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Background: Metastatic castration-sensitive prostate cancer (mCSPC) is commonly classified into high- and low-volume
subgroups which have demonstrated differential biology, prognosis, and response to therapy. Timing of metastasis has
similarly demonstrated differences in clinical outcomes; however, less is known about any underlying biologic
differences between these disease states. Herein, we aim to compare transcriptomic differences between
synchronous and metachronous mCSPC and identify any differential responses to therapy.
Patients and methods: We performed an international multi-institutional retrospective review of men with mCSPC who
completed RNA expression profiling evaluation of their primary tumor. Patients were stratified according to disease timing
(synchronous versus metachronous). The primary endpoint was to identify differences in transcriptomic profiles between
disease timing. The median transcriptomic scores between groups were compared with the ManneWhitney U test.
Secondary analyses included determining clinical and transcriptomic variables associated with overall survival (OS) from
the time of metastasis. Survival analysis was carried out with the KaplaneMeier method and multivariable Cox regression.
Results: A total of 252 patients were included with a median follow-up of 39.6 months. Patients with synchronous
disease experienced worse 5-year OS (39% versus 79%; P < 0.01) and demonstrated lower median androgen
receptor (AR) activity (11.78 versus 12.64; P < 0.01) and hallmark androgen response (HAR; 3.15 versus 3.32; P <
0.01). Multivariable Cox regression identified only high-volume disease [hazard ratio (HR) ¼ 4.97, 95% confidence
interval (CI) 2.71-9.10; P < 0.01] and HAR score (HR ¼ 0.51, 95% CI 0.28-0.88; P ¼ 0.02) significantly associated
with OS. Finally, patients with synchronous (HR ¼ 0.47, 95% CI 0.30-0.72; P < 0.01) but not metachronous (HR ¼
1.37, 95% CI 0.50-3.92; P ¼ 0.56) disease were found to have better OS with AR and non-AR combination therapy
as compared with monotherapy (P value for interaction ¼ 0.05).
Conclusions: We have demonstrated a potential biologic difference between metastatic timing of mCSPC. Specifically,
for patients with low-volume disease, those with metachronous low-volume disease have a more hormone-dependent
transcriptional profile and exhibit a better prognosis than synchronous low-volume disease.
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INTRODUCTION

Prostate cancer represents the most common solid organ
malignancy among men accounting for w270 000 new
cases and >30 000 deaths in the United States in 2022.1

Some patients with prostate cancer experience an indo-
lent disease course while others have a more aggressive
clinical course and biology resulting in metastatic disease
and castration resistance which drives prostate cancer
mortality.2 Among men with metastatic castration-sensitive
prostate cancer (mCSPC), efforts have aimed to identify
those at the highest risk of disease progression and benefit
from early treatment intensification.

The volume of metastatic disease has previously
demonstrated valuable prognostic information and
holds promise in guiding treatment recommendations.3-5

Specifically, combined systemic therapy with androgen-
deprivation therapy (ADT) and docetaxel has demon-
strated a significant overall survival (OS) benefit within
high-volume but not for metachronous low-volume
disease.6,7 Conversely, prostate radiation has demon-
strated benefit in men with synchronous low-volume
mCSPC, which however has not been observed in in high-
volume/polymetastatic disease.8,9 Similar to disease vol-
ume, timing (de novo/synchronous versus metachronous) of
metastatic disease has also been implicated in prognosis,
with synchronous disease demonstrating worse clinical
outcomes.10,11 Although synchronous disease has been
shown to be associated with worse outcomes, the mecha-
nisms underlying respective responsiveness to standard-of-
care therapies by timing of disease are poorly understood.
Further, the interplay between disease timing and volume
remains incompletely understood, with some clinical ob-
servations demonstrating a spectrum of disease from more
aggressive synchronous high-volume to indolent meta-
chronous low-volume disease.11 Tumor transcriptomics may
provide critical information to better understand this more
aggressive phenotype and allow for greater therapeutic
precision. Currently, several transcriptomic signatures based
on gene expression profiles of the primary tumor have been
developed and associated with clinical outcomes.12-14 More
importantly, transcriptomic profiling has demonstrated
predictive utility in determining benefit to combined sys-
temic therapy within mCSPC.15 Herein, we aim to evaluate
for differences in transcriptomic profiles relative to timing
and volume of metastatic disease and associate them with
clinical outcomes and response to therapy.
MATERIALS AND METHODS

We performed an international multi-institutional retro-
spective review of men with mCSPC who, following
informed consent, underwent RNA expression profiling
evaluation of their primary tumor via either RNA
6 https://doi.org/10.1016/j.annonc.2023.04.515
sequencing (RNA-Seq) or microarray. RNA-Seq was per-
formed via the Tempus xT tissue assay (648-gene muta-
tional DNA panel and full RNA-Seq transcriptome) platform.
Microarray was performed via the Veracyte Decipher plat-
form (San Diego, CA) as previously described.15 Microarray
data were normalized using the Single Channel Array
Normalization (SCAN) algorithm.16 Gene expression signa-
tures including androgen receptor activity (AR-A)13;
PAM5017; Post-Operative Radiation Therapy Outcomes
Score (PORTOS)18; homologous recombination deficiency
(HRD)19; small cell/neuroendocrine (SC/NE)20; and hall-
marks of cancer,21 including androgen response, DNA repair,
and epithelial-to-mesenchymal transition (EMT). WNT was
calculated for all patients using the GRID software for both
RNA-Seq and microarray (Veracyte, Inc). The quality of
samples was assessed for the proportion of reads aligning
to the reference genome. Read alignments were also
assessed for percentage of reads aligning to exonic, intronic,
and intergenic regions of the human reference genome
(build GRCh38) and corresponding reference annotation.
Total genic counts, mitochondrial gene expression, and
sample clustering were used to identify any potential out-
liers. One sample failed quality check and was excluded
from analysis. Batch correction between microarray and
RNA-Seq was carried out using ComBat to allow for com-
bined analysis.22

Patients included those treated on the CHAARTED,4

STOMP,23 and ORIOLE24 clinical trials as well as those who
underwent transcriptomic evaluation off-trial at Ghent
University and Johns Hopkins Hospital. Details of the tran-
scriptomic subsets of the CHAARTED15 and STOMP/ORI-
OLE25 clinical trials have previously been described.
Synchronous disease was defined as presence of metastatic
disease at first diagnosis of prostate cancer. Metachronous
disease was defined as metastatic recurrence following
definitive prostate treatment. RNA expression profiling for
patients with metachronous disease was performed on the
initial localized prostate cancer specimen. Patients were
stratified by volume of disease according to a modified
version of the CHAARTED criteria.4 Modified high-volume
disease was defined as the presence of either visceral me-
tastases or four or more bone metastasis with at least one
outside the spine or pelvis visible on either conventional or
enhanced (choline C-11 positron emission tomography)
imaging. Modified low-volume disease was defined as
metastatic disease visible on either conventional or
enhanced imaging not meeting high-volume criteria. All
lesions on enhanced imaging had a correlate lesion on
conventional imaging, but were not required to meet
RECIST criteria.26 This modified definition was used as pa-
tients on the STOMP trial were staged by choline C-11
positron emission tomography/computed tomography.
Initial management was classified as monotherapy (ADT
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alone for synchronous; ADT alone or metastasis-directed
therapy alone for metachronous) or AR þ non-AR combi-
nation therapy (ADT þ docetaxel or ADT þ prostate/
metastasis-directed radiotherapy). Follow-up data and clin-
ical endpoints were collected through serial physical ex-
amination, conventional imaging, and prostate-specific
antigen measurements.

The primary endpoint of interest was to identify differ-
ences in transcriptomic profiles between timing of disease.
Median transcriptomic scores were reported for both
metachronous and synchronous cohorts and compared with
ManneWhitney U test within the RNA-Seq, microarray, and
combined batch-corrected cohorts. The proportion of pa-
tients with low androgen signaling was also compared be-
tween synchronous and metachronous patients with chi-
square test. Low AR-A was defined as �11 as previously
described.13 Low hallmark androgen response (HAR) was
defined as less than the median. Secondary analyses
included determining clinical and transcriptomic variables
associated with time to castration-resistant prostate cancer
(ttCRPC) and OS from the time of metastasis diagnosis.
Castration resistance was defined according to Prostate
Cancer Working Group 3 criteria.27 Subset analyses evalu-
ated response to therapy and clinical and transcriptomic
differences accounting for both timing and volume of dis-
ease. Survival analysis was performed with the Kaplane
Meier Method and compared with log-rank test. Multivar-
iable Cox regression were conducted for ttCRPC and OS
including variables with P <0.1 on univariable Cox regres-
sion. For all analyses, a P value � 0.05 was considered
statistically significant. All statistical analyses were con-
ducted using SPSS v26 (IBM, Inc, New York, NY).
Table 1. Demographic characteristics (N [ 252)

Age, median (interquartile range), years 64 (56.3-70.0)
PSA at metastasis, median (interquartile range) 20.5 (3.2-152.9)
Gleason Grade Group, n (%)
1 11 (4.4)
2 39 (15.5)
3 27 (10.7)
4 42 (16.7)
5 125 (49.6)
Unavailable 7 (2.8)
Timing, n (%)
Synchronous 151 (60.0)
Metachronous 101 (40.0)
Disease burden, n (%)
Low volume 126 (50.0)
Conventional detection 54 (42.9)
Enhanced detection 72 (57.1)

High volume 126 (50.0)
Conventional detection 125 (99.2)
Enhanced detection 1 (0.8)

Treatment, n (%)
ADT monotherapy 76 (30.2)
ADT þ docetaxel 84 (33.3)
MDT monotherapy 39 (15.5)
MDT þ systemic therapy 44 (17.5)
Observation 9 (3.6)
Transcriptomic evaluation
Microarray 160 (63.5)
RNA-Seq 92 (36.5)

ADT, androgen-deprivation therapy; MDT, multidrug therapy; PSA, prostate-specific
antigen; RNA-Seq, RNA sequencing.
RESULTS

A total of 252 patients were included in this analysis with a
median follow-up of 39.6 (interquartile range 23.5-59.6)
months. A detailed list of demographic and disease char-
acteristics is presented in Table 1. Patients with synchro-
nous disease accounted for 60.0% of the cohort. Treatment
modalities included ADT with or without docetaxel (63.5%;
microarray cohort), ablative radiation therapy with or
without systemic therapy (33.0%; RNA-Seq cohort), or
observation (3.6%; RNA-Seq cohort). Transcriptomic evalu-
ation was performed with either microarray (63.5%) or
RNA-Seq (36.5%). Patients with synchronous disease had a
significantly higher prostate-specific antigen and Gleason
Grade Group and were much more likely to have high-
volume disease (Supplementary Table S1, available at
https://doi.org/10.1016/j.annonc.2023.04.515).

Within the entire cohort, patients with synchronous
metastatic disease experienced significantly worse out-
comes (Figure 1). The median and 5-year ttCRPC rates were
15.4 versus 91.0 months and 24% versus 78% for synchro-
nous and metachronous disease, respectively (P < 0.01).
The median and 5-year OS were 48.8 months versus not
reached and 39% versus 79% for synchronous and meta-
chronous disease, respectively (P < 0.01).
Volume 34 - Issue 7 - 2023
Using the total cohort and comparing among batch-
corrected transcriptomic signatures, synchronous metasta-
tic disease was found to have a significantly lower median
AR-A (11.78 versus 12.64; P < 0.01) and HAR (3.15 versus
3.32; P < 0.01) (Figure 2) compared with metachronous
disease. In addition, patients with synchronous disease
were significantly more likely to have low AR-A (37.7%
versus 19.8%; P < 0.01) and low HAR (58.3% versus 37.6%;
P < 0.01; Supplementary Figure S1, available at https://doi.
org/10.1016/j.annonc.2023.04.515). No other differences
between the timing of metastatic disease were identified
when comparing using PAM50, PORTOS, HRD, SC/NE, hall-
mark p53, hallmark DNA repair, hallmark EMT, or hallmark
WNT gene signatures (Supplementary Table S2, available at
https://doi.org/10.1016/j.annonc.2023.04.515). Given the
difference in patient populations between those who un-
derwent microarray and RNA-Seq, differences in androgen
response signatures, AR-A and HAR, were also compared
within each cohort. HAR was significantly lower among
patients with synchronous disease in both RNA-Seq (P <
0.01) and microarray (P ¼ 0.03) cohorts when examined
individually. The AR-A scores were only noted to be signif-
icantly lower within the RNA-Seq (P < 0.01) and trended
toward but did not reach statistical significance in the
microarray (P ¼ 0.09) cohort.

The multivariable cox regression model was built with
clinical and transcriptomic variables associated with out-
comes on univariable regression (Supplementary Table S3,
available at https://doi.org/10.1016/j.annonc.2023.04.515).
On multivariable analysis, ttCRPC was significantly shorter
https://doi.org/10.1016/j.annonc.2023.04.515 607
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Figure 1. KaplaneMeier survival curves of (A) time to castration-resistant prostate cancer and (B) overall survival stratified by timing of disease.
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with high-volume disease [hazard ratio (HR) ¼ 5.22, 95%
confidence interval (CI) 3.11-8.77; P < 0.01] and longer with
increasing HAR score (HR ¼ 0.56, 95% CI 0.35-0.88; P ¼
0.02). Similarly, OS was significantly shorter with high-
volume disease (HR ¼ 4.97, 95% CI 2.71-9.10; P < 0.01)
and longer with increasing HAR score (HR ¼ 0.51, 95% CI
0.28-0.88; P ¼ 0.02; Table 2). Notably, when accounting for
volume of disease and transcriptomic differences, timing of
disease was not associated with a difference in either
ttCRPC (HR ¼ 1.67, 95% CI 0.94-2.96; P ¼ 0.08) or OS (HR ¼
1.18, 95% CI 0.61-2.31; P ¼ 0.62). Given the primary bio-
logic difference between timing of disease appeared to be
related to androgen response, we hypothesized that pa-
tients with synchronous disease would derive a greater
benefit from AR and non-AR combination therapy (defined
as either ADT plus docetaxel or ADT plus ablative radiation).
Figure 3 demonstrates that patients with synchronous
(HR ¼ 0.47, 95% CI 0.30-0.72; P <0.01) but not
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metachronous (HR ¼ 1.37, 95% CI 0.50-3.92; P ¼ 0.56)
disease have an improvement in OS with multimodal
therapy as compared with monotherapy (P value for
interaction ¼ 0.05). Supplementary Figures S2 and S3,
available at https://doi.org/10.1016/j.annonc.2023.04.515
demonstrate ttCRPC and OS for the microarray
cohort (monotherapy versus ADT plus docetaxel) and the
RNA-Seq cohort (monotherapy versus ADT plus ablative
radiation).

We next aimed to evaluate timing of disease in relation
to disease volume. As noted previously, patients were
stratified into low- (50.0%) and high- (50.0%) volume dis-
ease. Among patients with high-volume disease, there were
no significant differences between timing of disease in
either 3-year ttCRPC (42% versus 17%; P ¼ 0.124) or OS
(46% versus 54%; P ¼ 0.67). Conversely, among patients
with low-volume disease, metachronous metastasis was
associated with significantly better 3-year ttCRPC (92%
164

163

242
163

240

96

146 132

10646

111

149

164
158

163
183
240

149

111

20

15

10

5

0

Synchronous Metachronous

Metachronous

P = 0.03

Synchronous Metachronous

P < 0.01

5

4

3

2

1

H
al

lm
ar

k 
A

R

Metachronous

P = 0.09

A
R

-A

P < 0.01

array Combined batch corrected

oarray Combined batch corrected

C

F

ranscriptional scores of metachronous and synchronous disease for (A and D)

Volume 34 - Issue 7 - 2023

https://doi.org/10.1016/j.annonc.2023.04.515
https://doi.org/10.1016/j.annonc.2023.04.515
https://doi.org/10.1016/j.annonc.2023.04.515
https://doi.org/10.1016/j.annonc.2023.04.515
https://doi.org/10.1016/j.annonc.2023.04.515
https://doi.org/10.1016/j.annonc.2023.04.515
https://doi.org/10.1016/j.annonc.2023.04.515
https://doi.org/10.1016/j.annonc.2023.04.515
https://doi.org/10.1016/j.annonc.2023.04.515
https://doi.org/10.1016/j.annonc.2023.04.515


Table 2. Multivariable Cox regression for ttCRPC and OS

Characteristic HR (95% CI) P value

ttCRPC
Synchronous (versus metachronous) 1.69 (0.95-2.99) 0.07
High volume (versus low volume) 5.22 (3.11-8.77) <0.01
PSA at metastasis 1.00 (1.00-1.00) 0.65
Gleason Grade Group 1.17 (0.98-1.41) 0.08
AR-A score 1.02 (0.92-1.14) 0.71
Hallmark androgen response 0.56 (0.35-0.89) 0.02
SC/NE 0.56 (0.03-9.22) 0.69
OS
Synchronous (versus metachronous) 1.19 (0.61-2.31) 0.62
High volume (versus low volume) 4.97 (2.71-9.10) <0.01
PSA at metastasis 1.00 (1.00-1.00) 0.69
Gleason Grade Group 1.20 (0.95-1.51) 0.12
AR-A score 1.02 (0.89-1.18) 0.75
Hallmark androgen response 0.51 (0.28-0.88) 0.02
Hallmark DNA repair 2.18 (0.83-5.76) 0.12

AR-A, androgen receptor activity; CI, confidence interval; HR, hazard ratio; OS,
overall survival; PSA, prostate-specific antigen; SC/NE, small cell/neuroendocrine;
ttCRPC, time to castration-resistant prostate cancer.
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versus 64%; P < 0.01) and OS (94% versus 76%; P < 0.01;
Figure 4A-D). Comparing transcriptomic differences
demonstrated that synchronous disease had a lower HAR in
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low- (P ¼ 0.03) but not high- (P ¼ 0.35) volume disease
(Figure 4E and F). Finally, within this cohort, evaluating
treatment by time and volume of disease demonstrated
that upfront multimodal therapy was associated with longer
ttCRPC among patients with high-volume (P < 0.01), may
improve with synchronous low-volume (P ¼ 0.07), and does
not have significant benefit in metachronous low-volume
(P ¼ 0.18) disease (Supplementary Figure S4, available at
https://doi.org/10.1016/j.annonc.2023.04.515).
DISCUSSION

Here, we report on the biologic and clinical differences
between two distinct groups of mCSPC based on timing of
metastasis. Specifically, we have identified that synchronous
mCSPC is associated with a lower androgen response
transcriptomic profile. Further, we have demonstrated that
while synchronous metastatic disease experiences a more
aggressive clinical course on univariable analysis, consistent
with prior reports, when accounting for disease volume and
androgen response biology, timing of metastatic disease
alone no longer appears to be as strong of a prognostic
indicator. Further, we have demonstrated that patients with
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synchronous (but not metachronous) disease may experi-
ence improved outcomes with AR þ non-AR combination
therapy, likely as a result of their lower androgen response
profile. This aligns with clinical trials showing that ADT plus
docetaxel has a clear effect in high-volume (synchronous
and metachronous) disease and lessdbut still some
effectdin men with synchronous low-volume disease who
also benefit from radiating the primary. Docetaxel has no
effect on metachronous low-volume disease.7 Specifically,
we demonstrate that the clinical and biologic difference
between disease timing is predominantly driven by patients
with metachronous disease within the low-volume
subgroup.
610 https://doi.org/10.1016/j.annonc.2023.04.515
High-quality evidence of the prognostic implication of
timing of metastatic disease was first reported in sec-
ondary analyses of the CHAARTED trail and then in a
combined analysis with the GETUG-AFU15 clinical trial.6,28

Both trials demonstrated significantly improved OS in
patients with metachronous metastatic disease (metasta-
tic disease after failure of local treatment) with a median
OS nearly two times that of synchronous disease (83.1
versus 46.5 months). Follow-up work by Francini et al.11

retrospectively reviewed 436 patients with mCSPC and
demonstrated OS and ttCRPC could be stratified into three
risk groups (low-volume metachronous, low-volume syn-
chronous/high-volume metachronous, and high-volume
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synchronous). The results presented here are generally
concordant with these findings, demonstrating signifi-
cantly worse outcomes with synchronous disease. Notably,
the results here demonstrate a much larger difference in
outcomes by disease timing, which is likely due to an
imbalance of disease burden between groups (higher
burden of disease among our synchronous cohort). Our
results similarly identify three risk groups stratified by
time and volume, but high volume has the worst out-
comes regardless of disease timing.

To our knowledge, this report is the first to demonstrate a
biologic difference between timing of metastatic disease. As
we have shown, patients with synchronous disease have
lower AR-A and HAR gene signature scores and that within
the low-volume cohort, those with metachronous low volume
have the higher AR-A score. Spratt et al.13 have previously
demonstrated low AR-A to be associated with less sensitivity
to ADT among patients with treatment-naïve prostate cancer.
Together, these findings suggest that the difference in AR
pathway gene expression is likely contributing to the
observed difference in outcomes due to synchronous disease
being more resistant to conventional ADT. This hypothesis is
also supported by our finding of similar outcomes in high-
volume disease regardless of disease timing coupled with
no significant difference in androgen transcription score be-
tween timing of disease in this cohort. Our observation that
timing of metastatic disease becomes a less significant
prognostic factor when disease volume and transcriptional
profiles are accounted for further supports this hypothesis.

Although understanding the prognostic implications of
disease timing is of great interest, understanding the biologic
underpinnings is paramount to guide therapeutic decision
making as well as identify drivers and potential targets of
aggressive disease. Several studies have aimed at under-
standing which patients may derive the greatest benefit from
treatment intensification. Volume of disease has already
demonstrated ability to predict response to treatment.
Specifically, as first reported by the CHAARTED long-term
follow-up study, there is a gradient of prognosis with syn-
chronous high-volume experiencing the worst outcomes
followed by metachronous high-volume and synchronous
low-volume experiencing intermediate outcomes. The
CHAARTED team also documented a gradient of benefit
from docetaxel, with most in synchronous high volume to
none in metachronous low-volume and intermediate in the
other two groups.4 Pooled data from the CHAARTED and
GETUF-AFU15 trials and confirmed in STOPCaP IPD in 2022,
which included patients from the STAMPEDE trial, demon-
strated that docetaxel confers the greatest OS benefit to
those with high-volume disease (high-volume HR ¼ 0.68,
95% CI 0.56-0.82; low-volume HR ¼ 1.03, 95% CI 0.77-
1.38).6,7 Conversely, the ENZAMET trial demonstrated that
patients with metachronous low volume may have a greater
treatment effect in metachronous low-volume HR (OS): 0.47
(95% CI 0.28-0.79) than synchronous high-volume HR (OS ¼
0.70, 95% CI 0.47-1.04) with synchronous low volume
possibly having an intermediate effect HR (OS ¼ 0.58, 95%
CI 0.32-1.04).29
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Our results and phase III trials presented here demon-
strated that patients with synchronous disease experience
significantly improved outcomes with AR plus non-AR
combination therapy as compared with hormonal therapy
alone. Notably, patients with metachronous low-volume
disease do not derive the same benefit from ADT plus
docetaxel, but they do benefit from ADT plus enzaluta-
mide30,31 or apalutamide.32 This improvement in multi-
modal therapy involving hormonal therapy plus non-AR-
targeted (docetaxel or ablative radiation) therapy may be
a result of overcoming intrinsic ADT resistance (lower
androgen response transcriptional profile) within synchro-
nous disease. Further, when stratifying by volume and
timing of disease, both high volume (regardless of timing)
and synchronous low volume appear to have improved
ttCRPC with AR plus non-AR combination therapy. Low-
volume metachronous disease, however, appears to derive
no benefit from AR plus non-AR combination therapy likely
due to its more indolent biology. Importantly, however, no
patients within this cohort received second-generation
hormone therapy (i.e. abiraterone, enzalutamide, apaluta-
mide) for mCSPC and future work is needed to determine
relationship of transcriptomic profiles and combined AR
targeted therapy (e.g. testosterone suppression plus potent
AR inhibitor). However, clinical trial data do document a
benefit with ADT and enzalutamide plus apalutamide in all
subgroups of high and low volume with synchronous and
metachronous mCSPC.

This study has several limitations that must be considered
when interpreting the results. First, patients with metastasis
detected on enhanced imaging were included in analysis
and entirely within the metachronous cohort. Many of
these patients did not meet RECIST criteria on conventional
imaging and were identified primarily via biochemical
relapse; a large subset of these metachronous patients
would be conventionally classified as nonmetastatic. This
earlier stage of disease within our metachronous cohort
may have contributed to some of the differences we
observed. However, as we already know that docetaxel has
little to no OS benefit in conventional M0 disease,33,34 the
data in this ‘gray’ area are consistent with the M0 literature.
Second, a significant batch effect was observed between
the RNA-sequenced and microarray patients. Transcriptomic
profiles for the RNA-seq cohort were scaled to match those
from the microarray cohort to adjust for the difference in
dynamic range between RNA-seq and microarray profiles.
AR-A scores were further batch corrected prior to
combining these data that were influenced by the differ-
ence in number of patients with synchronous and meta-
chronous disease in each cohort. This scaling and
subsequent batch correction could have diminished the
magnitude and significance of the true effect size between
synchronous and metachronous disease in our differential
expression and Cox regression combined analyses. Another
limitation is that the study is likely underpowered to detect
a difference in timing of disease within high-volume disease
as only 13 metachronous high-volume patients were
included in analysis. Therefore the lack of clinical and
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biologic differences between timing of disease in this subset
should be interpreted cautiously. As mentioned earlier,
none of the patients within this study received second-
generation hormone therapy, now considered standard of
care.35,36 This represents a major limitation to the inter-
pretability of the clinical outcomes reported herein. Further
work validating these findings in the modern era are
required to determine whether patients with high-volume
and synchronous disease derive a greater benefit with the
addition of a non-AR targeting agent to a combination of
ADT plus AR signaling inhibitor as compared with those with
metachronous low-volume disease. Finally, 17 patients with
synchronous disease had exposure to ADT prior to tissue
sequencing. Although these samples met stringent quality
checks, it is possible that the prior exposure to ADT altered
RNA expression of androgen-related genes affecting the
androgen transcriptomic signatures.

In this multi-institutional series, we have demonstrated
for the first time a biologic difference in the timing of
metastatic presentation of CSPC for patients with low-
volume disease. Specifically, we have demonstrated that
patients with metachronous low-volume metastatic disease
have a more ADT-responsive transcriptional profile than
those with synchronous low-volume disease, with timing of
disease having a greater effect in low-volume disease.
Finally, we show that patients with high-volume or syn-
chronous low-volume disease may derive the greatest
benefit from multimodal therapy targeting AR and non-AR
biologies, potentially a result of this biologic difference.
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