1, ‡ 

7 1Laboratório de Inteligência Computacional e Pesquisa Operacional, Campos Belém, 

8 Instituto de Tecnologia, Universidade Federal do Pará, 66075-110, Belém, Pará, Brasil

9 2 Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, 

10 Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.

11 3Laboratório de Simulação Computacional, Campos Marechal Rondon, Instituto de 

12 Biodiversidade, Universidade Federal do Oeste do Pará, 68040-255, Santarém, Pará, Brasil.

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2

13  4Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas 

14 e Naturais, Universidade Federal do Pará, 66075-110, Belém, Pará, Brasil. 

15 5Instituto Tecnológico Vale, 66055-090, Belém, Pará, Brasil.

16 * Authors contributed equally to this work.

17 ‡ Corresponding authors

18 This paper is dedicated to the memory of a great biomedical scientist, Professor Abba 
19 Jeremiah Kastin, who passed away last year.
20

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

21 GRAPHICAL ABSTRACT

22

23

24 ABSTRACT

25 Peptides that pass through the blood-brain barrier (BBB) are not only implicated in brain-

26 related pathologies but are also promising therapeutic tools for treating brain diseases, e.g., as 

27 shuttles carrying active medicines across the BBB. Computational prediction of BBB-

28 penetrating peptides (B3PPs) has emerged as an interesting approach because of its ability to 

29 screen large peptide libraries in a cost-effective manner. In this study, we present 

30 BrainPepPass, a machine learning (ML) framework that utilizes supervised manifold 

31 dimensionality reduction and extreme gradient boosting (XGB) algorithms to predict natural 

32 and chemically modified B3PPs. The results indicate that the proposed tool outperforms other 

33 classifiers, with average accuracies exceeding 94% and 98% in 10-fold cross-validation and 
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4

34 leave-one-out cross-validation (LOOCV), respectively. In addition, accuracy values ranging 

35 from 45% to 97.05% were achieved in the independent tests. The BrainPepPass tool is available 

36 in a public repository for academic use (https://github.com/ewerton-cristhian/BrainPepPass). 

37

38 INTRODUCTION

39 Blood brain-penetrating peptides are oligopeptide chains that can naturally traverse the 

40 blood-brain barrier (BBB); thus, for example facilitating the enhanced uptake of molecular 

41 cargoes in a non-selective way. Hence, they are also called BBB shuttle peptides.1–4 Until the 

42 1970s, peptides were believed not to cross the BBB. The late Abba J Kastin († in 2022) was 

43 the first researcher who experimentally tried to refute this assumption. After injecting 

44 radiolabeled peptides such as 125I-Met-enkephalin and 3H-α-melanocyte-stimulating hormone 

45 into the carotid artery of mice, Kastin and colleagues observed radioactivity in different brain 

46 regions, providing the first indications that certain endogenous peptides cross the BBB.5–7 

47 William Banks continued and expanded this research, becoming a protagonist in the field of 

48 BBB permeability of peptides. Their research shed light on the function of these endogenous 

49 peptides as they showed that in crossing the BBB, peptides act as informational molecules that 
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50 inform the brain of peripheral events. Conversely, peptides crossing from the brain to the blood 

51 can deliver information in the brain-to-blood direction.8 Not only physiological functions but 

52 also pathologies are attributed to the BBB passage of certain peptides. For instance, BBB 

53 dysfunction results in amyloid-β disposition in the brain by preventing its normal transport 

54 through the BBB. Amyloid plaques formed by amyloid-β aggregation are considered 

55 pathological triggers of Alzheimer’s disease.9 Another example is the transport of insulin 

56 through the BBB, which is decreased in obese people10,11 but seems to be increased in people 

57 with diabetes mellitus.12,13 BBB-penetrating peptides (B3PPs) are being explored in drug 

58 development as potential shuttle molecules capable of transporting bio-active drugs across the 

59 BBB. In addition, some B3PPs may serve as cell-penetrating peptides.14 Peptides, including 

60 the B3PPs, show low immunogenicity and toxicity, and are amenable to chemical synthesis, 

61 offering a plethora of possibilities for functional modifications and improvements. Therefore, 

62 B3PPs have opened up new therapeutic and diagnostic horizons.2,4,15

63 Determining whether and to what extent peptides can cross the BBB is a challenge that 

64 requires the development of appropriate in vitro and in vivo techniques to address the technical 

65 difficulties in studying these molecules. Various experimental methods have been utilized to 

66 determine the permeability of peptides across the BBB, including static in vitro models 
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6

67 encompassing transwell monoculture models, co-culture models, and triple-cell co-culture 

68 models. These are straightforward and inexpensive methods that do not capture the 

69 physiological complexity involved in BBB permeation. More advanced in vitro models such 

70 as the blood-brain barrier specific parallel artificial membrane permeability (BBB-PAMPA), 

71 bovine brain microvessel endothelial cells (BBMEC), dynamic in vitro models, microfluidic 

72 models, and induced pluripotent stem cells (iPSC)-based models, have been developed to more 

73 closely mimic the in vivo situation.16–19 However, these models are expensive and involve 

74 complex and rigid procedures, some of which are not well established.18,19 Finally, in vivo 

75 experimental methods include the brain uptake index (BUI), multiple time regression (MTR) 

76 analysis or Gjedde-Patlak plot, in situ brain perfusion, brain microdialysis, and quantitative 

77 radiography. These experimental methods involve more complex, cost- and time-consuming, 

78 and labor-intensive techniques when compared to computational tools, but provide the most 

79 complete and detailed quantitative information.18,20–22

80 With the development of artificial intelligence technology, machine learning (ML) models 

81 have been applied in many biochemistry research fields, including protein and protein-like 

82 molecule analysis23–27. For instance, Bao et al. developed several tools covering a wide range 

83 of applications, such as Golgi_DF, which classifies Golgi proteins using deep forest 
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84 algorithms,28 and Phage_UniR_LGBM, which classifies phage virion proteins using UniRep 

85 features and the LightGBM algorithm.24

86 Information on BBB permeability is also often difficult to interpret, because of the multitude 

87 of research methods used. Their corresponding output responses ensure that BBB permeability 

88 information is not always straightforward to compare, especially in the absence of generally 

89 agreed controls such as BSA as a negative control and dermorphin as a positive control. To 

90 circumvent this problem and allow a direct comparison of BBB influx results, Stalmans et al. 

91 introduced a classification method and unified the response of BBB influx transport. The 

92 results of different BBB influx response types, which quantitatively express brain influx, were 

93 classified into five classes of BBB influx magnitude based on the distribution of the results for 

94 individual response types. This classification can be immediately applied to new BBB influx 

95 results of peptides and allows the direct comparison and ranking of peptides independent of the 

96 response type.29

97 Owing to expensive, time-consuming, and labor-intensive experimental methods, there is an 

98 imminent need for efficient in silico methods to estimate the BBB permeability of peptides. 

99 Several computational methods for estimating the BBB permeability of small molecules 

100 (excluding peptides) have already been developed.30–37 However, for estimating the BBB 
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101 permeability of peptides, in silico methods have only been sparsely investigated.37 Dai et al. 

102 presented a sequence-based prediction approach to identify whether a peptide can penetrate the 

103 BBB. Using a benchmark dataset, a feature representation learning strategy was designed to 

104 characterize sequence-based features from a wide variety of feature descriptors38. 

105 Subsequently, a three-step feature-selection method was adopted to filter irrelevant and 

106 redundant features, resulting in seven optimal features. Based on the optimal features, a 

107 predictive model was developed using logistic regression (LR).37 Zou employed 

108 physicochemical properties of amino acids to represent peptide sequences, and the maximal 

109 information coefficient (MIC) and Pearson’s correlation coefficient (PCC) were used to extract 

110 useful information from them. A similarity network fusion algorithm was utilized to integrate 

111 these two different types of features, followed by the Fisher algorithm to select the 

112 discriminative features. Finally, these selected features were input into support vector machine 

113 (SVM) to distinguish B3PPs from non-B3PPs.39 However, despite the valuable information 

114 provided by these in silico methods for predicting peptide penetration of the BBB, the lack of 

115 computational tools to predict this pharmacokinetic property for both natural and chemically 

116 modified peptides hampered the efficient exploration of biotechnological and pharmaceutical 

117 applications of these molecules against several brain diseases.
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118 In this article, we describe BrainPepPass, a novel ML-based framework dedicated to 

119 predicting not only whether natural peptides can cross or not the BBB, but also whether 

120 chemically modified peptides have this property. To the best of our knowledge, BrainPepPass 

121 is the first tool in this research field that employs a supervised manifold dimensionality 

122 reduction algorithm in the preprocessing stage, in combination with extreme gradient boosting 

123 (XGB) models. The recently extended Brainpeps database was used as the most up-to-date and 

124 complete data source for this study. Moreover, we investigated how distinct groups of 

125 molecular descriptors, including physicochemical and structural properties, correlate with the 

126 BBB permeability of peptides. In addition, we have provided a repository with the tool 

127 developed in this study to predict the BBB permeability of peptides.

128

129 MATERIAL AND METHODS

130 Datasets

131 Brainpeps consolidates extensive information related to peptides that interact with and 

132 penetrate the BBB. The database contains pertinent details of peptides, such as their 

133 nomenclature, primary structure, bibliographical references, as well as pharmacokinetic 
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134 indicators. The molecules included in this database were subjected to experimental evaluation, 

135 where their BBB penetration characteristics were assessed using a diverse range of methods.40

136 A total of 328 peptides from Brainpeps were extracted in the MOL format, which was 

137 essential for our study because this file format encodes the chemical modifications in the 

138 peptide’s structure, in addition to encoding the cyclic peptides present in this database. The 

139 peptides were classified into two categories: blood-brain barrier permeable (BBB+) or 

140 nonpermeable (BBB-). This designation was based on experimental indicators used to evaluate 

141 the brain penetration levels of the peptides. The six indicators employed in this study included 

142 the unidirectional influx constant (Kin), measured by multiple time regression (MTR) as well 

143 as by in situ brain perfusion methods; BBB permeability (P), both in vitro and in vivo; 

144 endothelial permeability (Pe) (measured using the parallel artificial membrane permeability 

145 assay [PAMPA]); and apparent permeability coefficient (Papp).

146 The parameter Kin or unidirectional influx constant is an indicator that characterizes the 

147 steady-state unidirectional influx transfer of peptides from the bloodstream to the brain after a 

148 single passage, and is measured in mL/(g.min). This indicator is obtained by performing either 

149 multiple time regression (MTR) or an in situ brain perfusion experiment. After intravenously 

150 injecting with a radiolabeled compound, the brain and plasma or perfusate concentrations is 
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151 measured at several time points, which allows the construction of a concentration-time profile, 

152 where the slope of this linear regression measures Kin.41 This in vivo method has been utilized 

153 to classify the penetration of specific peptides such as conotoxin cVc1.1,42 or somatropin- 

154 derived or modified peptides,43 and quorum-sensing peptides such as PapRIV.44 

155 Conversely, the permeability indicator P, which can be measured using both in vitro and in 

156 vivo techniques, expresses the rate at which a peptide moves from the blood to the brain in 

157 units of distance per time, usually cm/s.29 Pin vitro data is acquired using the brain microvessel 

158 endothelial cell (BMEC) culture model. In this technique, bovine, porcine, mouse, rat, or 

159 human BMEC form a monolayer on a rat-tail collagen-coated filter or a microporous membrane 

160 placed in a diffusion apparatus consisting of a donor and receptor chamber. The test peptide is 

161 placed in the donor compartment and the amount of peptide is measured in samples periodically 

162 taken from the acceptor compartment. The amount of test peptide in the acceptor compartment 

163 can then be plotted as a function of time to calculate Pin vitro, which is dependent on the initial 

164 concentration of the test peptide in the donor compartment as well as the membrane surface 

165 area. Pin vivo is measured by performing in situ brain perfusion experiments in animal models, 

166 such as rats.43,45
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167 Two other permeability indicators, related to P, determined using slightly different methods 

168 and calculations are Pe and Papp. Pe evaluates the in vitro ability of a molecule to penetrate the 

169 endothelial cell layer, which represents the primary barrier to the entry of substances into the 

170 brain, and is measured in 10−6 cm/s. Di et al. proposed a classification system for molecules 

171 based on their Pe values, where values greater than 4.10−6 cm/s indicate high penetration, values 

172 less than 2.10−6 cm/s indicate low penetration, and values between 2.10−6 and 4.10−6 cm/s 

173 indicate uncertain permeation.46 These ranges were derived empirically using parallel artificial 

174 membrane permeation assays (PAMPA). This technique utilizes a porcine polar brain lipid 

175 artificial membrane between the donor and acceptor compartments to predict the blood-brain 

176 barrier permeation of molecular compounds, including peptides. This technique, in its different 

177 variants, has been used to classify the permeability of various compounds in the brain, 

178 including 3-hydroxy-2-pyridinealdoxime,47 furosemide, ranitidine, donepezil, tacrine,48 

179 platyphyllenone, alnusone,49 gingerol, and shogaol derivatives.50

180 The apparent permeability coefficient (Papp) is a similar indicator used to evaluate the in-vitro 

181 ability of a molecule to traverse a cell-barrier, such as the blood-brain barrier, and is expressed 

182 in units of cm/s.  In vitro models of the BBB, such as monolayers of endothelial cells, are 

183 commonly employed to evaluate the permeability of compounds using Papp.51 In a similar 
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184 manner to Pe, a classification system for molecules based on their Papp values was proposed by 

185 Yoon et al., where values greater than 20.10−6 cm/s are considered indicative of high 

186 permeability, while values lower than 2.10−6 cm/s suggest low permeability.52 Each of these 

187 BBB influx response describes the BBB influx from a different viewpoint using different 

188 techniques, thereby providing different information.

189 As previously discussed, studies investigating the entry of peptides and other compounds 

190 into the BBB have employed established limits on physicochemical indicators to determine 

191 their permeability. Specifically, we propose to categorize peptides as belonging to either the 

192 BBB+ or BBB- class based on the limits described for each indicator. For Pe and Papp, high 

193 penetration was designated as belonging to the BBB+ class, whereas low penetration was 

194 classified as BBB-. Peptides with penetration rates between low and high were classified 

195 according to the proximity of their respective values to one of the two thresholds (high or low). 

196 For example, a peptide with a penetration level numerically closer to a low threshold was 

197 classified as BBB-. In terms of Kin and P, we dichotomously classified peptides based on the 

198 five groups proposed by Stalmans et al. to evaluate the influx of peptides across the BBB.29 

199 Peptides belonging to the very low and low influx categories were classified as BBB- class, 

200 while those in the medium, high, and very high influx categories were classified as BBB+. The 
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201 proposed classification system is expected to facilitate a more direct understanding of BBB 

202 permeability and contribute to the development of more effective permeability prediction 

203 strategies.

204 The implementation of the proposed criteria for classifying peptides based on their 

205 permeability in the BBB using physicochemical indicators in our study yielded a database 

206 containing 231 BBB+ and 97 BBB- peptides. However, the database was unbalanced in terms 

207 of the number of peptides belonging to each class, necessitating

208 the division of the data into three balanced datasets to avoid issues associated with overfitting. 

209 Each dataset comprised the same 97 BBB- peptides and 97 randomly sampled BBB+ peptides.

210 Of the 231 peptides classified as BBB+ in the complete database, 10 were randomly selected 

211 to constitute the test sample of permeable molecules (TSP), whereas the remaining 221 

212 peptides were used to compose the training samples of permeable molecules (TRP). The BBB+ 

213 peptides in Dataset 1 were composed of 87 molecules randomly sampled from TRP (TRP-1) 

214 and 10 peptides from TSP, totaling 97 BBB+ peptides. Similarly, the BBB+ peptides in Dataset 

215 2 were a combination of distinct 87 molecules randomly sampled from the TRP (TRP-2) and 

216 10 peptides from the TSP. The training samples of BBB+ peptides in Dataset 3 (TRP-3) were 

217 composed of the remaining 57 samples from TRP with 15 randomly selected peptides from 
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218 TRP-1 and 15 peptides randomly selected from TRP-2, while the test samples include the same 

219 molecules from TSP, totaling 97 BBB+ peptides (see Figure 1). 

220

221

222 Figure 1. Construction of the three balanced datasets. TRP-[1,2,3]: training samples of BBB+ 

223 peptides, TSP: test samples of BBB+ peptides, TRN: training samples of BBB- peptides, TSN: 

224 test samples of BBB- peptides.

225

226 Overall, each of the three datasets comprised a balanced number of samples from both 

227 classes, with 97 BBB+ and 97 BBB- peptides. In each dataset, 174 peptides (87 BBB+ and 87 

228 BBB-) were dedicated to training, while 20 peptides (10 BBB+ and 10 BBB-) were used for 

229 testing. This approach ensured that each dataset could be utilized for both training and testing 
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230 and that the models developed using these datasets were adequately validated. Supplementary 

231 Table S1 provides information regarding the peptides used in each dataset.

232

233 Molecular Properties

234 In this study, we investigated the permeability of peptides across the blood-brain barrier by 

235 analyzing a set of molecular properties. The molecular properties were grouped into four 

236 distinct feature compositions (FCs). The first feature composition (FC-1) comprised several 

237 key descriptors including molecular weight (MW), calculated water-octanol partition 

238 coefficient (LogP), calculated octanol-water distribution coefficient (LogD) at pH 7.4, 

239 topological polar surface area (TPSA), number of hydrogen bond acceptors (HBA), donors 

240 (HBD), nitrogen count (nN), oxygen count (nO), and nitrogen plus oxygen count (nN+nO). 

241 Previous studies have highlighted the importance of these descriptors in filtering molecules 

242 that are likely to reach the central nervous system (CNS).1,53–55 Furthermore, some of these 

243 descriptors have also been linked to the oral bioavailability of compounds, as proposed by 

244 Lipinski’s rule of five and other related studies on bioavailability and biomembrane 

245 permeability.56–59
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246 The second feature composition (FC-2) comprised Mordred’s molecular descriptors, which 

247 consist of a combination of structural and physicochemical descriptors. Mordred is a Python 

248 library for molecular descriptor calculations that encompasses 2D, 3D, constitutional, and 

249 electronic descriptors.60 The 749 descriptors in this FC were extracted from the 231 molecules 

250 using this package, after filtering out molecular properties with missing, non-numeric, or non-

251 Boolean values.

252 The third feature composition (FC-3) was constructed by selecting the ten best-correlated 

253 molecular descriptors from FC-2 using Kendall’s correlation coefficient. The fourth

254 feature composition (FC-4) was obtained by combining FC-1 and FC-3. Supplementary Tables 

255 S2, S3, and S4 provide information on the molecular descriptors of FC-1, FC-2, and FC-3.

256 To calculate the FC-1 descriptors, we utilized the RDKit package in Python to extract the 

257 properties from the peptides, except for LogD, which was determined

258 for each molecule using the Instant JChem software. The other descriptors were calculated 

259 using the Mordred package.

260

261 Proposed Machine Learning Framework

262
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263 The ML-based framework proposed in this study for predicting B3PPs, BrainPepPass, is a 

264 generic architecture, comprising two stages: dimensionality reduction pattern learning (DRPL) 

265 and classification. The DRPL step involves projecting a high-dimensional dataset of molecular 

266 descriptors onto a three-dimensional (3D) space, with the dual objective of facilitating low-

267 dimensional visualization of peptides and enabling the clustering of molecules based on their 

268 BBB+ or BBB- class labels. To this end, we employed a supervised Laplacian eigenmaps (sLE) 

269 algorithm, which has been demonstrated to be effective in reducing high-dimensional data with 

270 class labels.61 However, the original sLE algorithm, like t-SNE, lacks the capacity for 

271 independent dataset dimensionality reduction, which renders it unsuitable for BrainPepPass 

272 prediction of the permeability of new peptides. To overcome this limitation, we propose using 

273 an XGB regression (XGBr) algorithm.

274 As shown in Figure 2a, the DRPL stage entails the dimensionality reduction of a high-

275 dimensional dataset consisting of molecular descriptors by FC to a 3D representation. 

276 Specifically, the same original n-dimensional data was used as input, and their 3D projection 

277 was used as the target to train an XGBr algorithm to learn the DR pattern performed by sLE. 

278 To select the optimal hyperparameters for the XGBr, we performed a grid search with a 

279 predetermined range of values and utilized a 10-fold cross-validation technique to compute the 
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280 average accuracy metric. Supplementary Table S5 presents the search range and best 

281 hyperparameters obtained through this process.

282 The subsequent stage of our ML-based framework involved the classification of molecules 

283 using an XGB classifier (XGBc). As illustrated in Figure 2b, the training of the XGBc model 

284 leveraged the 3D data generated by the DRPL stage as input, with the target being the class 

285 labels of the peptides (BBB+ or BBB-). To optimize the performance of XGBc, we performed 

286 a grid search for the optimal set of hyperparameters, similar to the approach used for XGBr. 

287 Supplementary Table S6 presents the search range and best hyperparameters obtained through 

288 this process.

289 To summarize, the ML-based framework proposed in this study for predicting peptide 

290 penetration across the BBB consists of a pipeline comprising the XGBr and XGBc algorithms. 

291 The former algorithm was trained to learn the DR pattern produced by the sLE algorithm, 

292 whereas the latter was responsible for predicting whether a given peptide could penetrate the 

293 BBB, as shown in Figure 2c. Importantly, BrainPepPass also facilitates 3D visualization of 

294 new data, which is a key feature for analyzing the extent of separation of a given peptide from 

295 its original cluster.
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296 The methodology proposed in this study is summarized in the flowchart shown in Figure 3. 

297 Figure 3a illustrates the data extraction step from Brainpeps, where peptides are classified into 

298 BBB+ and BBB- based on physicochemical indicators, the three datasets are structured, and 

299 the molecular descriptors are calculated. Figure 3b shows the preprocessing step in which the 

300 FCs are constructed for each dataset. Figure 3c shows the final step, in which the data are 

301 partitioned into training and testing sets, and each of the algorithms analyzed in this study is 

302 trained and tested for their respective comparisons using various metrics.

303

304

305 Figure 2. Stages of the BrainPepPass. (a) DRPL stage. (b) Training of the XGBc for predicting 

306 peptides permeability. (c) Final architecture of the BrainPepPass.
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307

308 Figure 3. Flowchart of the proposed method to predict B3PPs. (a) Data extraction and 

309 molecular properties calculation. (b) Data preprocessing to generate the FCs. (c) B3PPs 

310 prediction with BrainPepPass and comparison with other algorithms.

311

312 RESULTS AND DISCUSSION

313
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314 We conducted a thorough analysis using BrainPepPass to predict the permeability of peptides 

315 across the BBB by considering multiple factors. First, we performed a Kendall correlation 

316 analysis to examine the relationship between the selected structural and physicochemical 

317 properties of the peptides and their corresponding permeability classes for each FC. This 

318 analysis provided insights into the behavior of previously studied permeability properties in 

319 our dataset and helped identify the most relevant descriptors to compose FC-3 and FC-4. Thus, 

320 the present study evaluated the performance of the proposed ML-based framework trained with 

321 three datasets for each FC using 10-fold cross-validation and independent testing. Additionally, 

322 leave-one-out cross-validation (LOOCV) was used to investigate the predictive generalization 

323 of BrainPepPass. Moreover, the proposed method was compared with state-of-the-art 

324 classifiers previously used in the same research field, such as artificial neural network (ANN), 

325 SVM, and XGB. We also compared BrainPepPass using the same ML architecture as shown 

326 in Figure 2  but with other manifold DR algorithms such as locally linear embedding (LLE), 

327 isometric mapping (Isomap), and uniform manifold approximation and projection (UMAP). 

328 These comparisons assessed the predictive power and information content of the molecular 

329 descriptors in discriminating permeability classes of peptides.

330
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331 Correlation Analysis and Feature Selection

332 We employed the Kendall correlation to evaluate the association between the molecular 

333 descriptors investigated in FC-1 (see Figure 4a) and all 749 descriptors calculated in FC-2 and 

334 their corresponding permeability classes. Based on these results, we identified the top ten 

335 descriptors with the highest correlation values to form FC-3 (see Figure 4b).

336

337 Figure 4. Kendall correlation analysis on molecular descriptors regarding to permeability 

338 across the BBB. (a) Molecular descriptors previously reported as associated with the 

339 permeability of small molecules across the BBB (FC-1). (b) 10 most correlated Mordred’s 

340 descriptors (FC-3).

341

342 The findings depicted in Figure 4 highlight some aspects of the relationship between the 

343 molecular properties and permeability of peptides across the BBB. Specifically, the properties 
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344 included in FC-1, which have been previously reported to exhibit the highest correlation with 

345 the permeability of this biological barrier for small molecules, displayed comparatively lower 

346 correlation values in the Kendall correlation analysis than other structural and physicochemical 

347 properties derived from Mordred.

348 Figure 4b shows some properties related to the electrical properties of the investigated 

349 molecules. For example, the charge index (JGIx) is a topological descriptor that characterizes 

350 the molecular charge distribution on the x-th order.62 Notably, values of 0.156, 0.114, 0.11, and 

351 0.178 were obtained for JGI5, JGI6, JGI7, and JGI9, respectively. In addition, Estate-VSA 

352 calculates the sum of the van der Waals surface area contributions to the electron topological 

353 states within a specific range.63 A value of 0.104 was observed for Estate-VSA5. The Geary 

354 coefficient (GATSyd) is a general index of 2D-autocorrelation with lag y applied to a molecular 

355 graph.64 It describes the topology of a molecule associated with atomic masses, polarizabilities, 

356 and Sanderson electronegativities, weighted by sigma electrons. The descriptor GATS3d 

357 achieved a correlation value of 0.098.

358 Although no study has focused on the relationship between JGIx and BBB penetration, 

359 studies based on lipid bilayer membrane models to evaluate this pharmacokinetic property of 

360 compounds have revealed that charged molecules can modify the dipole potential of the 
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361 membrane through electrostatic interactions and interact with the BBB through attraction and 

362 repulsion.55 Similarly, estate-VSA descriptors have not been investigated in depth regarding 

363 their association with the penetration of this barrier. However, Liu et al. concluded that high 

364 van der Waals surface area values are associated with good permeability of molecules in the 

365 BBB because molecules with high values tend to protonate and carry positive charges in 

366 molecules.65 Similarly, the correlation between the Geary coefficient and BBB penetration has 

367 not yet been investigated in previous studies.

368 Additionally, the correlations of other selected features related to the structural properties of 

369 the molecules were investigated. For instance, RotRatio, which represents the ratio of the 

370 number of rotatable bonds to the total number of bonds in the molecule, showed a correlation 

371 value of 0.125. Similarly, the nAcid property, representing the number of acidic groups, 

372 showed a correlation value of 0.156. Some studies have indicated that the smaller the number 

373 of rotational bonds, that is, five or fewer bonds, the greater the permeability of the molecule in 

374 the CNS.54  However, the number of acidic groups was not directly evaluated as a parameter 

375 to filter molecules that could penetrate the BBB, although Dichiara et al. observed in their 

376 studies that acidic compounds are among the least permeable across the barrier.53
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377 Several of the descriptors selected for this analysis were linked to the drug-likeness of the 

378 molecules and other molecular properties. For example, the descriptor Lipinski represents a 

379 logical feature based on Lipinski’s rule of five, which determines whether a molecule can be 

380 considered an orally available drug by satisfying specific numerical criteria for MW, LogP, 

381 HBA, and HBD.57 Another cheminformatics filter, GhoseFilter, defines drug-likeness 

382 constraints for molecules based on their LogP and MW values, total number of atoms, and 

383 molar refractivity.66 The correlation values for Lipinski and GhoseFilter were found to be 0.108 

384 and 0.101, respectively.

385 The molecular descriptors present in FC-1 have a long history of investigation regarding their 

386 correlation with the pharmacokinetic property of small molecules in crossing the BBB. 

387 However, our results indicated that the correlation values for these properties were 

388 approximately two to four times lower than those for GATS3d, which had the lowest 

389 correlation value in FC-3. This finding suggests that the descriptive properties of charge 

390 distribution in peptides are closely related to their ability to penetrate the BBB. Notably, our 

391 analysis also demonstrated that Lipinski and GhoseFilter descriptors are also significantly 

392 associated with peptide penetration of the BBB.
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393 The results of this investigation also contribute to refining the selection of descriptors for 

394 FC-4, which combines the properties of FC-1 and FC-3. FC-4 is essential for evaluating 

395 whether combining these descriptors will provide information gain to correctly classify 

396 molecules that cross the BBB.

397

398 Cross-validation and Independent Test Analysis

399 We evaluated the predictive capacity of BrainPepPass based on the accuracy of 10-fold cross-

400 validation using the training portion of each dataset. This metric was applied to three dataset 

401 samples and four FCs, and 72 simulations were performed for different values of the sLE 

402 gamma parameter: 0.01, 0.02, 0.05, 0.1, 0.2, and 0.5. The best models were selected based on 

403 the highest accuracy values in the cross-validation for a fixed gamma, which was determined 

404 by filtering among all simulations (Figure 5a). The results demonstrate the contribution of each 

405 group of descriptors in predicting B3PPs using the proposed ML-based framework. 

406 BrainPepPass achieved values greater than 93% of average accuracy for all FCs. FC-1 

407 exhibited the worst performance, with average accuracy values between 93.6% and 96%, 

408 whereas FC-2, which comprised the largest number of features, achieved an accuracy of 99.4% 

409 for the three datasets. FC-3 obtained values between 97.68% and 98.86%, whereas the FC-4 
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410 merged both FC-1 and FC-3 descriptors, obtaining accuracy values ranging from 98.8% to 

411 100%.

412

413

414 Figure 5. Accuracy achieved by BrainPepPass in each FC. (a) 10-fold cross-validation. (b) 

415 Independent test. (c) LOOCV. (d) LOOCV comparison with ANN, SVM, and XGB models. 

416 (e) LOOCV comparison with frameworks based on LLE, Isomap, and UMAP manifold 

417 algorithms.
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418 The ANOVA test was applied to the accuracy values obtained for each fold of the 10-fold 

419 cross-validation performed on the three datasets, 1, 2, and 3, FC-2 and FC-4. The ANOVA test 

420 showed no statistically significant difference between the three datasets, yielding p-values of 

421 0.526, 0.331, and 0.541 for datasets 1, 2, and 3, respectively. However, from a computational 

422 perspective, a significant difference exists between the models, as BrainPepPass trained with 

423 FC-2 requires the calculation of 749 descriptors, whereas the framework based on FC-4 

424 requires only 19.

425 We also examined the predictive performance of our ML-based framework by applying 

426 external validation on peptides that were not part of the cross-validation analysis (Figure 5b). 

427 The accuracy outcomes obtained by the proposed tool for each feature composition indicate 

428 that the feature distribution between the training and test data in each of the three datasets may 

429 have been different. This is particularly evident when the performances of FC-2 and FC-4 are 

430 compared with the performance of FC-3. The ten descriptors selected from Mordred 

431 demonstrated superior predictive performance, achieving values ranging from 80% to 90% in 

432 predicting which peptides can penetrate the BBB. The FC-4 model achieved an accuracy of 

433 85% for one of the datasets. Other performance metrics for the best BrainPepPass models by 

434 FC were also calculated, as shown in Table 1. The FC-3 model also yielded high F1-score and 
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435 Matthew's correlation coefficient (MCC) values, along with the maximum recall value for one 

436 of the datasets. The area under the receiver operating characteristic curve (ROC-AUC) values 

437 between 0.74 and 0.84 also indicate that BrainPepPass has a good ability to distinguish between 

438 the two classes (BBB+ and BBB-). These results indicate that framework can accurately predict 

439 which peptides can penetrate the BBB among all relevant instances using as much the selected 

440 molecular descriptors grouped in FC-3, as the properties included in FC-4, which maintained 

441 similar performance. Supplementary Table S7 provides the metric values obtained by 

442 BrainPepPass and their respective gamma values using the three datasets in the 10-fold cross-

443 validation and independent tests, respectively. 

444

445 Table 1. Independent test analysis of the best BrainPepPass models by FC.

FC Dataset Accuracy F1 Score MCC Precision Recall ROC-AUC

FC-1 Dataset 3 0.75 0.71 0.52 0.86 0.60 0.74

FC-2 Dataset 3 0.80 0.82 0.61 0.75 0.90 0.75

FC-3 Dataset 1 0.90 0.91 0.82 0.83 1.00 0.74

FC-4 Dataset 3 0.85 0.84 0.70 0.89 0.80 0.84

446
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447 The findings from the two analyses demonstrate the efficacy of the proposed ML-based 

448 framework in accurately predicting B3PPs, with cross-validation accuracy values exceeding 

449 90% and values between 75% and 90% for the external validation set. Furthermore, this study 

450 highlights the contribution of the descriptors evaluated in terms of their association with BBB 

451 permeability and their comparison with descriptors associated with the charge distribution of 

452 the molecules. However, the independent test step involved a limited number of samples, with 

453 each erroneous prediction causing 5% reduction in the accuracy of each model. Consequently, 

454 determining the optimal BrainPepPass configuration was challenging. Therefore, this study 

455 also employs the leave-one-out cross-validation (LOOCV) metric as a complementary analysis 

456 to evaluate the proposed framework.

457

458 LOOCV Analysis

459

460 LOOCV is a model evaluation method similar to k-fold cross-validation, in which the testing 

461 set contains only one sample (k =1), and the remaining samples are used for training.67 We 

462 conducted an LOOCV evaluation using three complete datasets (consisting of the training and 

463 testing subsets) for each FC. The results demonstrated that FC-2 enabled the BrainPepPass to 
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464 attain a mean accuracy with a peak value in all datasets, whereas FC-4 displayed comparable 

465 efficacy only for Dataset 2. Datasets 1 and 3 achieved accuracy scores of 99% and 98%, 

466 respectively. Supplementary Table S8 lists metric values obtained by BrainPepPass using the 

467 three datasets in LOOCV.

468 A comparison of the results of LOOCV with those obtained in the 10-fold cross-validation 

469 shows that the feature compositions that provided more information for predicting B3PPs were 

470 FC-2 and FC-4, highlighting the importance of the molecular descriptors of both FCs in 

471 differentiating the two classes of peptides. The outcomes from the LOOCV of the datasets 

472 belonging to these two FCs were analyzed through a pairwise comparison using an ANOVA 

473 test. The results indicate no statistically significant difference between the means of Datasets 

474 1 and 3, with p-values of 0.318 and 0.157, respectively. Upon comparing the performance of 

475 the most effective models in LOOCV with that achieved in an independent test, FC-3 and FC-4 

476 descriptors ranked among the highest in their ability to predict B3PPs. Specifically, 

477 BrainPepPass, based on FC-3, exhibited only a single misclassification in LOOCV and two 

478 misclassifications in the independent test. In contrast, the model based on FC-4 achieved 

479 satisfactory classification in LOOCV but failed to correctly classify the three molecules in the 

480 external validation. Although FC-2 obtained the third-highest accuracy value in the 
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481 independent test, it outperformed FC-3 by achieving the maximum classification value in the 

482 LOOCV experiment.

483 According to the three evaluation methods employed in the proposed ML-based framework, 

484 FC-4 predicted B3PPs with the highest accuracy. This descriptor group employed a less 

485 complex model consisting of 19 descriptors in contrast to FC-2, which also displayed high 

486 accuracy values. The success of FC-4 can be attributed to the efficacy sLE algorithm in 

487 reducing the dimensionality of the molecular descriptors. Figure 6 shows the projection of the 

488 molecular descriptors belonging to this feature composition in a 3D space after dimensionality 

489 reduction was performed during the pattern learning phase of the proposed framework. Our 

490 observations revealed that Dataset 1 exhibits an overlap between two peptides belonging to 

491 different classes (see the blue arrow in Figure 6a), whereas Dataset 3 displayed an overlap 

492 between at least three peptides from distinct classes (see the blue arrow in Figure 6c). This 

493 pattern is consistent with the results shown in Figure 5c. Additionally, the 3D projections of 

494 FC-4 reveal the potential for differentiation of BBB+ and BBB- peptides, besides clustering 

495 both classes, through the integration of molecular descriptors investigated in FC-1 and those 

496 selected from Mordred.

497
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498

499 Figure 6. Dimensionality reduction result of BrainPepPass in pattern learning stage for FC-4. 

500 (a) Dataset 1. (b) Dataset 2. (c) Dataset 3.

501

502 Performance Comparison with other ML Algorithms

503 We compared the performance of BrainPepPass with SVM, ANN, and XGB models using 

504 the same three evaluation methods as used previously. We also compared the proposed ML-

505 based framework with the same architecture shown in Figure 2 using the LLE, Isomap, and 

506 UMAP algorithms. The results of the optimal models for 10-fold cross-validation were 

507 computed for all combinations of FCs and datasets. The results of the best models are presented 

508 in Table 2. Supplementary Table S9 presents the search range and best hyperparameters 

509 achieved by LLE, Isomap, and UMAP in this analysis.

510
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511 Table 2. Cross-validation analysis for the best BrainPepPass, ANN, SVM, XGB, LLE, Isomap, 

512 and UMAP models by each FC.

Method FC-1 FC-2 FC-3 FC-4

BrainPepPass 0.93 ± 0.04 0.99 ± 0.01 0.98 ± 0.02 0.98 ± 0.02

ANN 0.58 ± 0.14 0.57 ± 0.12 0.60 ± 0.14 0.61 ± 0.15

SVM 0.55 ± 0.12 0.59 ± 0.16 0.58 ± 0.09 0.55 ± 0.12

XGB 0.55 ± 0.11 0.60 ± 0.10 0.61 ± 0.11 0.59 ± 0.05

LLE 0.55 ± 0.11 0.61 ± 0.13 0.46 ± 0.14 0.51 ± 0.10

Isomap 0.45 ± 0.09 0.44 ± 0.08 0.48 ± 0.14 0.53 ± 0.10

UMAP 0.48 ± 0.16 0.52 ± 0.09 0.46 ± 0.13 0.54 ± 0.13

513

514 The results of the cross-validation analysis revealed that BrainPepPass surpassed the average 

515 accuracy of the other ML algorithms for all feature compositions. These classifiers could not 

516 achieve an accuracy higher than 61% even for FCs with a reduced number of molecular 

517 descriptors. The frameworks based on LLE, Isomap, and UMAP achieved significantly lower 

518 average accuracy results, with values between 0.44 and 0.61, when compared to BrainPepPass. 

519 This discrepancy in performance can be attributed to the capacity of each technique to capture 

520 the nonlinear correlation between the descriptors and permeability classes. Our observations 

521 indicate that the sLE algorithm incorporated in the BrainPepPass effectively discriminates the 
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522 peptides that can cross the BBB from those that cannot, learning the nonlinear correlations 

523 between molecular descriptors and peptide labels, even better than the other three manifold DR 

524 algorithms employed in this study, contributing to the overall high performance of 

525 BrainPepPass.

526 We also applied an independent test to the other algorithms and compared them with the 

527 BrainPepPass (see Table 3). The results demonstrated that the proposed tool outperformed the 

528 ML models in terms of accuracy and other evaluation metrics for almost all FCs in the B3PP 

529 prediction. Among the state-of-the-art algorithms and other frameworks, the ANN model 

530 achieved the highest accuracy for FC-3 (80%); however, it did not surpass the performance of 

531 the proposed ML-based framework for the same FC (90%). Furthermore, the F1-score, MCC, 

532 precision, recall and ROC-AUC metrics indicated the exceptional performance of 

533 BrainPepPass, achieving higher values than the other techniques in most scenarios. A 

534 comparison of the results obtained by the proposed framework with those of other models using 

535 LLE, Isomap, and UMAP shows that in no scenario did these models surpass the performance 

536 of BrainPepPass for any of the metrics, thereby corroborating the results achieved in the cross-

537 validation analysis. The performance metric values obtained by ANN, SVM, XGB, LLE, 
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538 Isomap, and UMAP using the three datasets in the 10-fold cross-validation and independent 

539 tests are provided in Supplementary Tables S10, S11, S12, S13, S14, and S15.

540 Similarly, we evaluated the predictive capacity of all ML models using LOOCV and 

541 compared their performance with that of BrainPepPass (see Figures 5d and 5e). Our findings 

542 indicate that the classifiers failed to surpass the predictive capacity of the proposed ML-based 

543 framework for all the FCs. Among the ML models, XGB achieved the highest average accuracy 

544 value of 75.26% for FC-4, which was lower than the value achieved by BrainPepPass with the 

545 same feature composition. The average accuracy values for the ANN and SVM ranged between 

546 58.25% and 72.16% across different FCs. The results achieved by the frameworks using 

547 manifold DR algorithms were also unable to surpass the predictive capacity of BrainPepPass. 

548 The framework using LLE showed the best performance with an average accuracy of 70.62% 

549 for FC-3, whereas Isomap and UMAP achieved values between 62.89% and 69.07% for all 

550 FCs. The performance values obtained by ANN, SVM, XGB, LLE, Isomap, and UMAP models 

551 using the three datasets in LOOCV analysis are provided in Supplementary Tables S16, S17, 

552 S18, S19, S20, and S21.

553 The findings indicated in Table 3 were corroborated by evaluating the independent test based 

554 on the results of the ROC curve shown in Figure 7. The achieved ROC-AUC value for 
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555 BrainPepPass for FC-1, FC-2, and FC-3 remained within a narrow range between 0.74 and 

556 0.75, whereas for FC-4, it was 0.84, surpassing the other models. The XGB algorithm 

557 demonstrated the second-best performance in this analysis, achieving an ROC-AUC value of 

558 0.83 for FC-3. The ROC curves for all models are provided in Supplementary Figure S1.

559

560

561 Figure 7.  ROC curves comparison among the best BrainPepPass and the best and worst model 

562 by each FC in the independent test. (a) FC-1. (b) FC-2. (c) FC-3. (d) FC-4.
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563 The difference in the performance of the proposed BrainPepPass for different FCs was 

564 assessed from the corresponding precision-recall curve (see Figure 8). The proposed 

565 framework achieved the highest average precision (AP) score of 0.66 for FC-1. The AP score 

566 for FC-2, FC-3, and FC-4 were 0.69, 0.70, and 0.78, respectively. The AP values for all FCs 

567 when the ANN, SVM, and XGB algorithms were used ranged from 0.5 to 0.8, whereas they 

568 were between 0.51 and 0.82 for the manifold-based algorithms. These results indicate that, 

569 despite the strong performance of BrainPepPass, the model using the UMAP algorithm 

570 demonstrates a greater balance between precision and recall when employing FC-3. The 

571 precision-recall curves for all models are provided in Supplementary Figure S2.

572   
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573

574 Figure 8.  Precision-recall curves comparison among the best BrainPepPass and the best and 

575 worst model by each FC in the independent test. (a) FC-1. (b) FC-2. (c) FC-3. (d) FC-4.

576

577 Table 3. Independent test analysis for the best BrainPepPass, ANN, SVM, XGB, LLE, Isomap, 

578 and UMAP models by each FC.

FC-1 Method Accuracy F1-score MCC Precision Recall ROC-AUC

BrainPepPass 0.75 0.70 0.52 0.85 0.75 0.74

ANN 0.55 0.52 0.10 0.55 0.55 0.55

SVM 0.65 0.58 0.31 0.71 0.65 0.45

XGB 0.60 0.50 0.21 0.66 0.60 0.70
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LLE 0.65 0.63 0.30 0.66 0.60 0.57

Isomap 0.60 0.60 0.20 0.60 0.60 0.60

UMAP 0.75 0.70 0.52 0.85 0.60 0.45

FC-2

BrainPepPass 0.80 0.81 0.61 0.75 0.80 0.75

ANN 0.65 0.58 0.31 0.71 0.65 0.69

SVM 0.55 0.52 0.10 0.55 0.55 0.50

XGB 0.70 0.70 0.40 0.70 0.70 0.63

LLE 0.65 0.58 0.31 0.71 0.50 0.64

Isomap 0.60 0.42 0.25 0.75 0.30 0.58

UMAP 0.70 0.70 0.40 0.70 0.70 0.44

FC-3

BrainPepPass 0.90 0.90 0.81 0.83 0.90 0.75

ANN 0.80 0.80 0.60 0.80 0.80 0.77

SVM 0.70 0.66 0.40 0.75 0.70 0.75

XGB 0.70 0.70 0.40 0.70 0.70 0.83

LLE 0.75 0.73 0.50 0.77 0.70 0.71

Isomap 0.70 0.72 0.40 0.66 0.80 0.76

UMAP 0.75 0.73 0.50 0.77 0.70 0.76

FC-4

BrainPepPass 0.85 0.84 0.70 0.88 0.85 0.84

ANN 0.65 0.69 0.31 0.61 0.65 0.77

SVM 0.65 0.58 0.31 0.71 0.65 0.55

XGB 0.70 0.75 0.43 0.64 0.70 0.72

LLE 0.60 0.60 0.20 0.60 0.60 0.53

Isomap 0.60 0.63 0.20 0.58 0.70 0.55
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UMAP 0.60 0.55 0.20 0.62 0.50 0.50

579 It is noteworthy to compare the performance of the BrainPepPass with previously developed 

580 techniques for predicting B3PPs. While some ML-based tools, such as BBPpred68, B3Pred,69 

581 BBPpredict,37 and SCMB3PP70 have been developed to predict the BBB permeability of 

582 peptides using ML algorithms trained with properties extracted from the primary structure of 

583 natural peptides encoded in FASTA format, the proposed ML-based framework presented 

584 herein employs a distinct approach by incorporating the 3D structure of these molecules 

585 encoded in MOL format. Additionally, most peptides used for training and testing 

586 BrainPepPass contain chemical modifications, which further distinguishes our tool from those 

587 that focus on natural peptides.  

588 We conducted a comparative analysis between BrainPepPass and the BBBPpred, 

589 BBBPpredict, and SCMB3PP algorithms, which are available for public and free use. To assess 

590 the performance of the proposed model against other tools in an independent test, we selected 

591 the version based on FC-4 and trained with Dataset 2, which achieved the best performance in 

592 LOOCV analyses. We used 17 natural BBB+ peptides extracted from Brainpeps to compare 

593 the ML models performance, none of these molecules were utilized in any of the previously 

594 described training or independent testing steps for the selected BrainPepPass version. This 
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595 dataset was balanced with 17 natural BBB- peptides randomly extracted from the test dataset 

596 of the SCMB3PP tool, resulting in 34 structures for this analysis. We also developed a 

597 BrainPepPass model with FC-4, named BrainPepPass-N, which was exclusively trained using 

598 natural peptides collected from the same dataset that was used to train SCMB3PP model. Table 

599 4 presents the values achieved by all the algorithms based on the key metrics. The peptide 

600 sequences used in this analysis are listed in Supplementary Table S22.

601

602

603 Table 4. Analysis of independent test comparing BrainPepPass and BrainPepPass-N with 

604 BBPpred, BBPpredict, and SCMB3PP algorithms using natural peptides.

Algorithm Accuracy F1-score MCC Precision Recall

BrainPepPass 0.52 0.55 0.06 0.55 0.55

BrainPepPass-N 0.97 1.0 0.94 1.0 1.0

BBPpred 0.64 0.71 0.33 0.60 0.88

BBPpredict 0.55 0.66 0.15 0.53 0.88

SCMB3PP 0.91 0.90 0.82 0.93 0.88

605
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606 According to the results presented in Table 4, BrainPepPass-N achieved the best outcomes, 

607 attaining an accuracy of approximately 97%, along with values exceeding 94% for the other 

608 metrics. This indicates that the proposed method, trained only on natural peptides and utilizing 

609 molecular descriptors from FC-4, can predict the permeability of natural peptides across the 

610 BBB with greater accuracy than that of the other tools. It is also important to highlight that the 

611 BrainPepPass model that was not exclusively trained on natural peptides failed to outperform 

612 the other tools. This could be attributed to the underfitting of this model with respect to natural 

613 peptide data, considering that it was predominantly trained on structures featuring chemical 

614 modifications.

615 Therefore, based on the results presented in this study, BrainPepPass exhibits exceptional 

616 performance in predicting peptide penetration across the BBB, surpassing existing ML 

617 classifiers in this area of research. BrainPepPass achieved average accuracy values exceeding 

618 93% in the 10-fold cross-validation and between 75% and 90% in the independent test, with 

619 average accuracy values ranging between 99.48% and 100% according to LOOCV. For the 

620 FC-4 model, which exhibited a positive relationship between efficiency and complexity, 

621 average accuracy values of 99.21%, 75%, and 99.48% were achieved in cross-validation, 

622 independent testing, and LOOCV, respectively, across all three datasets. Although 
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623 BrainPepPass based on FC-4 did not achieve the best performance in predicting some natural 

624 peptides, BrainPepPass-N version attained an accuracy of 97% in the same test. These 

625 outcomes demonstrate that the proposed tool has impressive predictive capabilities in 

626 determining whether natural or chemically modified peptides can penetrate the BBB, based on 

627 the molecular descriptors examined. 

628

629 CONCLUSION

630

631 Predicting the ability of natural and chemically modified peptides to penetrate the BBB is a 

632 significant challenge in computational and medicinal chemistry. The development of an 

633 efficient computational tool to perform this task requires solving the following problems: (1) 

634 obtaining experimentally validated data that include natural and chemically modified peptides; 

635 (2) performing an exploratory analysis of the correlation between several molecular descriptors 

636 related to BBB permeability; and (3) training a robust and powerful ML-based model to learn 

637 the non-linear pattern between peptide descriptors and permeability classes. However, public 

638 information on the pharmacokinetic properties of peptides that could be used as a reference for 
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639 experimental studies is scarce, making generating large datasets that facilitates the training of 

640 the algorithms difficult. 

641 Our predictive model relies on an algorithmic architecture that reduces the various 

642 dimensions of molecular descriptors derived from peptides to three. By leveraging the ability 

643 of the sLE technique to cluster and segregate samples into their respective classes, our model 

644 incorporates a robust preprocessing step, thereby streamlining the prediction process of B3PPs. 

645 Moreover, our ML-based framework offers the additional advantage of processing information 

646 extracted from peptide structures in the MOL format, which encodes chemical modifications 

647 and cyclic chains in the molecular structure, thereby achieving a novel breakthrough in this 

648 field of research and improving the exploration of increasingly complex structures within this 

649 molecular class. Additionally, our investigation highlights the correlation between several 

650 molecular descriptors and BBB permeability, specifically emphasizing the role of charge 

651 distribution properties in the ability of peptides to permeate through the BBB.

652 Another advantage our of study was the improved performance of BrainPepPass relative to 

653 other machine learning models in predicting peptide penetration. The predictive capability of 

654 our tool in all applied tests surpassed that of other machine-learning classifiers as well as that 

655 of the same framework but with other manifold DR algorithms. Furthermore, the proposed 
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656 framework demonstrated good performance compared with other available tools for predicting 

657 natural B3PPs. This proves the ability of our tool in assisting the virtual screening of new 

658 peptides that penetrate the BBB, thereby contributing to the discovery and development of new 

659 bioactive molecules capable of reaching the CNS.

660

661 ASSOCIATED CONTENT

662 Data Availability Statement

663 The BrainPepPass tool is available in a GitHub repository, which can be accessed at: 

664 https://github.com/ewerton-cristhian/BrainPepPass. This repository contains information 

665 about the online versions of the BrainPepPass available for users, a user manual with 

666 instructions on how to use the tools, and the ML models used in the framework.

667 The source code of the BrainPepPass in Python language to execute the best model can be 

668 accessed at https://figshare.com/s/18d704599c397f54b3ac. The dataset of peptide structures 

669 can be accessed at https://figshare.com/s/f8ae1e2f6e4b2170807f. The scripts used to generate 

670 and evaluate the BrainPepPass and other ML models in the present work is available at 

671 https://figshare.com/s/8bc7ab7b424e04f680e0.
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672

673 Supporting Information 

674 The Supporting Information is available free of charge at JCIM web site. 

675 List of peptides used; Table S1, list of molecular descriptors in FC-1; Table S2, list of 

676 molecular descriptors in FC-2; Table S3, list of molecular descriptors in FC-3; Table S4, 

677 hyperparameters employed in grid search for training XGBr in BrainPepPass; Table S5, 

678 hyperparameters employed in grid search for training XGBc in BrainPepPass; Table S6, results 

679 reached in cross-validation and independent test by BrainPepPass for all FCs and datasets; 

680 Table S7, results reached in LOOCV BrainPepPass for all FCs and datasets; Table S8, 

681 hyperparameters employed in grid search for training LLE, Isomap, and UMAP; Table S9, 

682 results reached in cross-validation and independent test by the ANN for all FCs and datasets; 

683 Table S10, results reached in cross-validation and independent test by the SVM for all FCs and 

684 datasets; Table S11, results reached in cross-validation and independent test by the XGB for 

685 all FCs and datasets; Table S12, results reached in cross-validation and independent test by the 

686 framework based on LLE for all FCs and datasets; Table S13, results reached in cross-

687 validation and independent test by the framework based on Isomap for all FCs and datasets; 

688 Table S14, results reached in cross-validation and independent test by the framework based on 
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689 UMAP for all FCs and datasets; Table S15, results reached in LOOCV by the ANN for all FCs 

690 and datasets; Table S16, results reached in LOOCV by the SVM for all FCs and datasets; Table 

691 S17, results reached in LOOCV by the XGB for all FCs and datasets; Table S18, results reached 

692 in LOOCV by the framework based on LLE for all FCs and datasets; Table S19, results reached 

693 in LOOCV by the framework based on Isomap for all FCs and datasets; Table S20, results 

694 reached in LOOCV by the framework based on UMAP for all FCs and datasets; Table S21, list 

695 of natural peptide sequences used to compare BrainPepPass with other online tools; Table S22, 

696 ROC curves obtained by the best BrainPepPass, ANN, SVM, XGB, LLE, Isomap, and UMAP 

697 models by each FC in independent test; Figure S1, Precision-recall curves obtained by the best 

698 BrainPepPass, ANN, SVM, XGB, LLE, Isomap, and UMAP models by each FC in independent 

699 test; Figure S2.
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