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Abstract  36 

The giant freshwater prawn (Macrobrachium rosenbergii) is a high-yielding prawn variety 37 

well-received worldwide due to its ability to adapt to freshwater culture systems. M. 38 

rosenbergii is an alternative to shrimp typically obtained from marine and brackish aquaculture 39 

systems. However, the use of intensive culture systems can lead to disease outbreaks, 40 

particularly in larval and post-larval stages, caused by pathogenic agents such as viruses, 41 

bacteria, fungi, yeasts, and protozoans. White tail disease (viral), white spot syndrome (viral), 42 

and bacterial necrosis are examples of economically significant diseases. Given the increasing 43 

antibiotic resistance of disease-causing microorganisms, probiotics have emerged as promising 44 

alternatives for disease control. Probiotics are live active microbes that are introduced into a 45 

target host in an adequate number or dose to promote its health. In the present paper, we first 46 

discuss the diseases that occur in M. rosenbergii production, followed by an in-depth 47 

discussion on probiotics. We elaborate on the common methods of probiotics administration 48 

and explain the beneficial health effects of probiotics as immunity enhancers. Moreover, we 49 

discuss the antagonistic effects of probiotics on pathogenic microorganisms. Altogether, this 50 

paper provides a comprehensive overview of disease control in M. rosenbergii aquaculture 51 

through the use of probiotics, which could enhance the sustainability of prawn culture.  52 
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1 Introduction 67 

The global seafood market was valued at US$ 113 billion in 2020 and is projected to grow at 68 

an annual rate of 2.9%, reaching US$ 139 billion by 2027 (Research and Markets, 2022). 69 

Shrimp and prawn are commonly consumed, around 20% of the global market (Research and 70 

Markets, 2021). Penaeus vannamei (Pacific white shrimp or King prawn), Penaeus monodon 71 

(giant tiger shrimp), and Macrobrachium rosenbergii (giant freshwater prawn) are the most 72 

widely cultured species (Stankus, 2021).  73 

Macrobrachium rosenbergii is a freshwater decapod crustacean belonging to the 74 

Palaemonidae family. It is cultured as a freshwater prawn offering an alternative to shrimp 75 

grown in brackish and marine aquaculture systems. Major countries producing prawn include 76 

India, China, Thailand, Bangladesh, and Malaysia (Kader et al., 2021). M. rosenbergii’s 77 

aquaculture has attracted significant attention due to its high production yield, disease 78 

resistance, and ease of management in controlled freshwater systems such as rivers, lakes, 79 

canals, reservoirs, and ponds. Nevertheless, the intensification of culture practices driven by 80 

the increasing demand for prawn has also increased the susceptibility of M. rosenbergii to 81 

diseases, resulting in a substantial decline in the production (Chen-Fei, Chou-Min, & Jiun-Yan, 82 

2020; Lee et al., 2022; Pillai & Bonami, 2012b). Diseases affecting the larval and post-larval 83 

stages of M. rosenbergii are primarily caused by viruses, bacteria, fungi, yeasts, and protists. 84 

Some of these diseases are exclusive to the giant freshwater prawn, such as Macrobrachium 85 

hepatopancreatic parvovirus (HPV) disease, rickettsia-like disease, white tail disease (WTD), 86 

as well as idiopathic diseases including idiopathic muscle necrosis, balloon disease, and 87 

appendage deformity syndrome (Pillai & Bonami, 2012b). White tail disease (WTD) caused 88 

by M. rosenbergii nodavirus (MrNV) is known to have a mortality rate of 100% (Sahul Hameed 89 

& Bonami, 2012).  90 

Typical methods for disease control in aquaculture include implementing rigorous biosecurity 91 

protocols, adopting appropriate husbandry practices, administering antibiotics, vaccination, 92 

and using immunostimulants (Chen-Fei et al., 2020). Vaccination is not an effective method 93 

for invertebrates like prawns because they do not have adaptive immunity (Rowley & Pope, 94 

2012). The rapid growth in demand for aquaculture products has decreased the efficiency of 95 

disease control measures and led to a substantial increase in antibiotics use (Henriksson et al., 96 

2018). While antibiotics yield to quick recovery from diseases, their effects on the ecosystem 97 

and the emergence of antibiotic-resistant disease-causing agents have led to the investigation 98 
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of alternative disease control remedies (Henriksson et al., 2018; Zorriehzahra et al., 2016). One 99 

of these approaches is the application of probiotics. 100 

The aim of this review was to provide an in-depth analysis of disease etiology in giant 101 

freshwater prawn and explore the potential of probiotics as a sustainable substitute for disease 102 

control. We highlight various features that contribute to susceptibility of M. rosenbergii to 103 

diseases, including the rapid growth of aquaculture and the consequent increase in antibiotic 104 

use. Following this, we discuss the concept of probiotics and their significance in aquaculture, 105 

with a particular focus on their potential benefits for giant freshwater prawn. 106 

 107 

2 Diseases affecting M. rosenbergii in aquaculture systems 108 

Freshwater prawn diseases are influenced by environmental, nutritional, and physiological 109 

factors. These diseases can be caused by pathogenic or parasitic agents (Lane, Brosnahan, & 110 

Poulin, 2022). Pathogens, including viruses, bacteria, fungi, yeasts, and protists, are 111 

responsible for disease incidences with a significant impact on the economic viability of 112 

freshwater prawn production. Viral infections, in particular, are a major concern due to their 113 

high mortality rates. Viruses that affect freshwater prawns include Baculoviridae and 114 

Nimaviridae with dsDNA, Parvoviridae with ssDNA, Reoviridae with dsRNA, and 115 

Nodaviridae with +ssRNA (Pillai & Bonami, 2012b). 116 

Several studies have investigated the diseases affecting M. rosenbergii in aquaculture systems, 117 

and recent reviews have focused on this topic (Lee et al., 2022; Pillai & Bonami, 2012b). Table 118 

1 summarizes common diseases affecting M.rosenbergii along with the agent, type, syndrome, 119 

and current control measures.   120 

Among the diseases caused by viruses, white tail disease (WTD) caused by Macrobrachium 121 

rosenbergii nodavirus (MrNV) and extra small virus (XSV) are the most common and 122 

detrimental viral agents, leading to a significant reduction in prawn production. The virus 123 

responsible for WTD is a small (27 nm in diameter) non-enveloped icosahedral virus, MrNV, 124 

with a genome consisting of two linear positive-sense single-stranded RNA fragments, RNA-125 

1 (3202 bp) and RNA-2 (1175 bp) (Sahul Hameed & Bonami, 2012). M. rosenbergii is more 126 

vulnerable to WTD compared to other prawn species, particularly in the larval, post-larval, and 127 

juvenile stages of development, with a mortality rate estimated at 100% in post-larval prawn 128 

within 2-3 days of infection (Pillai & Bonami, 2012b). WTD mostly affects the striated muscles 129 

of the cephalothorax, abdomen, and tail. Infected adults act as carriers of the disease without 130 

displaying any symptoms (Sahul Hameed & Bonami, 2012). Histological characteristics of 131 
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WTD in infected muscles of the abdomen and cephalothorax, and intratubular connective 132 

tissues of the hepatopancreas frequently appear as large oval or irregular basophilic 133 

cytoplasmic inclusions (Lee et al., 2022). 134 

Besides WTD, other serious infections specific to M. rosenbergii include Macrobrachium 135 

hepatopancreatic parvovirus (MHPV) and Macrobrachium nipponensis reovirus (MnRV), 136 

which have a unique onset in the digestive tract. MHPV is caused by a parvo-like virus resulting 137 

in hepatopancreatic nuclear lesions in R and E-cells in hepatopancreas’ and midgut’s epithelial 138 

cells (Kumaresan, Palanisamy, Pasupuleti, & Arockiaraj, 2017). On the other hand, MnRV is 139 

caused by Reoviridae cardero-like virus exhibiting hepatopancreatic cytoplasmic lesions with 140 

large and round eosinophilic to pale basophilic inclusions in the connective tissues (K. F. Chen 141 

et al., 2021; Pillai & Bonami, 2012a). These viral infections are challenging due to ineffective 142 

treatment options and cause a mortality rate of 15 to 60% (Farook, H. M. Mohamed, N. Tariq, 143 

K. M. Shariq, & I. A. Ahmed, 2019a). These diseases can potentially be controlled by 144 

implementing biosecurity approaches, high-quality nutrition and high water quality standards, 145 

as well as adaptable stocking density (Pillai & Bonami, 2012b). Effective control measures for 146 

viral infections are lacking, making them difficult to manage.  147 

In addition to viruses, certain bacteria such as Vibrio spp. and Pseudomonas spp. are causes of 148 

black spots, brown spot, shell diseases, bacterial necrosis, luminescent larval syndrome, white 149 

post-larval disease, and rickettsia (H. Ali et al., 2018; Muthukrishnan, Hoong, Chen, & Natrah, 150 

2021; Pillai & Bonami, 2012b; Sasmita Julyantoro, 2015). Additionally, Vibrio spp. bacteria 151 

can invade body fluids, causing discoloration of body tissues, impaired wound repair, and 152 

blood clotting (Lu et al., 2022). The digestive tract in larval, post-larval, and adult prawns is 153 

highly vulnerable to bacterial invasion, especially rickettsias, which can disable the tubular 154 

structures of the digestive system leading to darkening and eventual death (M. Farook, H. M. 155 

Mohamed, N. M. Tariq, K. M. Shariq, & I. A. Ahmed, 2019b; Rowley, 2022). Other bacteria 156 

can invade the shell and use it for nutrition, resulting in eroded areas and black spots originating 157 

from the edges and tips of the exoskeleton (Farook et al., 2019b; Rowley, 2022).  158 

Besides viruses and bacteria, oomycetes, such as Lagenidium sp., can enter the prawns through 159 

cracks or eroded areas of the cuticle, causing larval mycosis characterized by an extensive 160 

mycelial network visible throughout the exoskeleton of affected larvae (Farook et al., 2019b; 161 

Rowley, 2022). Fusarium spp., on the other hand, can result in fusariosis, burn spots, or black 162 

gill disease in M.rosenbergii (Johnson, 1995; Yao et al., 2022). 163 
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Protists, including Zoothamnium, Epistylis, Vorticella, Opercularia, Vaginicola, Acineta, and 164 

Podophyra, are considered external parasites that inhibit M. rosenbergii’s swimming, feeding, 165 

and moulting in different life stages (Pillai and Bonami, 2012b; Ballester et al., 2017). 166 

  167 

3 Probiotics 168 

Probiotics are live active microbes that are introduced into a target host in an adequate number 169 

or dose to promote its health (Hill et al., 2014; Knipe, Temperton, Lange, Bass, & Tyler, 2021). 170 

They have increasingly been adopted as an eco-friendly substitute for enhancing aquaculture 171 

animals’ well-being, given the growing concern with respect to antibiotic use and the desire to 172 

support disease resistance, growth performance, feed efficiency, and safety of aquatic products 173 

(Zorriehzahra et al., 2016). Probiotic Bacillus licheniformis was shown to significantly increase 174 

the survival of prawn challenged with pathogenic Vibrio alginolyticus (Nadella et al., 2018). 175 

Balasundaram et al. (2012) reported that inclusion of a commercial probiotic into the feed (3%) 176 

decreased the mortality of prawns injected with pathogenic Vibrio parahaemolyticus from 59% 177 

to 13%. Hindu et al. (2018a,b) reported that Bacillus vireti, isolated from the intestine of M. 178 

rosenbergii increased the survival of prawns challenged with pathogenic Aeromonas 179 

hydrophila and Pseudomonas aeruginosa. In addition to protecting from disease, probiotics 180 

offer several advantages, such as boosting digestive enzymes (amylase and protease activity), 181 

promoting growth performance, preventing the adhesion and colonization of harmful bacteria 182 

in the digestive tract, and regulating gut microbiota, in addition to elevating hematological 183 

parameters and the immune response (Sumon et al., 2018). Numerous mechanisms are 184 

involved in the health-promoting effect of probiotics, including the enhancement of innate 185 

immunity, provoking disease resistance, and competition with disease-causing microbes 186 

resulting in their elimination. Probiotics can also be used post-antibiotic treatment to restore 187 

the natural gut microflora.  188 

Potential probiotic candidates can be classified into host and non-host associated 189 

microorganisms (Lazado, Caipang, & Estante, 2015). Commercial shellfish production 190 

commonly uses non-host derived microbes as probiotics (Lakshmi, Viswanath, & Sai Gopal, 191 

2013). However, host-associated probiotics are preferred as they lead to improved growth 192 

performance, higher feed efficiency, and enzymatic contribution to digestion (Ahmmed et al., 193 

2020a; Khushi et al., 2020; Sumon et al., 2018). They also inhibit the adherence and 194 

colonization of pathogenic microorganisms in the gastrointestinal tract, increase 195 

haematological parameters, and boost the immune response (Adorian et al., 2019; Lazado et 196 
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al., 2015). For prawn aquaculture, the probiotic candidates consist of the genera Lactobacillus, 197 

Enterococcus, Bacillus, Aeromonas, Alteromonas, Arthrobacter, Bifidobacterium, 198 

Clostridium, Paenibacillus, Phaeobacter, Pseudoalteromonas, Pseudomonas, 199 

Rhodosporidium, Roseobacter, Streptomyces, and Vibrio (Luis Balcázar, Decamp, Vendrell, 200 

De Blas, & Ruiz-Zarzuela, 2009).  201 

 202 

4 Methods of probiotic administration  203 

Probiotics can be administrated through several methods such as immersion, oral 204 

administration, direct administration into the body, administration in the environment, or a 205 

combination of these methods (Einar Ringø, 2020). Each method of administration has its 206 

advantages and disadvantages. For instance, the immersion method is a quick and effective 207 

approach to delivering probiotics, but it is not practical for large-scale aquaculture operations 208 

due to its high cost. Oral administration is more useful for large-scale operations but requires 209 

higher doses of probiotics to achieve similar results as the immersion method.  210 

Oral administration is widely used for probiotic delivery in aquaculture through the diet or 211 

rearing water. In the early 1990s, single strains of probiotics were administered via feed. 212 

However, due to the diverse range of conditions and aquaculture species, multi-strain 213 

probiotics have gained interest for growth, immune enhancement, and environmental 214 

improvement of aquaculture species (Md Abul Kalam Azad et al., 2021; Md Abul Kalam Azad 215 

et al., 2019; Decamp, Moriarty, & Lavens, 2008; Fdhila et al., 2017; Ghosh et al., 2016; 216 

Hostins, Lara, Decamp, Cesar, & Wasielesky Jr, 2017; Sipra Mohapatra, Chakraborty, Prusty, 217 

PaniPrasad, & Mohanta, 2014; Vargas-Albores et al., 2017). Some of the commonly used 218 

probiotic strains in pelleted diets include Bacillus strain S11 (Rengpipat, Phianphak, 219 

Piyatiratitivorakul, & Menasveta, 1998), Lactobacillus plantarum (Gatesoupe, 1991), and 220 

Carnobacterium divergens (Gildberg, Johansen, & Bøgwald, 1995; Gildberg & Mikkelsen, 221 

1998; Gildberg, Mikkelsen, Sandaker, & Ringø, 1997). In addition, non-pathogenic Vibrio 222 

spp., Bacillus spp., Pseudomonas fluorescens, Aeromonas media A 199, Flavobacterium sp., 223 

and Lactobacillus lactis are directly added to pond water to act as probiotics (Verschuere, 224 

Rombaut, Sorgeloos, & Verstraete, 2000). 225 

Maintaining probiotic activity during oral administration can be challenging due to conditions 226 

in the gastrointestinal tract, such as acidity. To improve delivery efficiency, encapsulation 227 

methods have been developed, and live feed such as brine shrimp, rotifers, and copepods are 228 

used as encapsulation media (Gao et al., 2022). For instance, a shrimp larval feed was recently 229 
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developed by enriching Artemia franciscana with Bacillus sp. B2, Lactobacillus johnsonii C4, 230 

Bifidobacterium animalis subsp. lactis strain BB-12, and Streptomyces sp. RL8 (Garcia-Bernal 231 

et al., 2020; Vázquez-Silva et al., 2017). 232 

Encapsulation can protect probiotics from environmental conditions and improve their viability 233 

during storage, transportation, and delivery. Additionally, it can prevent the loss of probiotics 234 

by increasing their adhesion to the gut wall of the host organism. However, the cost and 235 

feasibility of encapsulation methods should be considered while selecting probiotics’ 236 

administration method. 237 

 238 

5 Antagonistic effect of probiotics against pathogenic microorganisms 239 

5.1 Antibacterial activity 240 

The use of probiotics is widespread in giant freshwater prawn aquaculture due to their potential 241 

to combat pathogenic bacteria (Miao et al., 2020; Xue, Liu, Liu, Wang, & Xu, 2021). Probiotics 242 

play a crucial role in enhancing the essential gut microflora of prawns by producing 243 

bacteriocins and organic acids that counteract harmful microbes (Chauhan & Singh, 2019; E 244 

Ringø, Olsen, Vecino, Wadsworth, & Song, 2012). Table 2 summarizes the antagonistic 245 

effects of probiotics on pathogenic microbes in freshwater giant prawn culture.  246 

Lactic acid bacteria are amongst the most commonly used probiotics in prawn culture, 247 

primarily due to their exceptional ability to inhibit the proliferation of pathogenic microbes by 248 

producing antibacterial components such as hydrogen peroxide and organic acids 249 

(Zorriehzahra et al., 2016; Zoumpopoulou et al., 2013). Additionally, some lactic acid bacteria, 250 

including Streptococcus spp. and Lactobacillus spp., produced antibiotics and decreased pH to 251 

suboptimal levels for pathogenic bacteria. For instance, Lactobacillus spp. isolated from the 252 

gut of prawns demonstrated inhibitory activity against V. harveyi (Ahmmed et al., 2020b). 253 

Moreover, B. cereus, isolated from the intestine of adult giant freshwater prawn, showed 254 

antibacterial activity towards A. hydrophila and could be used as a probiotic in M. rosenbergii 255 

aquaculture (Wee, Mok, Romano, Ebrahimi, & Natrah, 2018). In a modern biofloc culture 256 

system, B. licheniformis and B. subtilis showed an antagonistic effect against Vibrio sp. when 257 

used as probiotics in the rearing of M. rosenbergii (Frozza et al., 2021). Furthermore, B. vireti 258 

01, isolated from the gut of healthy prawns, can be considered as an alternative to antibiotics 259 

in freshwater prawn cultures since it inhibits the growth of P. aeruginosa growth (Vidhya 260 

Hindu, Chandrasekaran, Mukherjee, & Thomas, 2018). Finally, B. licheniformis exhibited 261 
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antibacterial activity against V. alginolyticus (Nadella et al., 2018), and P. acidilactici GY2 and 262 

S. cerevisiae promoted the growth and survival of giant freshwater prawns (Miao et al., 2020). 263 

 264 

5.2 Antiviral activity 265 

In aquaculture including the culture of giant freshwater prawns, probiotics have been applied 266 

to combat viral disease. However, the actual antiviral mechanism in prawn farming is not yet 267 

fully understood (Lakshmi et al., 2013; S Mohapatra et al., 2012). As discussed in section 2, 268 

one of the most common viral diseases affecting freshwater prawns is white tail disease, caused 269 

by M. rosenbergii nodavirus (MrNV) with significant production losses in prawn farms 270 

(Lakshmi et al., 2013). Despite the lack of a complete understanding of the mechanism of 271 

action, certain strains of bacteria, such as Vibrio spp., Pseudomonas spp., Coryneforms and 272 

Aeromonas spp. groups, have been identified as potential probiotics for the treatment of viral 273 

diseases in shellfish (Chauhan & Singh, 2019; Zorriehzahra et al., 2016). For instance, B. 274 

megaterium and Vibrio species have been shown to exhibit antiviral activity against white-spot 275 

syndrome virus in various shellfish species (Li, Tan, & Mai, 2009). In addition, studies have 276 

shown that certain strains of Lactobacillus spp. can be used as probiotics in a single strain or 277 

combined with commercial probiotic products like Sporolac® to provide resistance against 278 

lymphocystis viral disease (Harikrishnan, Balasundaram, & Heo, 2010). Furthermore, lactic 279 

acid bacteria, including L. paracasei A14, L. plantarum YU, L. pantarum L-137 and L. casei 280 

Shirota, have also shown promise in the remediation of viral diseases (Al Kassaa, Hober, 281 

Hamze, Chihib, & Drider, 2014). 282 

 283 

5.3 Antifungal activity 284 

In the aquaculture of shellfish and finfish species, even though the antifungal activity of 285 

probiotics was reported, there is currently no research on the potential of using probiotics for 286 

their antifungal properties. However, there have been studies on the antifungal effects of certain 287 

probiotic strains that could be applicable in freshwater prawn culture. Aeromonas A199, 288 

isolated from eel rearing water, as well as Lactobacillus plantarum FNCC 226, 289 

Janthinobacterium M169, and Pseudomonas M174, have been documented to decrease the 290 

growth of Saprolegnia species (Lategan, Torpy, & Gibson, 2004; Nurhajati, Aryantha, & 291 

Kadek Indah, 2012; Zorriehzahra et al., 2016). Additionally, certain probiotic strains isolated 292 

from commercial fermented cheese products, such as RC4b2, RC2b4, RC4a3, RC1b8, FCb1, 293 

RC2b3, SCa4, SCb2, LZb8, LZa7, S2a3, S4b1, Kb2, and Y2a5, have demonstrated antifungal 294 

activity against Fusarium oxysporum and Rhizoctonia solani (F. S. Ali, O., & Hussein, 2013). 295 
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Lactic acid bacteria strains, including Lactobacillus fermentum L23 and Lactobacillus 296 

rhamnosus L60, have been found to decrease the production of aflatoxin B1 and the growth of 297 

Aspergillus section Flavi, while strains such as KCC-28, KCC-27, KCC-26, and KCC-25 have 298 

shown strong antifungal activity against Fusarium oxysporum, Botrytis elliptica, Penicillum 299 

roqueforti, Penicillum chrysogenum, and Aspergillus fumigatus (Gerbaldo, Barberis, Pascual, 300 

Dalcero, & Barberis, 2012) (Ilavenil et al., 2015). Further research is needed to determine the 301 

potential use of these probiotic strains in the aquaculture of giant freshwater prawns for their 302 

antifungal activity. 303 

 304 

6 Probiotics as immunity enhancers in prawn 305 

6.1 Impact of probiotics on immunological parameters of M. rosenbergii 306 

The cultivation of fish and shellfish is highly dependent on maintaining a fully functional and 307 

well-balanced immune system in order to protect and sustain their health. Accordingly, there 308 

has been much interest in identifying compounds or agents capable of enhancing the 309 

performance of the host’s immune system (Dawood, Koshio, Abdel‐Daim, & Van Doan, 2019; 310 

Lazado et al., 2015). To this end, numerous studies have investigated the impact of probiotics 311 

on the immune response of aquatic animals, particularly finfish, with extensive research being 312 

conducted in this area (Dawood & Koshio, 2016; Hasan et al., 2019; Jamal et al., 2020; 313 

Merrifield et al., 2010; Van Doan et al., 2020). Table 3 summarizes the effects of probiotics 314 

on immunological parameters of giant freshwater prawn.  The studies summarized in the table 315 

highlight the various probiotics used, their sources, mode of use, doses, trial durations, and the 316 

resulting effects on immunological parameters. 317 

Most immunomodulatory investigations in prawns have employed probiotic mixes and culture 318 

collections from commercial sources (Md Abul Kalam Azad et al., 2019; Dash et al., 2016; 319 

Gupta, Verma, & Gupta, 2016; Zhao et al., 2019). Invertebrates like giant freshwater prawns 320 

rely solely on innate or non-specific immunity composed of cellular and humoral elements to 321 

detect and suppress the proliferation of pathogenic microbes. Indeed, the immunity of M. 322 

rosenbergii relies on the clearance efficiency of haemocytes and the activities of 323 

prophenoloxidase, superoxide dismutase as well as phagocytic activity (Amparyup, 324 

Charoensapsri, & Tassanakajon, 2013; Md Abul Kalam Azad et al., 2019; Kader et al., 2021; 325 

Wei, Tian, Wang, Yu, & Zhu, 2021).  326 

Supplementing diets with host-associated microbiota, such as Enterococcus faecalis, L. lactis 327 

I, and L. lactis II, isolated from the intestine of giant freshwater prawns, enhanced the innate 328 
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immunity of prawns with a significant increase in total haemocyte counts and phenoloxidase 329 

activity when compared to the control group (Kader et al., 2021). Similarly, supplementing 330 

diets with potential probiotic bacteria, Lactobacillus sp. and Enterococcus faecalis, isolated 331 

from M. rosenbergii’s digestive tract, improved cellular immunity with significantly higher 332 

levels of small granular haemocytes and non-granular haemocyte counts than prawns fed with 333 

non-supplemented diets (Ahmmed et al., 2020b; Kader et al., 2021; Sumon et al., 2018; Vidhya 334 

Hindu et al., 2018). Bacillus NL110 and Vibrio NE17 applied as probiotics in the feed and 335 

rearing water of freshwater prawns resulted in significant improvements in immune indices, 336 

including total haemocyte counts, phenoloxidase activity and respiratory burst (2021).  337 

Additionally, B. vireti 01, a putative probiotic isolated from the gastrointestinal tract of 338 

freshwater prawns, has increased several immunological parameters, including superoxide 339 

dismutase, catalase and serum glutathione of freshwater prawns (Vidhya Hindu et al., 2018). 340 

Similarly, B. cereus isolated from the gut has boosted superoxide dismutase activity in the 341 

haemolymph of freshwater prawns (Wee et al., 2018). In addition to this, B. cereus increased 342 

the level of intestinal short-chain fatty acids, which ameliorate the gut epithelium of shrimp by 343 

maintaining structural stability and reducing the intestinal pH, thereby inhibiting the growth of 344 

harmful bacteria (Duan et al., 2017).  345 

Non-host-derived probiotics, such as L. plantarum from a culture collection, have also 346 

increased phenoloxidase activity, respiratory burst, total haemocyte counts, and clearance 347 

efficiency in a dose-dependent manner (Dash et al., 2014; Dash et al., 2016). Similarly, B. 348 

pumilus improved immune enzymes such as catalase, acid phosphatase , nitric oxide synthase 349 

and phenoloxidase as well as elevated respiratory burst and phagocytosis of M. rosenbergii 350 

(Zhao et al., 2019). Additionally, the commercial probiotic Zymetin® also exhibited 351 

immunomodulating effects on freshwater prawns with a significant increase of total haemocyte 352 

counts, phagocytic activity, and clearance efficiency (Md Abul Kalam Azad et al., 2019). 353 

While investigating the immunomodulatory effects of probiotics on prawn species, probiotics 354 

were applied as feed additives (Alavandi et al., 2004; Liu, Chiu, Shiu, Cheng, & Liu, 2010; 355 

Zokaeifar et al., 2014). On the other side, probiotics applied to the rearing water have also 356 

revealed efficiency in enhancing the immune response in shrimp species. Therefore, future 357 

research is needed to evaluate the effectiveness of water-supplemented probiotics in 358 

modulating the immune system of prawns.  359 

 360 
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6.2 Effects of host-derived probiotics on the expression of immune genes 361 

Recently, there has been an increased interest in the immunomodulation of aquatic animals 362 

through regulating immune-related genes. Indeed, gene alteration for immune and antioxidant 363 

activities is considered as a reliable indicator for improved immunity in aquaculture species 364 

following probiotic treatment (Van Doan et al., 2020). In M. rosenbergii, various immune and 365 

antioxidant genes have been identified in protection against numerous infectious pathogens and 366 

foreign compounds. The functionalities of these genes have been comprehensively reviewed 367 

by (Kumaresan et al., 2017). Hepatopancreas, haemocytes, and gills have been considered as 368 

main tissues expressing immune-related proteins (X. Zhang et al., 2014). Lipopolysaccharide 369 

and β-1,3-glucan binding protein, anti-lipopolysaccharide factors, prophenoloxidase, 370 

peroxinectin, penaeidin, heat shock protein, superoxide dismutase, and catalase are some of the 371 

immune genes of crustacean shellfish reported to be upregulated upon probiotic 372 

supplementation. This field of research regarding the modulation of gene transcription via 373 

probiotics in freshwater prawn aquaculture is still in its early stages. Kader et al. (2021) 374 

reported that freshwater prawn treated with three probiotics collected from the host's intestine, 375 

E. faecalis, Lac. lactis I, and Lac. lactis II. The study showed a significant upregulation of 376 

expression of both immune and antioxidant genes, including β-1,3-glucan binding protein, 377 

superoxide dismutase, prophenoloxidase, peroxinectin, acid phosphatase and alkaline 378 

phosphatase.  379 

Various probiotics exhibit distinct impacts on the transcription of similar or varying immune-380 

related genes in shellfish (Yarahmadi, Miandare, Fayaz, & Caipang, 2016). These 381 

discrepancies could be attributed to variations in experimental circumstances and shellfish 382 

species employed. However, previous research suggested that evidence involving gene 383 

expression in other aquatic animals caused by probiotics could allow to understand their mode 384 

of action in disease prevention and control (Hao et al., 2014; Wu et al., 2014). For instance, the 385 

diet of whiteleg shrimp was supplemented with three putative host microbiota, Shewanella 386 

haliotis, B. cereus, and A. bivalvium for 28 days. The shrimps fed a probiotic-supplemented 387 

diet exhibited significantly elevated expression of prophenoloxidase, β-1,3-glucan binding 388 

protein, and penaeidin 3 genes compared to the shrimp fed the non-probiotic diet (Hao et al., 389 

2014). Similarly, three Bacillus strains, including B. subtilis, B. pumilus, and B. cereus 390 

collected from the intestinal tract of mud crab Scylla paramamosain were evaluated as 391 

probiotics for the host animals. In addition to protecting against V. parahaemolyticus, probiotic 392 

strains significantly upregulated the transcription of several antioxidant genes of mud crab, 393 

including prophenoloxidase, superoxide dismutase and catalase (Wu et al., 2014) .  394 
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In summary, probiotics supplementation, using bacteria such as Bacillus spp., Lactobacillus 395 

spp., Limosilactobacillus fermentum, Clostridium spp., Lactococcus spp., and commercial 396 

probiotics such as Zymetin®, have been shown to increase immune parameters such as total 397 

haemocyte counts and differential haemocyte counts, enhance phagocytic activity and 398 

clearance efficiency in addition to increasing prophenoloxidase and superoxide dismutase 399 

activities, and the expression of immune-related genes (Amparyup et al., 2013; Md Abul Kalam 400 

Azad et al., 2019; Kader et al., 2021; Wei et al., 2021). It should be mentioned, however, that 401 

it is not clear whether increasing these parameters in the absence of pathogens really is 402 

beneficial for the prawns. Indeed, the immune system should only be enhanced in case of an 403 

infection, and an increase of immune parameters in the absence of a pathogen might not be 404 

advantageous after all. Therefore, further research is needed in order to determine the optimal 405 

levels of these immune parameters in healthy and diseased prawns. 406 

 407 

7 Conclusions and future directions 408 

In the production of aquaculture shellfish species, probiotics’ application has emerged instead 409 

of harmful chemicals and antibiotics (Jahangiri & Esteban, 2018). However, the use of 410 

probiotics in giant freshwater prawn culture is still in its early stages and only a limited number 411 

of commercial probiotic products are available in local and international markets (Adel & 412 

Dawood, 2021). Consequently, more studies are needed for profiling a wide range of probiotic 413 

strains for application in the culture of various aquaculture shellfish species. Moreover, most 414 

of the probiotics currently used in shellfish culture are based on lactic acid bacteria and Bacillus 415 

spp. Hence, further studies are required to identify other potential probiotics that can offer 416 

benefits such as physiological responses, improved growth performance, and infection 417 

resistance (Einar Ringø et al., 2020). 418 

Choosing the right probiotics and determining the effective dosage can be challenging due to 419 

the species-specific nature of probiotics (Hoseinifar, Sun, Wang, & Zhou, 2018). Therefore, 420 

further researches are compulsory to increase the effectiveness of feed- and water-administered 421 

probiotics. In shellfish aquaculture, the antagonistic effects of probiotics on microbes, 422 

especially bacteria, have been reported. However, research on the antiviral and antifungal 423 

activity of probiotics in shellfish aquaculture is still limited. Hence, additional investigations 424 

are vital to understand the mechanism of antifungal and antiviral activity and to identify 425 

suitable probiotics. Recent advances in high-throughput sequencing techniques enable 426 

studying the impact of probiotics on prawn-associated microbiomes. Some recent studies 427 
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reported shifts in the prawn-associated microbiota after probiotic treatment (Cienfuegos-428 

Martinez et al., 2022; Zheng et al., 2022; Qiu et al., 2023). However, in order to determine 429 

whether probiotics have a beneficial impact on the prawn microbiome, we first need to obtain 430 

a better understanding of what can be considered a healthy prawn microbiome (by analysing 431 

microbiomes of healthy and diseased prawns grown in different culture systems). 432 
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Tables 952 

Table 1. Common diseases affecting M. rosenbergii along with the agent, type of agent, symptoms and current control measures.   953 

Disease Agent Type of 

agent 

Symptoms Current control measures References 

White tail disease (WTD) Macrobrachium 

rosenbergii nodavirus 

(MrNV) and extra 

small virus (XSV) 

Nodavirus and 

satellite 

Virus Lethargy and opaqueness of the abdominal 

muscle. Whitish tail and muscle. Affects 

hatchery and nursery stages. Approximately 

100 % mortality rate in post-larvae within 2-3 

days of infection 

Screening of brood stock and 

postlarvae. Use of specific 

pathogen free brood stock 

(Gangnonngi

w, 

Bunnontae, 

Phiwsaiya, 

Senapin, & 

Dhar, 2020; 

Hameed & 

Bonami, 

2012; Sahul 

Hameed & 

Bonami, 

2012) 

Macrobrachium Muscle 

Virus (MMV) 

Parvo-like virus Virus Infected tissue becomes opaque, with 

progressive necrosis; accompanied by 

progressive weakening of feeding and 

swimming ability. Affects juveniles. 

Improve prevention methods 

including nutrition and water 

quality management. 

(Pillai & 

Bonami, 

2012b; Tung, 

Wang, & 

Chen, 1999) 

White spot Syndrome 

Baculo Virus (WSBV) 

Baculovirus Virus White spots on the cuticle; affects larvae, 

juveniles and adults. 

 
(Arockiaraj et 

al., 2013; 

Hameed, 

Charles, & 
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Anilkumar, 

2000; Li et 

al., 2009) 

Infectious hypodermal and 

hematopoietic necrosis 

(IHHN) disease 

IHHN virus Virus Characterized by high mortality rate 

(approximately 100%). Affects post-larval 

stage. 

Screening the viral infection 

in shrimp larvae before 

culture, good water quality 

management. 

(Arockiaraj et 

al., 2015; 

Hameed & 

Bonami, 

2012; Hsieh 

et al., 2006) 

Monodon baculo virus 

(MBV) 

MBV Baculovirus Virus Eosinophilic intranuclear inclusions that 

contain enveloped, bacilliform virions in the 

hepatopancreas of the larvae. 

Improve management in 

hatchery. 

(Gangnonngi

w et al., 2010) 

White spot syndrome virus 

(WSSV) 

WSSV Nimaviridae, 

Whispovirus 

Virus White spots on the exoskeleton and 

appendages; accumulation of cuticular 

substances on the inner surface of the cuticle; 

pink-red colouration on the cephalothorax 

cuticle; reduction in feeding and increased 

lethargy; yellow hypertrophied 

hepatopancreas. 

Improve management in 

hatchery, particularly water 

quality. 

(Chiew, 

Salter, & Lim, 

2019) 

Macrobrachium 

nipponensis Reovirus 

(MnRV) 

MnRV Reoviridae 

Cardero-like virus 

Virus Develop in the connective tissue of the host. Improve management in 

hatchery, optimum water 

quality management. 

(S. Zhang, 

Shu, Zhou, & 

Fu, 2016) 

Macrobrachium 

hepatopancreatic parvovirus 

(MHPV) 

Parvo-like virus Virus Hepatopancreatic nuclear lesions and 

epithelial cells. Opacity of abdominal muscles 

Reduced growth rates, anorexia, reduced 

preening activity. 

No appropriate treatment 

available, needs prevention 

methods, screening the viral 

infection in shrimp larvae 

(Pillai & 

Bonami, 

2012b) 
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before culture ensuring high 

standard in nutrition and 

water quality,  low farming 

density. 

Decapod iridescent virus 1 

(DIV1) 

Cherax 

quadricarinatus 

iridovirus (CQIV). 

Shrimp hemocyte 

iridescent virus 

(SHIV)) 

Virus “Peppered” appearance Screening the viral infection 

in shrimp larvae before 

culture, water quality 

management. 

(Srisala et al., 

2020) 

Penaeus vannamei 

nodavirus (PvNV) (white 

tail disease-like muscle 

necrosis) 

Penaeus vannamei 

nodavirus 

Virus Whitish, opaque lesions in the tail; affects 

larvae, 50 % mortality rate. 

Improved management in 

hatchery. 

(Tang, 

Pantoja, 

Redman, 

Navarro, & 

Lightner, 

2011) 

Acute hepatopancreatic 

necrosis disease (AHPND) 

Vibrio spp. (V. 

parahaemolyticus, V. 

punensis, V. 

harveyi, V. 

owensii, V. 

campbelli) and Shewa

nella sp. that contain 

pVA1 plasmid 

Bacterium Appearance of empty stomach and gut in 

tandem with a light-coloured; severe atrophy 

of hepatopancreas; lethargy; up to 100% 

mortality with 20-30 days; early life stages are 

more susceptible. 

Screening the viral infection 

in shrimp larvae before 

culture, water quality 

management. 

(Chiew et al., 

2019; Kumar, 

Roy, Behera, 

Bossier, & 

Das, 2021) 
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Black spot; brown spot; 

shell disease 

Vibrio; Pseudomonas

; Aeromonas 

Bacterium Melanized lesions; affects all life stages, but 

more frequently observed in juveniles & 

adults. 

Improved hatchery 

management; oxolinic acid; 

nifurpurinol 

(Pillai & 

Bonami, 

2012b) 

Bacterial necrosis Pseudomonas; Leucot

hrix 

Bacterium Similar to black spot but only affects larvae, 

especially Nauplius, Protozoea, Zoea/Mysis 

Improved hatchery 

management; nifurpurinol; 

erythromycin; penicillin-

streptomycin; 

chloramphenicol 

(Pillai & 

Bonami, 

2012b) 

Luminescent larval 

syndrome 

Vibrio harveyi Bacterium Moribund & dead larvae, luminescence Improved hatchery 

management; 

chloramphenicol; 

furazolidone 

(Gupta et al., 

2016) 

White postlarval disease; 

rickettsia like disease 

Rickettsia Bacterium White larvae, especially stages IV and V Improved hatchery 

management; 

oxytetracycline; 

furazolidone; lime prior to 

stocking 

(Pillai & 

Bonami, 

2012b) 

Mid-Cycle Disease (MCD) Alcaligenes sp. and 

Enterobacter sp. 

Bacterium Lethargy; spiralling swimming; reduced 

feeding and growth; bluish-grey body colour; 

affects larvae, especially stages VI and VII 

Improved hatchery 

management; hatchery 

disinfection Improve 

management in hatchery, 

particularly water quality 

(Phatarpekar, 

Kenkre, 

Sreepada, 

Desai, & 

Achuthankutt

y, 2002)  

(Pillai & 

Bonami, 

2012b) 
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Lactococcosis Lactococcus garvieae 

 

Bacterium Hyperacute haemorrhagic septicaemia Vaccine, medical herbs, 

antibiotics (such as 

lincomycin, oxytetracycline 

and macrolides) 

(S.-C. Chen, 

Lin, Liaw, & 

Wang, 2001),  

(Kawanishi et 

al., 2005) 

Larval mycosis Lagenidium spp. Oomycete Extensive mycelial network visible 

throughout exoskeleton of larvae 

Improved hatchery 

management; trifluralin; 

merthiolate 

(Pillai & 

Bonami, 

2012b), 

(Owens & 

Hall, 1989) 

Burn spot disease, black gill 

disease, fusariosis. Fungal 

infection 

Fusarium solani Fungus Secondary infection; affects adults Improved management (Yao et al., 

2022), (Pillai 

& Bonami, 

2012b), 

(Cantrell & 

Betancourt, 

1995),  

Yeast infections Debaryomyces 

hansenii; Metschniko

wia bicuspidate; 

Candida albicans 

Candida sake; 

Metschnikowia artem

ia 
 

Fungus Yellowish, greyish, or bluish muscle tissues 

in juveniles (Does not cause significant 

disease)  

Improved hatchery 

management 

(S.-C. Chen et 

al., 2007), (S.-

C. Chen et al., 

2003) 

Black spot disease Fusarium spp. Fungus black spot cuticular lesions  (Yao et al., 

2022), 
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(Cantrell & 

Betancourt, 

1995) 

Protozoan infestations Zoothamnium; Epistyl

is; Vorticella; Opercu

laria; Vaginicola; Aci

neta; Podophyra; etc. 

Protozoan External parasites that inhibit swimming, 

feeding, and moulting; affect all life stages 

Improved management; 

formalin; merthiolate; 

copper-based algicides 

(Pillai & 

Bonami, 

2012b), 

(Ballester et 

al., 2017) 

Idiopathic Muscle Necrosis 

(IMN) 

Environmental 

disease 

Unknown Whitish colour in striated tissue of tail and 

appendages; when advanced, necrotic areas 

may become reddish; affects all life stages 

Improved management; 

Improve Pond management 

(Nash, 

Chinabut, & 

Limsuwan, 

1987) 

Exuvia Entrapment Disease 

(EED), sometimes known 

as Moult Death Syndrome 

(MDS) 

undetermined 

aetiology 

Unknown but 

probably 

multiple 

causes, 

including 

nutritional 

deficiency 

Localised deformities (rostrum, antennae, 

legs); failure to complete moulting; affects 

late larval stages; also seen in post-larvae, 

juveniles & adults 

Dietary enrichment, 

carotenoid supplementation. 

Improve management in 

hatchery, particularly water 

quality 

(Pillai & 

Bonami, 

2012b) 

Balloon disease   Swelling of the branchiostegal region; 

hypertrophy of some gill filaments 

Improve quality of water and 

pond bottom 

(Pillai & 

Bonami, 

2012b) 

Appendage deformity 

syndrome 

  Deformities (rostrum, antennae, legs, etc.) 

and mortalities 

Carotenoid supplementation (Pillai & 

Bonami, 

2012b) 
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Table 2. Antagonistic effects of probiotics on pathogenic microbes in the sustainable aquaculture of M. rosenbergii. 977 

Probiotics type Sources Doses/duration Key research findings References 

Pediococcus acidilactici PA-

GY2 and or Saccharomyces 

cerevisiae 

Gut of prawn 60 days − Inhibits the growth of Aeromonas hydrophila  

− Decreased the mortality rate of prawn 

(~50%)  

(Miao et al., 2020) 

Lactobacillus spp. Gut of prawn 9 log CFU/g for 8 weeks − Inhibitory activity against Vibrio harveyi  

− Improved weight gain (550%) in a short 

period of culture 

(Ahmmed et al., 2020b) 

Lactobacillus acidophilus 04 Homemade curd 106 Cells/g for 30days − Antibacterial activity against Vibrio 

anguillarum, V. vulnificus and V. harveyi  

− Improved growth and survival rate (86%) of 

freshwater prawn  

(Khan & Mahmud, 2021) 

Lactobacillus plantarum DM5 Culture collection 107, 108 and 109 CFU/g − Inhibitory activity towards Aeromonas 

hydrophila 

(D. Das, Baruah, & Goyal, 

2014) 

Bacillus subtilis Juvenile of freshwater 

prawn 

108 CFU/g feed for 60 days − Potential inhibitory activity against 

Aeromonas hydrophila  

− Enhanced growth and survival rate  

(Keysami & Mohammadpour, 

2013) 

Zymetin  

(Bacillus mesentericus, 

Clostridium butyricum and 

Enterococcus faecalis) 

Commercial probiotic 5 g/kg for 60 days − Hinders the growth of Vibrio spp. and 

Aeromonas spp.  

(Md Abul Kalam Azad et al., 

2019) 

Lactobacillus plantatum 

MTCC 1407 

Culture collection - − Inhibits the proliferation of Pseudomonas 

fluorescens and Aeromonas hydrophila  

(P. Das, Khowala, & Biswas, 

2016) 

Bacillus cereus Gut of healthy prawn 104/g for 28 days − Inhibits the growth of Aeromonas hydrophila  (Wee et al., 2018) 
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− Probiotic-fed prawns exhibited an overall 

better hepatopancreatic condition (no 

hemocyte infiltrations and necrosis) 

Bacillus coagulans MTCC 

2302 

Culture collection - − Inhibits the growth of Vibrio 

parahaemolyticus 

(M Karthik, Bhavan, & 

Manjula, 2018) 

Bacillus licheniformis Culture collection 1 x 109/g for 60 days − Inhibits the growth of Vibrio alginolyticus, 

Aeromonas spp. and Pseudomonas spp. 

− The growth of experimental group of prawn 

was 25% – 75% higher than control 

(Ranjit Kumar et al., 2013) 

Clostridium butyricum Intestine of prawn 2 x 109/g for 60 days − Inhibits the growth of Vibrio harveyi  

− 28% higher weight gain compared to control 

group 

(Sumon et al., 2018) 

Bacillus licheniformis Culture collection 1 x 109 CFU/g for 45 days − B. licheniformis in feed help in reducing the 

growth of Vibrio alginolyticus  

(Nadella et al., 2018) 
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Table 3. Effects of host-associated and non-host-derived probiotics on immunological parameters of giant freshwater prawn (M. rosenbergii). 988 

Probiotics Source Mode of use Dose and trial duration Effects on immunological 

parameters 

Reference 

Enterococcus faecalis, 

Lactococcus lactis I, & Lac. 

lactis II 

Intestine of M. rosenbergii Diet 108 CFU/g  

50 days  

THC and PO ↑ 

α2-M, LGBP, proPO, Cu, Zn-

SOD, TG, PE, AKP and ACP ↑ 

(Kader et al., 

2021) 

B. cereus Intestinal tract of prawn Diet 104 CFU/g 

28 days 

SOD ↑ 

MDA → 

(Wee et al., 2018) 

B. vireti 01 Intestinal tract of prawn Diet 108 cells/mL 

14 days 

SOD, CAT and GSH ↑ (Vidhya Hindu et 

al., 2018) 

Bacillus NL110 & Vibrio 

NE17 

Egg, larvae, and intestine of 

M. rosenbergii 

Diet and water  ~ 109 CFU/g (Feed) 

~ 109 CFU/mL (Water) 

60 days 

THC, RB and PO ↑ (Mujeeb Rahiman 

et al., 2010) 

Lactobacillus plantarum Culture collection Diet 107, 108 & 109 CFU/g 

90 days 

THC, PO, RB, CE ↑ (Dash et al., 

2014) 

L. plantarum (Heat killed) Culture collection Diet 107, 108 & 109 CFU/g 

90 days 

THC, PO, RB, CE ↑ (Dash et al., 

2015) 

L. plantarum Culture collection Water 107, 108 & 109 CFU/L 

90 days 

THC, PO, RB, CE ↑ (Dash et al., 

2016) 

B. pumilus Culture collection Diet 107, 108, & 109 CFU/g 

60 days 

RB, CAT, PcA, ACP, NOS and 

PO ↑ 

SOD → 

(Zhao et al., 

2019) 

B. coagulans Culture collection Diet 105, 107 & 109 CFU/g 

60 days 

RB and LZ ↑ (Gupta et al., 

2016) 
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B. licheniformis Culture collection Diet 106, 107, 108 & 109 CFU/g 

60 days 

THC, SOD, PO ↑ (Ranjit Kumar et 

al., 2013) 

Zymetin® (Bacillus 

mesentericus, Clostridium 

butyricum, Enterococcus 

faecalis) 

Commercial Diet 5 g/kg 

60 days 

THC, DHC, PcA and CE ↑ (Md Abul Kalam 

Azad et al., 2019) 

Saccharomyces cerevisiae − Diet 5, 10 & 20 g/Kg 

75 days 

THC, RB and PO ↑ (Parmar, Murthy, 

Tejpal, & Naveen 

Kumar, 2012) 

Increased (↑); No change (→); Total hemocyte count (THC); Phenoloxidase (PO); α2-Macroglobulin (α2M); Lipopolysaccharide and β-1,3-glucan-binding protein (LGBP); 989 

Prophenoloxidase (proPO); Superoxide dismutase (SOD); Transglutaminase (TG); Peroxinectin (PE); Alkaline phosphatase (AKP); Acid phosphatase (ACP); Large granular 990 

haemocytes (LGH), Small granular haemocytes (SHG); Non-granular haemocyte (NGH); Malondialdehyde (MDA); Catalase (CAT); Glutathione (GSH); Respiratory burst 991 

(RB); Clearance efficiency (CE); Phagocytic activity (PcA); Nitric oxide synthase (NOS); Lysozyme (LZ); Differential haemocyte counts (DHC). 992 
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 994 


