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Abstract—This paper introduces a Yukawa-Calderón time-
domain combined field integral equation for electromagnetic scat-
tering by a perfect electric conductor. The time-domain electric
and magnetic field integral operators are composed with Yukawa-
type integral operators. The linearly combined formulation is
well-conditioned when the spatial discretization is dense, and it
is also free from interior resonant frequencies. Several numerical
results corroborate the properties of the proposed formulation.

Index Terms—TD-CFIE, Marching-on-in-time, Yukawa-type
integral operators, Calderón preconditioning

I. INTRODUCTION

Analyzing transient electromagnetic scattering by perfect
electric conductors (PECs) primarily uses the time-domain
electric field integral equation (TD-EFIE) and the time-domain
magnetic field integral equation (TD-MFIE). Besides many
advantages, marching-on-in-time (MOT) boundary element
formulations of the TD-EFIE and TD-MFIE suffer from some
numerical issues, including dense discretization breakdown
and resonant instability. The Calderón preconditioning has
been known as a common strategy to prevent EFIE systems
from being ill-conditioned when the spatial discretization is
dense [1]. The instability caused by resonant frequencies of
PEC can be overcome using time-domain combined field
integral equations (TD-CFIEs) [2]. An appropriate Calderón
preconditioned TD-CFIE, therefore, can combat both dense
discretization breakdown and resonant instability, see, e.g., [3].

In this contribution, we propose a TD-CFIE formulation
which is immune to both dense discretization breakdown and
resonant instability. The TD-EFIE and TD-MFIE operators are
respectively composed with the Yukawa-type EFIE and MFIE
operators. The proposed formulation is discretized using a
space-time Galerkin discretization scheme, and the resulting
matrix system is solved using the MOT algorithm. Several
numerical experiments performed for different geometries
corroborate the properties of the Yukawa-Calderón TD-CFIE.

The novelty of this work lies in the introduction of a
symmetrized MFIE operator. The goal of introducing this
operator is to render the proposed TD-CFIE stable at large-
time steps by a discrete Helmholtz decomposition. However,
this stabilization falls within the scope of another work.
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II. FORMULATION

A. Time-domain boundary integral equations

Let Ω be a PEC in R3 with a closed boundary Γ. We
denote by n the outward normal vector on Γ. An incident
electromagnetic wave (ein,hin) induces a surface current j
on Γ, which satisfies the following TD-EFIE and TD-MFIE

(T j)(r, t) = −n × ein(r, t), (1)(
1

2
I +K

)
j(r, t) = n × hin(r, t), (2)

for all r ∈ Γ and t > 0. Here, I is the identity operator, and
the time-domain integral operators T and K are defined as

(T j)(r, t) =
η

c
(T sj)(r, t) + cη (T hj)(r, t),

(T sj)(r, t) = −n ×
∫
Γ

∂tj(r
′, τ)

4πR
ds′,

(T hj)(r, t′) = n × gradx

∫ t′

−∞

∫
Γ

divΓ j(r′, τ)
4πR

ds′ dt,

(Kj)(r, t) = −n × curlx
∫
Γ

j(r, τ)

4πR
ds′,

where η =
√
µ/ϵ is the impedance, c = 1/

√
µϵ is the speed of

light, ϵ and µ are the permittivity and permeability of vacuum.
Moreover, R = |r − r′| and τ = t−R/c.

B. Yukawa-type integral operators

In order to avoid composition EFIE and MFIE operators
sharing their common resonant frequencies, we introduce the
following integral operators for the Yukawa-type equation

(T−jκj)(r) = ηκ (T s
−jκj)(r) +

η

κ
(Th

−jκj)(r),

(T s
−jκj)(r) = n ×

∫
Γ

e−κR

4πR
j(r′) ds′,

(Th
−jκj)(r) = −n × gradx

∫
Γ

e−κR

4πR
divΓ j(r′) ds′,

(K−jκj)(r) = −n × curlx
∫
Γ

e−κR

4πR
j(r′) ds′,

with a fixed κ > 0. The operators T−jκ and K−jκ are
respectively identical with the frequency-domain (FD) EFIE
and MFIE operators with imaginary wave number −jκ.



C. Yukawa-Calderón TD-CFIE

The idea of considering a Yukawa-Calderón TD-CFIE
comes from the Yukawa-Calderón FD-CFIE proposed in [4],
which is defined for the wave number κ as follows(

−T−jκTκ + α

(
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2
I −K−jκ

)(
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2
I +Kκ

))
j(r)

= T−jκ

(
n × ein(r)

)
+ α

(
1

2
I −K−jκ

)(
n × hin(r)

)
,

(3)

with a coefficient α > 0. The operator T−jκ plays the role of
a preconditioner to Tκ. The FD-CFIE formulation (3) is well-
conditioned and invertible for any κ > 0. Moreover, when
replacing the operators Tκ and Kκ respectively by Tκ′ and
Kκ′ with κ′ ̸= κ (meanwhile fixing T−jκ and K−jκ), we
notice that the resulting equation stays well-conditioned and
resonant-free. Its inverse Fourier transform with respect to κ′

gives rise to the following Yukawa-Calderón TD-CFIE(
−T−jκT + α
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j(r, t)

= T−jκ

(
n × ein(r, t)

)
+ α

(
1

2
I −K−jκ

)(
n × hin(r, t)

)
.

(4)

III. DISCRETIZATION

In order to numerically solve (4) using the boundary element
method, the surface Γ is partitioned into triangles with NS

edges. The Yukawa-type EFIE operator T−jκ is discretized
using Buffa-Christiansen (BC) functions gm. The operators
I and K−jκ are expanded by Rao-Wilton-Glisson (RWG)
functions fm, and tested with rotated BC functions n × gm.
More specifically, we define the following matrices

[G]mn = ⟨n × gm,fn⟩ ,
[Z]mn = ⟨n × gm, T−jκgn⟩ ,
[M]mn = ⟨n × gm,K−jκfn⟩ ,

where
⟨f , g⟩ =

∫
Γ

f(r) · g(r) ds.

The unknown current density j(r, t) is approximated as an
expansion in the set of NS spatial RWG basis functions fm(r)
and NT temporal basis functions hi(t) as follows

j(r, t) ≈
NS∑
m=1

NT∑
i=1

[ji]m fm(r)hi(t). (5)

Here, the shifted temporal functions hi(t) = h0(t−i∆t), with
i = 1, 2, . . . , NT , and the function h0 is defined by

h0(t) =


1 + t

∆t if −∆t < t < 0,

1− t
∆t if 0 ≤ t < ∆t,

0 otherwise,

where ∆t is the time step (see Fig. 1).
The TD-EFIE (1) is spatially tested with rotated RWG

functions n×fm and then evaluated at each time step t = k∆t

t

h0

−∆t 0 ∆t

0

1

Fig. 1. The temporal basis function h0.

with k = 1, 2, . . . , NT , resulting in the following block matrix
equation

Z0

Z1 Z0

...
...

. . .
ZNT−1 ZNT−2 . . . Z0




j1
j2
...

jNT

 =


e1
e2
...

eNT

 ,

or equivalently
Z j = e. (6)

Similarly, the TD-MFIE (2) is spatially tested with rotated BC
functions n × gm, which results in(

1

2
G+M

)
j = h. (7)

The block matrices in (6) and (7) are defined by

[ei]m =
〈
n × fm,n × ein

〉∣∣
t=i∆t

,

[hi]m =
〈
n × gm,n × hin

〉∣∣
t=i∆t

,

[Zi]mn = ⟨n × fm, T (fnhi)⟩|t=0 ,

[Mi]mn = ⟨n × gm,K (fnhi)⟩|t=0 .

Moreover, G0 = G and Gi = 0 for i ̸= 0. To conclude, we
solve the following discretized matrix system of the Yukawa-
Calderón TD-CFIE (4)

L j = r, (8)

where the right-hand side

ri := −ZG−Tei + α

(
1

2
G−M

)
G−1hi,

and the left-hand side

Li := ZG−T Zi +α

(
1

2
G−M

)
G−1

(
1

2
Gi +Mi

)
.

Please note that the inverse Gram matrices G−T and G−1 are
inserted to ensure the compatibility of the discretization of
composition operators. Equation (8) can be efficiently solved
using the MOT algorithm

jk = L−1
0

(
rk −

k−1∑
i=1

Li jk−i

)
.

Remark 3.1: There is no specific rule for the choice of κ.
However, we would recommend to choose κ of the order of
(c∆t)−1 to preserve the behavior of time-domain operators.



IV. NUMERICAL RESULTS

In this section, several numerical experiments are performed
for different geometries (see Fig. 2):

A. a sphere (smooth and simply-connected),
B. a cuboid (non-smooth and simply-connected),
C. a torus (smooth and multiply-connected).

Fig. 2. Triangle mesh of different geometries used in numerical experiments.
Left: a sphere with radius 1m discretized by 476 triangles. Middle: a cuboid
of dimensions 0.5m×2m×2m discretized by 1428 triangles. Right: a torus
with two radii 3m and 1m discretized into 952 triangles.

These PEC bodies are illuminated by a Gaussian-in-time
plane wave

ei(r, t) =
4A

w
√
π
p exp

(
−
(
4

w
(c(t− t0)− k · r)

)2
)
,

with amplitude A = 1V, width w = 26.67m, polarization
p = 1x, direction k = 1z , and time of arrival t0 = 80ns. The
time step ∆t = 0.333ns. Numerical results are obtained using
different formulations:

• the standard TD-EFIE (6);
• the standard TD-MFIE (7);
• the mixed TD-CFIE proposed in [2] with α = 0.5;
• the proposed Yukawa-Calderón (YC) TD-CFIE (8) with

coefficients α = η2 and κ = (c∆t)−1.

A. Scattering by a sphere

We firstly examine scattering by a PEC sphere with radius
1m, which is approximated by 476 triangles (Fig. 2, left).
The unknown current density j is computed via expansion
coefficients of 714 spatial RWG basis functions and 1200
temporal basis functions. The current density intensities at the
point (x, y, z) = (−0.534,−0.523,−0.644)m on the sphere
are shown in Fig. 3. At early times (t < 150ns), four
formulations give identical results. After that, however, the
impact of resonant frequencies on the TD-EFIE and TD-MFIE
becomes significant, preventing their solutions from decaying.
On the other hand, the mixed TD-CFIE and the Yukawa-
Calderón TD-CFIE do not suffer from resonant instability.
They match well up to the finite numerical precision.

The condition number of the matrix L0 with respect to
different mesh sizes h are presented in Fig. 4. The condition
numbers of the TD-EFIE and the mixed TD-CFIE respectively
grow with orders O(h−2) and O(h−1), whereas the condition
numbers of the TD-MFIE and the Yukawa-Calderón TD-CFIE
stay constants. This shows that the proposed TD-CFIE (4) is
well-conditioned when the spatial discretization is dense.

Fig. 3. Induced surface current density intensity on a sphere of radius
1m at the point (x, y, z) = (−0.534,−0.523,−0.644)m, obtained using
different formulations. The average mesh size h = 0.3m, and the time step
∆t = 0.333ns. The TD-EFIE and TD-MFIE suffer from resonant instability,
whereas the TD-CFIEs do not.

Fig. 4. Condition number of the matrix L0 with respect to different mesh
sizes of a sphere with radius 1m, obtained using different formulations. The
time step is fixed at ∆t = 3.33ns. The TD-MFIE and the Yukawa-Calderón
TD-CFIE stay well-conditioned when the mesh size decreases.

B. Scattering by a cuboid

We consider a PEC cuboid of dimensions 0.5m× 2m× 2m
which is partitioned into 1428 triangles (Fig. 2, middle).
The induced current density j is expanded by 2142 spatial
RWG basis functions and 1200 temporal basis functions.
Since the domain is non-smooth, the simulations require
interaction integrals must be computed with higher accuracy
to retain the same level of solution errors as for smooth
domains. The solutions to different formulations are depicted
in Fig. 5. Four formulations match very well until t = 110ns.
The standard TD-EFIE and TD-MFIE suffer from resonant
instability, whereas the induced currents obtained using the
mixed TD-CFIE and the Yukawa-Calderón TD-CFIE decay
to the machine precision. The condition numbers of different
formulations for the cuboid are shown in Fig. 6, which
confirms the well-conditionedness of the proposed TD-CFIE
when the mesh size decreases.



Fig. 5. Induced surface current density intensity on a cuboid of dimensions
0.5m×2m×2m at the point (x, y, z) = (−0.25,−0.502, 0.761)m, obtained
using different formulations. The average mesh size h = 0.15m, and the
time step ∆t = 0.333ns. The TD-EFIE and TD-MFIE suffer from resonant
instability, whereas the TD-CFIEs do not.

Fig. 6. Condition number of the matrix L0 with respect to different mesh
sizes of a cuboid of dimensions 0.5m× 2m× 2m, obtained using different
formulations. The time step is fixed at ∆t = 3.33ns. The TD-EFIE and
the mixed TD-CFIE exhibit dense discretization breakdown, whereas the TD-
MFIE and the Yukawa-Calderón TD-CFIE do not.

C. Scattering by a torus

Scattering by a PEC torus with large radius 3m and small
radius 1m (Fig. 2, right) is now studied. The time evolution
of the induced current density j obtained using different
formulations are illustrated in Fig. 7. The oscillating non-
decaying mode is observed in the tail of TD-EFIE’s and TD-
MFIE’s solutions, which can be interpreted as the effect of
resonant frequencies of the interior domain. As the surface is
toroidal (multiply-connected), the TD-MFIE is also notorious
for being affected by the nontrivial nullspace of the static
MFIE operator [5]. This can be corroborated by the oscillation
of the amplitude of the TD-MFIE solution. The TD-CFIEs
both are resonant-free, but their solutions are slowly decaying.
The condition numbers of different formulations for the torus
are depicted in Fig. 8. This figure convinces us again that
the proposed Yukawa-Calderón TD-CFIE does not suffer from
dense discretization breakdown.

Fig. 7. Induced surface current density on a torus with two radii 3m and
1m at the point (x, y, z) = (−2.326,−1.885,−0.692)m, obtained using
different formulations. The average mesh size h = 0.6m, and the time step
∆t = 0.333ns. The TD-EFIE and TD-MFIE suffer from resonant instability.
The TD-MFIE is also affected by the nontrivial nullspace of the static MFIE
operator. The TD-CFIEs are resonant-free, but slowly decay.

Fig. 8. Condition number of the matrix L0 with respect to different mesh
sizes of a torus with large radius 3m and small radius 1m, obtained using
different formulations. The time step is fixed at ∆t = 6.67ns. The TD-MFIE
and the Yukawa-Calderón TD-CFIE do not suffer from dense discretization
breakdown.
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