
SoftwareX 24 (2023) 101578

A
2

O

D
C
F
a

b

A

K
C
I
E

C

1

p
s
f
l
a
l
a
1
f
i
g

h
R

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

odona: Learn to code with a virtual co-teacher that supports active learning
harlotte Van Petegem a,∗, Rien Maertens a, Niko Strijbol a, Jorg Van Renterghem a,
elix Van der Jeugt a, Bram De Wever b, Peter Dawyndt a, Bart Mesuere a

Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
Department of Educational Studies, Ghent University, Ghent, Belgium

R T I C L E I N F O

eywords:
omputer-assisted instruction

nteractive learning environments
ducation

A B S T R A C T

Dodona () is an intelligent tutoring system for computer programming. It provides real-time data and feedback
to help students learn better and teachers teach better.

Dodona is free to use and has more than 61 thousand registered users across many educational and research
institutes, including 20 thousand new users in the last year. The source code of Dodona is available on GitHub
under the permissive MIT open-source license.

This paper presents Dodona and its design and look-and-feel. We highlight some of the features built into
Dodona that make it possible to shorten feedback loops, and discuss an example of how these features can be
used in practice. We also highlight some of the research opportunities that Dodona has opened up and present
some future developments.

ode metadata

Current code version 2023.08
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-23-00106
Code Ocean compute capsule n/a
Legal Code License MIT
Code versioning system used git
Software code languages, tools, and services used Ruby 3.1 (Ruby-on-Rails 7.0), JavaScript, TypeScript
Compilation requirements, operating environments & dependencies Ruby 3.1, yarn 1.22, Unix-like (e.g. Ubuntu 22.04), Memcached 1.6.14, MySQL 8
If available Link to developer documentation/manual https://docs.dodona.be
Support email for questions dodona@ugent.be

. Motivation and significance

Learning how to solve problems with computer programs requires
ractice, and programming assignments are the main way in which
uch practice is generated [1]. Because of its potential to provide
eedback loops that are scalable and responsive enough for an active
earning environment, automated source code assessment has become

driving force in programming courses. This has resulted in a pro-
iferation of educational programming platforms [2–5]. Automated
ssessment was introduced into programming education in the early
960s [6] and allows students to receive immediate and personalized
eedback on each submitted solution without the need for human
ntervention. [7] identified the labor-intensive nature of assessing pro-
ramming assignments as the main reason why students are given few

∗ Correspondence to: Krijgslaan 281 S9, 9000 Ghent, Belgium.
E-mail address: dodona@ugent.be (Charlotte Van Petegem).

such assignments when ideally they should be given many more. While
almost all platforms support automated assessment of code submitted
by students, contemporary platforms usually offer additional features
such as gamification in the FPGE platform [8], integration of full-
fledged editors in iWeb-TD [9], exercise recommendations in PLearn
[10], automatic grading with JavAssess [11], assessment of test suites
using test coverage measures in Web-CAT [12] and automatic hint
generation in GradeIT [13].

This paper presents Dodona () as an online learning environment
that recognizes the importance of active learning and just-in-time feed-
back in courses involving programming assignments. After presenting
some of its key features for computer-assisted learning and teaching
(Section 2) and giving an example on how they can be used (Section 3),
vailable online 10 November 2023
352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.softx.2023.101578
eceived 14 February 2023; Received in revised form 19 October 2023; Accepted 2 November 2023

https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00106
https://docs.dodona.be
mailto:dodona@ugent.be
mailto:dodona@ugent.be
https://doi.org/10.1016/j.softx.2023.101578
https://doi.org/10.1016/j.softx.2023.101578
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101578&domain=pdf
http://creativecommons.org/licenses/by/4.0/


SoftwareX 24 (2023) 101578Charlotte Van Petegem et al.
Fig. 1. Main course page (administrator view) showing some series with deadlines, reading activities and programming assignments in its learning path. The red dot on top shows
that there are pending questions.

we discuss how Dodona succeeds in being a general tool for program-
ming education that has grown beyond the institution where it was
originally created, and how it has enabled EdTech research (Section 4).

2. Software description

Dodona is an intelligent tutoring system for computer programming
based on a generic infrastructure for automatic assessment. It uses
a distributed model for the development and publication of learning
materials. Dodona lowers the barriers to wider adoption of the tool
by following best practices for authentication, content management,
and assessment. In addition, we adopted a holistic view on computer-
assisted learning and teaching that spans all aspects of managing
courses, including learning analytics and educational data mining. Each
of these features is described in more detail below. A full explanation
of all features can be found in Section 1 of the supplementary material.

2.1. Classroom management

In Dodona, a course is where teachers and instructors effectively
manage a learning environment. A course can be thought of as a
learning path consisting of course units called series, each containing a
sequence of learning activities (Fig. 1). Among the learning activities
we distinguish between reading activities, which can be marked as
read, and programming assignments with support for automated
assessment of submitted solutions. Teachers can make content in the
course invisible/inaccessible to students. This can be used, for example,
when assignments are being prepared for an assessment.

Students can self-register for courses to avoid unnecessary user
management. However, teachers can restrict which students can regis-
ter and whether registrations need to be approved before students can
access the course. Teachers can also add labels to students to manage
subgroups, which can play a role in learning analytics and reporting.

2.2. Student submissions

Reading activities can be marked as read only once, but there
is no limit to the number of solutions students can submit to pro-
gramming assignments. Series can have a deadline which does not
prevent students from submitting solutions, but learning analytics and
other reports/exports will usually only take into account submissions
before the deadline. Submitted solutions are automatically assessed and
feedback is displayed as soon as it is ready. In addition to automated
assessment, student submissions can be further assessed and graded
manually.

As all submissions are stored along with their metadata, we use this
data to show reports and learning analytics on the course page [14].
The data can also be exported to support teachers wanting to do their
own analysis on the data [15,16].

2.3. Trusted identities

To ensure that teachers can trust the identities of their students,
which is particularly important for assessments, Dodona uses decen-
tralized authentication. It does this by delegating authentication to ex-
ternal identity providers via SAML [17], OAuth 2 [18,19] and OpenID
Connect [20].

2.4. Automated assessment

There is a wide variety of approaches to software testing (static
/dynamic, black-box/white-box). In addition, there are many criteria
against which students’ source code can be validated (e.g. functional
correctness, speed, memory usage, security, readability). To cope with
this diversity, Dodona uses a generic infrastructure for automated as-
sessment, consisting of three loosely coupled components: a container,
a judge, and an assignment-specific assessment configuration.
2



SoftwareX 24 (2023) 101578Charlotte Van Petegem et al.
Fig. 2. Dodona rendering of feedback generated by the judge that assessed a submission of the Python programming assignment ‘‘Curling’’. The judge split its feedback across
three tabs, one for each function that needs to be implemented for this assignment: isinside, isvalid and score. All tests under the isinside and isvalid tabs passed,
but 48 tests under the score tab failed as can be seen immediately from the badge in the tab header. Dodona also added a fourth tab ‘‘Code’’ that displays the source code of the
submission with annotations added during automatic and/or manual assessment.

A Docker container [21] is used for proper virtualization. It defines
the runtime environment in which all data and executables are pro-
vided. Before starting an assessment, the container is extended with
the submission, judge, and assessment configuration and its resources.

The actual assessment is performed by a judge [22] which can be
used to assess submissions for multiple assignments. The judge uses
the assignment configuration to know how to test the submission.
Rather than providing a fixed set of judges, Dodona uses a minimalistic
interface that allows third parties to create new judges.1 A judge reads
the assessment configuration and generates the feedback using a JSON
schema.2 What the assessment configuration should look like is defined
by the judge.

Dodona takes responsibility for rendering the feedback (Fig. 2). This
frees judge developers from the effort of rendering the feedback. It also
gives a consistent look and feel to students solving programming as-
signments, even if their submissions were assessed by different judges.

2.5. Questions, answers, and manual assessment

Dodona allows students to ask teachers questions directly about
their submitted code, either on a specific line or as a general question
about the submission. Teachers are notified when there are pending

1 https://docs.dodona.be/en/guides/creating-a-judge/
2 https://github.com/dodona-edu/dodona/tree/develop/public/schemas

questions (see the red dot on top of Fig. 1), which they can manage
from a dashboard. Teachers can reply directly to students’ annotations.
Teachers can also add these annotations without there first being a
question. This functionality is used as a building block for manual
assessment.

Teachers can create an evaluation to manually grade submissions
in a series. The evaluation aggregates the submissions that need to be
assessed and allows teachers to navigate through them systematically.
A scoring rubric can also be added per exercise. While marking, asses-
sors can leave feedback in the same way that they annotate student
code (Fig. 3). When reviewing a student’s submission, assessors have
direct access to the feedback that was previously generated during
automated assessment. Manual feedback and grades are shared with
the students at the touch of a button. Grades can also be exported.

2.6. Reliability and robustness

To ensure that the system is robust to sudden increases in workload
and when serving hundreds of concurrent users, Dodona has a multi-
tier service architecture that delegates different parts of the application
to different servers running Ubuntu 22.04 LTS. More specifically, the
web server, database (MySQL 8), caching system (Memcached 1.6.14)
and Python Tutor each run on their own machine. In addition, a
scalable pool of interchangeable worker servers are available to au-
tomatically assess incoming student submissions. The web server is
the only public-facing part of Dodona, running a Ruby on Rails web
application (Ruby 3.1, Rails 7.0) that is available on GitHub under the
permissive MIT open-source license.
3

https://docs.dodona.be/en/guides/creating-a-judge/
https://github.com/dodona-edu/dodona/tree/develop/public/schemas


SoftwareX 24 (2023) 101578Charlotte Van Petegem et al.
Fig. 3. Manual assessment of a submission: a teacher gave feedback on the code by adding inline annotations and is grading the submission by filling up the scoring rubric.

Dodona needs to operate in a challenging environment where stu-
dents simultaneously submit untrusted code to be executed on its
servers (‘‘remote code execution by design’’) and expect automatically
generated feedback, ideally within a few seconds. Many design deci-
sions are therefore aimed at maintaining and improving the reliability
and security of its systems.

3. Illustrative example

Dodona was originally created to support our own introductory
programming course. This course has 10 series of programming assign-
ments, divided into topics. There are also two midterms during the
semester and an exam at the end of the semester. Hidden series are
used for these midterms and exams. They are graded using Dodona’s
built-in grading functionality, which allows feedback to be given to the
students with minimal overhead. Several features in Dodona have been
implemented to meet the needs of this course. A full case study of how
we use Dodona to run this course can be found in Section 2 of the
supplementary material.

4. Use and impact

Dodona’s design decisions have allowed it to spread to more than
1000 schools, colleges and universities, mainly in Flanders (Belgium)
and the Netherlands. The renewed interest in embedding computational
thinking in formal education has undoubtedly been an important stim-
ulus for such a wide uptake [23]. All other educational institutions use
the version of Dodona hosted at Ghent University, which is free to use
for educational purposes.

Dodona currently hosts a collection of 15 thousand learning activ-
ities that are freely available to all teachers, allowing them to create
their own learning paths tailored to their teaching practice. In total, 61
thousand students have submitted more than 15 million solutions to
Dodona in the seven years that it has been running (Fig. 4).

A qualitative user experience study of Dodona was performed in
2018. 271 higher education students responded to a questionnaire that
contained the following three questions: 1. What are the things you
value while working with Dodona? 2. What are the things that bother
you while working with Dodona? 3. What are your suggestions for
improvements to Dodona? Students praised its user-friendliness, beau-
tiful interface, immediate feedback with visualized differences between
expected and generated output, integration of the Python Tutor, linting
feedback and large number of test cases. Negative points were related
to differences between the students’ local execution environments and
the environment in which Dodona runs the tests, and the strictness
with which the tests are evaluated. Other negative feedback was mostly
related to individual courses the students were taking instead of the
platform itself.

4.1. Research possibilities

The large amount of educational data generated by Dodona opens
up new research opportunities to better understand students’ behavior,
progress and knowledge. This in turn can lead to better informed
decisions about courses and their pedagogy, and to identify students at
risk. To perform such investigations, researchers can either export data
from their courses or set up their own Dodona instance. Rich metadata
is available, allowing for a broad spectrum of research opportunities.
4



SoftwareX 24 (2023) 101578Charlotte Van Petegem et al.
Fig. 4. Overview of the number of submitted solutions and active users by academic year. Users were active when they submitted at least one solution for a programming
assignment during the academic year.

This includes pass/fail prediction [24], plagiarism detection [25], rec-
ommendations of manual feedback, exercise recommendations [10],
and user knowledge modeling [26,27].

Due to the open-source nature of Dodona, the platform itself can
also serve as a base for further development, such as advanced learning
analytics [28], generic educational software testing frameworks [29],
automatic hint generation [30], static analysis of code modifications
made by students [31], and integration of external tools.

5. Conclusions

Nicol and Macfarlane-Dick’s model of formative assessment and
their seven principles of good practice feedback [32] fit very well with
how Dodona facilitates students’ self-directed learning as they practice
their programming skills, and how it provides teachers with informa-
tion that helps to shape their teaching. For students, active learning
promises to reinforce learning by creating shorter feedback loops that
help them make adjustments early on in the learning process. However,
scaling up the provision of feedback throughout the entire learning
process might become a real bottleneck for teachers and instructors.

Dodona therefore aims to free up valuable teacher time to maintain
a collaborative and responsive dialogue with students based on high-
quality and timely feedback. However, while it may be the ultimate
ideal for some, current educational technology does not yet allow the
entire feedback loop to be fully automated. Supporting the human
aspect of learning and teaching is therefore an important focus in
the design of the Dodona user experience. Students can track and
fix potential errors in their code with a built-in graphical debugger,
ask online questions directly about their submitted solutions with the
integrated Q&A module, and monitor their own progress with learning
analytics dashboards. Teachers can customize learning paths with their
own learning materials and interactive assignments, share materials
with their colleagues, monitor student progress (individually or in
groups) using learning analytics dashboards, organize high-stakes tests
and exams with automated feedback, assess students with rich feedback
using a grading module with support for code reviews, and detect
and prevent plagiarism with dedicated and interactive tools. Pushing
the boundaries of Dodona as a virtual co-teacher that progressively
becomes smarter at supporting or automating pedagogical tasks is an
active area of our research.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

We are grateful for the financial support of Ghent University (Bel-
gium) and the Flemish Government (Belgium, Voorsprongfonds) through
numerous innovation in education grants. Part of this work was also
supported by the Research Foundation — Flanders (FWO) for ELIXIR
Belgium (I002819N). Thanks to Ghent University (Belgium) for grant-
ing us the 2018 Minerva Award for our contributions to active learning
and innovation in education through the development of Dodona.
Thanks to the Flemish Government (Belgium) for granting us with the
2022 Flanders Digital Award for providing each student high quality
education through Dodona. Thanks to Johan Van Camp and his team at
the Ghent University Data Center for hosting Dodona software services.
Thanks to Hanne Elsen (UGent Data Protection Office) for assisting us
with GDPR and privacy-related issues. Thanks to the computer science
students and instructors who helped in developing the Dodona platform
as interns, while working on their master’s thesis or while running
courses: Winnie De Ridder, Tibo D’hondt, Lucianos Lionakis, Felix Van
der Jeugt, Mathieu Coussens, Pieter De Clercq, Timon De Backer, Ilion
Beyst, Dieter Mourisse, Brecht Willems, Robbert Gurdeep Singh, Louise
Deconick, Tim Ramlot, Bram Devlaminck, Freya Van Speybroeck, Toon
Baeyens, Jeroen Tiebout and Anton Kindt. Thanks to all judge devel-
opers: Peter Dawyndt, Dieter Mourisse, Niels Neirynck, Felix Van der
Jeugt, Charlotte Van Petegem, Bart Mesuere (Python); Peter Dawyndt,
Dieter Mourisse, Bart Mesuere, Rien Maertens, Charlotte Van Petegem
(JavaScript); Felix Van der Jeugt, Christophe Scholliers, Charlotte Van
Petegem, Rien Maertens (Haskell); Niels Neirinck, Pieter Verschaffelt,
Charlotte Van Petegem (Bash); Felix Van der Jeugt, Pieter De Clercq,
Bart Mesuere, J. Steegmans (Java); Robbert Gurdeep Singh, Charlotte
Van Petegem, Rien Maertens (Prolog); Dieter Mourisse (C#); Charlotte
Van Petegem, Viktor Verstraelen, Gust Bogaert, Koen Plevoets, Bart
Mesuere (R); Maarten Vandercammen, Elisa Gonzalez Boix (C/C++);
Boris Sels, Niko Strijbol, Charlotte Van Petegem, Peter Dawyndt, Bart
Mesuere (TESTed); Mathijs Saey (Scheme); Stijn De Clercq, Quinten
Vervynck, Brecht Willems (HTML & CSS); Brecht Willems, Tim Ramlot,
Pieter De Clercq (SQL); Thanks to Pieter De Clercq and Tobiah Lissens
for developing the JetBrains IDE plugin, to Stijn De Clercq and Pieter De
Clercq for developing the Visual Studio Code plugin and to Mathijs Saey
at the Vrije Universiteit Brussel (Brussels, Belgium) for developing the
DrRacket plugin. Thanks to all teachers and instructors who developed
learning activities for Dodona and shared them on the platform as
open educational resources. Thanks to all users who reported issues
and provided feedback.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.softx.2023.101578.
5

https://doi.org/10.1016/j.softx.2023.101578


SoftwareX 24 (2023) 101578Charlotte Van Petegem et al.
References

[1] Gibbs G, Simpson C. Conditions under which assessment supports students’
learning. Learn Teach Higher Educ 2005;(1):3–31, URL https://eprints.glos.ac.
uk/3609/. Number: 1 Publisher: University of Gloucestershire.

[2] Ala-Mutka KM. A survey of automated assessment approaches for programming
assignments. Comput Sci Educ 2005;15(2):83–102, Publisher: Routledge _eprint:
http://dx.doi.org/10.1080/08993400500150747.

[3] Douce C, Livingstone D, Orwell J. Automatic test-based assessment of program-
ming: A review. J Educ Resourc Comput 2005;5(3):4–es. http://dx.doi.org/10.
1145/1163405.1163409.

[4] Ihantola P, Ahoniemi T, Karavirta V, Seppälä O. Review of recent systems
for automatic assessment of programming assignments. In: Proceedings of the
10th Koli calling international conference on computing education research.
New York, NY, USA: Association for Computing Machinery; 2010, p. 86–93.
http://dx.doi.org/10.1145/1930464.1930480.

[5] Paiva JC, Leal JP, Figueira A. Automated assessment in computer science edu-
cation: A state-of-the-art review. ACM Trans Comput Educ 2022;22(3):34:1–40.
http://dx.doi.org/10.1145/3513140.

[6] Hollingsworth J. Automatic graders for programming classes. Commun ACM
1960;3(10):528–9. http://dx.doi.org/10.1145/367415.367422.

[7] Cheang B, Kurnia A, Lim A, Oon W-C. On automated grading of programming
assignments in an academic institution. Comput Educ 2003;41(2):121–31. http:
//dx.doi.org/10.1016/S0360-1315(03)00030-7, URL https://www.sciencedirect.
com/science/article/pii/S0360131503000307.

[8] Paiva JC, Queirós R, Leal JP, Swacha J, Miernik F. Managing gamified pro-
gramming courses with the FGPE platform. Information 2022;13(2):45. http://
dx.doi.org/10.3390/info13020045, URL https://www.mdpi.com/2078-2489/13/
2/45. Number: 2 Publisher: Multidisciplinary Digital Publishing Institute.

[9] Fonseca I, Martins NC, Lopes F. A web-based platform and a methodology to
teach programming languages in electrical engineering education – evolution and
student feedback. In: 2023 32nd annual conference of the European association
for education in electrical and information engineering. 2023, p. 1–3. http://
dx.doi.org/10.23919/EAEEIE55804.2023.10181316, URL https://ieeexplore.ieee.
org/abstract/document/10181316. ISSN: 2472-7687.

[10] Vasyliuk A, Lytvyn TBV. Design and implementation of a Ukrainian-Language
educational platform for learning programming languages. 1613. 2023, p.
0073, Proceedings http://ceur-ws.orgISSN. URL https://ceur-ws.org/Vol-3426/
paper32.pdf.

[11] Insa D, Silva J. Automatic assessment of Java code. Comput Lang, Syst Struct
2018;53:59–72. http://dx.doi.org/10.1016/j.cl.2018.01.004, URL https://www.
sciencedirect.com/science/article/pii/S1477842417301045.

[12] Edwards SH, Perez-Quinones MA. Web-CAT: Automatically grading programming
assignments. In: Proceedings of the 13th annual conference on innovation and
technology in computer science education. New York, NY, USA: Association
for Computing Machinery; 2008, p. 328. http://dx.doi.org/10.1145/1384271.
1384371, URL https://dl.acm.org/doi/10.1145/1384271.1384371.

[13] Parihar S, Dadachanji Z, Singh PK, Das R, Karkare A, Bhattacharya A. Automatic
grading and feedback using program repair for introductory programming
courses. In: Proceedings of the 2017 ACM conference on innovation and
technology in computer science education. New York, NY, USA: Association
for Computing Machinery; 2017, p. 92–7. http://dx.doi.org/10.1145/3059009.
3059026, URL https://dl.acm.org/doi/10.1145/3059009.3059026.

[14] Ferguson R. Learning analytics: Drivers, developments and challenges. Int J
Technol Enhanced Learn 2012;4(5/6):304–17, URL http://www.inderscience.
com/info/ingeneral/forthcoming.php?jcode=ijtel. Number: 5/6.

[15] Baker RSJd, Yacef K. The state of educational data mining in 2009: A review
and future visions. J Educ Data Min 2009;1(1):3–17. http://dx.doi.org/10.5281/
zenodo.3554657, URL https://jedm.educationaldatamining.org. Number: 1.

[16] Romero C, Ventura S. Educational data mining: A review of the state of the
art. IEEE Trans Syst, Man, Cybern, C (Appl Rev) 2010;40(6):601–18. http://dx.
doi.org/10.1109/TSMCC.2010.2053532, Conference Name: IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[17] Farrell S, Reid I, Orchard D, Sankar K, Moses T, Edwards EN, et al. Assertions
and protocol for the OASIS security assertion markup language (SAML). 2002,
Organization for the Advancement of Structured Information Standards (OASIS)
Standard (November 2002), http://www.oasis-open.org/committees/download.
php/1371/oasis-sstc-saml-core-1.0.pdf.

[18] Hardt D. The OAuth 2.0 authorization framework. Request for Comments.
RFC 6749, Internet Engineering Task Force; 2012, http://dx.doi.org/10.17487/
RFC6749, URL https://datatracker.ietf.org/doc/rfc6749. Num Pages: 76.

[19] Leiba B. OAuth web authorization protocol. IEEE Internet Comput
2012;16(1):74–7. http://dx.doi.org/10.1109/MIC.2012.11, Conference Name:
IEEE Internet Computing.

[20] Sakimura N, Bradley J, Jones M, De Medeiros B, Mortimore C. Openid connect
core 1.0. 2014, p. S3, The OpenID Foundation.

[21] Peveler M, Maicus E, Cutler B. Comparing jailed sandboxes vs containers within
an autograding system. In: Proceedings of the 50th ACM technical symposium
on computer science education. New York, NY, USA: Association for Computing
Machinery; 2019, p. 139–45. http://dx.doi.org/10.1145/3287324.3287507.

[22] Wasik S, Antczak M, Badura J, Laskowski A, Sternal T. A survey on online
judge systems and their applications. ACM Comput Surv 2018;51(1):3:1–34.
http://dx.doi.org/10.1145/3143560.

[23] Wing JM. Computational thinking. Commun ACM 2006;49(3):33–5, Publisher:
ACM New York, NY, USA.

[24] Van Petegem C, Deconinck L, Mourisse D, Maertens R, Strijbol N, Dhoedt B,
et al. Pass/fail prediction in programming courses. J Educ Comput Res
2022;07356331221085595. http://dx.doi.org/10.1177/07356331221085595,
Publisher: SAGE Publications Inc.

[25] Maertens R, Van Petegem C, Strijbol N, Baeyens T, Jacobs AC, Dawyndt P, et al.
Dolos: Language-agnostic plagiarism detection in source code. J Comput Assist
Learn 2022. http://dx.doi.org/10.1111/jcal.12662, URL https://onlinelibrary.
wiley.com/doi/abs/10.1111/jcal.12662. _eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1111/jcal.12662.

[26] Blikstein P, Worsley M, Piech C, Sahami M, Cooper S, Koller D. Programming
pluralism: Using learning analytics to detect patterns in the learning of computer
programming. J Learn Sci 2014;23(4):561–99, Publisher: Routledge _eprint: http:
//dx.doi.org/10.1080/10508406.2014.954750.

[27] Costa EB, Fonseca B, Santana MA, de Araújo FF, Rego J. Evaluating the
effectiveness of educational data mining techniques for early prediction of
students’ academic failure in introductory programming courses. Comput Hum
Behav 2017;73:247–56. http://dx.doi.org/10.1016/j.chb.2017.01.047, URL https:
//www.sciencedirect.com/science/article/pii/S0747563217300596.

[28] Chen H-M, Nguyen B-A, Yan Y-X, Dow C-R. Analysis of learning behavior
in an automated programming assessment environment: A code quality per-
spective. IEEE Access 2020;8:167341–54. http://dx.doi.org/10.1109/ACCESS.
2020.3024102, URL https://ieeexplore.ieee.org/document/9195825. Conference
Name: IEEE Access.

[29] Strijbol N, Van Petegem C, Maertens R, Sels B, Scholliers C, Dawyndt P, et al.
TESTed—An educational testing framework with language-agnostic test suites
for programming exercises. SoftwareX 2023;22:101404. http://dx.doi.org/10.
1016/j.softx.2023.101404, URL https://www.sciencedirect.com/science/article/
pii/S2352711023001000.

[30] Chow S, Yacef K, Koprinska I, Curran J. Automated data-driven hints for com-
puter programming students. In: Adjunct publication of the 25th conference on
user modeling, adaptation and personalization. New York, NY, USA: Association
for Computing Machinery; 2017, p. 5–10. http://dx.doi.org/10.1145/3099023.
3099065, URL https://dl.acm.org/doi/10.1145/3099023.3099065.

[31] Hamer S, Quesada-López C, Jenkins M. Students projects’ source code changes
impact on software quality through static analysis. In: Paiva ACR, Cavalli AR,
Ventura Martins P, Pérez-Castillo R, editors. Quality of information and com-
munications technology. Communications in computer and information science,
Cham: Springer International Publishing; 2021, p. 553–64. http://dx.doi.org/10.
1007/978-3-030-85347-1_39.

[32] Nicol DJ, Macfarlane-Dick D. Formative assessment and self-regulated learning:
A model and seven principles of good feedback practice. Stud High Educ
2006;31(2):199–218, Publisher: Routledge _eprint: http://dx.doi.org/10.1080/
03075070600572090.
6

https://eprints.glos.ac.uk/3609/
https://eprints.glos.ac.uk/3609/
https://eprints.glos.ac.uk/3609/
http://dx.doi.org/10.1080/08993400500150747
http://dx.doi.org/10.1145/1163405.1163409
http://dx.doi.org/10.1145/1163405.1163409
http://dx.doi.org/10.1145/1163405.1163409
http://dx.doi.org/10.1145/1930464.1930480
http://dx.doi.org/10.1145/3513140
http://dx.doi.org/10.1145/367415.367422
http://dx.doi.org/10.1016/S0360-1315(03)00030-7
http://dx.doi.org/10.1016/S0360-1315(03)00030-7
http://dx.doi.org/10.1016/S0360-1315(03)00030-7
https://www.sciencedirect.com/science/article/pii/S0360131503000307
https://www.sciencedirect.com/science/article/pii/S0360131503000307
https://www.sciencedirect.com/science/article/pii/S0360131503000307
http://dx.doi.org/10.3390/info13020045
http://dx.doi.org/10.3390/info13020045
http://dx.doi.org/10.3390/info13020045
https://www.mdpi.com/2078-2489/13/2/45
https://www.mdpi.com/2078-2489/13/2/45
https://www.mdpi.com/2078-2489/13/2/45
http://dx.doi.org/10.23919/EAEEIE55804.2023.10181316
http://dx.doi.org/10.23919/EAEEIE55804.2023.10181316
http://dx.doi.org/10.23919/EAEEIE55804.2023.10181316
https://ieeexplore.ieee.org/abstract/document/10181316
https://ieeexplore.ieee.org/abstract/document/10181316
https://ieeexplore.ieee.org/abstract/document/10181316
http://ceur-ws.orgISSN
https://ceur-ws.org/Vol-3426/paper32.pdf
https://ceur-ws.org/Vol-3426/paper32.pdf
https://ceur-ws.org/Vol-3426/paper32.pdf
http://dx.doi.org/10.1016/j.cl.2018.01.004
https://www.sciencedirect.com/science/article/pii/S1477842417301045
https://www.sciencedirect.com/science/article/pii/S1477842417301045
https://www.sciencedirect.com/science/article/pii/S1477842417301045
http://dx.doi.org/10.1145/1384271.1384371
http://dx.doi.org/10.1145/1384271.1384371
http://dx.doi.org/10.1145/1384271.1384371
https://dl.acm.org/doi/10.1145/1384271.1384371
http://dx.doi.org/10.1145/3059009.3059026
http://dx.doi.org/10.1145/3059009.3059026
http://dx.doi.org/10.1145/3059009.3059026
https://dl.acm.org/doi/10.1145/3059009.3059026
http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijtel
http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijtel
http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijtel
http://dx.doi.org/10.5281/zenodo.3554657
http://dx.doi.org/10.5281/zenodo.3554657
http://dx.doi.org/10.5281/zenodo.3554657
https://jedm.educationaldatamining.org
http://dx.doi.org/10.1109/TSMCC.2010.2053532
http://dx.doi.org/10.1109/TSMCC.2010.2053532
http://dx.doi.org/10.1109/TSMCC.2010.2053532
http://www.oasis-open.org/committees/download.php/1371/oasis-sstc-saml-core-1.0.pdf
http://www.oasis-open.org/committees/download.php/1371/oasis-sstc-saml-core-1.0.pdf
http://www.oasis-open.org/committees/download.php/1371/oasis-sstc-saml-core-1.0.pdf
http://dx.doi.org/10.17487/RFC6749
http://dx.doi.org/10.17487/RFC6749
http://dx.doi.org/10.17487/RFC6749
https://datatracker.ietf.org/doc/rfc6749
http://dx.doi.org/10.1109/MIC.2012.11
http://refhub.elsevier.com/S2352-7110(23)00274-1/sb20
http://refhub.elsevier.com/S2352-7110(23)00274-1/sb20
http://refhub.elsevier.com/S2352-7110(23)00274-1/sb20
http://dx.doi.org/10.1145/3287324.3287507
http://dx.doi.org/10.1145/3143560
http://refhub.elsevier.com/S2352-7110(23)00274-1/sb23
http://refhub.elsevier.com/S2352-7110(23)00274-1/sb23
http://refhub.elsevier.com/S2352-7110(23)00274-1/sb23
http://dx.doi.org/10.1177/07356331221085595
http://dx.doi.org/10.1111/jcal.12662
https://onlinelibrary.wiley.com/doi/abs/10.1111/jcal.12662
https://onlinelibrary.wiley.com/doi/abs/10.1111/jcal.12662
https://onlinelibrary.wiley.com/doi/abs/10.1111/jcal.12662
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jcal.12662
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jcal.12662
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jcal.12662
http://dx.doi.org/10.1080/10508406.2014.954750
http://dx.doi.org/10.1080/10508406.2014.954750
http://dx.doi.org/10.1080/10508406.2014.954750
http://dx.doi.org/10.1016/j.chb.2017.01.047
https://www.sciencedirect.com/science/article/pii/S0747563217300596
https://www.sciencedirect.com/science/article/pii/S0747563217300596
https://www.sciencedirect.com/science/article/pii/S0747563217300596
http://dx.doi.org/10.1109/ACCESS.2020.3024102
http://dx.doi.org/10.1109/ACCESS.2020.3024102
http://dx.doi.org/10.1109/ACCESS.2020.3024102
https://ieeexplore.ieee.org/document/9195825
http://dx.doi.org/10.1016/j.softx.2023.101404
http://dx.doi.org/10.1016/j.softx.2023.101404
http://dx.doi.org/10.1016/j.softx.2023.101404
https://www.sciencedirect.com/science/article/pii/S2352711023001000
https://www.sciencedirect.com/science/article/pii/S2352711023001000
https://www.sciencedirect.com/science/article/pii/S2352711023001000
http://dx.doi.org/10.1145/3099023.3099065
http://dx.doi.org/10.1145/3099023.3099065
http://dx.doi.org/10.1145/3099023.3099065
https://dl.acm.org/doi/10.1145/3099023.3099065
http://dx.doi.org/10.1007/978-3-030-85347-1_39
http://dx.doi.org/10.1007/978-3-030-85347-1_39
http://dx.doi.org/10.1007/978-3-030-85347-1_39
http://dx.doi.org/10.1080/03075070600572090
http://dx.doi.org/10.1080/03075070600572090
http://dx.doi.org/10.1080/03075070600572090

	Dodona: Learn to code with a virtual co-teacher that supports active learning
	Motivation and significance
	Software description
	Classroom management
	Student submissions
	Trusted identities
	Automated assessment
	Questions, answers, and manual assessment
	Reliability and robustness

	Illustrative example
	Use and impact
	Research possibilities

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


