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Abstract (250) 1 

2 

While the incidence of neurological disease is increasing worldwide, treatment remains mostly 3 

limited to symptom management. The gut-brain axis, which encompasses the communication 4 

routes between microbiota, gut, and brain, has emerged as a crucial area of investigation for 5 

identifying new preventive and therapeutic targets in neurological disease. Due to the inter-6 

organ, systemic nature of the gut-brain axis, together with the multitude of biomolecules and 7 

microbial species involved, molecular systems biology approaches are required to accurately 8 

investigate the mechanisms of gut-brain communication. High-throughput omics profiling, 9 

together with computational methodologies such as dimensionality reduction or clustering, 10 

machine learning, network inference and genome-scale metabolic models, allow to discover 11 

novel biomarkers and elucidate mechanistic insights. In this review, we introduce the general 12 

concepts of experimental and computational methodologies for gut-brain axis research and 13 

discuss their applications, mainly in human cohorts. We further highlight important aspects 14 

concerning rational study design, sampling procedures and data modalities relevant for gut-15 

brain communication, strengths and limitations of methodological approaches and some future 16 

perspectives. In conclusion, we review how multi-omics analysis, together with advanced data 17 

mining, are essential to functionally characterize the gut-brain axis in neurological disease and 18 

finally put forward novel preventive or therapeutic strategies. 19 

20 
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Introduction  1 

 2 

Despite decades of research, treatment of neurological diseases is limited to symptom 3 

management, and most drugs achieve only moderate efficacy. Hence, there is an urgent unmet 4 

medical need for novel, cost-efficient disease-modifying treatments, of which patients are most 5 

likely to benefit if administered early in disease progression. In this respect, the gut-brain axis 6 

(GBA) is an exciting research area that opens up possibilities for preventive and therapeutic 7 

strategies. The GBA refers to the communication routes and interrelationship between 8 

microbiota and inflammation in the gut, and neuroinflammation and neurological disease in the 9 

brain1. Due to the inter-organ, systemic nature of the GBA, together with the diversity of 10 

molecular features and microbial species involved, systems biology approaches are required 11 

to capture underlying molecular mechanisms. 12 

 13 

Technological advancements in high-throughput molecular profiling enable the cost-efficient, 14 

high-throughput analysis of multiple biomolecules and molecular interactions in parallel, such 15 

as genome, epigenome, transcriptome, proteome, metabolome and interactome. In addition, 16 

latest developments in computational methodologies allow performing multi-omics data 17 

integration to capture a multi-modal view and resolve the flow of signaling information across 18 

multiple regulatory layers. In this way, information is obtained that exceeds that of the sum of 19 

the individual omics, such that GBA molecular systems biology emerges as an exciting new 20 

framework to study complex neurological diseases. However, data integration and 21 

interpretation have emerged as new bottlenecks. Integrating multi-omics datasets is 22 

challenging due to heterogeneity in terms of size, format, dimensionality, noisiness and 23 

information content. Generally, we distinguish between multi-stage and multi-dimensional 24 

integration, where the former merges different modalities in subsequent steps and the latter 25 

combines them at once. The most ideal scenario is to preserve specific properties of each data 26 

modality and to integrate different omics data and environmental context simultaneously to 27 

identify coordinated behavior between the different levels. Broadly, multi-omics data 28 

integration can be based on pairwise statistical association, clustering or dimensionality 29 

reduction, network inference, machine learning and composite methodologies. Pairwise 30 

statistical association focusses on the interaction between pairs of omics data; clustering or 31 

dimensionality reduction transforms the data into a common space of lower dimensions to find 32 

patterns in the data; network inference maps the data on to graphs representing interactions 33 

between biomolecules; and machine learning predicts or classifies through a model that is 34 

optimized iteratively using input data. In addition, prior information in the form of expert 35 

biological knowledge can be taken into account, such as in genome-scale metabolic models 36 

(GEMs), which are of particular interest in the context of GBA and use gene-protein reaction 37 
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rules to link genes encoding enzymes to curated metabolic pathways. These GEMs can be 1 

constructed for both the host and the gut microbiome, enabling to model host-microbe and 2 

microbe-microbe interactions2. 3 

 4 

Multi-omics integration serves several goals in GBA research: understanding the molecular 5 

mechanisms at play, classifying disease versus normal, subtyping within a disease, predicting 6 

biomarkers for diagnosis and prognosis, identifying causal effects and detecting molecular 7 

drivers. Some methodologies are more suited for a given purpose than others: while clustering 8 

or dimensionality reduction and machine learning lean more towards biomarker discovery, 9 

patient classification and subtyping, statistical association, network inference and GEMs allow 10 

to elucidate molecular mechanisms. Therefore, in the choice of methodology, the biological 11 

question has to be kept in mind. In this work we review how omics and multi-omics analysis, 12 

together with advanced bioinformatics and machine learning, are essential to functionally 13 

characterize the GBA and put forward novel preventive or therapeutic strategies for 14 

neurological disorders. First, we address specific experimental design challenges in the 15 

context of GBA studies with a focus on human cohorts, and summarize the characteristics of 16 

various data modalities. Next, we introduce statistical concepts behind computational 17 

methodologies, and show their application in recently published studies focusing on 18 

neurological disease. In addition, we discuss the strengths and weaknesses of the investigated 19 

approaches, as well as potential challenges and future directions of molecular systems biology 20 

in GBA research.  21 

 22 

Experimental study design along the gut-brain axis 23 

Different routes have been identified by which crosstalk between gut and brain, and between 24 

the immune system and the nervous system, occurs. Gut microbiota and their metabolites can 25 

directly activate the vagus nerve, which connects to the central nervous system. They can also 26 

influence the generation, maturation and function of immune cells, which can migrate to the 27 

brain1. In addition, microbial products can induce the release of neurotransmitters and peptide 28 

hormones from enteroendocrine cells. Moreover, several microbes and microbial metabolites 29 

can pass through the intestinal barrier, enter systemic circulation, cross the brain barriers and 30 

act as neuroimmunomodulatory signals in the brain3,4. This especially occurs upon dysbiosis 31 

and inflammation when permeability of gut and brain barriers is increased. Both cell-32 

autonomous and circulating metabolites serve as signals that transmit information about 33 

environmental changes to individual cells to induce appropriate adjustments in gene 34 

regulation. This implicates that constructing a complete and accurate GBA model will require 35 

multi-omics molecular data sampled from multiple tissues and liquids such as blood, stool and 36 

cerebrospinal fluid (CSF)4,5 (Figure 1A). Ideally, one has access to both gut and brain tissue 37 
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biopsies, a challenging objective in human cohorts, hence researchers often turn to animal 1 

models. In addition, perturbation experiments, which are better suited to demonstrate 2 

causality, are more feasible in animal models. The initial design and the types of data 3 

generated in a given study thus determine which analyses can be performed, and which 4 

biological questions can be answered. Next to the multi-omics data to profile, an additional 5 

consideration regarding experimental design is where, in which individuals and when to sample 6 

these data.  7 

 8 

Extensive and heterogenous patient cohorts better represent the overall population, but will  9 

result in a higher within-group variability. Moreover, multi-omics data, including microbial 10 

diversity, are influenced by a myriad of confounding factors besides disease status, e.g. age, 11 

sex, geographical location, diet, past and current drug treatments, and even physical exercise, 12 

often leading to contradictory findings across studies6,7. A rigorous analysis of and correction 13 

for potential confounding factors is thus essential, and findings should not readily be 14 

extrapolated across heterogenous populations. Next, also sampling location and time points 15 

must be considered. Longitudinal sampling over a given time period is recommended and 16 

allows to monitor the dynamics of disease progression, biomarker presence and the effect of 17 

environmental factors. Molecular snapshots taken at a single time point lack these features, 18 

but are much easier to obtain, especially if sampling requires invasive procedures or essential 19 

tissues. Whole blood and serum, next to CSF, represent an established GBA communication 20 

route, making it an interesting resource to identify potential messenger-molecules4. Stool 21 

samples on the other hand can be considered a functional readout of the gut microbiota4. 22 

Circulating immune cells can be isolated from blood and CSF, after which they can be 23 

phenotypically profiled using multi-omics8. Finally, tissue biopsies can be analyzed by high-24 

throughput molecular profiling in different anatomical locations, i.e. gut and brain. Preferably, 25 

all omics are measured on the same subjects, resulting in coupled data that is well suited for 26 

integration5. All samples ideally originate from the same biological material i.e. from the same 27 

tissue or liquid biopsy at the same time, in order to avoid batch effects between the different 28 

omics data. In a so-called split sample study design, samples taken from the same biological 29 

material are divided for different omics analyses. In a replicate-matched study design, samples 30 

from different biological replicates within the same experiment are used for different omics 31 

analyses e.g. mutually exclusive omics analyses in which sample preparation for one omics 32 

impedes profiling of a second omics in the same sample. In the GBA context, often a source-33 

matched study is conducted, where different samples of the same individual are chosen for 34 

different analyses e.g. transcriptomics on gut tissue and metabolomics on plasma5. Whether 35 

these samples are best taken at a single time point depends on the biological question at hand, 36 

as different omics modalities are subject to different time scales of change. For example, 37 
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changing metabolite levels might result from fast post-translational feedback mechanisms 1 

within metabolic pathways, while transcriptomic changes resulting from these altered 2 

metabolite levels are likely observable only after a given period of time. 3 

 4 

Different data modalities synergistically define the neurological disease phenotype 5 

Uncovering the unknown function of a single gene is a monumental task, but gives only limited 6 

insight. Genes do not act in isolation but are embedded in highly complex biological systems. 7 

Transcription is facilitated by regulatory factors such as transcription factors, chromatin-8 

modifying enzymes and nucleosome remodeling complexes. Furthermore, metabolites, as 9 

nutrients, products of the host proteome or derived from the gut microbiota, have broader roles 10 

in cellular signaling than simply being sources of fuel and building blocks. Metabolites are 11 

known to influence gene regulation as ligands for signaling or regulatory factors, and as 12 

substrates or cofactors of DNA or histone modifying enzymes and chromatin remodelers9 13 

(Figure 1B). Especially short-chain fatty acids (SCFAs) modulate brain homeostasis and 14 

neuroinflammation by affecting microglia activation, astrocyte and oligodendrocyte function 15 

and Treg expansion through chromatin remodeling, histone deacetylase inhibition and ligand 16 

binding to G protein-coupled receptors10. As an example, butyrate acts as an endogenous 17 

inhibitor of histone deacetylases11; and butyrate or butyrate-producing bacteria have also been 18 

reported to be differentially abundant in numerous neurological diseases such as multiple 19 

sclerosis (MS)12, major depressive disorder (MDD)6,7, Alzheimer’s disesase (AD)13 and 20 

Parkinson’s disease (PD)14. Interestingly, these SCFAs are not produced by the host but by 21 

specific microbial species, thus linking the gut microbiome to human gene regulation and 22 

neurological disease. 23 

 24 

Specifically in the GBA context, microbiomics/metagenomics and metatranscriptomics 25 

data are an essential resource. The analysis of 16S ribosomal RNA , referred to as 26 

microbiomics, characterizes the presence of micro-organisms up to genus-level accuracy. 27 

However, microbiomics provides insufficient resolution, as distinct species within the 28 

Bacteroides genus differentially impact depression-like behavior15. Whole metagenome 29 

shotgun sequencing, although more expensive,  provides up to strain-level sensitivity as well 30 

as insights into the functional potential of the identified micro-organisms16. Metatranscriptomics 31 

in its turn reveals which microbial genes are actively being transcribed in a given context or 32 

individual. Metabolomics data represent the phenotype of an entire biological regulatory 33 

cascade due to its implicit integration of genomics, epigenomics, transcriptomics, proteomics 34 

and even metagenomics data. Although often profiled in easily accessible bodily fluids such 35 

as serum or stool samples, untargeted metabolomics data are extremely complex to interpret 36 

and require highly-skilled scientists to annotate mass spectrometry peaks to biological 37 
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metabolites17. Targeted metabolomics on the other hand are more easily interpretable, but are 1 

limited to known metabolites, and thus represent only a fraction of the true metabolic diversity. 2 

In addition to metabolomics and microbiome data which can be easily obtained from liquid 3 

biopsies, transcriptomes and epigenomes can be profiled from tissue biopsies and circulating 4 

immune cells. These data can reveal potential gene regulatory mechanisms through 5 

association of gene expression with specific transcription factor binding sites within regions of 6 

open chromatin. If proteomics data are added, which are also a complex data type, the effect 7 

of post-translational modifications on protein activity and half-life can be incorporated.  8 

 9 

Molecular data resulting from transcriptomics, proteomics, metabolomics, epigenomics and 10 

microbiomics/metagenomics assays are highly dimensional, implying the amount of molecular 11 

features i.e. genes or metabolites measured greatly outnumbers the number of observations. 12 

This is referred to as the curse of dimensionality18. Additionally, data encounter sparsity at 13 

several levels. First, there is sparsity at the sample or patient level, as not all omics are profiled 14 

across all samples. Second, there is sparsity within each omics dataset, as not all molecular 15 

features are measured in all samples due to technical limitations. Furthermore, different omics 16 

suffer from different degrees of sparsity, with mass spectrometry-based techniques often 17 

resulting in more sparse data matrices. Data of different modalities result in discrete or 18 

continuous, numerical or categorical variables with different ranges that cannot be directly 19 

compared such that data first need to be transformed. In addition, more omics data are 20 

collected at single cell level instead of at tissue level (i.e. bulk), allowing to dissect complex 21 

tissues into specific cell states. However, these data present with high heterogeneity, 22 

dimensionality, overdispersion and sparsity19. Hence, omics data preprocessing should be 23 

performed with great care. This includes quality control by removal of batch effects resulting 24 

from technical artefacts and removal of low signal features, normalization across individuals, 25 

scaling of the different data modalities, and selection of highly variable features within each 26 

dataset. 27 

 28 
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 1 

Figure 1: The gut-brain axis encompasses systems-level, inter-organ regulatory processes. A:  The gut-2 

brain axis connects different organs and tissues through three main communication routes. First, the vagus nerve 3 

connects the brain to the enteric nervous system, which in its turn is connected to the central nervous system. 4 

Second, epithelial and immune cells are in direct contact with microbial cells and molecules, after which immune 5 

cells can travel to anatomically distant organs. Third, microbial metabolites can enter the bloodstream and reach 6 

the blood brain barrier through systemic circulation. Ideally, omics data are sampled from gut and brain tissue, stool, 7 

blood and cerebrospinal fluid. B: Biological systems are regulated through feedback mechanisms between multiple 8 

molecular levels, and need to be profiled by different omics techniques. Genetic information is encoded in the DNA, 9 

which is tightly packaged into chromatin. Epigenetic modification of histones such as acetylation and methylation 10 

can result in open chromatin, which can be actively transcribed by RNA polymerase in combination with 11 

transcriptional regulators. mRNA is then translated into protein, which often function in multi-protein complexes. 12 

These proteins facilitate cellular metabolism, and metabolites in turn regulate the activity of proteins such as 13 

transcription factors and histone modifiers. Created with BioRender.com   14 
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Computational strategies for biomarker discovery and patient stratification  1 

 2 

Neuroinflammation is well known to present with gut inflammation and dysbiosis, and 3 

increasing evidence indicates gut dysfunction may precede neurological symptoms even by 4 

decades20. This opens up new possibilities towards early screening . Screening methods find 5 

their origin in the differential abundance of specific molecular markers in a patient compared 6 

to control group or in healthy versus inflamed tissue. Based on the data modalities, the number 7 

of individuals enrolled and the eventual goal of the study, three classes of methods can be 8 

used to classify patients and identify descriptive molecular compounds (Figure 2A, Table 1).  9 

The first class of methods, already widely applied to GBA, aims to identify differential 10 

abundances of specific individual molecular features based on a single omics. These 11 

statistical tests assess for each individual feature whether it is present in a higher or lower 12 

abundancy in one group compared to the other, and whether the observed difference reflects 13 

biological signal or random noise. The microbiota can be additionally characterized by two 14 

distinct diversity measures: alpha- and beta-diversity. Alpha-diversity is a measure for the 15 

richness of a microbial community, i.e. the number of different genera/species/strains, and is 16 

represented by indices such as the Shannon or Fisher index7. Beta-diversity reflects 17 

differences in microbial abundance of specific genera/species/strains between groups. In a 18 

mouse model of autism spectrum disorder, differences in stool beta-diversity were reported 19 

together with a  >40-fold increase of the metabolite 4-ethylphenylsulfate (4EPS) in serum 20 

metabolomics compared to a healthy control group, an effect that could be restored by treating 21 

mice with Bacteriodes Fragilis21. A follow-up study reported that gut-derived 4EPS could enter 22 

systemic circulation and subsequently the brain, where it altered oligodendrocyte maturation, 23 

neuronal myelination and increased anxiety-like behavior3. Similar studies using 24 

metabolomics, microbiomics/metagenomics and/or transcriptomics have been performed in 25 

extensive patient cohorts for other neurological disorders, for example depletion of the 26 

Coprococcus and Dialister taxa has been reported across multiple MDD patient cohorts6.  27 

However, methods designed to identify differentially abundant molecular features suffer from 28 

the dimensionality curse, i.e. the fact that each dataset contains many more features than 29 

observations. Also, they fail to identify interactions between features and cannot integrate 30 

multiple data modalities.  31 

A second class of methods is dimensionality reduction and clustering. During Principle 32 

Component Analysis (PCA), the most intuitive approach, each data point in a high-dimensional 33 

space is mapped onto a novel set of axes, or principal components (PC), which are chosen 34 

through rotation of the original axes to capture maximal variance in the original data. Since the 35 

first PC captures the highest proportion of the total variance, a number of PCs can be chosen 36 
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to represent the data in lower dimensional space. This implicates that data points in the 1 

reduced dimension matrix are actually linear combinations of the original data points, so that 2 

they lose their one-on-one relationship with individual molecular features. Other methods such 3 

as Principal Coordinate analysis (PCoA), UMAP or t-SNE have been specifically optimized for 4 

high-dimensional and sparse biological data and can be used to create intuitive visualizations 5 

of underlying data clusters, trajectories and patterns of interest18. PCoA is commonly used to 6 

visualize microbiome beta-diversity due to its intrinsic visualization of dissimilarity between 7 

samples and robust performance on highly sparse data. Using a human discovery cohort, 8 

microbiomics and PCoA, Liang and colleagues found significant microbiome differences in 9 

individuals characterized by mild or no cognitive impairment, which were mainly caused by 10 

species belonging to the Firmicutes, Bacteriodetes and Proteobacteria phyla22. Dimensionality 11 

reduction techniques can further be used to project distinct data modalities into a common low-12 

dimensional space, facilitating data integration across omics, not only capturing signals shared 13 

by all omics data, but also those emerging from the complementarity of the various omics23. 14 

Multi-omics factor analysis (MOFA) infers a set of (hidden) factors that capture both technical 15 

and biological sources of variability across multi-omics data, allowing the identification of 16 

sample subgroups through clustering, and identification of highly informative features across 17 

multiple omics at once24. Clark et al. profiled metabolome, proteome, lipidome, one-carbon 18 

metabolism and inflammatory markers in the CSF of a cohort comprising adults with normal 19 

cognition, mild cognitive impairment and mild dementia. MOFA identified 5 hidden factors 20 

within the multi-omics datasets, to which protein 14-3-3 zeta/delta, clusterin, interleukin-15 and 21 

transgelin-2 contributed substantially. Addition of these four MOFA-selected features to a 22 

reference classification model for AD pathology resulted in an increased sensitivity and 23 

specificity25.  24 

Machine learning comprises methods such as logistic regression, support vector machines, 25 

Bayesian models, random forests (RFs) and boosting, which identify the most informative 26 

features in a given dataset by assigning them a higher weight in the final model. Samples in 27 

the original dataset are typically divided into a well-balanced training and testing set, after 28 

which a model can be iteratively trained until it achieves both good prediction specificity and 29 

sensitivity. Logistic regression is designed for binary classification tasks, and model 30 

parameters can be interpreted as feature importance. Levi et al. applied logistic regression to 31 

serum metabolomics data and achieved near-perfect separation of MS patients and healthy 32 

controls12. RFs are ensembles of decision trees, which are flowchart-like decision structures 33 

that aim to maximize the differences between groups at each additional split. A major 34 

advantage of RFs is their high interpretability through feature prioritization methods, which 35 

estimate the effect of removing or replacing a given molecular feature during the classification 36 
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procedure26. Removing or replacing highly-informative features will results in a substantial drop 1 

in classification performance, thus identifying the degree to which specific features are 2 

characteristic to the groups under study. Finally, gradient boosting decision tree models are a 3 

variation to RFs, in which new trees are added to the ensemble of classifiers additively instead 4 

of randomly. These have classified dysbiotic and non-dysbiotic microbiomes using predicted 5 

metabolite secretion fluxes in a gut inflammation cohort, after which chorismate, D-ribose, L-6 

lactate and phenol were identified as the most informative metabolites27. Levi and colleagues 7 

further used gradient boosting to predict metabolite levels using only microbiome data, and 8 

found 26 metabolites to be associated with the microbiome. One of these, indolepropionate, 9 

was present in lower concentrations in the serum of MS patients compared to controls, 10 

although there was no significant difference in the abundance of indolepropionate-producing 11 

microbiota. However, MS patients’ microbiomes had a lower abundance of indolelactate-12 

producing species, an intermediate of tryptophan to indolepropionate catabolism12.  13 

 14 

Computational strategies to elucidate molecular mechanisms of GBA communication 15 

in neurological disease 16 

 17 

Differential molecular abundances, hidden data patterns or features informative for machine 18 

learning in themselves lack biological interpretability and do not result in disease pathology 19 

insights. In order to achieve a mechanistic understanding of regulatory processes and to 20 

identify causal effects or molecular drivers, the biological relationships between different omics 21 

data types needs to be considered (Figure 2B, Table 1).  22 

 23 

Pairwise integration of biological data can identify interactions between different omics types 24 

and thus across regulatory layers in the cell and the organism. Two broad categories can be 25 

distinguished, namely genetics of intermediate trait analysis, and correlation analysis between 26 

two modalities such as the microbiome and metabolome. The analysis of expression 27 

quantitative trait loci (eQTL) and DNA variants links genetic variations to transcriptomic 28 

alterations by assessing statistical associations between genomic polymorphisms and the 29 

expression levels of, often nearby, genes28. However, the analysis of metabolic and microbial 30 

trait loci is likely more informative in the GBA context, although this has not yet been reported. 31 

Correlation analyses on the other hand can reveal functional interactions between microbiota, 32 

metabolites and genes. Within the IRONMET MDD patient cohort, lower dietary and circulating 33 

proline levels were associated to lower Patient Health Questionnaire-9 (PHQ9) scores. 34 

Circulating proline levels could further be positively associated to species from the 35 

Parabacteroides and Prevotella genera, and negatively with Actinobacteria and SCFA-36 

producing species. Remarkably, patients with high dietary proline but low circulating proline 37 
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levels had a microbial signature associated with low PHQ9 scores, suggesting systems-level 1 

interactions between the microbiome, metabolome and MDD symptoms7. Of particular interest 2 

in the GBA context is the analysis of correlations between microbial abundances and 3 

circulating metabolites. Such analyses revealed three ‘metabolite type-bacterial taxa’ 4 

correlated pairs in a model of MDD, next to associations between SCFAs and differentially 5 

abundant microbial genera29. Using longitudinal multi-omics data in an MS patient cohort, 6 

Cantoni et al. found significant correlations between the gut microbiome and host blood 7 

immune profiles in healthy controls but not in patients, suggesting disruptions of immune-8 

microbiome homeostatic interactions in MS30. In an AD patient cohort, correlations between 9 

differentially abundant microbial genera and CSF biomarkers have been reported, such that 10 

easily accessible microbiome data might provide an alternative for the invasive lumbar 11 

puncture in the future31. Finally, Liang et al. found significant correlations between serum 12 

metabolites and metagenomic pathways enriched in individuals with impaired cognition22, 13 

which were identified using a LASSO logistic regression model22. However, although statistical 14 

associations reveal insightful interactions between the microbiome, metabolome, gene 15 

expression and phenotypic traits, they cannot identify causative features. Additional 16 

(perturbation) experiments, longitudinal data or more advanced bioinformatics frameworks, 17 

often including expert biological knowledge as prior information, are needed to identify 18 

causality and true biological mechanisms of action.   19 

 20 

Integrated regulatory networks provide an intuitive method to study molecular interactions 21 

across omics types. These networks are constructed of nodes, which represent omics 22 

features, and edges between the nodes reflecting correlations, regulatory or functional 23 

interactions. Uncovering these edges in a given biological context comes down to unraveling 24 

statistical dependencies between molecular features, using methods such as Bayesian 25 

statistics, regression, mutual information and correlation on transcriptome data and requires a 26 

large number of bulk observations. Single cell omics datasets on the other hand inherently 27 

contain the required statistical variability between features such that patient-specific regulatory 28 

networks can be constructed from a single sample, and regulatory programs can be inferred 29 

in a cell-type specific manner. The inclusion of multi-omics in the network inference process, 30 

such as regulator binding information or protein-protein interactions, results in more accurate 31 

biological networks32,33. Although the search for the best method is still subject of research, we 32 

and others have shown that different methods add complementary information to the inference 33 

of robust regulatory networks, which advocates for the construction of ensemble networks34. 34 

The popular methodology Weighted Gene Coexpression Network Analysis (WGCNA) 35 

constructs coexpression modules from single omics, after which associations between 36 

coexpression modules, other omics or phenotypic traits can be assessed35. This has allowed 37 



13 
 

clustering of both serum and CSF metabolites into coexpression modules that could be 1 

associated to MS severity8 or neurotoxicity36. Similarly, coexpression modules have been 2 

constructed from blood metabolomics in an AD patient cohort, revealing significant correlations 3 

between amino acids, short-, medium- and long-chain acylcarnitines on the one hand, and AD 4 

severity and cognitive traits on the other hand. Further integration with transcriptome data 5 

highlighted cpt1a, which encodes a protein involved in the rate-limiting step of acylcarnitine 6 

transport into mitochondria, and might thus account for the observed accumulation of 7 

medium/long-chain acylcarnitines during AD progression37. Badam et al. compared several 8 

module detection tools such as WGCNA and clique-based methods to propose a framework 9 

for multi-omics and genetic risk factor integration in MS38. Zheng and colleagues made use of 10 

non-human primates displaying depressive-like behavior and WGCNA to construct separate 11 

metagenomics and metabolomics coexpression modules, which were correlated to 12 

depressive-like behavior, revealing a functional interaction between the gut microbiome, lipid 13 

metabolism and depressive-like behavior39. Interestingly, WGCNA can also be applied on 14 

different tissues and/or liquids, making it appealing in the GBA context. However, similar to 15 

studies that assess correlations between features in omics datasets, WGCNA represents 16 

merely associations. Directed regulatory networks, in which upstream regulators and 17 

downstream targets are characterized, add a more causal interpretation of the data. The 18 

integrative multi-omics module network inference algorithm Lemon-Tree builds coexpression 19 

modules across samples using a model-based Gibbs sampler, after which potential regulators 20 

are assigned through an ensemble of decision trees40. Interestingly, expression data need not 21 

come from a single tissue nor need potential regulators come from the same data modality, as 22 

they can be any omics profiled on the same samples40,41. This is particularly useful in the GBA 23 

context, as it allows to model gene expression in both gut and brain, and assign microbial 24 

signatures or circulating metabolites as potential regulators. Regulatory network inference on 25 

neuroinflammation cohorts can thus theoretically be exploited to predict causal relationships 26 

between the gut microbiota, circulating metabolites and gene expression patterns in the brain. 27 

Overall, a critical aspect is to go beyond statistical associations and identify direct causal 28 

relationships. Indeed, as insightful as associations between microbial abundances, metabolite 29 

levels and transcriptional programs are, these fail to provide information on the directionality 30 

of the interaction and cannot identify driving mechanisms. Transcription dynamics information 31 

which is inherently present in single cell-or bulk time series transcriptome data, enables causal 32 

network inference, as does the inclusion of other omics data, such as chromatin accessibility 33 

data or regulator binding information. 34 

 35 

Finally, expert-curated biological databases allow to exploit biological knowledge to achieve 36 

context-specific causality. Several databases provide curated knowledge on transcriptional 37 



14 
 

regulatory interactions (DoRothEA, OmniPath), interactions between metabolites and 1 

transcriptional regulators (STITCHdb, ASD), kinase-substrate interactions and metabolic 2 

interactions (Recon3D), or interactions between genes and metabolic pathways (KEGG), and 3 

these can be used as prior knowledge in integrated regulatory networks or pathway-based 4 

models32. GEMs, such as the human Recon3D, use gene-protein-reaction associations based 5 

on known genomic information and metabolic pathways to construct a stoichiometry matrix of 6 

metabolites and reactions, creating a mathematical representation of a given metabolic 7 

network. Through the addition of constraints such as nutrient input, upper- and lower-bound 8 

reaction fluxes, and additional omics data, mainly transcriptomics, an optimization approach 9 

can be applied to infer context-specific metabolic pathway activity42. Especially exciting in the 10 

GBA context, GEMs can also be constructed for the microbiota, allowing to model microbe-11 

microbe and host-microbe metabolic interactions43,44. The inclusion of personalized 12 

microbiome, transcriptome and metabolome data allows contextualizing GEMs to patient-13 

specific models, in which the effects of dysbiosis on for example secreted and circulating 14 

metabolites can be studied27. These models can be further extended towards whole-body 15 

metabolic reconstructions including tissue-specific GEMs and transport routes between 16 

anatomically distant organ systems42. Using microbiome data and resulting personalized 17 

microbial community models, Baldini and colleagues identified PD associated changes in the 18 

predicted secretion potential of nine microbial metabolites including GABA, an effect mainly 19 

explained by the Akkermansia, Acidaminococcus and Roseburia genera45. Furthermore, 20 

personalized microbial community GEMs have been used to describe increased circulating 21 

homoserine levels and altered sulfur metabolism in PD patients. These changes could largely 22 

be explained by differences in Akkermansia muciniphila abundance, as this species accounted 23 

for over 50% of the variance in predicted secretion potential of methionine and hydrogen 24 

sulfide14.  25 

 26 
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 1 

Figure 2: Overview of computational multi-omics analysis methods for biomarker discovery or the 2 

elucidation of biological mechanisms. A: Differential testing identifies features that are differentially abundant in 3 

one group compared to another, and assesses whether this is the effect of biological signal or random noise. 4 

Dimensionality reduction methods allow to project different data modalities in a common latent space, and thus 5 

analyze them together. Machine learning allows to pinpoint biomarkers and classify observations into (sub)groups. 6 

A major advantage is the interpretability through feature prioritization methods. B: Pairwise statistical association 7 

models interactions between different omics but cannot identify causality. Network inference tools uncover 8 

regulatory interactions in a data-driven manner. Genome-scale metabolic models allow to study flux through 9 

metabolic networks and model host-microbe interactions. Created with BioRender.com 10 

  11 
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Conclusion & future perspectives  1 

 2 

Due to technological advancements in high-throughput biology and computer science, GBA is 3 

becoming an exciting field of study in neurological disease. Gut-brain communication involves 4 

multiple organs, and matched sampling of the appropriate tissues and liquids at suitable time 5 

points in extensive patient cohorts is recommended. Experimental design must be carefully 6 

considered before and during each study to adequately deal with sample and omics 7 

heterogeneity and confounding factors. Ideally, all omics are longitudinally profiled in all 8 

individuals, and metadata must be collected and shared conform ethical standards. The study 9 

design determines the downstream analysis and the conclusions that can ultimately be drawn. 10 

Different data modalities complement one another in the description of the complete 11 

neurological disease phenotype and allow for an enhanced biomarker discovery and the 12 

elucidation of mechanistic insights. Since the generation of multi-omics data from patient 13 

cohorts is a costly process often requiring valuable biological material, data should be shared 14 

and made publicly available according to FAIR principles (Findable, Accessible, Interoperable 15 

and Reusable)46. This should allow for a more robust biomarker identification, as current 16 

studies often suffer from limited sample sizes and incomplete control for confounding factors6,7. 17 

Advancements in state-of-the art omics profiling techniques at single molecule, single cell and 18 

spatial level hold great promise, as these enable to study lowly-abundant molecular features, 19 

rare cell types and spatial heterogeneity within tissues. Furthermore, improved untargeted 20 

metabolomics analysis techniques will results in many more metabolites being profiled, as 21 

today only a fraction of the total metabolomic diversity can accurately be identified. In addition, 22 

stable isotope tracing in vivo with 13C-labeled nutrients or metabolites47 is a powerful 23 

methodology to demonstrate the causality and route of gut-brain communication in 24 

neurological disease. 25 

 26 

Novel joint dimensionality reduction and machine learning are increasingly being applied in 27 

GBA to discover novel biomarkers. With the increase in multi-omics data for GBA, deep 28 

learning approaches bear great potential to detect novel biomarkers. Integrated network 29 

inference methods like WGCNA and Lemon-Tree are especially interesting in the GBA context, 30 

since they enable multi-omics integration across tissues revealing mechanistic insights. Efforts 31 

such as the Virtual Metabolic Human49 database provide an invaluable resource for data 32 

integration,  but knowledge-based models by themselves are restricted to curated biological 33 

information, and are therefore limited in uncovering novel biology. Ideally data integration is a 34 

combination of supervised and unsupervised learning, such as the combination of 35 

unsupervised network inference and supervised GEMs, thus contextualizing and extending 36 

expert biological knowledge in a data-driven manner50. This should result in more accurate 37 
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GBA models, allowing wet-lab researchers to prioritize hypotheses and most efficiently make 1 

use of available resources.  2 

 3 

Overall, integration of different data modalities, especially when profiled in distinct organ 4 

systems, is still in its infancy and often lacks robustness. Currently, there is no optimal tool that 5 

is broadly applicable to different types of research questions, and general guidance in the field 6 

is lacking. Furthermore, there is an urgent need for the development of novel computational 7 

approaches tailored towards the study design and data complexity inherent to GBA research. 8 

Today, molecular systems biology and omics integration have already revealed significant 9 

insights regarding gut-brain communication for numerous neurological diseases, as reviewed 10 

here. The GBA can certainly be considered a basis for treating neurological diseases, and 11 

likely holds great potential towards the development of disease-modifying therapeutics and 12 

personalized medicine. 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 
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