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Abstract— Pulse-wave velocity (PWV) can be used to quantify
arterial stiffness, allowing for a diagnosis of this condition.
Multi-beam laser-doppler vibrometry offers a cheap, non-
invasive and user-friendly alternative to measuring PWV, and
its feasibility has been previously demonstrated in the H2020
project CARDIS. The two handpieces of the prototype CARDIS
device measure skin displacement above main arteries at two
different sites, yielding an estimate of the pulse-transit time
(PTT) and, consequently, PWV. The presence of multiple
beams (channels) on each handpiece can be used to enhance
the underlying signal, improving the quality of the signal
for PTT estimation and further analysis. We propose two
methods for multi-channel LDV data processing: beamforming
and beamforming-driven ICA. Beamforming is done by an
SNR-weighted linear combination of the time-aligned channels,
where the SNR is blindly estimated from the signal statistics.
ICA uses the beamformer to resolve its inherent permutation
and scale ambiguities. Both methods yield a single enhanced
signal at each handpiece, where spurious peaks in the individual
channels as well as stochastic noise are well suppressed in
the output. Using the enhanced signals yields individual PTT
estimates with a low spread compared to the baseline approach.
While the enhancement is introduced in the context of PTT
estimation, the approaches can be used to enhance signals in
other biomedical applications of multi-channel LDV as well.

I. INTRODUCTION

The large arteries, and specifically the aorta, play a central
role in the blood circulation. Their structure allows the
vessel wall to distend during heart contraction, storing elastic
energy, which is used during the consequent relaxation to
drive the blood flow [1]. This way, a near-continuous flow is
assured at the smaller arteries that provide organ perfusion.
This ‘buffer’ function [2] deteriorates significantly when
these large arteries stiffen, leading to poorer blood flow
and consequent organ damage – especially in low resistance
organs such as the heart itself [3], [4], [5].

A metric that allows for quantifying arterial stiffening is
the pulse-wave velocity (PWV) [5], [6]. Especially carotid-
femoral PWV has been studied and showed a significant
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relationship with arterial stiffness. The speed of the pulse-
wave induced by heart-contraction increases with arterial
stiffness. If we measure the arrival time of the pulse-wave
at two points on the arterial tract, separated by a distance
dx, it holds that PWV = dx

dt , where dt is the delay in the
pulse arrival time across the two points. We refer to dt as
the pulse-transit time (PTT).

Aside from the current state-of-the-art measurement meth-
ods, such as applanation tonometry and ultrasound [7], [6],
an alternative approach based on laser-doppler vibrometry
(LDV) [8], [9], [10] has also been applied to the measuring
of PWV . This cheaper, more user-friendly method measures
skin displacement above large arteries such as the carotid and
femoral arteries, based on which the pulse arrival time and
PTT can be estimated. A feasibility study was previously
conducted using industrial LDV devices [8]. In the scope
of the H2020 CARDIS project, a first prototype was con-
structed with two handpieces, with which skin displacement
could be simultaneously measured at two different locations.
Each handpiece captured data using six laser beams with a
wavelength of 1550nm, where the inter-beam distance was
5mm. The displacement signals obtained were differentiated
twice, yielding acceleration. The time-point of the arrival of
the pulse wave was then detected via the point of maximum
acceleration.

Several datasets were obtained with this prototype [11].
However, despite the availability of multi-channel data on
both handpieces, PTT and PWV estimates were based on a
laborious combination of the individual channels across both
handpieces.

Since the underlying signal captured by all the chan-
nels in a single handpiece is the same, linearly combining
the channels could yield an output with a better signal-
to-noise ratio. Such methods of combining signals from
spatially separated sensors to enhance a desired (target)
signal fall under the umbrella of beamforming [12], [13].
A beamformer is essentially a spatial filter that, like its
temporal/spectral counterpart, combines signals captured by
spatially distributed sensors to extract signals coming from
desired directions while suppressing interference and noise
from unwanted ones. Since the original problem in the time-
domain is a convolutive mixing, beamforming is typically
applied in the transform (Fourier) domain, where the signal
model reduces to an instantaneous mixture with complex
coefficients at each frequency. This simplifies the subsequent
enhancement as it simplifies to a straightforward matrix
multiplication instead of a deconvolution. Such methods



have also been applied to electroencephalography (EEG) data
e.g. [14], where an instantaneous mixing model is directly
applicable in time domain.

Unlike conventional beamforming or the methods applied
to EEG signal processing, however, the signal model for
LDV captures cannot be straightforwardly transformed into
an instantaneous mixing model in the frequency or the time
domain. In this contribution, therefore, we investigate how to
adapt and apply beamforming to multichannel LDV data. We
also show how to extend the framework to incorporate more
sophisticated approaches such as independent component
analysis (ICA). While the approach will be demonstrated in
the context of carotid-femoral PTT estimation, the underlying
signal model and concepts can be applied to a wide range
of applications using multichannel LDV - which is being
explored in the scope of the follow-up H2020 project InSiDe.

The paper is structured as follows: we first present the
CARDIS data and the ‘brute-force’ baseline PTT estimation
method. Next, we present the signal model for the mul-
tichannel LDV data. Based on this model we first adapt
the beamforming strategy to perform a signal-to-noise ratio
(SNR)-weighted averaging of the channels. Lastly, we show
how, with the adapted signal model, ICA can also be applied
and how the permutation and scaling ambiguity associated
with ICA can be resolved. The approaches are then compared
in terms of the quality of the PTT estimates obtained from
the enhanced signals. It will be demonstrated that individual
PTT estimates obtained on the beamformed or ICA processed
signals are more reliable (lower variance) than that obtained
from the baseline method. Further, the SNR estimates com-
puted in the course of the beamforming provide valuable,
additional information regarding the reliability and quality of
different segments of the signal - opening up new possibilites
for such signal analysis.

II. MATERIALS & BASELINE METHOD

A. The CARDIS database

The CARDIS device consists of two handpieces (HP) -
which we will refer to as HP1 and HP2. While the reader
is referred to [15], [16] for the details, the prototype is
illustrated in Fig. 1, along with typically captured signal
traces, for convenience. Note the six channels per handpiece,
which capture the skin displacement. To guarantee that
sufficient light is reflected by the skin back to the device,
application of retro-reflective tape on the measurement site
was required. Finally, to ensure stability of positioning and an
optimized focus distance during the measurements, a spacer
is included in the build.

Data can be gathered simultaneously with both hand-
pieces, each of which is located at a separate measurement
site – such as above the carotid and femoral artery to get a
carotid-femoral PWV estimation, or on measurement sites
that are 25 − 50mm apart, to measure local pulse wave
propagation in e.g. the carotid artery. Note that while the
developed approaches are illustrated on the carotid-femoral
setup, they are equally applicable to other setups as well.

Fig. 1. The CARDIS device being used during a carotid-femoral measure-
ment. Handpiece 1 measures skin displacement above the femoral artery
and handpiece 2 above the carotid artery. 20-second recordings for the 12
beams are displayed. Channel 1-6 correspond with handpiece 1 and channel
7-12 to handpiece 2.

The carotid-femoral LDV-data used in this analysis were
acquired in a clinical feasibility study at the Hôpital Eu-
ropéen Georges Pompidou (HEGP) in Paris, France. Data
was gathered from 100 subjects with varying ages (19-
85), sex, BMI, and history with cardiovascular risk-factors
and illnesses (from mild to stage three hypertension) [11].
For every subject, four to five sets of measurements were
conducted, resulting in 410 datasets for the carotid-femoral
database. Each measurement contained six LDV signals
per handpiece, yielding skin-displacement data sampled at
fs = 10kHz. This was passed through a linear-phase low-
pass filter with a cut-off frequency of 30 Hz to suppress
high-frequency noise. Filtering was applied in a zero-phase
manner. The signal was then differentiated twice to yield
acceleration data – which is a more robust feature as the
differentiation removes any drift in the displacement signal.

B. Brute-force PTT estimation

To validate the applicability of LDV for PWV estima-
tion, the carotid-femoral PTT estimate was calculated and
compared with ground truth data, which was obtained using
applanation tonometry. As mentioned previously, PTT is
defined as the time delay between the arrival of the pulse
wave at the carotid artery and the femoral artery. It should
be noted that, since the arterial pathway from the heart to
the carotid artery is shorter than that from heart to femoral,
the pulse wave should always be detected first at the carotid.
The time of arrival of the pulse at each measurement point
is taken as the instant of maximum acceleration for a given
heartbeat. Demarcation of the pulse arrival time and the PTT



computation is illustrated in Fig. 2 where one channel each
from HP1 and HP2 are considered. By pooling the estimates
across the 36 possible channel combinations between HP1
and HP2, more robust PTT estimates can be obtained.

Fig. 2. Example matching of simultaneously measured carotid and femoral
LDV-traces. Two corresponding heartbeats from which pulse-transit times
can be calculated are indicated in red. Y-axis is not labelled because the
scale is arbitrary.

As the above example illustrates, computing the PTT
consists of first identifying the heart cycles in the accelera-
tion signals of the carotid-femoral channel-pair considered,
followed by identifying the pulse arrival time in each channel
and for each cycle. However, the problem is that either or
both channels may not pick up the pulse in each beat -
because of insufficient reflection of the beam or movement
of the handpiece or insufficient skin displacement. Further,
as the heart rate can also change during a measurement, an
online estimation of the heart rate (and, thus, the location of
a cycle) becomes necessary. Thus, the following procedure
was adopted for estimating the PTT from a given recording.

First, a beat-detection algorithm based on template match-
ing [17], [18] was applied to each of the 12 traces (we term
the acceleration signal of a channel as a trace). Template
matching is a pattern recognition technique which essentially
consists of computing the normalised cross-correlation be-
tween a so-called template (here, the characteristic waveform
of the acceleration signal when the pulse traverses the
measurement point) and the trace at different time-lags. For
time-lags where the segment of the trace ‘matches’ well
with the template, the normalised cross-correlation will be
high (ideally ≈ 1) – indicating the presence of the pulse-
wave. An empirically selected threshold of 0.7 was selected
and at time instants where this value was exceeded, it was
be assumed that a beat was detected. As the acceleration
signal demonstrates different characteristic wave pattern at
the carotid (HP1) and femoral (HP2) measurement points,
separate templates were used each case, and were obtained
offline by an ensemble average across all recordings. The
length of the carotid template was 200ms and that of the
femoral was 500ms (please see [19] for details).

Next, matching beat-pairs were identified using the carotid
as reference (typically more carotid beats are detected com-
pared to femoral). When a pulse is detected on any of
the carotid channels, all femoral channels are examined

for pulses within a time-window of 200ms of this pulse
(two matching beat-pairs are indicated in Fig. 2). The range
of 200ms was chosen to accommodate a wide range of
PWVs while minimising the risk that a subsequent beat on
the femoral is matched (i.e., carotid detects beat P and is
matched to beat P+1 on the femoral). Since a 200ms beat
period corresponds to the unlikely heart rate of 300bpm, such
confusion is avoided. Finally, PTTs were calculated from
each matching beat pair in the 36 trace combinations. The
median value of these was taken as the final PTT estimate.

In addition to being laborious (template matching applied
to 12 channels, exhaustive search for a matching beat in the
femoral channels for each beat found on a carotid channel,...)
this approach implicitly includes data from noisier channels
as well. With no way of indicating which estimate comes
from a good or from a bad channel, this leads to a wide
spread of the results. Hence we investigate the linear com-
bination of all channels at a handpiece to generate a single
output signal with improved SNR. This should reduce the
spread of the PTT estimates and offer potential to reduce
the computational complexity as well.

III. BEAMFORMING FOR PTT ESTIMATION

A. Signal model

For any handpiece, the acceleration signal at a channel
m ∈ {1,2, . . . ,6} is modelled as:

xm(n) = sm(n)+ vm(n) , (1)

where sm(n) is the underlying target signal in channel m and
vm(n) is the noise in that channel. We further assume:

sm(n) = αms(n− τm) , (2)

i.e., the target signal is received at each channel with a
channel-dependent scale factor αm and delay τm.

The channel-dependent delay in (1) makes it difficult
to form the enhanced output (y(n)) by a weighted linear
combination of the form:

y(n) = ∑
m

wmxm(n) , (3)

while ensuring a constructive addition of the desired com-
ponent s(n). The general solution requires the estimation of
optimal individual filters wm(n) for each channel – which
is not a straightforward problem (see, e.g., [20]). However,
the model of (2) allows for a simpler alternative: by time-
aligning the target components sm(n), (1) reduces to:

x′m(n) = αms(n)+ v′m(n) , (4)

allowing for the application of (3). We address, next, the
blind estimation of the time-delays τm and the optimal
weighting factor wm. Since the underlying signal s(n) is
essentially unknown, a blind estimation of τm and αm is
always subject to an offset and a scale ambiguity respectively
- i.e., any solution of the kind τ̂m = τm +T and α̂m = C αm,
where T and C are constants, is acceptable – the constant
values being subsumed into the definition of s(n). The
ambiguities vanish, however, if we estimate the scale and



delay with respect to the signal component in a reference
channel mref. Thus, reinterpreting (1) and (2) with respect to
a reference channel mref we obtain:

xm(n) = αms(n− τm)+ vm(n) ∀m ̸= mref (5)
xmref(n) = s(n)+ vmref(n)

where αm and τm are now with respect to the signal compo-
nent in the reference channel.

In general, the reference channel can be arbitrarily chosen
for each handpiece – the middle channels (m = 3,4) being a
logical choice. Alternatively, with the help of overall-quality
estimated per channel over the whole recording – as in [19]
– the ‘best’ channel (on average) may be chosen. In the
following we denote this generically as mref.

B. Time alignment of the sm(n)

As the signal component in channel m can either be
advanced or delayed with respect to the signal component at
channel mref, the reference signal xmref(n) is first shifted by a
group delay of D > max{τm} samples. This ensures that all
other channels are shifted causally for time alignment. Thus,
the reference signal becomes:

x̃mref(n) = s(n−D)+ ṽmref(n) . (6)

It is easy to see that delaying each xm(n) (m ̸= mref) by
Tm = D− τm ensures that the signal component is aligned
with the reference. By cross-correlating xm(n) with x̃mref(n)
an estimate the time-delay can be obtained [21], [22]. The
integer part of the delay corresponds to the time-lag at
which the cross-correlation peak is observed. The delay
estimate can be further refined to account for fractional
shifts. This can be done by a simple three-point parabolic
fit around the observed cross-correlation peak, or by more
sophisticated methods (see, e.g., [23]). Having estimated Tm,
generic delay filters hm(n) can be obtained by (truncated)
sinc functions [24] of order L ≥ 2D:

hm(n) = sinc
(
n−Tm

)
. (7)

This formulation of the delay filter allows us to account for
fractional sample shifts. It is easy to see that the filter reduces
to a shifted Kronecker’s delta function when Tm is an integer
– as we expect.

C. Compensating for αm

By appropriately compensating αm, we can express the
signal at each channel as:

x̃m(n) = s(n−D)+ ṽm(n) , (8)

which, as we subsequently show, allows for an intuitive
definition of the weighting factors wm in (3). We exploit the
observation that s(n) is characterised by high-energy regions
corresponding to the traversal of a pulse. Thus, comparing
energies of xm(n) to xmref(n) (or their time-aligned versions)
at these regions can yield a reasonable idea of αm.

While identification of high-energy regions can be done
using template matching (as in Sec. II-B), this requires extra

Fig. 3. Distribution of the segmented energies for 4 channels in a sample
dataset. The 85th percentiles are displayed by vertical lines, and in the colour
chosen for the corresponding channel.

computation and the availability of templates. Therefore, we
present a more generic method based on the statistics of the
signal energy – so the approach is also applicable where prior
knowledge of templates are unavailable.

We segment xmref(n) and xm(n) (or their time-aligned
versions) into J non-overlapping segments of length N sam-
ples, where N is roughly the length of a pulse waveform
(≈ 200ms). The energy Em, j (resp. Emref, j) is obtained as:

Em, j =
N−1

∑
n=0

(
xm(n+ jN)

)2
. (9)

Subsequently, as we are interested in the high-energy seg-
ments, the 85th percentile of the energies was calculated.
This threshold was empirically found to be a good balance
between accounting for the variation of the received pulse
energy in the trace and not being biased by the low-energy
segments which mainly contain channel-dependent noise.
Based on this, αm can be estimated as:

α̂m =

√
perc

(
{Em, j},85

)
perc

(
{Emref, j},85

) (10)

The distribution of the energies are illustrated for an example
dataset in Fig. 3 and the 85th percentiles are shown as
vertical lines in the colour of the corresponding distribution.

Based on α̂m above and hm(n) from (7), we modify the
signal of each channel as:

x̃m(n) =
1

α̂m
hm(n)∗ xm(n) ≈ s(n−D)+ ṽm(n) , (11)

where ∗ represents the discrete-time convolution operator.

D. Estimating wm and the enhanced signal y(n)

Using (5) and (11) and stacking the signals into an
M−dimensional column vector for each time-instant yields:

x̃(n) = 1s(n−D)+ ṽ(n) , (12)

where x̃(n) =
[
x̃1(n), x̃2(n), . . . , x̃M(n)

]T , 1 is an M×1
vector of ones and ṽ(n) is similarly defined to x̃(n). This
model now allows the computation of the enhanced signal
as in (3) and an intuitive way to define the weights would
be to make them proportional to the SNR at each channel.



However, computing a single set of weights over the whole
recording would not be optimal, since the quality of the
underlying received signal is time-variant in each channel
(as can be seen in Fig. 1). Thus, we propose to segment
x̃m(n) ∀m into J̃ overlapping segments of length Ñ ≈ 1s,
and derive optimal weights for each segment independently.
A 50% overlap is considered to avoid edge effects during
the subsequent weighted combination.

To estimate the SNR of each channel m in segment j̃,
we expand upon the idea in Sec. III-C. We first partition
segment j̃ into K̃ = 2000 sub-segments of Ñ/K̃ = 5 samples
and compute the energy Em, j̃ ,̃k of every sub-segment k̃ .

Indices (m, k̃ ) where Em, j̃ ,̃k > 85th percentile (for channel
m and segment j̃ ) are then extracted. This is done separately
for all channels. Next, we compare the selected k̃ across
all M channels and only retain those sub-segment indices
that occur in a majority of the channels. The signal energy
in segment j̃ for each channel (denoted as Ps(m, j̃ )) is
finally computed as the average of the energies Em, j̃ ,̃k in

the retained sub-segments k̃ . Since the desired signal s(n)
is time-aligned across the channels, when the energy of a
particular sub-segment k̃ lies beyond the 85th percentile in
multiple channels, it is likely that this is not a spurious energy
peak, but that occasioned by s(n). This selection thus avoids
noise sub-segments in a channel from biasing the signal
energy estimate.

A similar procedure is applied to estimate the noise energy
Pv(m, j̃ ), but here we select segment indices where Em, j̃ ,̃k <

15th percentile. Comparison of sub-segment indices across
channels is not required in this case.

The final SNR and the resultant combination weights
wm( j̃ ) are then obtained, for segment j̃ , as:

SNR(m, j̃ ) =
Ps(m, j̃ )

Pv(m, j̃ )
(13)

wm( j̃ ) =
SNR(m, j̃ )

M

∑
m′=1

SNR(m′, j̃ )

. (14)

The beamformed signal of segment j̃ is subsequently com-
puted using (3) as:

yBF(n, j̃ ) = wT ( j̃ )x(n, j̃ ) . (15)

The enhanced signal yBF(n) is reconstructed from the seg-
ments yBF(n, j̃ ) by the overlap-add method, after the applica-
tion of an Ñ-point von Hann window. This tapered window
reduces edge effects at the boundaries of the overlapping
segments and, at 50% overlap, allows perfect reconstruction
during overlap-add.

E. Beamformer-driven ICA

Given an instantaneous multi-channel mixture of the form:

x(n) = As(n) , (16)

where x(n) is an M−dimensional vector of observations at
time-instant n and s(n) is a Q(≤ M)-dimensional vector of

underlying source activity. A is an M × Q mixing matrix
yielding a linear combination of the sources in the observed
signal. Under the assumption that the sq(n) are statistically
independent, ICA [20], [25] can be applied to yield a
Q × M demixing matrix W. Applied to x(n) this yields:
y(n)=Wx(n) , with statistically independent yq′(n). For non-
Gaussian sq(n), such maximisation of statistical indepen-
dence in the output implies that yq′(n) recover sq(n), subject
to a scale ambiguity and arbitrary order of outputs (permu-
tation ambiguity). Robustly resolving these ambiguities is an
enduring challenge, usually requiring extra knowledge!

Our signal model after time-alignment may be written as
(slightly abusing the notation in (12)):

x̃(n) = αααs(n−D)+ ṽ(n) , (17)

where ααα =
[
α1, α2, . . . , αM

]T . This can be straightforwardly
massaged into the standard ICA form of (16):

x̃(n) = As̃(n) , (18)

with the noise subsumed into the definition of s̃(n). Appli-
cation of ICA then gives outputs yICA(n), where yICA,q(n)
corresponds to s(n − D) for some output channel q, and
subject to an unknown scale. A simple correlation of each
yICA,q(n) with yBF(n) can then be used to identify the correct
output channel q′– the one with the maximum correlation
with yBF(n). It is straightforward, then, to infer the scale as:

α ICA =
E
{

y2
BF(n)

}
E
{

yBF(n)yICA,q′(n)
} , (19)

where E{·} is the expectation operator.
Consistent with Sec. III-D, ICA is similarly applied

segment-wise and the final output obtained by overlap-add.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We start with a qualitative evaluation on a sample dataset:
Fig. 4 depicts the captured signal on four channels of a
handpiece, after scale compensation and time-alignment. To
illustrate the weight computation of (14), three segments
( j̃ ) are highlighted in each channel, and the corresponding
weights (wm( j̃ )) assigned to those segments are indicated. As
can be seen, when using these four channels for beamform-
ing, our blind SNR-estimation approach performs correctly,
assigning a very low weight to channel 1 (essentially noise)
and giving more-or-less similar weights to the other three
channels (of similar quality). Also evident is the time-varying
SNR in each channel (indicated by the changing weights) –
indirectly validating the wisdom of segment-wise processing.
This is further highlighted in Fig. 5 which shows, for the
same sample dataset as in Fig. 4, a different set of channels as
well as the enhanced signals (yBF(n) and yICA(n)). Channel
1 is omitted for space reasons (and, as Fig 4 shows, this
channel will not contribute to the output). It is instructive to
note that despite all channels being of relatively good quality
in Fig. 5, spurious peaks occur in individual channels – which
are effectively removed in the enhanced signals.

Lastly, we test the benefit of the proposed beamforming
and ICA-based enhancement for PTT estimation on a subset



Fig. 4. Weights wm computed for four input channels. Three representative
segments are highlighted. The correlation between the segment weights and
the SNR is evident – indicating a good (blind) SNR estimation.

Fig. 5. A selection of four input signals from the femoral recording, along
with the beamformer & ICA enhanced outputs, for an example dataset. The
segment-wise operation with time-varying weights effectively suppresses
spurious pulses in individual channels (highlighted). The ICA also yields a
cleaner signal compared to the beamformer.

of the CARDIS carotid-femoral database. Only those datasets
were taken that had at least one good quality channel per
handpiece [19] (to allow reasonable PTT estimation with the
baseline). A total of 54 datasets passed this threshold. For
these datasets, the yBF(n) and yICA(n) are obtained for each
handpiece. Following this, PTT is estimated on these signals,
in a similar manner as described in Sec. II-B. These estimates
were compared with those generated by the baseline (‘brute-
force’) and the ground truth. Fig. 6 shows the error of each

Fig. 6. PTT estimation error for the different methods, compared to the
ground-truth. The error is shown in function of the number of individual
estimates obtained from matching beat-pairs. As the number of individual
estimates increase, their median is closer to the ground truth.

method compared to the ground-truth as a function of the
number of PTT estimates (i.e., the number of matching beat-
pairs across which the PTT estimate is computed). For all
methods the accuracy of the final PTT estimate improves
with increasing number of timepoints at which a pulse-
transit time estimation could be made. While all methods
deviate somewhat from the applanation-tonometry reference
values, between brute force, beamforming and ICA, results
were mostly similar. This is not wholly unexpected: yBF(n)
and yICA(n) are obtained by linearly combining the different
channels. Inherently, the brute-force search across all beat-
pairs and all channels performs such a linear combination.
As the final estimate is obtained from the median value in
all cases, the results are expected to be rather homogeneous.

Fig. 7. PTT-estimation distributions calculated via brute force, beamform-
ing and ICA methods for ten example datasets. The median value was
subtracted from the estimations.

It is more instructive, therefore, to consider the distribution
of the individual PTT estimates in all cases. This is depicted



in Fig. 7, where the left sub-plot shows the distribution
of the PTT-deviation about the median value and the right
sub-plot shows the cumulative density. Both plots indicate
a clear reduction of variance in the PTT estimates obtained
after beamforming and ICA enhancement, whereas the brute-
force method has a larger variance and several outliers.
Between beamforming and ICA, for the purpose of PTT
estimation, the performance is comparable, with the ICA
being marginally better.

V. CONCLUSIONS

We proposed two methods for the enhancement of multi-
channel LDV signals, as applied to the task of pulse-
wave velocity estimation. Data from a pilot study indicate
that the desired signal component in each channel can be
modelled as a scaled and time-shifted version of the true,
underlying signal. Exploiting the fact that this underlying
signal is characterised by high-energy peaks at instants of
pulse traversal, an analysis of statistics of the short-term
signal energy allows for an estimation of the scale factor,
and correlation analysis yields the necessary time-shift for
the signal alignment across the channels. By compensating
the scale and time-aligning the signals across all channels
of a handpiece, an SNR-weighted linear combination yields
the beamformed signal. The SNR in each channel is blindly
estimated, based on percentile statistics of the short-term
signal energies and by cross-validating across channels –
increasing the robustness of the estimates.

Experiments demonstrate that the weights assigned during
beamforming reflect the signal quality in the channels – val-
idating the SNR estimation. Further, the beamformed output
shows a cleaner signal with spurious pulses in the individual
channels being well suppressed. Because the ICA does not
require an explicit compensation of the individual channel
scale factors and is free to derive the optimal weighting
in terms of maximising statistical independence, it yields
sharper, better formed outputs compared to the beamformer.

Regarding the reliability of individual PTT estimations: the
distribution of the estimates has low variance when estimated
on the beamformed or ICA-enhanced outputs. In comparison,
the estimates from the brute-force method exhibit a larger
variance – indicating the influence of noisy and unreliable
beat-pairs.

While we have demonstrated the benefit of the proposed
approaches in the context of PWV estimation, the underlying
ideas for blind SNR estimation and delay- and scale com-
pensation can be more broadly applied to analyse the quality
of, or enhance the signals from multidimensional LDV data
in biomedical applications.
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