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Abstract 22 

The analysis time used for the diagnosis of soil fertility attributes using portable X-ray 23 

fluorescence spectroscopy (XRF) sensors (between 30 and 90 s) is too long for in situ 24 

applications. The present study aimed at evaluating the trade-off between dwell time and XRF 25 

performance for assessing soil fertility attributes. A total of 102 soil samples acquired in two 26 

Brazilian agricultural fields were used, whose spectra were obtained using dwell times of 90, 60, 27 

30, 15, 10, 7, 4, and 2 s to build and validate calibration models for clay, cation exchange 28 

capacity, and extractable K and Ca. Results revealed that it is possible to make drastic reductions 29 

in the XRF dwell time (from 90 to 2 s), while keeping excellent prediction performance [ratio of 30 

performance to interquartile distance (RPIQ) between 3.52 and 8.32] for all the studied 31 

attributes. A dwell time of only 2 s performed satisfactorily and is an analysis time suitable for 32 

rapid in situ applications. In addition, it was shown that data from spectral databases previously 33 

collected that used long dwell times (e.g., 30, 60, 90 s) can be extrapolated to fast applications 34 

with shorter dwell times (e.g., 2 and 4s), once standardization by the detector's live time has 35 

been performed. Anyhow, calibrations using a dwell time similar to the one of the validation set 36 

tended to show superior results and are therefore recommended. This study addresses the need 37 

and provides guidelines for optimizing XRF sensor analysis time for in situ applications in the 38 

context of precision agriculture. 39 

Keywords  green chemistry; proximal soil sensing; soil mobile platforms; soil health; site-specific 40 

soil management  41 
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1. Introduction 42 

The application of X-ray fluorescence (XRF) sensors for the analysis of soil fertility related 43 

attributes has evolved rapidly in recent years (Lima et al., 2019; Nawar et al., 2019; Tavares et 44 

al., 2020a). The technique characterizes a wide range of soil elemental composition (e.g., Si, K, 45 

Ca, Ti, Fe, Cu, among others), providing complementary information to other proximal soil 46 

sensing (PSS) techniques, e.g., apparent electrical conductivity (ECa) and diffuse reflectance 47 

spectroscopy using visible and near-infrared regions (VNIR) (Javadi et al., 2021; Molin and 48 

Tavares, 2019; Xu et al., 2019). Today, XRF sensors have become compact and are promising for 49 

integration onto mobile platforms and/or robots (Bosco, 2013). 50 

Portable XRF sensors have been applied manually for in situ analysis for heavy metals 51 

determination in soils (Paulette et al., 2015; Weindorf et al., 2013) and geochemical evaluations 52 

in soil trenches (Stockmann et al., 2016; Weindorf et al., 2012). Although these in situ analyses 53 

have shown good analytical performances, the XRF analysis time (or dwell time) between 30 and 54 

90 s, typically employed, is not compatible with automated in situ analysis for soil fertility 55 

mapping (e.g., on-the-go applications), which require faster measurements. For example, both 56 

ECa and VNIR techniques have an almost instantaneous acquisition time (one second per point) 57 

that allows on-the-go data acquisitions with high spatial density (e.g., > 250 data points ha-1 at 58 

operating speeds of around 4 m s-1) (Molin and Tavares, 2019). On the other hand, on-the-go 59 

application using ion-selective electrodes (ISE) is of similar constrain to that of XRF, since the ISE 60 

needs a relatively long dwell time to be in contact with the sample to stabilize its reading (e.g., 61 

approximately 10 to 15 s) (Adamchuk et al., 2007). Anyway, kinematic data acquisitions using 62 

ISE systems usually measure about 15 to 30 data points ha-1 (Schirrmann et al., 2011), a similar 63 

frequency of acquisition should be expected for the XRF if it would be used for on-the-go 64 

measurement. Different studies have shown good predictive performances (0.71 ≤ R2 ≤ 0.91) for 65 

key soil fertility attributes (e.g., clay, cation exchange capacity (CEC), base saturation, and 66 

exchangeable (ex-) nutrients) using XRF sensors (Andrade et al., 2020; Lima et al., 2019; Tavares 67 

et al., 2020b). However, to the best of our knowledge no research has evaluated dwell times 68 

smaller than 30 s and neither has searched for an optimal analysis time for rapid and accurate 69 

soil attributes predictions. 70 

Reducing the dwell time, increases the noise in XRF spectrum and thus reduces its 71 

analytical quality (Weindorf and Chakraborty, 2016). However, despite reducing their accuracy, 72 

the spectrum does not have its emission intensity, in counts of photons per second (cps), altered 73 

by reducing the dwell time, as can be seen in Figure 1. The intensity of an XRF spectrum is 74 

analyzed in cps when its total count is standardized by the detector's operating time (so-called 75 
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detector’s live time). This standardization should be applied to XRF data because small variations 76 

of the detector's live time (e.g., tenths of a second) are commonly observed when analyzing 77 

multiple samples (Jenkins, 2012). Errors from this detector variation are avoided by 78 

standardizing the XRF spectrum by the live time the detector presented when reading that 79 

specific sample. Modeling XRF data (entire spectra or specific emission lines) in cps is a common 80 

procedure within the XRF community (Rodrigues et al., 2018; Wolksa, 2005). However, such 81 

procedure is not widespread among users from the soil science community, possibly due to the 82 

popularization of using pre-programmed measurement packages for XRF soil analysis (Andrade 83 

et al., 2021; Lima et al., 2019; Sharma et al., 2015; Silva et al., 2019, 2017), which do not require 84 

the user to manipulate the spectral data. Even though, it also does not permit optimizing the 85 

instrumental conditions, such as reducing scanning time (Tavares et al., 2020a).  86 

 87 

 88 

Fig. 1. X-ray fluorescence (XRF) spectra of a soil same sample collected with different scanning 89 

times (90, 30 and 2 s), after being standardized by the detector’s live time. Counts of photons 90 

per second was abbreviated as cps. 91 

 92 

XRF applications with reduced dwell time are common in analytical chemistry laboratories 93 

that are specialized in this technique. The µ-XRF technique (a variant of the XRF technique) uses 94 

a micrometric X-ray beam to map elements over the surface of a sample of interest. To cope 95 

with the high spatial density of scans (e.g., > 300 spectrum per mm2), this approach uses a 96 

reduced dwell time (e.g., from <1 to 3 s) (Rodrigues et al., 2018). Both the absence of studies in 97 

the literature that aim to optimize dwell time for in situ applications, as well as the possibility of 98 

analysis with this technique employing dwell times shorter than 5 s, were the motivations to 99 

evaluate the performance of the XRF sensor for predicting soil fertility attributes using reduced 100 

dwell times. Thus, the following hypothesis (designated as hypothesis 1) was tested in this study: 101 

“although reduced dwell times degrade the precision of the XRF prediction due to increasing 102 

noise in spectra, it is still possible to drastically reduce the dwell time while maintaining 103 

satisfactory performance for soil fertility prediction”. 104 
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Even though in situ applications require reduced analysis time, the model calibration step 105 

— that are commonly conducted under laboratory conditions — does not present a time 106 

limitation for conducting its data acquisition, which could allow the use of longer dwell times to 107 

reduce the problem of increased noise. In this case, models calibrated with longer dwell time 108 

would be extrapolated in in situ spectra acquired with short dwell time (e.g., 2s). Regarding this 109 

issue, it is possible to raise the following question "what is the best dwell time for calibrating 110 

predictive models that will be extrapolated in rapid XRF predictions during in situ applications 111 

(e.g., 2 s)?" To answer this question, this study attempts to address the following hypothesis 112 

(designated as hypothesis 2): “calibrations with higher dwell times (e.g., 90, 60, or 30 s) would 113 

promote an optimal predictive performance when extrapolating models in spectra acquired 114 

using reduced dwell times (e.g., 2s)”. 115 

This study aimed at evaluating the trade-off between the dwell time reduction and the 116 

XRF performance for predicting chemical attributes related to soil fertility (i.e., clay content, CEC, 117 

ex-K, and ex-Ca). In addition, this research assessed the performance of models calibrated with 118 

data collected at different dwell time scenarios when extrapolated to fast analyzed data (i.e., 119 

dwell time of 2). This latter analyses provides initial insights into the feasibility of using pre-120 

existing databases and spectral libraries for the calibration of soil fertility models that will be 121 

extrapolated to fast XRF applications. These evaluations will encourage further research on the 122 

potential of XRF by users in the soil science and precision agriculture community whose research 123 

is directed towards rapid analyses, e.g., in situ applications with sensors embedded in 124 

agricultural machines and robots for soil mapping. 125 

2. Material and Methods 126 

The methodology applied in this study is schematically presented in Fig. 2. The study can 127 

be divided into five steps: (i) soil sampling, (ii) soil fertility analyses, (iii) XRF analysis using 128 

different dwell times, (iv) characterization of the dwell time effect on the XRF spectra and its 129 

predictive performance, and finally (v) definition of an optimized dwell time for model 130 

calibration seeking rapid soil fertility analysis.  131 
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 132 

Fig. 2. Framework of the methodology applied for assessing the effect of dwell time reduction 133 

in X-ray fluorescence sensor (XRF) for predicting clay, cation exchange capacity (CEC), 134 

exchangeable potassium (ex-K), and exchangeable calcium (ex-Ca). 135 

 136 

2.1. Soil samples and fertility analysis 137 

A total of 102 soil samples from Brazilian tropical fields were chosen for this study. These 138 

samples belong to the soil sample bank of the Laboratory of Precision Agriculture (LAP – 139 

ESALQ/USP), where they are stored after being air-dried and sieved at 2 mm. The chosen soil 140 

samples have wide ranges of variability in studied fertility attributes, necessary for the 141 

calibration of predictive models. Their texture classes vary among sandy loam, sandy clay loam, 142 

and clayey. 143 

The contents of clay, CEC, ex-K, and ex-Ca were determined following the methods 144 

described by Van Raij et al. (2001), in which clay content was quantified by the Bouyoucos 145 

hydrometer method (Bouyoucos, 1951); extractable nutrients via ion exchange resin extraction 146 

(van Raij et al., 1986); CEC was calculated as the sum of soil potential acidity (H + Al) plus the 147 

sum of bases (ex-Ca + ex-Mg + ex-K); and H + Al was quantified via pH in the buffer solution 148 

method (SMP) (Quaggio et al., 1985). Contents of clay, CEC, ex-K, and ex-Ca were used as 149 

reference (Y-variables) for establishing the XRF-spectral modeling. 150 

2.2. XRF measurements and scenarios of dwell time  151 

An amount of about 10 g of each sample was analyzed with a portable XRF sensor. For 152 

this, soil samples were placed in a polyethylene cup of 31 mm diameter sealed with a 4-μm thick 153 
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polypropylene film (model 3520, SPEX, USA). A Tracer III-SD model XRF instrument (Bruker AXS, 154 

Madison, EUA) was used for data acquisition. It is a portable device that is equipped with a 4 W 155 

Rh X-ray tube and an X-Flash Peltier-cooled Silicon Drift Detector (Bruker AXS, Madison, USA) 156 

with 2048 channels. This equipment scans an active area of 10 mm2. During data acquisition, the 157 

X-ray tube was configured at 35 kV and at 7 μA, while spectra were recorded under atmospheric 158 

pressure and without filters, as suggested by Tavares, Mouazen, et al. (2020). These scanning 159 

conditions were applied to eight different scenarios of dwell time (90, 60, 30, 15, 10, 7, 4, and 2 160 

s). At each selected time, each sample was scanned in triplicate by slightly moving the position 161 

of the sample cup after each replicate. The acquired spectra were normalized by the detector 162 

live time, so that net peak area intensity was expressed in counts of photons per second. The 163 

replicates of each sample were averaged for further analysis.  164 

2.3. Data analysis 165 

2.3.1. Effects of dwell time reduction on XRF’s data 166 

The characterization of XRF data as a function of dwell time reduction was performed by 167 

observing the dispersion of signal-to-noise ratio (SNR) in Al, Si, K, Ca, Ti, and Fe Kα-lines. These 168 

emission lines were chosen because they emit fluorescence at different energies (1.5, 1.7, 3.3, 169 

3.7, 4.5, and 6.4 keV for Al, Si, K, Ca, Ti, and Fe, respectively), allowing to characterize the effect 170 

of dwell time on emission lines that are likely to face different effects. 171 

2.3.2. Effect of dwell time reduction on XRF’s prediction performance 172 

The 102 soil samples were split into two subsets, one for calibration (with 68 samples) 173 

and the other for validation (with 34 samples) using the Kennard-Stone algorithm (Kennard and 174 

Stone, 1969) applied on the measured soil fertility attributes (Y-variables). To evaluate the 175 

performance of the prediction models as a function of dwell time reduction, a calibration model 176 

obtained with dwell time "X" using the calibration set was validated using its respective 177 

validation set obtained with the same dwell time "X". In other words, models using XRF data 178 

acquired at 15 s dwell time were validated on XRF data also acquired at 15 s. The intensity (using 179 

the net peak area) of nine fluorescence lines (Kα emission lines of Al, Si, K, Ca, Ti, Mn, Fe, Ni, and 180 

Cu) and two Thomson scattering peaks (Rh-Kα and Rh-Lα) were used as X-variables (Tavares et 181 

al., 2020a). Multiple linear regression (MLR) analyses were applied for different dwell times 182 

selected. All the calibration and validation steps were performed using the Unscrambler 183 

software, version 10.5.1 (Camo AS, Oslo, Norway). Lastly, it is worth emphasizing that all 184 

processed spectra (in the different calibration scenarios and also in the validation set) were 185 

normalized by the effective dwell time (i.e., detector live time), hence, in all cases the intensity 186 

was modelled in counts of photons per second. 187 
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The prediction performance was evaluated by means of the root mean square error 188 

(RMSE) and the ratio of performance to interquartile distance (RPIQ), the latter was calculated 189 

as the ratio of the standard deviation (SD) of the laboratory measured soil property divided by 190 

the RMSE in the prediction. Based on the RPIQ values, the prediction quality of developed 191 

models were classified into four classes adapted from Nawar & Mouazen (2017): very poor 192 

models (RPIQ ≤ 1.40), fair models (1.70 ≥ RPIQ > 1.40), good models (2.00 ≥ RPIQ > 1.70), very 193 

good models (2.5 ≥ RPIQ > 2.0), and excellent models (RPIQ ≥ 2.50). The Tukey test was also 194 

applied to the residuals of the predictions performed with each dwell time (having a normal 195 

distribution) to compare their performances. 196 

2.3.3. Predictive performance of different dwell times for calibration of models to be 197 
extrapolated in applications with short dwell time 198 

In order to find best dwell time for calibrating predictive models that will be extrapolated 199 

in rapid XRF predictions during in situ applications (e.g., 2 s), the validation set with spectra 200 

acquired with 2 s scanning time were used to extrapolate predictive models calibrated using 90, 201 

60, 30, 15, 10, 7, 4, and 2 s dwell times. The prediction performance of clay, CEC, ex-K, and ex-202 

Ca from the validation set was evaluated. This analysis was conducted because although in situ 203 

applications demand a shorter analysis time, the model calibration step can be established 204 

under a longer dwell time since it is usually performed under laboratory conditions having less 205 

time constraint. The same strategies of data modelling and evaluation of model`s performance 206 

that were described in the 2.3.2. Section were also applied to the present analysis. Again, the 207 

Tukey test was applied to the residuals of the predictions performed with each dwell time to 208 

contrast their performances. 209 

3. Results  210 

3.1. Soil fertility attributes 211 

The chosen samples presented high variability of all fertility attributes evaluated, with a 212 

coefficient of variation (CV) higher than 27% (Table 1). The Kennard-Stone algorithm allowed to 213 

select group of samples with comparable range and SD for both calibration and validation 214 

subsets (Table 1), which is essential to avoid undesirable influences on the prediction accuracy 215 

that are not related to the XRF sensor (Stenberg et al., 2010).  216 

 217 

Table 1 Descriptive statistics of soil fertility attributes for the calibration and validation dataset. 218 
  Clay CEC1 ex-K2 ex-Ca2 

  ------ g dm-3 ------ ----------------------- mmolc dm-3 --------------------- 
----------------------------------------- Calibration set (n = 68) ----------------------------------------- 

Min 175.00 37.50 0.90 8.00 
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Mean 352.00 81.75 3.41 35.69 
Max 511.00 148.90 10.30 78.00 
SD3 95.21 25.86 2.48 19.08 

CV4 (%) 27.05 31.63 72.73 53.44 
-----------------------------------------  Validation set (n = 34) ----------------------------------------- 

Min 175.00 42.50 0.90 8.00 
Mean 332.12 76.50 3.36 33.32 
Max 463.00 138.40 7.90 75.00 
SD 92.03 26.14 2.26 19.71 

CV (%) 27.71 34.17 67.39 59.16 
1Cation exchange capacity, 2exchangeable (ex-) nutrients, 3standart deviation, 4coefficient of variation. 219 
 220 

3.2. Effect of dwell time reduction on XRF data and its predictive performance 221 

The noise was greater for this spectrum collected at a dwell time of 2 s than that of 90 s 222 

(Fig. 3A), which reflects the reduction of measurement precision when reducing the dwell time. 223 

The reduction of dwell time increased the SNR dispersion for all XRF emission lines but there is 224 

no change in the average value (Fig. 2B-G). The standard deviation of fluorescence emission 225 

decreases potentially as dwell time increases (Mondia et al., 2015), this relationship is 226 

represented by a power function that was observed in the present data (Fig A1). This behaviour 227 

is influenced by the element concentration in the sample, as well as by the energy of its 228 

fluorescence emission (Ravansari et al., 2020), i.e., light elements suffer more interference than 229 

heavy ones. Thus different elements show different response to dwell time reduction, as seen 230 

in Fig A1. Among the emission lines evaluated, K presented the lowest SNR (< 4.5) with its CV 231 

varying between 7 and 25%. K was the attribute that presented a greater variation of its signal 232 

at shorter analysis times, with a CV of the SNR greater than 10% after 30s. Only the emission 233 

lines of Al and Ca showed a CV greater than 10%, which happened only with a dwell time of 2s. 234 

This instability in the sign of K should influence the prediction models that rely on this emission 235 

line as the most important predictive variable. 236 
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 237 

Fig. 3. Effect of dwell time reduction on XRF spectra (A). Signal-to-noise ratio (SNR) is shown for 238 
the K-lines of Al (B), Si (C), K (D), Ca (E), Ti (F), and Fe (G) obtained at different dwell times (2, 4, 239 
7, 10, 15, 30, 60, and 90 s). The bars represent the standard deviation and the values in 240 
percentage represent the coefficient of variation of five XRF measurements (replicates) 241 
performed on the same soil sample after moving the sample cup position. Counts of photons 242 
per second was abbreviated as cps. Similar letters indicate no statistical difference at P<0.05 243 
(Tukey test). 244 
 245 

Figure 4 shows the prediction performance of clay, CEC, ex-K, and ex-Ca models at 246 

different dwell times for the same dwell time adopted for the calibration and validation sets. 247 

Predictions of clay, CEC, and ex-Ca had a smaller performance variation when reducing the dwell 248 

time (with no statistical difference), showing an increase in RMSE ranging from 1.1 to 29.7 %. 249 
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On the other hand, ex-K was the attribute that showed a significant reduction in its prediction 250 

performance compared to the best results obtained with 90 s dwell time model (with RMSE 251 

increasing between 24.3 and 133.1 %). It can be seen that even with the observed RMSE 252 

variations, the prediction performances of all fertility attributes remained excellent (RPIQ ≥ 3.52) 253 

over the entire dwell time reduction (from 90 to 2 s). 254 

The different prediction behavior between clay, CEC, ex-K, and ex-Ca models must be 255 

related to the SNR and the dispersion of the models’ most important variables. It is important 256 

to mention that the main variable for the clay model was the Fe-Kα line, for the ex-K model the 257 

K-Kα, and for the Ca and CEC models the Ca-Kα (Table A1). K-Kα presented CV values greater 258 

than 10% from the 30s dwell time on, while the K-lines of Al and Ca only presented CV greater 259 

values than 10% at the shortest dwell time (i.e., 2s). In turn, K-lines of Ti, Fe, and Si showed CV 260 

< 4.7% in all dwell times (Fig. 2). Notwithstanding, ex-K prediction still showed an excellent 261 

performance (RPIQ = 3.57) with points closely distributed around the 1:1 line (Fig. A2), even in 262 

the most reduced dwell time scenario of 2 s.  263 

 264 

 265 
Fig. 4. Effect of dwell time on X-ray fluorescence (XRF) sensor performance for clay (A), cation 266 
exchange capacity (CEC) (B), exchangeable (ex-) K (C) and ex-Ca (D) prediction (using the 267 
validation set, n = 34) for the same dwell time of both the calibration and validation set. The 268 
performance was evaluated via the ratio of performance to interquartile distance (RPIQ) and 269 
root-mean-square error (RMSE). The percentage values represent the variation of RMSE in 270 
relation to the performance obtained with 90 s dwell time. The calibration and validation set 271 
were obtained with the same dwell time as detailed in 2.3.2. Section. The most important 272 
variables and the scatter plots of the models calibrated at 90 and 2 s are shown in Table A1 and 273 
Figure A2 (Appendix Section), respectively. Different letters indicate a significant difference at 274 
P<0.05 (Tukey test). 275 
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 276 

3.3. Effect of model calibration using data with different dwell times 277 

Figure 5 shows the performance of models calibrated using XRF data (of the calibration 278 

set) acquired at different dwell times (90, 60, 30, 15, 10, 7, 4, and 2 s) when they were 279 

extrapolated to data (of the validation set) acquired at 2 s of dwell time, i.e., a dwell time 280 

simulating what would be done in rapid applications. For all attributes, Tukey's test indicated no 281 

statistical difference in predictive performance when using calibration sets with different dwell 282 

times. Despite the absence of statistical difference, it was observed that the ex-K models tends 283 

to perform better as the dwell time of the calibration set comes closer to the dwell time of the 284 

validation set. For example, the prediction of ex-K using the calibration set at 7, 4, and 2 s has 285 

22, 31, and 34% lower errors than when using the models with 90 s dwell time. This behavior 286 

was not observed for clay, whose prediction showed stable trend across the different dwell 287 

times adopted in the calibration set (with RMSE ranging from 26.70 g dm-3 at 90 s to 29.4 g dm-288 
3 at 2 s, representing a variation of 10%). Although the predictions of CEC and ex-Ca showed the 289 

best performance when calibrated and validated with the same dwell time of 2 s (with RPIQ 290 

values of 3.52 and 5.50, respectively), this tendency, i.e., improve the predictive performance 291 

as the dwell time of the calibration set approaches that of the validation set, cannot be clearly 292 

observed for these attributes, as can be done for the ex-K.  293 

 294 

 295 
Fig. 5. X-ray fluorescence (XRF) performance for clay (A), cation exchange capacity (CEC) (B), 296 
exchangeable (ex-) K (C) and ex-Ca (D) prediction, using different dwell times (90, 60, 30, 15, 10, 297 
7, 4, and 2s) in model calibration. The results represent the extrapolation of these different 298 
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calibration scenarios in the validation set (n = 34) that was analyzed with 2 s of dwell time. The 299 
performance was evaluated via the ratio of performance to interquartile distance (RPIQ) and 300 
root-mean-square error (RMSE). The percentage values represent the variation of RMSE in 301 
relation to the performance obtained with 90 s dwell time. Similar letters indicate no statistical 302 
difference at P<0.05 (Tukey test). 303 

 304 

The different prediction behavior among the models of clay, CEC, ex-K, and ex-Ca must be 305 

related to the SNR and the dispersion of the models’ most important variables (Table A1). As 306 

discussed in the topic below, the greater variation in XRF measurements (i.e., lower analytical 307 

precision) is related to a low SNR of the emission line in question. The Fe-Kα emission line, that 308 

is the main variable contributing in clay model (Table A1), had SNR larger than 1500 and CV 309 

always smaller than 4% (Fig. 3). In turn, CEC and ex-Ca models rely mainly on Ca-Kα emission 310 

line, whose SNR ranged between 13 and 21 and CV from 2.0 to 19.6% (with CV > 10% only for 2s 311 

dwell time) (Fig. 3). Finally, the K-Kα emission line, main variable of ex-K models, had the lowest 312 

SNR (< 5) and CV variation greater than 10% from 30 to 2s of dwell time, which represents a 313 

larger variation than that observed for the other emission lines (Fig. 3).  314 

In summary, the results showed that there was no significant difference for clay, CEC, ex-315 

Ca, and ex-K models, calibrated with 90, 60, 30, 15, 10, 7, 4 and 2 s data to predict these 316 

attributes on data acquired at 2 s of dwell time. Nevertheless, the CEC, ex-Ca, and ex-K models, 317 

especially the latter, showed a tendency to perform better as the dwell time of the calibration 318 

set comes closer to the dwell time of the validation set. Finally, the same trend of prediction 319 

described above was also verified when the models were applied to an independent validation 320 

set collected with 4 s dwell time (Figure A3, Appendix Section). 321 

4. Discussion 322 

The results evidenced that XRF readings lose precision as its dwell time is reduced, which 323 

is explained by the increased noise at low dwell times. This behaviour occurs mainly for light 324 

elements that are close to the detection limit (Ravansari et al., 2020), as observed for K, which 325 

showed a greater variation in its fluorescence emission and a lower SNR (< 5). Obtaining stable 326 

measurements with reduced analysis time is also related to the level of technology of the 327 

equipment's detector. New generations of detectors have delivered lower noise at shorter 328 

analysis times, and these advances expand the applications with XRF sensors (Bosco, 2013), such 329 

as the one discussed in this paper.   330 

Even though readings taken with a short analysis time reduce the precision compared to 331 

longer times, the XRF accuracy for predicting fertility attributes does not degrade expressively. 332 

This trend was observed even for the prediction of ex-K, whose models were based on the K 333 
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emission line, but achieved excellent prediction performances for all evaluated dwell times, 334 

even for the most reduced dwell time scenario of 2 s (RPIQ = 3.57). Therefore, it is possible to 335 

drastically reduce the sensor’s dwell time (e.g., from 90 to 2 s), while maintaining satisfactory 336 

predictive performances (RPIQ ≥ 3.52). Thus, the authors accept the first hypothesis of this study 337 

that although low dwell times degrade the XRF prediction accuracy, it is still possible to 338 

drastically reduce the dwell time while maintaining satisfactory performance for soil fertility 339 

prediction (namely, clay, CEC, ex-K, and ex-Ca). No study in the literature has evaluated the 340 

prediction performance of soil fertility attributes using scanning time as short as that presented 341 

in the current research. Evaluating dwell time of 60, 120 and 180 s for P prediction in leaf 342 

samples, Sapkota et al. (2019) observed that the time of analysis had no significant influence on 343 

the performance of the models, having R² ranging from 0.84 to 0.88. In tropical soils, some 344 

authors have reported no significant differences in attribute predictions made with dwell times 345 

of 30 and 60 s (Silva et al., 2019, 2018). Although the aforementioned studies did not evaluate 346 

drastic reductions in analysis time, the absence of performance loss in XRF prediction when 347 

using contrasting dwell times corroborates the results observed in the present study. 348 

The accuracy to measure a given element with XRF set at short dwell times is linked to 349 

intrinsic aspects related to its fluorescence emission line (i.e., lighter elements that have lower 350 

fluorescence emission and lower energies are more affected), as well as to the concentration of 351 

this element in the sample (Ravansari et al., 2020; Silva et al., 2021). That is, light elements with 352 

low content in the analyzed soil sample (i.e., close to their limit of detection and with a lower 353 

SNR) are more affected by the loss of accuracy when reducing the scanning time. This behavior 354 

occurs because the fluorescence emission of these elements have a lower SNR and, therefore, 355 

any external interference (i.e., physical and chemical matrix effects) will have a greater effect on 356 

is intensity (An et al., 2021; Ernst et al., 2014). In this study, the lower SNR of the K emission line 357 

(< 10) caused a higher interference in the ex-K prediction model when changing the dwell time. 358 

Similarly, the clay, CEC, and ex-Ca models that were related to emission lines with higher SNR 359 

(i.e., Fe-Ka for clay models and Ca-Ka for CEC and ex-Ca models), had a higher stability when 360 

changing the dwell time. In addition, it is worth commenting that SNR values lower than 10 are 361 

considered critical and lead to poor modelling results (Danzer and Currie, 1998), indicating that 362 

the element present concentrations are closer to the limit of detection for the instrumental 363 

conditions adopted. Optimizing the instrumental conditions to increase the K-Kα SNR may be a 364 

strategy to be considered in the future to improve the performance of ex-K prediction under 365 

low dwell time conditions.  366 
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Regarding the effect of dwell time for model calibration, the results showed that, once 367 

the data are standardized by the detector's live time, the model can be calibrated with dwell 368 

times ranging from 90 to 2s and successfully extrapolated on data collected with dwell times of 369 

4 and 2s (Fig. 5 and Fig. A3). So, spectral library data previously obtained with longer dwell times 370 

(e.g., 30, 60, 90s) can be used for XRF applications with rapid measurements such that the 371 

predictive performance will not significantly deteriorate due to different dwell times. Despite 372 

the absence of a significant difference, models based on emission lines with lower SNR 373 

(especially ex-K models in this study) showed a tendency to perform better as the dwell time of 374 

the calibration set comes closer to the dwell time of the validation set. In light of these results, 375 

it is suggested that the calibration step should be performed with spectral data acquired with 376 

the same dwell time as the one intended to be implemented in the field. This can be suggested, 377 

because the prediction accuracy using longer dwell times did not lead to a better performance 378 

of predictions (Fig. 5 and Fig. A3), as raised by the second hypothesis of this study; hence, it was 379 

rejected.  380 

The findings show that XRF may be suitable for accurate in situ rapid analysis of key soil 381 

fertility attributes. This knowledge is not widespread among XRF users as it is quite common to 382 

use pre-programmed measurement packages (Andrade et al., 2020; Horta et al., 2015; Lima et 383 

al., 2019; Nawar et al., 2019; O’Rourke et al., 2016), which are factory calibrations (for 384 

determining total elemental concentration), associated with a pre-established dwell time, 385 

generally between 30 to 90 s (Weindorf and Chakraborty, 2016). Based on the results presented 386 

in this study, XRF users within the precision agriculture and soil science communities should be 387 

encouraged to use open systems that allow the optimization of dwell time, since this will enable 388 

the expansion of XRF applications in such context. 389 

Unlike laboratory measurements that are mainly conducted on dried and sieved samples, 390 

in field applications fresh unprocessed soils are measured, which means that external factors, 391 

such as soil moisture and roughness, will influence sensors’ output (Horta et al., 2015; Mouazen 392 

and Al-Asadi, 2018; Nawar et al., 2020). To support future in situ applications of XRF sensors for 393 

soil mapping, further studies should evaluate the combination of rapid XRF analysis on fresh 394 

(wet) samples, representing the soil conditions at the time of data acquisition directly in the 395 

field. Evaluation of similar solutions to those adopted to mitigate performance loss on the near 396 

infrared and mid infrared spectroscopy sensors (Minasny et al., 2011; Nawar et al., 2020; Roger 397 

et al., 2003) due to external factors, such as the moisture content, may be a next step to consider 398 

for XRF analysis.  399 
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Conclusions 400 

The results showed that reducing the dwell time of X-ray fluorescence (XRF) analysis 401 

decreases the precision of its data. In spite of that, it was possible to achieve excellent prediction 402 

performance [ratio of performance to interquartile distance (RPIQ) ≥ 3.52] of soil fertility 403 

attributes (clay, cation exchange capacity, and exchangeable K and Ca) even after applying 404 

drastic reductions of XRF’s dwell time (from 90 to 2 s).  405 

In addition, this study also evaluated and suggested an optimized dwell time for model 406 

calibration (which is generally conducted in the laboratory without time restriction) seeking 407 

rapid soil fertility analysis. The results suggested that the best calibration models are those 408 

conducted with the same dwell time as the validation set (e.g., calibrated and validated using 409 

spectra acquired at 2 s of dwell time), refuting the idea that a longer dwell time should guarantee 410 

a more accurate data for model calibration. In any case, using longer dwell times for model 411 

calibration did not lead to statistically significant differences in the validation results. Therefore, 412 

this research also indicates that previously existing spectral libraries can be used to calibrate 413 

models that will be extrapolated on XRF data obtained from rapid measurements without 414 

significant losses in performance. 415 

These results allow bringing XRF closer to in site soil fertility mapping in the precision 416 

agriculture context. Researches are encouraged to combine reduced dwell times with the 417 

removal of other external factors affecting in in situ applications (e.g., soil moisture, soil 418 

roughness, etc) to optimize the future use of XRF for in situ field applications.  419 
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Appendix 433 

Fig. A1 shows the exponential behavior of the standard deviation as a function of dwell 434 

time for the K-lines of Al, Si, K, and Ca. Table A1 shows the importance of the spectral variables 435 

used for the model calibration for predicting clay, CEC, ex-K, and ex-Ca, using the dwell times of 436 

90 and 2 s. 437 

 438 
Fig. A1 Scatter plots of dwell time versus standard deviation of Al-, Si-, K-, and Ca-K lines 439 

obtained from five XRF measurements performed on the same soil sample after moving the 440 
sample cup position. 441 

 442 
Table A1 Importance of X-ray fluorescence (XRF) variables for the prediction of clay, cation 443 
exchange capacity (CEC), (ex-) K and Ca, using the dwell times of 90 and 2 s. The values presented 444 
correspond to the t-value for each standardized coefficient obtained in the fitted regressions. 445 

  Dwell 
time (s) 

Al-Kα Si-Kα K-Kα Ca-Kα Ti-Kα Mn-Kα Fe-Kα Ni-Kα Cu-Kα Rh-Kα Rh-Lα 

clay 
90 -0.61 -1.35 0.05 -0.79 -3.48 -0.31 6.56 0.11 -1.69 -1.66 0.92 
2 -0.92 -2.16 -0.40 -0.80 -2.29 -0.35 7.13 -1.24 -1.73 0.25 -1.38 

CEC 
90 -1.67 0.17 1.72 4.67 3.20 -2.84 -1.27 -0.61 1.38 -0.67 0.86 
2 -1.16 -0.41 1.08 4.00 3.45 -2.42 -1.06 -1.12 0.46 0.21 1.63 

ex-K 
90 -1.92 0.35 16.18 -4.41 -0.16 -2.00 0.33 -1.36 -0.90 -1.23 -1.39 
2 -2.34 -1.34 7.14 -2.21 0.23 1.29 -0.58 0.59 -1.30 -1.37 -1.89 

ex-Ca 
90 -3.33 2.29 1.78 8.53 1.46 -3.65 1.92 -0.39 0.37 0.08 1.26 
2 -3.26 2.15 0.87 8.93 2.43 -3.34 2.97 0.12 -0.93 -0.57 -0.02 

The emboldened values indicate a significant t-values at the probability level of 0.05; significant values 446 
were presented on grayscale, with the most important variables having the darkest color and vice versa. 447 

 448 
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Fig. A2 shows the scatter plots of predicted versus measured clay, CEC, ex-K, and ex-Ca, 449 

for the validations set (n = 34) of models that were calibrated and validated using dwell times of 450 

90 and 2 s. Finally, the Fig. A3 shows the results for the dwell time optimization for calibrating 451 

models seeking in situ applications, a similar analysis to the one detailed in Section 2.3.3., but 452 

now replicating all the evaluated dwell times (90, 60, 30, 15, 10, 7, 4, and 2 s) in spectra acquired 453 

with 4 s of dwell time. The results (Fig. A3) show that the behavior was the same as that observed 454 

for 2 s (described in Section 3.3.). 455 

 456 
Fig. A2 Scatter plots of predicted versus measured clay (A), cation exchange capacity (CEC) (B), 457 
exchangeable (ex-) K (C) and Ca (D) using dwell times of 90 and 2s. 458 

 459 
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 460 

Fig. A3 Calibration performance using different dwell times (90, 60, 30, 15, 10, 7, and 4s) for the 461 
calibration of models for the prediction of clay (A), cation exchange capacity (CEC) (B), 462 
exchangeable (ex-) K (C) and Ca (D). The results represent the validation of these different 463 
calibration scenarios when replicated on the validation set (n = 34) scanned with 4 s of dwell 464 
time. The performance was evaluated via the ratio of performance to interquartile distance 465 
(RPIQ) and root-mean-square error (RMSE). The percentage values represent the variation of 466 
RMSE in relation to the performance obtained with 90 s dwell time. Similar letters indicate no 467 
statistical difference at P<0.05 (Tukey test). 468 
 469 
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