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Abstract

Logic reasoning involving big data often requires the proper handling of data
veracity. Indeed with data that cannot be trusted to the same extent, users
should at least be aware on the trust they can have in the obtained reasoning.
In this paper, we propose a novel logic framework that is based on so-called L-
grades. L-grades are a special case of Zadeh’s Z-numbers, consisting of a pair
(s, c) ∈ [0, 1]2 in which s is a suitability grade (or satisfaction grade) and c is
a confidence grade denoting how confident we can be on s. Both grades are
further processed using fuzzy logic. Novel logic operators and so-called sibling
aggregators for L-grades are proposed and studied in the paper. With this
framework we aim to contribute to explainable computational intelligence.
The practical use of L-grades is illustrated with criterion evaluation in a
decision support application with improved explainablity facilities.

Keywords: computational intelligence, confidence, veracity, fuzzy logic,
aggregation, explainability

1. Introduction

In the past decade, data management underwent a considerable change
as data get more and more characterized by huge volumes, originating from
different sources, and/or being diverse in variety of data formats [16]. Novel
data management techniques based on sharding, NoSQL and NewSQL data
base systems help to overcome data volume and data variety problems. How-
ever, another problem still being subject to research and often caused by
using more and larger data sources with a higher variety of data formats is
called the data veracity problem [20, 22, 4]. Data veracity refers to the extent



that data adequately reflect reality and hence can be trusted. Trust in data
sources is a pervasive phenomenon in data management and processing [6].
As veracity propagates from the data sources, through the data processing
and data analysis steps, to the computational outputs it is of utmost impor-
tance to properly model and handle it. This is a challenge that is hard to
meet.

With the research presented in this paper we aim to contribute to ve-
racity handling in criterion evaluation and aggregation, which are important
components in, among others, criterion-based flexible query answering and
decision support systems.

As first scientific contribution we introduce and study a novel logic reason-
ing framework, which is based on so-called L-grades. An L-grade is defined
by an ordered pair l = (s, c) of two grades and can be seen as a simple form
of a Z-number. Z-numbers have been introduced by L.A. Zadeh [29] to better
cope with the issue of reliability of (fuzzy) information. The first component
s acts as a suitability (or satisfaction) grade and expresses to what extent
a data object under consideration satisfies a given criterion or collection of
criteria. Like in many conventional flexible criterion evaluation approaches
acting on crisply described data, s is considered to be gradual and a num-
ber in the unit interval I = [0, 1] [15]. The second component c reflects the
confidence, trust, veracity, or strength of belief in s, i.e., c expresses to what
extent the computation of s can be trusted. This can encompass the trust
in the data object, but also the trust in the evaluation process and the trust
in the eventual aggregation. The confidence grade c is also considered to be
a number in the unit interval I = [0, 1]. It is important to denote that both
components of an L-grade are interpreted as truth values and hence should
be processed using a logic model.

As second scientific contribution we discuss the comparison of L-grades.
Comparing L-grades is important for ranking the results of a (flexible) query
or for ordering the different options in decision making. Moreover, it is an
indispensable component of many practical applications.

The third scientific contribution is the proposal of novel logic operators
that act on L-grades and the study of aggregators for L-grades. These logic
operators and aggregators have been specifically designed to support reason-
ing in criterion handling in a flexible querying or decision support context.
Because these operators and aggregators act on both components of an L-
grade and the computation of a confidence grade c strongly depends on the
computation of its associated satisfaction grade s, we name these operators
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sibling operators.
L-grades offer a facility to explicitly cope with the veracity of a computed

suitability (or satisfaction) grade s. Indeed, their confidence grade c allows
to explicitly model the trust we have in s and acts as an indication of the
veracity of the data being considered for evaluation, the criterion evaluation
and the eventual aggregation in order to obtain an overall evaluation result
in the case of multiple criteria. The confidence grade can be communicated
as extra information to the users of a query answering or decision support
system. This is of pivotal importance in view of (better) interpretable and
explainable criterion evaluation and handling, which in its turn is relevant
and important for many computational intelligence and explainable artificial
intelligence applications [3, 13, 8] and is an important argument for justifying
the relevance of the presented research.

This paper is an extended and revised version of our contribution to the
IPMU 2022 conference [9]. The remainder is organized as follows. In Sec-
tion 2 we introduce the notion of an L-grade and discuss its semantics and
the ranking of L-grades. Basic definitions of logic operators for negation,
conjunction and disjunction of L-grades are presented in Section 3. In Sec-
tion 4 sibling aggregators for L-grades are proposed and discussed. The use
and added value of L-grades in criterion handling is illustrated in Section 5.
Next, related work is discussed in Section 6. Finally, in Section 7 we for-
mulate the conclusions of our work and propose some topics for follow-up
research.

2. L-grades

Driven by his ambition to model different manifestations of imperfect
data in a uniform way, Zadeh [28, 29] in 2011 introduced the notion of a
Z-number. A Z-number Z is defined by an ordered pair of fuzzy numbers,
i.e., Z = (A,B).

The first fuzzy number A acts as a representation of a fuzzy restriction
R(X) on the possible (numerical) values that a linguistic variable X can
take, written as X IS A [27]. Considering that U denotes the universe of
discourse consisting of all candidate values that X can take, A is defined
to be a fuzzy subset of U playing the role of a possibility distribution, i.e.
R(X) : X IS A → Poss(X = u) = µA(u) where µA is the membership
function of A and u is a generic value of U . As such, for each u ∈ U , µA(u)
reflects the possibility that u is the actual value of X.
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The second fuzzy number B is a measure of reliability (trust, strength of
belief) one has in A. More specific B is a fuzzy restriction on the degree of
certainty that X IS A. As such, B is usually assumed to be a fuzzy subset
of the unit interval [0, 1] modelling a fuzzy restriction on the probability of
X IS A, i.e., Prob(X IS A) IS B, but other approaches and definitions are
possible.

Typically, both A and B are described in a natural language [29]. For
example, assume that X represents the travel time by car from Ghent to
Brussels at 12 am, then Z = (about 40 minutes, quite certain) can reflect
this travel time.

In general Z-numbers lead to complex, calculation-intensive computations
(see, e.g., [1, 11, 21]). For that reason, Dubois and Prade studied some
simplified cases of Z-numbers (A,B) where one of the fuzzy numbers is crisp
and the other is fuzzy [11]. In [21] mixed-discrete Z-numbers are introduced.
The simplest forms of Z-numbers, where both components are presented by
crisp singletons have been studied in, among others, [2, 19].

Driven by observed needs in criteria handling for flexible database query-
ing and multi-criteria decision support [8], we propose in this work a novel,
specific logic interpretation of the simplest form of Z-numbers, which we call
L-grades1.

2.1. Definition and semantics

An L-grade l is a Z-number where both components are (crisp) singletons
containing a value of the unit interval I. These values are interpreted as
grades that will be further processed using fuzzy logic, i.e.

l = ({(s, 1)}, {(c, 1)}),where s, c ∈ I. (1)

In the remainder, we will use the short notation l = (s, c) for L-grades l.
When criterion evaluation is considered in the context of decision making,

the first grade s is interpreted as a suitability grade. In the context of flexible
querying s is usually called a satisfaction grade. Herewith, s = 1 denotes
full suitability (or satisfaction), s = 0 means no suitability (or satisfaction),
whereas all other values denote partial suitability (or satisfaction). In the

1In our first work, [9], we used the name Z-grade, but since it is of utmost importance
to emphasize the logic interpretation, we choose to use the name L-grade from now on
(where L stands for logic).

4



remainder of this work we opt to use the term suitability grade as it denotes
how suitable a given object is within a query answer set or as an option in
decision making context.

The second grade c reflects the confidence in s, i.e. the veracity of s,
and is interpreted as a confidence grade. Like with satisfaction grades, c = 1
denotes full confidence, c = 0 denotes no confidence, whereas all intermediate
values denote partial confidence.

As an illustration, consider the L-grades l1 = (1, 1), l2 = (1, 0.7) and
l3 = (1, 0), which are obtained by evaluating a criterion C on data of resp.
three objects o1, o2 and o3. All three objects fully satisfy the criterion as
their corresponding suitability grade equals 1. However, the corresponding
confidence grades reveal that there is full confidence in the veracity of the
(evaluation of the) data of object o1, less confidence in object o2, and no con-
fidence in o3. The use and applicability of L-grades will be further discussed
in Section 5.

Both s and c are graded values, modelling degrees of truth of fuzzy propo-
sitions, not degrees of uncertainty [10]. These degrees of truth will further be
processed using a logic framework that is truth functional and is described
in Sections 3 and 4.

The set of all L-grades will be denoted by L, i.e.

L = I2. (2)

2.2. Comparing L-grades

When using L-grades for criterion handling in querying or decision making
processes, (objects with associated) L-grades will have to be compared in
order to find those objects that best suit the user’s preferences.

Suppose that the L-grade for an object oi is li = (si, ci), and the L-grade
for an object oj is lj = (sj, cj). The objective is the comparison of li and lj
in order to find which of oi and oj best suits the user’s preferences. We may
prefer oi (denoted oi ≻ oj) or prefer oj (denoted oi ≺ oj). In some special
cases we may consider that oi and oj are equivalent (denoted oi ≈ oj).

All stakeholders/decision-makers want simultaneously high suitability and
high confidence. The preference oi ≻ oj can be easily assigned in the follow-
ing cases of full dominance:

si > sj, ci ≥ cj ⇒ oi ≻ oj,

si = sj, ci > cj ⇒ oi ≻ oj.

5



However, the case si > sj, ci < cj remains problematic. If the confidence
ci is rather low, then the condition si > sj might be insufficient to claim
oi ≻ oj. In other words, decision-makers need enough confidence to accept
the conclusion that si > sj is sufficient to claim oi ≻ oj. One simple way
would be to introduce a minimum threshold value cmin so that si > sj, 0 <
cmin ≤ ci < cj ⇒ oi ≻ oj. Unfortunately, selecting cmin is not easy because
the selected value depends on the difference si− sj. Indeed, if this difference
is very small (si − sj << 1), then the threshold value cmin must be greater
than in the case of large differences. In addition, in comparison problems, we
are not only interested in a rank order oi ≻ oj, but we also need to know how
strong that preference is, considering both s and c values. This is subject to
further research.

3. Logic Operators

In this section some basic logic operators for negation, conjunction and
disjunction of L-grades are introduced and discussed. The underlying as-
sumption is that suitability grades should be handled as in conventional logic
operators for fuzzy criteria handling, while the confidence grades should re-
flect the impact of the confidence in the suitability grades of the arguments
after applying the logic operator.

3.1. Negation operators

Our proposed basic operator for the negation of an L-grade, is based on
a strong fuzzy negation, i.e. a function N : [0, 1] ⇒ [0, 1] that satisfies the
following properties [24]:

i. N is decreasing,

ii. N is continuous,

iii. N(N(x)) = x holds for every x ∈ [0, 1] (involutiveness).

The standard negation N : [0, 1] ⇒ [0, 1] : x 7→ 1 − x is an example of a
strong fuzzy negation.

With a strong fuzzy negation N , the negation operator ¬ for L-grades is
defined by

∀ (s, c) ∈ L : ¬(s, c) = (N(s), c) (3)
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This definition reflects that the suitability grade is negated, but the con-
fidence grade remains unchanged. Applying a negation operator does not
impact the veracity of the suitability grade. If criterion evaluation result-
ing in s is based on less trusted data, trust in this data will not increase or
decrease by negating s.

The involutiveness property holds for ¬, i.e. ¬¬(s, c) = ¬(N(s), c) =
(N(N(s)), c) = (s, c).

3.2. Conjunction and disjunction operators

The proposed basic operators for conjunction and disjunction of two L-
grades are resp. based on a t-norm ⊤ and on its dual t-conorm ⊥ for fuzzy
sets [17]. Herewith, the suitability grades of both operands are aggregated
using ⊤ in case of conjunction and using ⊥ in case of disjunction. This is
conform to aggregation in conventional fuzzy criteria handling.

The aggregation of the confidence grades of both operands should reflect
the impact of conjunction, resp. disjunction on the veracity of the aggre-
gated suitability grades. Only confidence grades of suitability grades that
contribute to the aggregated suitability should contribute to the aggregated
confidence grade.

The identity law and monotonicity of t-norms and t-conorms imply that
∀ x ∈ [0, 1] : ⊤(0, x) = 0 and ⊥(1, x) = 1. So, if exactly one suitability
grade equals 0 in case of conjunction or 1 in case of disjunction, then the
other suitability grade is absorbed and does not contribute to the aggregated
suitability. Hence, its associated confidence grade should neither contribute
to the aggregated confidence grade. In all other cases, both associated con-
fidence grades should be taken into account.

Hence, three cases could be considered with respect to the suitability
grades of both operands:

1. Both suitability grades equal the absorbing element of the operator. In
this case, the highest of both associated confidence grades can be as-
signed to the aggregated suitability grade, because both suitability
grades support the suitability aggregation result.

2. Only one suitability grade equals the absorbing element of the operator.
In this case, the confidence grade associated with this suitability grade
reflects the confidence in the suitability aggregation result.

3. None of the suitability grades equals the absorbing element of the oper-
ator. Here, both suitability grades contribute to the suitability aggre-
gation result. Without further knowledge on which grade contributes
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to which extent, the safest strategy is to assign the lowest of both con-
fidence grades to the resulting suitability grade. This is a reserved,
rather pessimistic strategy.

Based on the above considerations we propose the following basic opera-
tors for conjunction and disjunction.

A basic conjunction operator for L-grades based on a t-norm ⊤ is defined
by

∀ (s1, c1), (s2, c2) ∈ L :

⊤((s1, c1), (s2, c2)) = (⊤(s1, s2), a
conj((s1, c1), (s2, c2))) (4)

where aconj is a confidence aggregator for conjunction that is defined by

aconj((s1, c1), (s2, c2)) =


max(c1, c2) if s1 = 0 and s2 = 0,

c1 if s1 = 0 and s2 ̸= 0,

c2 if s1 ̸= 0 and s2 = 0,

min(c1, c2) otherwise.

(5)

The dual basic disjunction operator for L-grades based on the dual t-
conorm ⊥ is defined by

∀ (s1, c1), (s2, c2) ∈ L :

⊥((s1, c1), (s2, c2)) = (⊥(s1, s2), a
disj((s1, c1), (s2, c2))) (6)

where adisj is a confidence aggregator for disjunction that is defined by

adisj((s1, c1), (s2, c2)) =


max(c1, c2) if s1 = 1 and s2 = 1,

c1 if s1 = 1 and s2 ̸= 1,

c2 if s1 ̸= 1 and s2 = 1,

min(c1, c2) otherwise.

(7)

3.3. De Morgan’s laws

The fuzzy De Morgan’s laws state that for any t-norm ⊤ and strong
negation N a corresponding t-conorm ⊥ can be defined by

∀ x1, x2 ∈ [0, 1] : ⊥(x1, x2) = N(⊤(N(x1), N(x2))). (8)
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Likewise,

∀ x1, x2 ∈ [0, 1] : ⊤(x1, x2) = N(⊥(N(x1), N(x2))). (9)

If the standard negation N(s) = 1 − s is used, ⊥ is called a dual t-conorm
to ⊤ and reversely, ⊤ is called a dual t-norm to ⊥.

Theorem 1. If ⊤, ⊥ and ¬ are resp. defined as in Eq. (4), Eq. (6) and Eq.
(3) and if ⊤ and ⊥ are dual operators, then the triplet (⊤,⊥,¬) satisfies

∀ l1, l2 ∈ L : ⊤(l1, l2) = ¬(⊥(¬l1,¬l2)).

Proof 1. Let l1 = (s1, c1) and l2 = (s2, c2), then

¬(⊥(¬(s1, c1),¬(s2, c2))) = ¬(⊥((1− s1, c1), (1− s2, c2)))

= ¬(⊥(1− s1, 1− s2), a
disj((1− s1, c1), (1− s2, c2)))

where

adisj((1− s1, c1), (1− s2, c2))

=


max(c1, c2) if 1− s1 = 1 and 1− s2 = 1,

c1 if 1− s1 = 1 and 1− s2 ̸= 1,

c2 if 1− s1 ̸= 1 and 1− s2 = 1,

min(c1, c2) otherwise.

=


max(c1, c2) if s1 = 0 and s2 = 0,

c1 if s1 = 0 and s2 ̸= 0,

c2 if s1 ̸= 0 and s2 = 0,

min(c1, c2) otherwise.

= aconj((s1, c1), (s2, c2))

So,

¬(⊥(¬(s1, c1),¬(s2, c2))) = ¬(⊥(1− s1, 1− s2), a
conj((s1, c1), (s2, c2)))

= (⊤(s1, s2), a
conj((s1, c1), (s2, c2)))

= ⊤((s1, c1), (s2, c2))

Q.E.D.
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4. Sibling Aggregators

The basic conjunction and disjunction operators given in Eq. (4) and
Eq. (6) are examples of binary aggregators that map L2 onto L. In this
section we study aggregators h of arity n, n ≥ 2, that map Ln onto L. More
specifically, we propose a weighted mean (WM) and an ordered weighted
average (OWA) aggregator for L-grades.

4.1. Weighted mean

Computing the weighted mean of n ≥ 2 L-grades li = (si, ci), i = 1, . . . , n,
requires n weights that reflect the relative importance of each L-grade in the
aggregation. For that purpose a weight vector w⃗ = (w1, . . . , wn) ∈ [0, 1]n,
such that

∑n
i=1 wi = 1, is considered. We propose to aggregate the suitability

grades si, i = 1, . . . , n, of all operands using a conventional fuzzy weighted
mean operator. By doing so, the aggregation of suitability grades is done
conform to conventional fuzzy criteria handling.

For the aggregation of the confidence grades ci, i = 1, . . . , n we propose to
use the same conventional fuzzy weighted mean operator. This is motivated
by the requirement that the resulting confidence grade c should reflect the
impact of the fuzzy weighted mean operator on the veracity of the aggregated
suitability grades si, i = 1, . . . , n. Herewith, we consider that each confidence
grade ci should contribute to the same extent to the computation of the
aggregated confidence grade c as its corresponding ‘sibling’ suitability grade
si contributes to the computation of the aggregated suitability grade s. The
impact of each suitability grade si in the computation of s is determined
by its associated weight wi, hence the proposal to use wi also as weight for
the ‘sibling’ confidence grade ci in the computation of c. This leads to the
following definition.

The n-ary weighted mean for L-grades is defined by

hw⃗ : Ln → L : ((s1, c1), . . . , (sn, cn)) 7→ (s, c) (10)

where s =
∑n

i=1 wi · si and c =
∑n

i=1wi · ci.
This aggregator is called a sibling aggregator because each confidence

grade has a similar impact on the aggregation of the confidence grades, as
its sibling suitability grade has on the aggregation of the suitability grades.
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4.2. Ordered weighted average

Ordered weighted average (OWA) [25] also works with a weight vector,
but a different, dynamic weight assignment is used. The inputs that have
to be aggregated are first ranked from largest to smallest, after which the
first weight is assigned to the largest input, the second weight is assigned to
second largest input, and so on.

Assume again that, to aggregate n ≥ 2 L-grades li = (si, ci), i = 1, . . . , n,
a given weight vector w⃗ = (w1, . . . , wn) ∈ [0, 1]n with

∑n
i=1 wi = 1 is used.

Then we propose again to aggregate the suitability grades conform to conven-
tional fuzzy criteria handling by using the conventional n-ary OWA operator
hOWA
w⃗ that is defined by

hOWA
w⃗ : [0, 1]n → [0, 1] : (s1, . . . , sn) 7→

n∑
i=1

wi · sρ(i) (11)

where ρ : {1, . . . , n} → {1, . . . , n} is a permutation on the index set satisfying
sρ(1) ≥ sρ(2) ≥ · · · ≥ sρ(n) [25].

The aggregated confidence grade c should reflect the impact of the OWA
operator on the veracity of the aggregated suitability grades si, i = 1, . . . , n.
We propose again that each confidence grade ci should contribute to the
same extent to the computation of c as its corresponding ‘sibling’ suitability
grade si contributes to the computation of the aggregated suitability grade
s. Hence, for each i = 1, . . . , n, the same weight wi that has been assigned
to sρ(i) by the OWA operator is also used as weight for cρ(i), after which c
is obtained by computing the weighted mean. This leads to the following
definition.

The n-ary ordered weighted average for L-grades is defined by

hOWA
w⃗ : Ln → L : ((s1, c1), . . . , (sn, cn)) 7→ (s, c) (12)

where s =
∑n

i=1 wi · sρ(i) and c =
∑n

i=1wi · cρ(i).
This aggregator is called a sibling aggregator because each confidence

grade has a similar impact on the aggregation of the confidence grades, as
its sibling suitability grade has on the aggregation of the suitability grades.
Observe that the same permutation ρ that is defined by the ranking of the
suitability grades si, i = 1, . . . , n is used for the computation of both s and
c. This aggregator is also a sibling aggregator.
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Figure 1: Sand extraction from the North Sea.

5. Applicability

In order to demonstrate the applicability of L-grades in criteria handling
for decision making (and querying), consider the evaluation of the soil com-
position in the Belgian territory of the North Sea for supporting decision
making on finding suitable areas for sand extraction [7]. The area under
investigation is modelled by a 3D grid model, consisting of cuboids that are
called tiles, of which a part representing the Westhinder sandbank is depicted
at the right side of Figure 1.

Geological data are obtained from soil samples that are extracted using
drilling techniques that are operated from a ship. For sampling locations, the
soil composition data can be directly obtained by analysing the samples. For
other locations these data have to be approximated by combining geologic
domain knowledge with extrapolation techniques. Additionally, there are
maps of present infrastructure like pipelines, cables, etc.

For the sake of illustration we consider that candidate tiles should satisfy
two criteria. The first criterion, Cs

1 , relates to the estimated quantity of fine
sand present in a tile, whereas the second criterion, Cs

2 , puts a constraint on
the minimal distance between a tile and it nearest infrastructure. Both crite-
ria have to be evaluated for each tile in the considered area of investigation.
Each criterion is defined by means of a membership functions that reflects
the preferences of the decision makers as depicted in Figure 2.

As such, Cs
1 determines the desired percentages of fine sand. Tiles with

a percentage lower than 70% are not suited and receives a suitability grade

12



Figure 2: Criteria Cs
1 and Cs

2 .

0. Tiles with a percentage greater than 80% are fully suited and receive a
suitability grade 1. For percentages between 70% and 80% the suitability
monotonously increases from 0 to 1. A similar approach is used to define Cs

2 .
Here, the preferred distance d to the closest infrastructure is larger than 500
metres. Distances closer than 300 metres are unacceptable. Conventional
flexible querying [15] and decision support techniques [12], which use fuzzy
logic or gradual logic, can handle the suitability grades obtained from this
kind of criterion evaluation.

To cope with veracity, trust in data has to be dealt with. Assume that the
data for criterion Cs

1 are subject to incompleteness and accuracy issues and
that the data for criterion Cs

2 are vulnerable to currency issues. Due to the
sparse distribution of sampling locations, the confidence in the percentage
of fine sand present in a given tile depends on the closeness of neighbouring
sampling locations. Sampling locations are depicted by vertical lines in the
left picture of Figure 1. For the sake of illustration the distance between
a candidate tile and its closest sampling location is used to approximately
assess the confidence that is related to incompleteness for that tile. More
specifically, an approximate confidence grade is obtained by evaluating con-
fidence criterion Cc

1 as depicted in Figure 3.
The accuracy of the used sampling method also influences the confidence

in the registered percentage of present fine sand. For the sake of illustration,
we assume that there are four sampling methods A, B, C and D and only
consider the (sampling method that has been used for the) closest sampling
location. The accuracy related confidence is then assessed by evaluating
criterion Cc

2 shown in Figure 3. The confidence in the evaluation of criterion
Cs

2 is assumed to relate only to the currency of the available data on present
infrastructure. For the sake of illustration, this currency related confidence

13



Figure 3: Confidence criteria Cc
1, C

c
2 and Cc

3.

is assessed by evaluating criterion Cc
3 shown in Figure 3, which is defined on

the publication date of the used infrastructure maps for the subarea in which
the candidate tile is located. The criterion reflects that if the oldest map
used is dated less than 1 year ago, its content is fully truthful. Furthermore,
if this map is dated more than 5 years ago the data are considered to be not
truthful at all.

Let a1 =‘% fine sand’ and a2 =‘closest distance to infrastructure’ be the
attributes that are evaluated in criteria Cs

1 and Cs
2 , and let a3 =‘distance

of closest sampling point’, a4 =‘used sampling method’ and a5 =‘past time
since update’ be the attributes used in the confidence criteria Cc

1, C
c
2 and Cc

3.
Moreover, let the actual value of an attribute ai for a given tile t be denoted
by t[ai]. Consider a set T c = {t1, . . . , tn} of candidate tiles.

The evaluation of a tile ti ∈ T c, can be done by:

1. Computing the suitability grades Cs
1(t

i[a1]) and Cs
2(t

i[a2]).

2. Computing the confidence grades Cc
1(t

i[a3]), C
c
2(t

i[a4]) and Cc
3(t

i[a5]).

3. Determining the L-grades lt
i

1 = (Cs
1(t

i[a1]),⊤(Cc
1(t

i[a3]), C
c
2(t

i[a4]))) and
lt

i

2 = (Cs
2(t

i[a2]), C
c
3(t

i[a5])), where ⊤ is a t-norm chosen to aggregate
the two confidence grades that relate to data used in criterion Cs

1 .

4. Compute the overall L-grade lt
i
= ⊤(lt

i

1 , l
ti

1 ) using a conjunction oper-
ator ⊤ for L-grades as defined by Eq. (4).

If required, more advanced aggregators, as presented in Section 4, can be
used.

Using L-grades allows to better inform and support users in their decision
making processes. In the case of the above example, tiles with high suitabil-
ity and high confidence are preferred, but those with high suitability and
lower confidence might also be worth further investigation. For example, if
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Table 1: Evaluation of some candidate tiles ti.

ti Cs
1(t

i) Cc
1(t

i) Cc
2(t

i) lt
i

1 Cs
2(t

i) Cc
3(t

i) lt
i

2 lt
i

t1 1 1 0.2 (1, 0.2) 1 1 (1, 1) (1, 0.2)
t2 0.7 1 0.6 (0.7, 0.6) 0.8 1 (0.8, 1) (0.7, 0.6)
t3 0.7 0.8 1 (0.7, 0.8) 0.8 1 (0.8, 1) (0.7, 0.8)
t4 0 1 1 (0, 1) 1 0.6 (1, 0.6) (0, 1)

their closest sample location is too far, confidence could be improved by pro-
viding new sample locations. This kind of extra information is more difficult
to obtain when using conventional logic frameworks. It definitely provides
decision makers with a facility to manage data quality and make decisions
on which data aspects to prioritize when improving data veracity.

L-grades can be computed and processed at each stage in criteria han-
dling, ranging from criteria evaluation to the aggregation and ranking of the
evaluation results. Backtracking to previous stages is always possible. This
is illustrated with Table 1. Criteria evaluation results for the suitability cri-
teria Cs

1(t
i) and Cs

2(t
i) were obtained by computing the membership grades

of tile ti’s actual attribute values using the membership functions given in
Figure 2. Likewise, the evaluation results for the confidence criteria Cc

1(t
i),

Cc
2(t

i) and Cc
3(t

i) were computed using the membership functions given in
Figure 3. The minimum operator is used as t-norm in the computation of
the confidence grade of lt

i

1 and is also considered to be the t-norm on which
the conjunction operator ⊤, used for the computation of lt

i
is based.

Tile t1 has the highest suitability, but this suitability is least trusted.
Tiles t2 and t3 are suitable to the same extent, but the suitability for t2 is
less trusted. For tile t4, the suitability is zero and this can be fully trusted.
The reason for the decreased confidence in t1 is the use of the least trusted
sampling method. The used sampling method is also causing the decrease in
confidence for t2. In the case of t3 the distance to the closest sampling point
causes the lack of trust.

Backtracking allows to find the reason of a given suitability or confidence
grade, what contributes to the understanding and explainability of criteria
handling, and what on its turn is considered as an important step towards
better explainable query processing and decision making processes.
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6. Related Work

In this work we use L-grades to explicitly cope with the veracity of results
in criterion processing. By doing this we opt to use a kind of truth values to
separately model suitability and confidence and process these values using
fuzzy logic.

In other approaches, confidence has been modelled considering a level of
uncertainty on suitability. As such, intervals [18], type-2 fuzzy sets [5], and
R-sets [23] have been used as mathematical tools to impose a kind of upper
and lower bound for suitability reflecting uncertainty on it. This uncertainty
can be interpreted as reflecting veracity. Yager proposed two approaches for
criterion evaluation with imprecise data in [26], the first approach is based
on ‘containment’, the second on ‘possibility’.

Data quality has also been studied in the context of skyline querying
[14]. In skyline querying, database records are filtered by keeping only those
that are not worse than any other. In the proposed approach, each database
attribute can be assigned a quality level. These quality levels are then taken
into account when checking for record dominance in answer set construction.

An advantage of using L-grades is that these permit to assess and handle
data veracity in an explainable way, using (weighted) confidence criteria that
reflect the expert knowledge of data managers, as illustrated in Section 5.
This is of pivotal importance in view of developing improved interpretable
and explainable criterion handling techniques. Moreover, the clear and ex-
plicit distinction between suitability and associated confidence is inspired by
(and hence in line with) Zadeh’s last insights on how to adequately model
general numerical data using Z-numbers [29], stating among others that re-
liability of (uncertain) data should not be implicitly modelled by increasing
or decreasing uncertainty, but should be dealt with separately. An idea that
also has been shared by Aliev [2] and by Kreinovich [19].

7. Conclusions and Future Work

We proposed a novel logic framework, which is based on so-called L-
grades. An L-grade is the simplest form of a Z-number, consisting of a pair
of crisp numbers that are both interpreted as truth values. The first truth
value reflects a suitability grade (or satisfaction grade), whereas the second
truth value is a confidence grade expressing how reliable the suitability grade
is. As such, L-grades can be used to model criterion satisfaction and handle

16



criterion processing in flexible querying and decision support. Using explicit
confidence grades to handle reliability permits to cope with data veracity,
which is considered to be a main issue in many big data applications.

We studied and proposed basic logic operators for the negation, con-
junction and disjunction of L-grades. Moreover, we introduced the concept
of a sibling aggregator. With a sibling aggregator, suitability grades and
confidence grades are aggregated separately. But each confidence grade has
a similar impact in the aggregation of the confidence grades, as its corre-
sponding (sibling) suitablity grade has in the aggregation of the suitability
grades. As basic sibling aggregators we proposed weighted mean and ordered
weighted average for L-grades.

The usability of L-grades has been demonstrated with an illustrative ex-
ample on evaluating the soil composition in the Belgian territory of the North
Sea for supporting decision making on finding suitable areas for sand extrac-
tion. L-grades are computed and processed during criterion evaluation and
at each aggregation step. These L-grades then explicitly express how good an
evaluated object satisfies (each of) the criteria and to what extent the eval-
uation (and aggregation) results can be trusted. Backtracking to previous
criteria handling stages permits to find the reason for a given suitability or
confidence grade. This contributes to better explainable criterion handling
and could also be useful in view of the development of better interpretable
artificial intelligence applications.

As future work, we plan to further investigate the mathematical proper-
ties of L-grades. Moreover, we aim to develop more advanced logic operators
and sibling aggregators. Another future research topic is the further devel-
opment of ordering functions for L-grades. We also plan to investigate how
L-grades can be fitted within the Logic Scoring of Preference (LSP) frame-
work for decision engineering. Finally, appropriate software tools will be
developed in order to encourage the further development of practical appli-
cations and experimental validation.
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agement systems: Half a century of developments and future prospects.
Fuzzy Sets and Systems, vol. 218, pp. 300–307 (2015).

[16] Kitchin, R.: Big Data, new epistemologies and paradigm shifts. Big
Data & Society, vol. 1, no. 1, pp. 1–12 (2014).

[17] Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, Kluwer, Dor-
drecht, The Netherlands (2000).

[18] Kreinovich, V., Ouncharoen, R.: Fuzzy (and Interval) Techniques in
the Age of Big Data: An Overview with Applications to Environmental
Science, Geosciences, Engineering, and Medicine. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 23, suppl.
1, pp. 75–89 (2015).

19



[19] Kreinovich, V., Kosheleva, O., Zakharevich, M.: Z-Numbers: How They
Describe Student Confidence and How They Can Explain (and Improve)
Laplacian and Schroedinger Eigenmap Dimension Reduction in Data
Analysis. In: Marsala, C., Lesot, M.-J. (Eds.), Fuzzy Approaches for Soft
Computing and Approximate Reasoning: Theories and Applications,
Springer, Cham, Switzerland, pp. 285–297 (2021).

[20] Lukoianova, T., Rubin, V.L.: Veracity Roadmap: Is Big Data Objective,
Truthful and Credible? Advances In Classification Research Online, Vol.
24, no. 1, pp. 4–15 (2014).

[21] Massanet, S., Riera, J.V., Torrens, J.: A new approach to Zadeh’s Z-
numbers: Mixed-discrete Z-numbers. Information Fusion, vol. 53, pp.
35–42 (2020).

[22] Saha, B., Srivastava, D.: Data quality: The other face of big data. In:
Proc. of the 2014 IEEE 30th International Conference on Data Engi-
neering, pp. 1294–1297. Chicago, USA (2014).

[23] Seiti, H., Hafezalkotob, A., Martinez, L.: R-Sets, Comprehensive Fuzzy
Sets Risk Modeling for Risk-Based Information Fusion and Decision-
Making. IEEE Transactions on Fuzzy Systems, vol. 29, no. 2, pp. 385–
399 (2021).

[24] Trillas, E.: On negation functions in the theory of fuzzy sets. Stochastica,
vol. 3, no. 1, pp. 47–60 (1979)

[25] Yager, R.R.: On ordered weighted averaging aggregation operators in
multi-criteria decision making. IEEE Trans. on Systems, Man and Cy-
bernetics, vol. 18, 183–190 (1988).

[26] Yager, R.R.: Validating criteria with imprecise data in the case of trape-
zoidal representations. Soft Computing, vol. 15, 601–612 (2011).

[27] Zadeh, L.A.: Calculus of fuzzy restrictions. In: Zadeh, L.A., Fu, K.S.,
Tanaka, K., Shimura, M. (Eds.), Fuzzy sets and Their Applications to
Cognitive and Decision Processes, Academic Press, New York, pp. 1–39
(1975).

[28] Zadeh, L.A.: From imprecise to granular probabilities. Fuzzy Sets and
Systems, vol. 154, no. 3, pp. 370–374 (2005).

20



[29] Zadeh, L.A.: A Note on Z-numbers. Information Sciences, vol. 8, no. 3,
pp. 2923–2932 (2011).

21



Figure

https://www.editorialmanager.com/ija/download.aspx?id=53234&guid=373d0e03-2122-4a67-a2f4-25f5cebc64c3&scheme=1
https://www.editorialmanager.com/ija/download.aspx?id=53234&guid=373d0e03-2122-4a67-a2f4-25f5cebc64c3&scheme=1


Figure

https://www.editorialmanager.com/ija/download.aspx?id=53235&guid=427c1e8b-324c-4db2-9254-4cb2ca3d637a&scheme=1
https://www.editorialmanager.com/ija/download.aspx?id=53235&guid=427c1e8b-324c-4db2-9254-4cb2ca3d637a&scheme=1


Figure

https://www.editorialmanager.com/ija/download.aspx?id=53236&guid=51b7d323-f56b-4808-9199-2bc5ae8c6da1&scheme=1
https://www.editorialmanager.com/ija/download.aspx?id=53236&guid=51b7d323-f56b-4808-9199-2bc5ae8c6da1&scheme=1

