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Abstract 

Gene regulatory networks (GRNs) represent the interactions between transcription factors 

(TF) and their target genes. Plant GRNs control transcriptional programs involved in growth, 

development and stress responses, ultimately affecting diverse agricultural traits. While recent 
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developments in accessible chromatin (AC) profiling technologies make it possible to identify 

context-specific regulatory DNA, learning the underlying GRNs remains a major challenge. 

We developed MINI-AC (Motif-Informed Network Inference based on Accessible Chromatin), 

a method that combines AC data from bulk or single-cell experiments with TF binding site 

information to learn GRNs in plants. We benchmarked MINI-AC using bulk AC datasets from 

different Arabidopsis thaliana tissues and showed that it outperforms other methods to identify 

correct TFs binding sites. In maize, a crop with a complex genome and abundant distal AC 

regions, MINI-AC successfully inferred leaf GRNs with experimentally confirmed, both 

proximal and distal, TF-target gene interactions. Furthermore, we showed that both AC 

regions and footprints are valid alternatives to infer AC-based GRNs with MINI-AC. Finally, we 

combined MINI-AC predictions from bulk and single-cell AC datasets to identify general and 

cell-type specific maize leaf regulators. Focusing on C4 metabolism, we identified diverse 

regulatory interactions in specialized cell types for this photosynthetic pathway. MINI-AC 

represents a powerful tool for inferring accurate AC-derived GRNs in plants and identifying 

known and novel candidate regulators, improving our understanding of gene regulation in 

plants. 

Introduction 

Plant development is controlled by a wide variety of endogenous and environmental stimuli 

that need to be processed correctly to guarantee proper growth along with adequate molecular 

and physiological responses. One of the main determinants involved in coordinating these 

different types of signals is the spatiotemporal control of gene expression. Transcriptional 

gene activity is controlled by transcription factors (TFs), proteins that bind to short and specific 

DNA sequences, called TF binding sites (TFBS) or motifs, to regulate gene expression 

(Kulkarni and Vandepoele 2020; Schmitz, Grotewold, and Stam 2022). TFBS are located 

within cis-regulatory elements (CREs), which are non-coding DNA regions involved in 

regulating the transcriptional activity of neighboring genes. Although many plant CREs are 

found within hundreds of base pairs upstream or downstream of the transcription start/end 

site, they can also be found within introns, untranslated regions (UTRs) and in distal locations 

from genes (Heyndrickx et al. 2014; Schmitz, Grotewold, and Stam 2022). Distal CREs 

regulate the expression of target genes thousands of base pairs away through chromatin loops 

that bring them in spatial proximity (Ricci et al. 2019; Lu et al. 2019). Gene regulatory networks 

(GRNs) represent a set of regulatory interactions between TFs and their target genes (Mejia-

Guerra et al. 2012), and they have been crucial to identify key molecular players and signaling 

cascades involved in growth, development, and stress responses (Chen et al. 2018; Gaudinier 



 

et al. 2018; Reynoso et al. 2019; Jones and Vandepoele 2020; Vercruysse et al. 2021; De 

Clercq et al. 2021). 

Several high- and low- throughput methods exist for the experimental delineation of GRNs 

(Gaudinier and Brady 2016), starting with techniques that determine the genomic location of 

TFBS to link them to their putative target genes (TF-based methods). Chromatin 

immunoprecipitation sequencing (ChIP-seq) profiles the genome-wide TFBS for a TF of 

interest in vivo (Johnson et al. 2007). DNA affinity purification sequencing (DAP-seq) is an in 

vitro alternative to ChIP-seq that enables profiling many TFs in parallel, but that does not 

consider the epigenetic context of the cells (O’Malley et al. 2016). Protein binding microarrays 

test the in vitro binding of TFs to thousands of short DNA sequences (Franco-Zorrilla et al. 

2014). The comparison of genes expressed in wild-type plants with genes expressed in plants 

overexpressing or defective of a TF makes it possible to identify sets of genes directly or 

indirectly controlled by the perturbed TF (Krouk et al. 2013). Other approaches are gene-

based, such as yeast-one hybrid, that test the in vitro binding of a specific TF to the promoter 

of a gene of interest (Meng, Brodsky, and Wolfe 2005). Additionally, there are methods that 

characterize accessible chromatin (AC) in genomic regions that are depleted of nucleosomes 

and therefore available for TF binding, potentially controlling transcriptional gene regulation. 

Prominent AC profiling techniques in plants are Transposase-Accessible Chromatin 

sequencing (ATAC-seq) (Buenrostro et al. 2015), DNase I hypersensitive sites sequencing 

(DNase-seq) (Boyle et al. 2008) and micrococcal nuclease sequencing (MNase-seq) (Yuan et 

al. 2005). MNase-defined cistrome-Occupancy Analysis (MOA-seq) is a modification of the 

MNAse-seq protocol that increases the resolution of AC regions (ACRs) in the genome by 

identifying TF footprints, which are small regions (< 30 base-pairs or bps) within AC occluded 

from DNA cleavage due to TF binding (Savadel et al. 2021). 

Most of the previously mentioned experimental assays require laborious and expensive 

protocols, each one coming with its own limitations, which motivated the advances in 

computational methods for GRN inference to overcome them (Kulkarni and Vandepoele 

2020). The majority of the existing GRN inference methods are expression-based, meaning 

they merely use expression data to find matching expression profiles of TFs and target genes 

to predict regulatory relationships (Fu and Medico 2007; Langfelder and Horvath 2008; Huynh-

Thu et al. 2010; Roy et al. 2013; Saelens, Cannoodt, and Saeys 2018). While these methods 

have been successfully used to elucidate regulatory mechanisms (Banf and Rhee 2017; 

Huang et al. 2018; Haque et al. 2019; Zhou et al. 2020), they suffer from many false positive 

predictions as no evidence of physical interaction between TF and target gene’s regulatory 

DNA is considered (Gardner and Faith 2005; Marbach, Costello, et al. 2012; Banf and Rhee 

2017). The integration of TFBS information can further improve GRN predictions (Marbach, 

Roy, et al. 2012; Aibar et al. 2017; Ferrari, Manosalva Pérez, and Vandepoele 2022; McCalla 



 

et al. 2023), but simply mapping TFBS to the non-coding sequences flanking genes comes 

with a high rate of false positives. TF motifs are short and degenerate, resulting in low 

specificity to identify functional TF binding events. To overcome this shortcoming, integrating 

chromatin accessibility information with TFBS information offers an attractive opportunity to 

identify more accurate GRNs that reflect the chromatin accessibility landscape of a specific 

biological sample or condition (Kulkarni, Marc Jones, and Vandepoele 2019; P. Ding et al. 

2021). Several methods that integrate different regulatory data types have been developed in 

recent years. Transcription factor Occupancy prediction By Investigation of ATAC-seq Signal 

(TOBIAS) is a comprehensive framework that performs TF footprinting on ATAC-seq data and 

scans the footprints for known motifs (Bentsen et al. 2020). Motif Enrichment in Differential 

Elements of Accessibility (MEDEA) is a computational tool that identifies cell-type specific 

accessible regions and performs motif enrichment (Mariani et al. 2020). CellOracle is a 

machine learning-based tool that integrates single-cell transcriptome and epigenome profiles 

to infer GRNs (Kamimoto et al. 2023). Integrated regulatory network analysis (IReNA) infers 

GRN by performing network modularization, transcription factor enrichment, and construction 

of simplified intermodular regulatory networks (Jiang et al. 2022). The Inferelator 3.0 performs 

GRN inference by using prior accessibility-based networks that are then improved based on 

expression data (Gibbs et al. 2021). 

Although there are multiple tools available that combine TF motifs with accessibility 

information, many of these do not perform motif enrichment combined with GRN inference. 

TOBIAS, for example, identifies TFBS within footprints but does not perform an enrichment 

analysis nor GRN inference. While MEDEA performs motif enrichment on differential ACRs, it 

does not infer GRNs and lacks support for plant species. CellOracle, IReNA, and the 

Inferelator 3.0, integrate TFBS with accessibility information to infer accessibility-based GRNs 

that are later refined with scRNA-seq data. These accessibility-based GRNs, however, are 

built by simply scanning motifs in ACRs, resulting in a high number of potential false positives. 

Furthermore, none of these methods have been evaluated in plants. To fill this gap, we 

developed MINI-AC (Motif-Informed Network Inference based on Accessible Chromatin), a 

computational method that integrates TF motif information with bulk or single-cell derived 

chromatin accessibility data to perform motif enrichment analysis and GRN inference. MINI-

AC can be used in two alternative modes - genome-wide and locus-based - to select different 

non-coding genomic spaces for motif and GRN analysis. We benchmarked MINI-AC in 

Arabidopsis thaliana (herein Arabidopsis) and showed that it outperforms related tools for 

predicting the correct TFBS for a specific set of ACRs. Next, we implemented MINI-AC for 

maize (Zea mays) and showed that it is able to capture experimentally confirmed proximal and 

distal regulatory interactions. Finally, we used maize single-cell ATAC-seq data to infer cell-



 

type specific GRNs that helped to identify general and cell-type specific leaf regulators, 

focusing on C4 metabolism and photosynthesis. 

Results 

Inference of chromatin accessibility-based gene regulatory 

networks using MINI-AC 

MINI-AC is a computational method that integrates TF DNA-binding specificity information with 

chromatin accessibility data to infer GRNs. MINI-AC’s methodology finds regions in the 

genome representing potential cis-regulatory sequences known to be bound by specific TFs. 

Through an efficient TF motif enrichment procedure, MINI-AC predicts regulatory TF-target 

gene interactions to generate an accessibility-based GRN (Material and Methods). Each 

regulon in the GRN, representing a TF and its target genes, is subsequently functionally 

annotated using Gene Ontology (GO) enrichment analysis, offering insights about TFs 

controlling specific biological processes (Figure 1A).  

MINI-AC has three main inputs: a sequenced and annotated genome, motifs representing 

known TFBS and chromatin accessibility data represented as a set of ACRs or footprints. The 

first step of MINI-AC is the extraction of the non-coding genomic search space and the 

mapping of known TF motifs to obtain motif mappings, which are a set of genomic locations 

with putative TFBS, referred to as motif matches. This step of the pipeline is pre-computed 

per genome. In a second step, the motif mappings are used to identify enriched motifs in a set 

of ACRs. The enriched motifs are identified by generating a background model of the input 

ACRs to estimate the number of motif matches in ACRs expected by chance, and comparing 

them with the real number of motif matches in ACRs. The TFs associated with motifs that 

show a significant enrichment in the ACRs are linked to target genes, based on proximity, to 

define regulons (Materials and Methods and https://github.com/VIB-PSB/MINI-AC). The motif 

enrichment statistics (π-value, a metric that combines q-value and enrichment fold; Materials 

and Methods) are used to rank motifs and the associated TFs. 

MINI-AC is available as a Nextflow (Di Tommaso et al. 2017) pipeline and contains pre-

computed motif mappings for Arabidopsis (Araport11) and maize (AGPv4). MINI-AC can be 

run in two different modes, genome-wide and locus-based, depending on the non-coding 

genomic space that is used to perform the motif mapping. In the genome-wide mode, the 

motifs are mapped to the whole non-coding genome, while in the locus-based mode, the motifs 

are mapped to the flanking (upstream and downstream) non-coding and intron sequences of 

each locus in the genome (Figure 1B). While the genome-wide mode is expected to capture 
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more ACRs, the locus-based is expected to have a denser motif signal, given that the majority 

of the TFBSs are less than 2kb from genes (Heyndrickx et al. 2014; Tu et al. 2020), and this 

influences the final GRN composition. For example, the locus-based mode with 5 kb upstream 

of the translation start site (TrSS), introns, and 1 kb downstream of the translation end site 

(TrES) covers 73.5% of the Arabidopsis non-coding genome, but only 9.6% of the maize non-

coding genome (Figure S1). This discrepancy is due to the size differences in intergenic 

space: the median is 1,220 bps for Arabidopsis and 23,714 bps for maize. 

The motif mappings are a crucial component of MINI-AC, as their quality determines the 

completeness and accuracy of the inferred GRNs. Previously, we have shown that the motif 

mapping tools Find Individual Motif Occurrences (FIMO) and Cluster-Buster generate 

complementary motif matches and that combining matches from FIMO with top-scoring 

matches from Cluster-Buster in an ensemble approach gives better results to recover ChIP-

based TF binding events, compared with using a single motif mapping tool (Kulkarni, Marc 

Jones, and Vandepoele 2019). However, using all motif matches identified by FIMO or Cluster-

Buster gives an excessive number of candidate target genes for some motifs and interferes 

with successfully applying motif enrichment. Therefore, selecting a number of top-scoring 

motif matches used for GRN inference is an important factor when running MINI-AC. We 

calibrated an optimal number of top-scoring motif matches for the two motif mapping tools 

using ChIP-based gold standard sets of TFBS (Methods S1). For each motif mapping tool and 

each species, we evaluated the number of top-scoring motif matches found within the ChIP-

seq peaks of the corresponding TF to compute precision, recall, and F1 (Figure S2). In 

Arabidopsis, for FIMO and Cluster-Buster the optimal top scoring matches (highest F1 value) 

were found at top 7,000 and top 4,000, respectively. For maize, the FIMO optimal threshold 

was found at 16,000 and the Cluster-Buster optimal top at 8,000. These top-scoring motif 

matches were combined into ensemble motif mappings for each species, containing motifs for 

1117 and 1234 TFs for Arabidopsis and maize, respectively. 

Next, we assessed whether the ensemble motif mappings for maize yielded increased 

performance to detect functional TFBS, as previously shown in Arabidopsis (Kulkarni, Marc 

Jones, and Vandepoele 2019), by evaluating motif mapping results of FIMO and Cluster-

Buster using ChIP-seq peaks for 68 TFs (Methods S1). Scoring the unique and shared motif 

matches of each motif mapping tool on these ChIP-seq peaks (i.e. peaks with a motif match 

of the profiled TF) revealed that combining the 16,000 top-scoring FIMO motif matches with 

the 8,000 top-scoring Cluster-Buster motif matches in maize resulted in an 15% increase (from 

63% using only FIMO to 78% using both) of the number of ChIP-seq peaks that contained a 

correct TF motif match, compared with using only the top 16,000 FIMO motif matches. 

Therefore, these results indicate that the FIMO and Cluster-Buster complementarity also 

applies for maize. 



 

To generate GRNs using the genome-wide mode, the motif matches within ACRs are 

annotated to the closest gene, but in cases where the distance to the flanking closest genes 

is similar, it is uncertain that the closest gene is the correct target gene. We evaluated, for cell-

type specific ACRs, in how many cases the second-closest gene was differentially expressed 

(DE) in that specific cell-type compared to the closest gene (Materials and Methods and 

Methods S2). We used cell-type specific ACRs from maize mesophyll and bundle sheath 

(Materials and Methods), annotated them to the two closest genes, and then measured the 

proportion of closest and second-closest genes that were DE in each cell type. This analysis 

revealed that, although annotating the two closest genes increased the total number of DE 

genes compared to annotating only the closest gene (Figure S3), this also resulted in a 

decrease in the ratio of DE genes vs. non-DE genes (from 0.074 up to 0.052 in mesophyll and 

from 0.05 up to 0.038 in bundle sheath). This resulted in a decrease in precision, and a F1 

decrease of up to 0.026 in mesophyll and 0.018 in bundle sheath. Therefore, by default 

genome-wide MINI-AC annotates only the closest target gene that can be located far up- or 

downstream of the ACR, but this can be changed in the MINI-AC parameter settings. In 

conclusion, we present MINI-AC as a motif enrichment and GRN inference method 

implemented and optimized for Arabidopsis and maize. 

MINI-AC outperforms alternative motif enrichment tools in 

predicting cell-type specific regulators in Arabidopsis 

To evaluate the ability of MINI-AC to identify functional TFBS and learn accurate GRNs, we 

benchmarked the motif enrichment method implemented in MINI-AC against two other tools 

that also test genomic interval's enrichment: Giggle (Layer et al. 2018) and Bedtools Fisher 

(Quinlan and Hall 2010). We selected them because they can be run for any species, and 

both tools use a different enrichment approach compared to MINI-AC. They estimate the 

significance of overlap and enrichment between two sets of genomic intervals by computing 

the overlapping and unique regions in each set and applying a Fisher’s Exact two-tailed test. 

In this study, the two sets of genomic intervals are ACRs and motif mappings. While Giggle 

speeds up the computation using a web search engine algorithm for many files at once, 

Bedtools Fisher performs enrichment for one pair of files at a time. Both tools, and MINI-AC, 

generate motif enrichment statistics, which include a q-value (p-value corrected for multiple 

hypothesis testing) that reflects the statistical significance of the overrepresentation of a motif 

within the ACRs, and a fold enrichment, reporting how much bigger this overrepresentation is 

than expected by chance. 



 

To compare these tools with MINI-AC, we evaluated how many cell-type specific DE TFs each 

tool could predict given a set of cell-type specific ACRs. Thus, we selected three different 

datasets containing bulk cell-type specific ACRs from Arabidopsis stem cells, phloem cells, 

and epidermis cells (Materials and Methods). These datasets were selected because they 

report cell-type specific peaks (RB and S 2011) and they had a paired RNA-seq dataset, or 

there was expression information available for those cell types, that can be used to determine 

if the TF associated with the enriched motifs is DE in the respective cell type (Methods S2). 

We also included a fourth dataset comprising “synthetic” ACRs made by combining peaks of 

19 ChIP-seq-profiled TFs overlapped with ACRs from Arabidopsis seedlings. The goal of this 

synthetic dataset is to have a set of ACRs filtered for specific TFBS expected to, ideally, be 

enriched and recovered by the different enrichment tools. This is in contrast to the three other 

datasets, where the expected number of binding TFs showing motif enrichment is unknown 

and estimated using the paired gene expression information. 

To perform a fair comparison, we first determined for each tool the q-value cutoff that controls 

false positives in an equally stringent manner (Materials and Methods). Next, we processed 

the four datasets with each tool, applying the q-value cut-offs at false discovery rate of0%, and 

compared the results. We found that MINI-AC (either locus-based or genome-wide) had the 

highest recall, which is the proportion of the correct motifs each method predicted as enriched, 

and highest precision (except for stem), which is the proportion of predicted enriched motifs 

that are correct. This resulted in MINI-AC having the best overall performance (highest F1 

value; Figure 2A), except for the “synthetic” ACR dataset, for which Giggle yielded the highest 

F1 by a small margin (0.088 for Giggle, 0.066 for Bedtools, 0.067 for genome-wide MINI-AC, 

and 0.068 for locus-based MINI-AC). For the rest, MINI-AC’s performance was better, 

especially for the ACR datasets of epidermis, phloem, and stem, where Giggle and Bedtools 

showed a very low recall. For the “synthetic” ACR dataset, the recall of Giggle and Bedtools 

showed a high improvement (0.855 and 0.600 respectively), yet unable to match MINI-AC’s 

(0.973 on average). This improved recall in the “synthetic” dataset (only 19 TFs) could be due 

to a stronger and less complex motif signal compared to bulk ACR datasets, as in the latter 

probably hundreds of different TFs are active. For the epidermis ACR dataset, Giggle and 

Bedtools failed to retrieve any of the motifs associated to DE TFs in that cell type. This result 

could be due to the low number of motifs associated with DE TFs in stem (only 29, while other 

cell types have between 150 and 182), as well as the low number of ACRs (Table S1). When 

comparing the two different MINI-AC modes, their performance in precision and recall was 

very similar, probably because the non-coding genomic space defined for the locus-based 

MINI-AC mode (5 kb upstream of the TrSS, 1 kb downstream of the TrES, and introns) covers 

most of the non-coding genome of Arabidopsis that is used in the genome-wide mode (73.5%). 



 

Besides assessing MINI-AC’s motif enrichment performance, we also evaluated the quality of 

the GRNs inferred based on the motif enrichment results. We used a mesophyll cell-type 

specific ACR dataset from (Sijacic et al. 2018), which was not used in the benchmark, to infer 

GRNs with MINI-AC (Giggle and Bedtools were excluded from this analysis because they are 

not GRN inference methods). This dataset contains differential ACRs of mesophyll cells 

compared to stem cells. Therefore, to evaluate the predicted regulators and target genes, we 

used genes that were strongly expressed in mesophyll compared with stem cells (Methods 

S2). MINI-AC predicted 632 enriched motifs that are associated with 552 TFs (Data S1). The 

inferred GRN reports 83,419 interactions and 1533 target genes. Out of the 158 TFs showing 

mesophyll-specific expression and expected to be associated with enriched motifs, 68% (108) 

were present in the MINI-AC network. Functional analysis of the regulons in the MINI-AC 

mesophyll GRN revealed enrichment for processes relevant for leaf and mesophyll function, 

such as “circadian rhythm” (57 TFs) and other light-related processes, mainly “response to red 

or far red light”. We filtered the mesophyll network for regulons showing enrichment for these 

two GO terms and verified if known regulators of circadian rhythm and light perception in leaf 

were found (Figure 2B). Among the TFs predicted by MINI-AC to regulate response to red 

light and circadian rhythm, CCA1, LHY1, RVE1/2/6/7/8, and LHY/CCA1-like 1 were found, 

which have been previously reported as TFs controlling these processes (Creux and Harmer 

2019). Additionally, some of these TFs, such as CCA1, or RVE1 show a strong mesophyll 

expression specificity (large difference in expression ranking compared to stem cells; Methods 

S2). So MINI-AC not only predicts relevant TFs known for mesophyll, but also links them to 

target genes involved in the biological processes controlled by these TFs. On the other hand, 

MINI-AC also reports functional enrichment for regulons controlled by unknown TFs, such as 

“response to red or far red light” for AT3G10113, indicating that MINI-AC can be used to 

generate new testable hypotheses for specific regulators. 

Overall, these results indicate that, compared with other tools that perform enrichment 

between two sets of genomic intervals, MINI-AC shows a better performance in predicting 

motif enrichment of DE TFs in cell-type specific ACRs. Next, our results suggest that MINI-AC 

performs well on ACR datasets with high complexity (potentially containing hundreds of 

TFBS). Finally, MINI-AC predicted the correct functional enrichment for the target genes of 

known regulators involved in light perception and circadian rhythm in an Arabidopsis 

mesophyll GRN, highlighting its potential to identify novel regulators. 



 

Prediction of proximal and distal regulatory interactions from bulk 

ACRs in maize 

Maize is a crop and model species of high economical relevance, yet the inference of GRNs 

remains challenging for this species due to the large intergenic regions and the presence of 

distal regulatory elements (Ricci et al. 2019). We evaluated if MINI-AC can infer accurate 

GRNs in maize that capture proximal and distal regulatory interactions. Different MINI-AC 

versions for maize were implemented, either using the genome-wide mode or three non-

coding genomic spaces of the locus-based mode, small (1kb upstream of the TrSS, introns, 

and 1 kb downstream of the TrES), medium (5 kb upstream of the TrSS, introns, and 1 kb 

downstream of the TrES), and large (15 kb upstream of the TrSS, introns, and 2.5 kb 

downstream of the TrES). For each version, we evaluated how well it could predict (1) 

enrichment of motif/TFs and (2) relevant TF-target gene interactions. A maize leaf bulk ATAC-

seq ACR dataset (32,481 ACRs covering 13 Mbps) (Lu et al. 2019) was used as input, and 

these results were evaluated using a gold standard of ChIP-seq-derived TF-target gene 

interactions in maize mesophyll for 104 TFs (Tu et al. 2020), of which 62 have one or more 

associated motifs. To evaluate the MINI-AC networks, the gold standard was adapted to each 

MINI-AC mode and non-coding genomic definition, so that a theoretical recall of 100% could 

be obtained. We did this by selecting the TFs with available motif information, annotating only 

the peaks that contained the motif associated with the incoming TF, and discarding the peaks 

outside the corresponding non-coding genomic region definition. The sizes of the gold 

standards adapted to the different non-coding genomic region definitions are summarized in 

Table S2. 

First, we evaluated the performance of MINI-AC in predicting enriched TFs (62) and motifs 

(489) present in the gold standard. The small and medium locus-based modes had the highest 

TF retrieval rate (both with a recall of 0.903 compared with 0.871 for genome-wide). The 

genome-wide mode had the highest TF precision (0.054) and overall F1 value (0.102) 

compared with the three locus-based modes (F1 values ranging from 0.096 to 0.100) (Figure 

3A upper plot). Regarding the enrichment of motifs bound by DE TFs, the genome-wide mode 

has the best performance for the three metrics compared to the three locus-based non-coding 

genomic spaces (recall of 0.622 vs. 0.562-0.589, precision of 0.382 vs. 0.346-0.366, and F1 

of 0.473 vs. 0.432-0.444) (Figure 3A lower plot). Next, we computed the precision-recall curve 

and the area under the precision-recall curve (AUPRC) to measure the ability to predict correct 

motifs while minimizing incorrect ones. If the motifs linked with gold standard TFs have low 

ranks in the MINI-AC enrichment, the AUPRC will be higher with high precision at low ranks. 

The results showed that the four tested MINI-AC versions had a very similar AUPRC (between 



 

0.425 and 0.449; Figure 3B and Figure S4A), with locus-based small showing the highest 

AUPRC by a small margin compared to locus-based medium (0.449 and 0.446 respectively). 

Second, to evaluate the MINI-AC GRNs for each mode, we compared the inferred TF-target 

gene interactions with the TF-target gene interactions of the corresponding gold standard 

(Figure 3C). The genome-wide mode produced the GRN with the highest precision (0.736) of 

ChIP-confirmed TF-target gene interactions. However, the locus-based small mode predicted 

the highest fraction of gold standard interactions (0.139 recall). The final F1 values for TF-

target gene interaction predictions, from highest to lowest, were as follows: locus-based small 

(0.229), locus-based medium (0.220), genome-wide (0.195), and locus-based large (0.195) 

(Figure 3C). We observed that the three performance metrics varied for different TF datasets 

(Figure S4B). To explore if this difference was partly due to the coverage/quality of the ChIP-

seq data, we collected, per TF, the ChIP-seq quality metric of normalized strand correlation 

(NSC) (Landt et al. 2012; Tu et al. 2020), compared it to the F1 of the MINI-AC-predicted 

regulons (Figure S5A), and with the rank given by MINI-AC to the TF when its ChIP-seq peaks 

are used as input (Figure S5B). The resulting plots show a correlation, where ChIP-seq 

datasets with lower NSC tend to yield lower F1 when they are used as gold standard to 

evaluate MINI-AC GRNs, and they also tend to yield a lower enrichment rank of the motifs 

bound by the profiled TF, which is consistent with those peaks having a lower motif signal. 

While these different comparisons revealed no major differences in the global recovery of 

known regulatory interactions using the AC-derived GRNs, we next assessed if the genome-

wide MINI-AC mode is more successful than the locus-based in inferring distal regulatory 

interactions. For each MINI-AC mode and non-coding genomic region definition, we labeled 

each correct TF-target gene interaction into 3 classes: “introns + UTR”, “proximal” (< 2kb from 

the closest gene), and “distal” (> 2kb from the closest gene) (Figure 3D). Comparing the 

different classes revealed that genome-wide MINI-AC predicts 28% of its correct TF-target 

gene interactions as distal, while medium and large locus-based MINI-AC mode predict 0.5% 

and 6%, respectively. When considering only the correct interactions predicted uniquely by 

genome-wide MINI-AC, this percentage increases to 50%, meaning that half of the correct 

interactions retrieved uniquely by genome-wide MINI-AC are distal. Finally, we evaluated if 

the correct distal and proximal TF-target gene interactions found by the genome-wide MINI-

AC were unique or shared with the medium locus-based mode (the best performing locus-

based version that can predict distal interactions based on F1 score). We observed that 

approximately 81% (20,941) of the distal TF-target gene interactions found by genome-wide 

MINI-AC mode were unique, and not found by locus-based mode neither proximally nor 

distally (Figure 3E). On the other hand, the locus-based mode retrieved 28% (20,793) of 

unique proximal interactions, while the genome-wide mode retrieved 22% (14,898). 



 

While ATAC-seq provides ACRs that span a few hundreds of DNA base pairs, it lacks 

resolution about the exact location of TFBS. To overcome this, experimental and 

computational methods have been developed to identify TF footprints. To assess if MINI-AC 

can infer motif enrichment and GRNs from footprints, in contrast to larger ATAC-seq peak 

regions, we generated a set of genomic footprints and peak regions applying MOA-seq in 

maize leaf and used them as input for the genome-wide mode (Materials and Methods). We 

evaluated the motif enrichment performance by using a combined set of DE genes of different 

leaf cell-types (Methods S2). Conversely, to evaluate the inferred GRNs, we compared them 

to the previously mentioned ChIP-seq gold standard. Regarding motif enrichment, the peaks 

and the footprints datasets yielded 812 and 719 enriched motifs, respectively, of which 617 

were shared between the two. The results, summarized in Table S3, show that both data types 

(peaks and footprints) showed similar performances when retrieving correct motifs as 

enriched, with the peaks showing better F1 (0.580 for peaks vs. 0.529 for footprints). While 

the precision-recall curve revealed that MOA-seq footprints are superior to identify correct TFs 

among the top ranked motifs, the AUPRC showed a better overall performance when using 

MOA-seq peaks (AUPRC for peaks 0.576 and AUPRC for footprints 0.547; Figure S6A and 

S6B). For GRN predictions, both dataset types generated networks with similar sizes 

(4,110,921 interactions using peaks and 3,560,086 interactions using footprints) while the 

evaluation of ChIP-seq confirmed interactions revealed that peaks yielded a better F1 (0.275) 

in comparison with the GRN predicted using footprints (F1 of 0.242). A comparison of the 

correct TF-target gene interactions of each network showed that there was a large overlap 

between the correct edges of the GRNs (Figure S6C-E; Jaccard similarity coefficient of 0.653). 

Overall, these results revealed that MINI-AC can be successfully employed to infer GRNs in 

maize. While the genome-wide mode retrieved more motifs from the gold standard TFs as 

enriched and predicted the most precise GRNs, the locus-based small mode showed better 

prioritization of TFs and retrieved the most complete GRNs. Additionally, the GRNs predicted 

by the genome-wide mode contained four times more ChIP-confirmed distal regulatory 

interactions than the locus-based mode’s GRNs, showing it is the most appropriate option to 

use with species like maize with large intergenic spaces and many distal regulatory elements. 

Finally, we demonstrate that using MOA-seq (peaks and footprints) provides a valid alternative 

to ATAC-seq as input for MINI-AC. 



 

Leveraging MINI-AC predictions from bulk and single-cell AC 

datasets highlights general and specific leaf regulators 

The leaf is the main organ where photosynthesis occurs, producing energy and carbohydrates 

that sustain the plant’s growth and life cycle (Vercruysse et al. 2021). In recent years, different 

maize leaf bulk datasets have been published (Dong et al. 2017; Lu et al. 2019; Tu et al. 2020), 

providing ACRs for different leaf cell types combined, which is in contrast with single-cell 

technologies that profile accessibility landscapes of individual cells and cell types (Angerer et 

al. 2017; Marand et al. 2021). Marand and co-workers (Marand et al. 2021) profiled six maize 

organs (among them seedling, that contains leaf cells) using single-cell ATAC-seq (scATAC-

seq). Our first goal was to evaluate if MINI-AC can infer GRNs from single-cell-derived data, 

and next compare these results with MINI-AC predictions using bulk datasets. We performed 

motif enrichment and GRN inference with MINI-AC using 3 publicly available maize leaf bulk 

ATAC-seq datasets (Dong et al. 2017; Lu et al. 2019; Tu et al. 2020), one leaf bulk MOA-seq 

dataset (Materials and Methods), and the single-cell dataset from Marand et al. (Marand et al. 

2021) (referred to as “Marand dataset”). The Marand dataset was subsampled for 10 leaf cell 

types, of which we selected the most specific peaks (using z-score specificity; Materials and 

Methods), that has on average 39% of distal peaks for all the cell types, in comparison to 33% 

in the bulk datasets. We selected the genome-wide MINI-AC mode, as these distal peaks 

would be discarded when using the locus-based mode (Figure S7A-C) and we observed that 

distal peaks tend to be more cell-type specific (Figure S7D). The bulk- and single-cell-derived 

ACR sets were used for motif enrichment and GRNs inference, but to focus on the functional 

regulatory interactions in leaf, the predictions were filtered for leaf-expressed genes (Methods 

S3). 

To test MINI-AC’s ability to use single-cell derived datasets, we evaluated the motif enrichment 

results of the Marand dataset cell types by combining published datasets of single-cell or 

single-nuclei-derived RNA-seq DE genes from different leaf cell types: mesophyll, bundle 

sheath, guard cell, subsidiary, and pavement cell (Methods S2). Additionally, for each of these 

cell-types, we generated a functional GRN (Data S2). We found that 30%, 29%, and 34% of 

the motifs predicted as enriched are recognized by DE TFs in mesophyll, subsidiary, and 

bundle sheath, respectively. These numbers increased to 44%, 35%, and 36% when 

considering only the top 150 enriched motifs (Table S4), showing that prioritizing motifs by 

their significance can improve the retrieval of cell-type specific DE TFs. For guard cell, given 

the low number of DE genes and TFs, the percentage of motifs associated with DE TFs was 

very low (3%). Additionally, to assess the impact of the TFs bound by enriched motifs on their 

target genes, we computed the fraction of DE target genes in each of the regulons (DE target 



 

genes precision), and the fraction of total DE genes they represent (DE target genes recall). 

We found that, on average, per dataset (except for guard cell and subsidiary), between 10-

35% of the target genes were DE, which represents between 5-25% of all the DE genes 

(Figure S8A and S8B). This result reveals that a substantial fraction of the ACR-based 

regulatory interactions identified by MINI-AC are supported by strong regulation of the target 

gene. 

Next, we compared the enrichment results using singe-cell-derived and bulk-derived ACRs, 

and analyzed the total enriched motifs and DE enriched motifs (Figure S9A and S9B). We 

observed a large agreement between both ACR data types, so we resorted to differences in 

the motif enrichment ranks to identify TFs showing specificity. We compared the rank of the 

DE TFs that were within the top 150 ranked motifs in any of the datasets, and used Borda 

rank (geometric mean of all ranks) to identify TFs with a consistent low rank across all datasets 

(high confidence regulators) and TFs with low rank in one cell-type compared to other datasets 

(cell-type specific regulators). Gene identifiers for the different genes reported below can be 

found in Table S5. 

To find putative general leaf regulators, we focused on the top 150 ranked TFs showing 

differential expression with the lowest Borda ranks (Figure 4 and Table S6). The TF with the 

lowest Borda rank across all bulk and single-cell datasets was Zm00001d006034, an ortholog 

of Arabidopsis AHL10 (AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN 10) involved in 

growth regulation during stress in Arabidopsis (Wong et al. 2019), but which has not been 

characterized in leaf development. Other TFs showing consistently low ranks were HB78 (up-

regulated in subsidiary), HB62 (down-regulated in mesophyll), and HB11, which showed the 

highest motif enrichment in mesophyll and subsidiary (rank 3 and 4 respectively; same rank 

because they are associated with the same motif). HB78 is an ortholog of Arabidopsis HAT3, 

shown to have a critical role in establishing the dorso-ventral axis in cotyledons and developing 

leaves (Bou-Torrent et al. 2012), while HB62 is an ortholog of Arabidopsis HAT22, which has 

been reported to function in leaf development and act as a repressor of an osmotic stress 

related regulator (Preciado, Begcy, and Liu 2022; Seok et al. 2022). The gibberellic acid 

mediated signaling pathway was among the enriched functional categories for the target 

genes of HB62 and AHL10 in mesophyll. Gibberellic acid plays a key role in leaf development 

and size of the division zone (Strable and Nelissen 2021). Among those target genes, there is 

gibberellin 20-oxidase1 (GA20OX1), which is determinant of the division zone size (Nelissen 

et al. 2012).  

To find putative cell-type specific regulators, we focused on TFs with low ranks in specific cell-

types (Data S3). Based on 79 cell-type specific DE TFs in mesophyll, 54 (68%) were predicted 

by MINI-AC as enriched in the mesophyll specific ACRs. The DE TFs EREB102 and EREB54 

showed high enrichment in mesophyll compared to other cell-types. EREB102 was up-



 

regulated in mesophyll and its regulon showed high enrichment for mesophyll up-regulated 

genes (17% of the target genes), suggesting that EREB102 is an important mesophyll 

regulator. The regulon predicted by MINI-AC for this TF in mesophyll was functionally enriched 

for photosynthesis, chloroplast organization and response to light. MYBR100 also showed 

specificity for mesophyll (Figure 4 and Figure 5) and is an ortholog of Arabidopsis RVE6 

(REVEILLE6), involved in the regulation of circadian rhythm and mesophyll cell size 

determination (Gray et al. 2017). The MYBR100 regulon showed functional enrichment for 

“circadian rhythm” and enrichment for mesophyll up-regulated genes (18% of the DE target 

genes). 

For bundle sheath 53 out of 73 (72%) DE TFs were associated with at least one enriched 

motif. Besides the identification of OCL5a, HB75, and HB91 (Table S7) (Javelle et al. 2010; 

2011), three bundle sheath DE TFs ranked third in motif enrichment: DOF11, DOF17, and 

DOF23. Their Arabidopsis ortholog VDOF1 was characterized in lignin biosynthesis of 

vascular tissue in Arabidopsis (Ramachandran et al. 2020). In maize, bundle sheath cells are 

surrounded by a suberin barrier, a molecule that shares precursors with lignin (Mertz and 

Brutnell 2014; Bezrutczyk et al. 2021). Additionally, DOF motifs have been previously shown 

to be preferentially enriched in bundle sheath cells (in comparison with mesophyll), further 

suggesting these are relevant candidates with an important role in bundle sheath function (Dai 

et al. 2022). Examples of other TFs identified for bundle sheath can be found in Table S7. 

Regarding guard cell, we found enrichment at rank 35 for the DE TF DOF12, which is an 

ortholog of Arabidopsis SCAP1, a regulator of the final stages of guard cell maturation (Negi 

et al. 2013). Functional analysis of the guard cell GRN (Figure S10A) revealed regulons with 

functional enrichment related with this cell-type’s function, e.g. “regulation of cellular response 

to alkaline pH” (Suhita et al. 2004), “regionalization”, “regulation of microtubule polymerization 

or depolymerization” (Y. Li et al. 2022), “response to water deprivation” (Lawson and Matthews 

2020), “cellular response to lipid” (Misra et al. 2015) and “movement of cell or subcellular 

component” (Y. Li et al. 2022). A maize ortholog of SCAP1, DOF25, was predicted to be 

involved in cellular response to lipids (Negi et al. 2013). JAM1, JAM2 and ZBF11 are 

Arabidopsis bHLH TFs involved in response to jasmonate, a hormone known to regulate 

stomatal movement, and their maize orthologs (bHLH57 of JAM1, bHLH99 of JAM2, and 

MYC7 and bHLH91 of ZBF1) were predicted by MINI-AC to regulate response to alkaline pH 

in guard cells. Alkalinization of cytoplasm has been observed to precede jasmonate-induced 

stomatal closure (Suhita et al. 2004). 

In subsidiary cells, NAC109 (ortholog of ATAF1) and NAC67 (ortholog of VNI2) were DE, both 

with rank 32. NAC TFs, in leaf, are mostly known for their major role in senescence (Kim, 

Nam, and Lim 2016), and ATAF1 and VNI2 have been reported to be involved in this process 

(Yang et al. 2011; Garapati et al. 2015), among others (Delessert et al. 2005; Wang et al. 



 

2009; Yamaguchi et al. 2010). While NAC67 was up-regulated and NAC109 was down-

regulated, their function in subsidiary cells is currently unknown. 

Besides validating the top ranked regulators using cell-type specific DE genes, we also 

investigated if MINI-AC can identify new regulators that are currently lacking experimental 

support based on expression. We selected all the regulators among the top 10 ranks for each 

ACR dataset and compared their ranks in the other datasets (Figure S11). The TFs of the TCP 

family, despite not being DE in any cell type, had a very low enrichment rank in various 

datasets which is in agreement with previous findings of TCP genes regulating traits of leaf 

development (Chai et al. 2017). Other TFs, among them DOF and OCL/HD-ZIP TFs, showed 

the opposite trend: highly enriched in single-cell derived datasets compared to bulk datasets. 

One of them, OCL3, has been correlated with leaf length and width (Cruz et al. 2020). We 

found four motifs from the CPP TF family that showed low ranks in leaf provascular, guard 

mother cells, and subsidiary cells (Figure 5; the motif with the lowest ranks has 33, 34, and 49 

respectively). Different of these CPP motifs are associated with TFs that are orthologs of 

Arabidopsis TSO1 (as well as SOL1 and SOL2; Figure S10B), which is involved in the stomatal 

lineage specification (Simmons et al. 2019). 

Finally, we explored if MINI-AC was able to capture the known functional partition between 

mesophyll and bundle sheath cells in maize C4 metabolism (Edwards et al. 2001) using single-

cell-derived ACRs. Their respective GRNs were filtered for DE genes in each cell-type and 

then used for functional enrichment. For both cell types, we identified GO terms related with 

their specific photosynthetic functions, such as carbon utilization (mesophyll) or RuBisCO 

subunits assembly (bundle sheath), among others (Figure S12 and Table S8) (Majeran et al. 

2005; Dai et al. 2022). Additionally, by selecting regulons showing function enrichment for 

photosynthesis, we observed that the photosynthetic GRNs of each cell-type have many 

shared elements (80% of the shared target genes; Figure S13A). We also identified putative 

overlapping regulators of genes known to be cell-type specific for both cell-types, like carbonic 

anhydrases for mesophyll and RuBisCO subunits for bundle sheath (several NAC and HB 

TFs, as well as KANADI3, GLK24, and YABBY5; see Figure S13B). 

Taken together, we demonstrated that MINI-AC can be used to retrieve known and novel 

regulators from both single-cell and bulk ACR data. By ranking motifs based on their 

significance values in different ACR datasets, MINI-AC identified TFs preferentially enriched 

in specific leaf cell types, which are DE and were predicted to regulate target genes enriched 

in biological processes specific to those cell types. We also predicted novel TFs that were not 

previously characterized with a leaf function, and revealed that genes that are key for the C4 

metabolism in mesophyll and bundle sheath are potentially regulated by a set of partially 

overlapping TFs. 

 



 

Discussion 

Identifying and characterizing regulatory DNA is crucial to understand the control of gene 

expression underlying developmental and adaptive processes in plants. Methods that profile 

regulatory DNA, such as ATAC-seq, have been developed and applied to plants, both at the 

bulk and single-cell level (Lu et al. 2019; Marand et al. 2021). To harness the increasing 

availability of chromatin accessibility datasets for improving our understanding of gene 

regulation, we developed MINI-AC, a computational method to infer GRNs in plants by 

integrating TF motif information with chromatin accessibility. 

Several methods that integrate TFBS information with chromatin accessibility have been 

developed. TOBIAS uses ATAC-seq data to identify TF footprints and integrates TFBS to 

estimate differential binding scores between conditions. In comparison to MINI-AC, TOBIAS 

is specific for ATAC-seq data, impeding the analysis of accessibility datasets profiled with 

other methods. TOBIAS identifies footprint scores for different TFBS, meaning it identifies TFs 

with clear footprints, but this does not necessarily reflect enrichment of that TF in the ACR set. 

Besides, the tool it uses to map TFBS within the footprints is MOODs (Motif Occurrence 

Detection Suite; (Korhonen et al. 2009)), which has a high false positive rate (Kulkarni, Marc 

Jones, and Vandepoele 2019). MEDEA performs motif enrichment using area under the 

receiver operating characteristic curve, but it does not perform inference of GRN and lacks 

support for plants. Other methods integrate TFBS and AC data to constrain expression-based 

network inference. For example, CellOracle, IReNA, and Inferelator 3.0, use accessibility-

based GRNs that are refined or extended using single-cell expression data. These GRNs are 

built by simply scanning TFBS in ACRs, without performing motif enrichment to filter spurious 

or false positive motif matches. MINI-AC, conversely, finds the motifs that occur in an ACR set 

more than expected by chance, and exclusively considers these for the GRN inference.  

When comparing the motif enrichment performances of different tools, MINI-AC outperformed 

Giggle and Bedtools in predicting cell-type specific DE genes given cell-type specific ACRs. 

MINI-AC proves a better alternative for real accessibility datasets with complex motif signals. 

This could be explained by differences in the enrichment methodology, given that MINI-AC 

computes a p-value by contrasting against a background distribution of motif matches within 

ACRs, while Giggle and Bedtools use a Fisher’s Exact two-tailed test considering overlapping 

and unique intervals. Although this gives Giggle and Bedtools a computational efficiency 

advantage, our results show that this comes with a reduction in performance in complex 

datasets. Inference of an Arabidopsis GRN for mesophyll showed the power of MINI-AC to 

correctly identify known regulators of circadian rhythm and light perception, demonstrating 

MINI-AC’s potential to predict novel regulators. 



 

Maize has a genome with long intergenic regions and a high abundance of transposable 

elements (Jiao et al. 2017), resulting in a complex landscape of regulatory DNA (Ricci et al. 

2019). Therefore, we evaluated the impact of using different maize non-coding genomic 

spaces on GRN inference. We observed that locus-based MINI-AC with a small non-coding 

genomic space yielded the most complete GRNs (0.139 recall and 0.665 precision), while the 

genome-wide mode predicted the most precise GRNs (0.121 recall and 0.736 precision), with 

28% of its ChIP-confirmed interactions being distal. This is important for maize, where 

approximately one third of the ACRs are distal (Ricci et al. 2019). Although it seems 

counterintuitive that smaller non-coding genomic spaces produce larger GRNs, this is due to 

a strict FIMO internal cut-off to prevent spurious motif matches when working in the genome-

wide mode. Larger non-coding genomic spaces have a lower density of functional TFBS, so 

FIMO applies more stringent internal cut-offs, yielding less motif matches, especially for low-

complexity motifs. Nevertheless, the genome-wide mode prioritizes distal motif matches if they 

have a higher score than proximal motif matches. Although masking of repetitive sequences 

and transposable elements during motif mapping could be an alternative to improve genome-

wide performance, transposable elements frequently contain binding motifs for transcription 

factors (Hénaff et al. 2014) and transposons within ACRs have been associated with higher 

expression of nearby genes (Noshay et al. 2021), indicating their importance for wiring 

transcriptional networks (Qiu and Köhler 2020).  

Using MOA-seq peaks as MINI-AC’s input showed better performance at predicting ChIP-

confirmed regulatory interactions compared to using MOA-seq footprints, but the latter showed 

a better prioritization of relevant motifs at low ranks. When evaluating ChIP-confirmed 

interactions, the MINI-AC GRN inferred using AC from MOA-seq showed lower precision, but 

higher recall compared to the GRN inferred using AC from ATAC-seq, which resulted in a 

MOA-seq F1 between 0.245-0.275 and a ATAC-seq F1 of 0.207. The difference in recall is 

expected given that the MOA-seq dataset was composed of 593,781 peaks (56 Mbps) and 

214,198 footprints (32 Mbps) in comparison to the ATAC-seq dataset with 32,481 peaks (13 

Mbps), but the precision of MOA-seq did not drop below 0.5, meaning it can still control for 

false positives. This proves MOA-seq as a valuable method to learn chromatin accessibility-

based GRNs. 

We demonstrated that MINI-AC works with single-cell-derived data using the dataset of 

(Marand et al. 2021) on different leaf cell types. MINI-AC predicts enriched motifs that are 

associated with cell-type specific DE TFs, and this number increases among the top-ranked 

motifs. Moreover, a comparison of motif enrichment ranks between bulk and single-cell 

datasets allowed to identify general and putative cell-type specific regulators of leaf. The 

application of MINI-AC to study the C4 metabolism in maize revealed that the photosynthetic 

GRNs of mesophyll and bundle sheath had many shared elements, but they allowed to 



 

pinpoint putative regulators of processes and genes specific to each cell-type. On one hand, 

single-cell ATAC-seq provides accessibility landscapes at single-cell resolution, allowing to 

find cell-type specific ACRs that can be used to predict cell-type specific GRNs. On the other 

hand, bulk accessibility profiling still holds value to identify master regulators that do not show 

a cell-type specific expression pattern. Yet, a direct comparison of the suitability of bulk or 

single-cell for GRN inference is challenging due to the lack of a gold standard reporting cell-

type specific interactions. Additionally, MINI-AC’s evaluation on leaf was done using the 

availability of a map of mesophyll regulatory interactions for 104 TFs profiled with ChIP-seq 

(Tu et al. 2020), allowing to benchmark the predicted GRNs. As the profiling of regulatory 

interactions in maize is extended to different tissues, further evaluations assessing cell-type 

specific GRNs will be possible.  

One of MINI-AC’s limitations is the incomplete characterization of TF motifs, especially for 

plants (Jaime A Castro-Mondragon et al. 2022). We tried to alleviate this bottleneck in the 

direct determination of TFBS by using TF motifs predicted with similarity regression of 

sequence specificity of DNA-binding domains (Weirauch et al. 2014; Lambert et al. 2019). 

This, however, produces an elevated number of TFs associated to the same motif, and vice 

versa, which makes the identification of candidate regulators challenging. Nevertheless, given 

the predictive power of TF motifs for building GRNs (Wilkins et al. 2016; Kulkarni et al. 2018; 

Kajala et al. 2021; Ferrari, Manosalva Pérez, and Vandepoele 2022), it is crucial that additional 

efforts are directed towards the direct experimental profiling of TFBS in plants for the yet 

uncharacterized TFs. In the meanwhile, our results indicate that integrating gene expression 

information is a good alternative for the prioritization of TF candidates by filtering out TFs not 

expressed in a specific organ, cell type or condition. Integration of DNA shape information 

could be another data source to further improve GRN inference and target gene identification. 

Using a machine learning approach, it has been shown that DNA shape data can be used to 

discriminate between bound and unbound motif occurrences, and to discriminate between the 

binding events of TFs that bind the same motif (Sielemann et al. 2021). However, such an 

approach might have limited applicability as insufficient data is available to train the machine 

learning models effectively. In the MINI-AC locus-based mode, the motif matches are 

automatically assigned to the target genes. For the genome-wide mode, the motif matches 

are annotated to the closest target gene, and we showed that annotating the closest gene has 

a higher ratio of annotation of DE genes vs. non-DE genes, compared to annotating the two 

closest genes. However, in maize, there are important phenotypic traits controlled by distal 

regulatory interactions spanning hundreds of kilobases and several intermediate genes (Peng 

et al. 2019). These are currently not captured by MINI-AC, but the recent application of ChIA-

PET (G. Li et al. 2010) to maize (Peng et al. 2019; E. Li et al. 2019), a technology that profiles 



 

genome-wide long-range chromatin interactions, could be used to integrate these interactions 

into the GRN predictions. 

With the continuous progress of omics and single-cell technologies, the development of 

algorithms that effectively exploit this data is crucial (Depuydt, De Rybel, and Vandepoele 

2023). Specifically, integrating accessibility and expression data from the same cell-type or 

cells enables adding new layers of information to the GRNs, such as the interaction type 

(activation or repression) or finding cell-to-cell mobile TFs (Marand et al. 2021). Several 

methods use accessibility-based networks as a scaffold to filter based on expression (e.g. 

CellOracle (Kamimoto et al. 2023)), so MINI-AC is a promising tool that can be used to 

generate input ACR-based GRNs for such tools. As we recently developed MINI-EX (Motif-

Informed Network Inference method based on single-cell EXpression data) (Ferrari, 

Manosalva Pérez, and Vandepoele 2022), a method that integrates single-cell transcriptomic 

data with TF motif information to define GRNs, the combination of both tools offers new 

opportunities to infer more accurate cell-type specific GRNs. 

In conclusion, we present MINI-AC as a valuable tool to infer chromatin accessibility- and 

motif-based GRNs, optimized for plants. MINI-AC can be applied to either bulk- or single-cell-

derived datasets, inferring accurate GRNs that contain both proximal and distal regulatory 

interactions. Functional analysis of the different regulons allowed to pinpoint known and novel 

putative regulators controlling circadian rhythm and light perception in Arabidopsis, and 

different photosynthetic processes in maize. With the increasing availability of bulk and single-

cell chromatin accessibility datasets, MINI-AC is a valuable tool for unraveling regulatory 

cascades in plant biology. 

Materials and methods 

Integration and curation of TF motifs 

For Arabidopsis, TF motifs modeled as position weight matrices (PWMs) were collected from 

a previously curated collection (Kulkarni, Marc Jones, and Vandepoele 2019) and combined 

with motifs from JASPAR 2020 (Fornes et al. 2020) and CisBP version 2.00 (Weirauch et al. 

2014). The PWMs were compared in a pairwise manner to remove duplicates using the 

Regulatory Sequence Analysis Tools (RSAT) (Jaime Abraham Castro-Mondragon et al. 2017) 

program “compare-matrices”. PWMs with a Ncor (similarity metric) of 1 were considered 

duplicates. The Arabidopsis gene models of the TFs collected are from the gene annotation 

version Araport11 (Cheng et al. 2017). For maize, TF motifs were collected only from JASPAR 

2020 and CisBP 2.00 and the duplicate removal was done as in Arabidopsis. The maize 



 

JASPAR 2020 TF gene names associated with each motif were converted manually to AGPv4 

gene ID nomenclature by querying MaizeGDB (Woodhouse et al. 2021). The maize CisBP 

2.00 TF gene IDs were converted from AGPv3 to AGPv4 gene ID nomenclature using a gene 

ID conversion table derived from the combination of GRAMENE (Tello-Ruiz, Jaiswal, and 

Ware 2022) (http://www.gramene.org; accessed 4th October 2021) and MaizeGDB. For both 

species, the motif/TF family information was retrieved from PlantTFDB (Jin et al. 2017) and 

PlnTFDB (Riaño-Pachón et al. 2007). The total number of collected motifs was 1699 and 1335, 

which are associated with 1117 (representing 57 TF families) and 1234 (representing 41 TF 

families) TFs for Arabidopsis and maize, respectively. 

Extraction of non-coding genomic search space and motif 

mapping 

The extraction of the non-coding genomic search space for the genome-wide MINI-AC mode 

was done by taking the genomic complement of the CDS features in the genome annotation 

files of Arabidopsis and maize. The genome versions used were Araport11 (Cheng et al. 2017) 

for Arabidopsis and AGPv4 (Jiao et al. 2017) for maize, both downloaded from PLAZA 

monocots 4.5 (Van Bel et al. 2018). The extraction of the non-coding genomic search space 

for the locus-based MINI-AC mode was done by obtaining, per locus (only protein-coding 

genes), the 5 kb upstream of the TrSS, introns, and 1 kb downstream of the TrES. For maize, 

two additional locus-based definitions were also tested: 1 kb upstream of the TrSS, introns, 

and 1 kb downstream of the TrES (small non-coding genomic search space), and 15 kb 

upstream of the TrSS, introns, and 2.5 kb downstream of the TrES (large non-coding genomic 

search space). In all cases, when the promoter or terminator region of one locus overlapped 

with the coding sequence of another neighboring locus, the regulatory sequences were 

shortened to avoid overlap. Thus, many regulatory sequences are shorter than the specified 

window size. In Arabidopsis, for example, the mean upstream promoter size is 2021 bp, and 

for maize they are 978 bp, 4326 bp, and 11,053 bp for the small, medium and large non-coding 

genome definitions, respectively. Cluster-Buster (version Compiled on Sep 22, 2017) (Frith, 

Li, and Weng 2003) and FIMO (version 4.11.4) (Grant, Bailey, and Noble 2011) were used to 

map the motifs on the non-coding genome. Before the motif mapping with Cluster-Buster the 

PWMs were scaled to 100. The command lines options used for each tool were “fimo -o 

$output $PWMfile $seqFile” and “cbust-linux $PWMfile $seqFile -c 0 -f 1”. 

 



 

Bulk and single-cell chromatin accessibility datasets 

The Arabidopsis phloem and epidermis cell-type specific bulk datasets were downloaded from 

the supplementary dataset 2 of (Tian et al. 2021) and the induced ACRs for phloem and 

epidermis were selected. For Arabidopsis, bulk differentially accessible chromatin regions 

between mesophyll and stem cells were obtained from (Kulkarni, Marc Jones, and Vandepoele 

2019) (original study (Sijacic et al. 2018)). The number of peaks for each of the Arabidopsis 

datasets are summarized in Table S1. The maize leaf bulk ACR datasets used were 

downloaded from GEO (GSE128434 (Lu et al. 2019)) or PlantCADB (PRJNA391551, samples 

284 and 285, and PRJNA518749, samples 288 and 289) 

(https://bioinfor.nefu.edu.cn/PlantCADB/) (K. Ding et al. 2022). The replicates were processed 

by keeping peaks that overlap at least 50% of their length in either of the replicates, yielding 

20,919 peaks for PRJNA391551 and 51,835 peaks for PRJNA518749. Leaf cell-type specific 

peaks were obtained from a single-cell ATAC-seq maize dataset (Marand et al. 2021). The 

count per million (CPM) matrix was downloaded from GEO (GSE155178). This matrix contains 

the CPM value of 165,913 peaks (rows) in 92 different subclusters (columns) grouped in 10 

clusters, and annotated to 56 different cell types. The peak specificity per subcluster was 

estimated by computing the z-score of the CPM per row (accessibility of peak X in cell type Y 

- mean accessibility of peak X in all cell types / standard deviation of accessibility of peak X in 

all cell types). To ensure completeness of the GRNs, we selected the top 10,000 z-scoring 

peaks of 18 leaf-related subclusters that had > 50% of seedling cells (it was the only sample 

profiled in (Marand et al. 2021) that contained leaf tissue). These 18 subclusters span 4 

clusters and 10 cell type annotations (bundle sheath, mesophyll, bulliform, leaf provascular, 

subsidiary, guard mother cell, guard cell, stomatal precursor, L1 leaf primordia and 

parenchyma). 

MOA-seq data processing and peak calling 

To assess putative TF footprints genome-wide, we performed MOA-seq on B73 plants grown 

under long-day conditions (16h day/8h night, 28/21℃) for 26 days. For each biological 

replicate, leaf blade tissue of 12 plants was harvested, pooled and immediately frozen in liquid 

nitrogen. Collected tissues were homogenized and processed for MOA-seq library 

constructions following a previous protocol (Savadel et al. 2021). 

For the MOA-seq data analysis, the B73 AGPv5 genome (Hufford et al. 2021) was indexed 

using STAR (v2.7.9a) (Dobin et al. 2013). Raw reads of MOA-seq data were preprocessed 

using SeqPurge (v2022-07-15) (Sturm, Schroeder, and Bauer 2016) with parameters of “-

min_len -qcut 0” Overlapping MOA-seq paired-end reads were merged into single-end reads, 

https://bioinfor.nefu.edu.cn/PlantCADB/


 

including base quality score correction, using NGmerge (v0.3) (Gaspar 2018) with parameters 

“-p 0.2 -m 15 -d -e 30 -z -v”. Processed reads were aligned against the indexed reference 

genome using STAR (v2.7.9a) with BAM format output. As STAR is designed to map RNA, 

we set the flag --alignIntronMax 1 for DNA (prevents introns being allowed). Alignment 

fragments with less than 81 bp and a MAPQ of 255 (uniquely mapping) were retained for 

further analysis.  

For MOA peak calling, we first merged the replicate’s BAM outputs, determine the average 

fragment length using samtools (v1.16) (H. Li et al. 2009), and the effective genome size with 

unique-kmers.py (https://github.com/dib-lab/khmer/). MACS3 (v3.0.0a7) (Zhang et al. 2008) 

was used to determine significant peaks with parameters “-q 0.05 -g {effective genome size} 

-s {fragment length} --min-length {fragment length} -max-gap {2x fragment length} --nomodel 

--extsize {fragment length} --keep-dup all”. To obtain high resolution MOA footprints, reads 

were shortened to 20bp around the center of each read as described in (Liang et al. 2022) 

and significant footprints were determined with MACS3 using the same parameters as were 

used for the peak files. For comparison with AGPv4 data, MACS3 peaks were converted to 

B73 AGPv4 using liftOver (Hinrichs et al. 2006), with default parameters, using the chain file 

from Ensembl (Cunningham et al. 2022). The MOA-seq raw sequencing data has been 

deposited to the NCBI under the BioProject ID PRJNA961163 (BioSamples IDs 

SAMN34353189, SAMN34353190, and SAMN34353191). 

Motif enrichment in ACRs and inferring TF - target gene 

regulatory interactions 

To estimate the motif matches in ACR expected by chance, the input ACRs are shuffled 1000 

times across the non-coding genomic search space and the number of motif matches 

overlapping with them are counted. The procedure of shuffling peaks across the non-coding 

regions did not show differences when considering the GC percentage of the peaks in the 

ACR background generation (4 bins of the non-coding genome regions based on their GC 

percentage were generated and each peak of the input ACR set was shuffled only across the 

corresponding bin). Therefore, we kept the shuffling across all the non-coding regions at once. 

An empirical p-value is computed by counting how many times the number of motif matches 

in ACRs expected by chance is equal or larger than the real one. The enrichment fold is 

computed as the real number of motif matches in ACR divided by the number of motif matches 

in ACR expected by chance. The p-value is corrected for multiple hypothesis testing using the 

Benjamini-hochberg method (q-value) (Benjamini and Hochberg 1995)). TFs associated with 

enriched motifs (q-value below threshold) are linked to their target genes if a TFBS within an 



 

ACR peak is in the regulatory sequence of a gene (locus-based mode) or in its proximity 

(genome-wide mode). To rank the motifs, the π-value was used, which is the -log10(q-value) 

multiplied by the enrichment fold. 

In the locus-based MINI-AC mode, the TFs are linked to their corresponding target genes 

when there is a motif match within an ACR. In the genome-wide MINI-AC mode, the motif 

matches within ACRs are annotated to the closest gene using “bedtools closest -a 

$motif_matches_within_ACR -b $genes_coordinates -t all -d -D b -k 1” (Quinlan and Hall 

2010). The number of closest genes to be annotated as target genes can be changed to two, 

in case selecting the closest gene is deemed too restrictive (https://github.com/VIB-PSB/MINI-

AC). Additionally, it is possible to set a cut-off distance of the second-closest gene to the peak 

for it to be annotated as target gene to avoid the annotation of very distal second-closest 

genes that might increase the number of false positives. 

The suitability of annotating the second-closest genes as target genes was done by using two 

maize cell-type specific scATAC-seq datasets (mesophyll and bundle sheath; methods section 

“Bulk and single-cell chromatin accessibility datasets”) (Marand et al. 2021) and assessing the 

proportion of first and second-closest genes that were DE. Precision was computed as the 

number of annotated genes (first only, or first and second) that are DE, divided by the total 

number of annotated target genes. Recall was computed as the number of DE target genes 

divided by the total number of DE genes. Precision, recall, and F1 were computed using the 

ACR peaks annotating only the first closest gene, and then adding to these genes the second-

closest genes if they fall within a certain cut-off distance from the gene. 

MINI-AC has been implemented as a Nextflow pipeline (https://www.nextflow.io/) (Di 

Tommaso et al. 2017) version 21.10.6 (DLS2) and can be downloaded from the GitHub 

repository https://github.com/VIB-PSB/MINI-AC and executed as a command line pipeline 

following the instructions in the tutorial. Examples of the different motif enrichment and network 

output files are described in a tutorial on the MINI-AC GitHub page. 

GO enrichment of network regulons 

For Arabidopsis, the GO annotations were downloaded from http://geneontology.org/gene-

associations/tair.gaf.gz on 22nd July 2021. They were filtered for GO annotations of type “full”, 

and evidence types “experimental” and “author/curator statement” (evidence codes: EXP, 

IMP, IDA, IPI, IGI, IEP, TAS, NAS, and IC). For maize, the GO annotations were downloaded 

from PLAZA Dicots 4.5 

(https://bioinformatics.psb.ugent.be/plaza/versions/plaza_v4_5_dicots/) (Van Bel et al. 2018). 

GO annotation files were extended for parental terms and filtered for GO terms that were 

associated with less than 1000 genes (discarding very general GO terms), and for GO terms 

https://github.com/VIB-PSB/MINI-AC
https://github.com/VIB-PSB/MINI-AC
https://www.nextflow.io/
https://github.com/VIB-PSB/MINI-AC
http://geneontology.org/gene-associations/tair.gaf.gz
http://geneontology.org/gene-associations/tair.gaf.gz
https://bioinformatics.psb.ugent.be/plaza/versions/plaza_v4_5_dicots/


 

of the category “Biological Process” (BP). The GO enrichment of the networks predicted by 

MINI-AC is calculated using the hypergeometric distribution to determine a q-value by 

correcting for multiple hypotheses testing with the Benajmini-Hochberg procedure. This 

means that for each regulon in the network, the overrepresentation of specific biological 

processes in the target genes is evaluated. 

Comparison of genomic interval enrichment methods in 

Arabidopsis 

To compare MINI-AC with Giggle (Layer et al. 2018) and Bedtools Fisher (Quinlan and Hall 

2010), both programs were run with the following parameter setting: “giggle index -i input_file 

–o giggle_index –f; giggle search -I giggle_index –a acr_file –s –g 119667750” and “bedtools 

fisher –a motif_mappings –b acr_file –g fasta_index”. The “synthetic” ACR dataset was 

obtained by intersecting an Arabidopsis seedling ACR dataset (Lu et al. 2017) (downloaded 

from GEO with accession number GSE85203; 50k and 500 nuclei samples were combined 

after processing replicates by keeping peaks overlapping reciprocally 50% of their length) with 

the 500 top scoring ChIP-seq peaks of 19 out 21 TFs profiled in Arabidopsis (Song et al. 2016) 

for which there was a motif available in our motif collection (downloaded from GEO with 

accession number GSE80564; only the EtOH samples were used). For each method, the p-

values returned were corrected for multiple testing using a Benjamini-Hochberg procedure, 

yielding q-values. The minimum p-value that MINI-AC can generate for motif enrichment is 

0.001 (as a result of obtaining the background ACR by shuffling the real ACR 1000 times), 

while Giggle and Bedtools Fisher give p-values in very small orders of magnitude (up to 10-

200). Therefore, we used a set of 100 shuffled datasets (the 3 real ACR and the “synthetic” 

ACR datasets were shuffled 25 times each using “bedtools shuffle”) where we expected zero 

enriched motifs (any enriched motif at a specific q-value can be considered a false positive) 

and determined the q-value at which we obtained zero enriched motifs to use as the q-value 

cut-off. Using the q-values at a false discovery rate of 0% (0.01 for locus-based MINI-AC, 0.1 

for genome-wide MINI-AC, 10-32 for Giggle, and 10-31 for Bedtools Fisher), precision, recall, 

and F1 were computed for each method and dataset. Precision was computed as the number 

of enriched motifs belonging to true positive TFs divided by the total number of enriched motifs 

predicted. Recall was computed as the number of enriched motifs belonging to true positive 

TFs divided by the total number of motifs belonging to true positive TFs. F1 was computed as 

the harmonic mean between precision and recall. 



 

Comparison of MINI-AC non-coding genomic search space 

strategies in maize 

The motif enrichment results for the different MINI-AC modes and non-coding genomic search 

space definitions were evaluated by ranking motifs using the π-value. The resulting networks 

were evaluated, by computing precision, recall, and F1, using a previously published maize 

leaf gold standard of TFBS of 62 TFs profiled using ChIP-seq (Tu et al. 2020). The ChIP-seq 

peaks were annotated to the closest gene using “bedtools closest” to obtain a ChIP-seq-based 

GRN. To benchmark each MINI-AC non-coding space definition and mode with the possibility 

of obtaining a recall of 1, the gold standard was adapted accordingly (so-called “adapted GS”). 

The gold standard network was first filtered for TFs associated with motifs present in our PWM 

collection. Then, the peaks that did not contain the motif of the correct incoming TF were 

removed, based on FIMO and Cluster-Buster motif mapping. To determine the proportion of 

correct TF-target gene interactions predicted by each MINI-AC mode and non-coding genomic 

search space definition, the motif mappings within ACRs were overlapped with the “adapted 

GS” peaks, and its distance to the corresponding target gene was determined using “bedtools 

closest”.  
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Figures 

 

Figure 1. Overview of MINI-AC and its modes. (A) Overview of MINI-AC methodology, 

inputs and outputs. MINI-AC receives as input a genome sequence and annotation, TFBS 

information, and a user-provided ACR file. As output, it generates information about motifs 

showing enrichment on the ACRs, a network that is context-specific for the provided ACRs 

and a functional enrichment analysis of the regulons in the GRN. (B) Overview of the two 

modes implemented in MINI-AC, depending on the non-coding genomic search space used 

for motif mapping: genome-wide and locus-based. 



 

 

Figure 2. Benchmark of MINI-AC in Arabidopsis. (A) Comparison of performance statistics 

(recall, precision, and F1) for Bedtools Fisher, Giggle, and genome-wide and locus-based 

MINI-AC modes. For each dataset used in the comparison, the legend indicates the number 

of motifs expected to be retrieved as enriched by the different tools (true positive motifs). (B) 

Network showing the regulatory interactions predicted by MINI-AC for mesophyll that show an 

enrichment for GO annotations (q-value < 0.01) of “response to red or far red light” (in red) 

and “circadian rhythm” (in blue). The TFs shown are regulators predicted to control the 

expression of target genes enriched for the mentioned GO terms. The edge width represents 

the -log10(q-value) of GO enrichment, while the node color represents the mesophyll 

expression specificity, measured as -log2(mesophyll expression rank / stem expression rank). 

  



 

 

Figure 3. Performance comparison of MINI-AC modes at predicting proximal and distal 

regulatory interactions using a leaf maize bulk dataset. (A) Comparison of the three non-

coding genomic spaces in locus-based MINI-AC, and genome-wide MINI-AC. The point plots 

show the performance statistics in predicting TFs of the gold standard associated with 

enriched motifs (upper plot), and in predicting enrichment of motifs associated with TFs from 

the gold standard (lower plot). (B) Precision-recall curve of retrieval of enriched motifs by MINI-

AC that are associated with TFs of the maize leaf gold standard, for the different methods 

tested (locus-based or genome-wide). (C) Point plot showing the performance statistics of the 

different tested MINI-AC modes in predicting ChIP-confirmed TF-target gene interactions of 

the gold standard. (D) Stacked barplot showing the proportion of proximal (< 2kb from the 

closest gene), genic (introns + UTRs), and distal (> 2kb from the closest gene) ChIP-seq 

confirmed interactions predicted by each method. (E) UpSet plot showing the number of 

unique and shared ChIP-confirmed regulatory interactions (proximal and distal) between the 

genome-wide and locus-based (medium non-coding genomic search space) MINI-AC modes. 

For visualization purposes, the UpSet plot only shows sets with more than 100 elements. 

  



 

 

Figure 4. Motif enrichment rank comparison of cell-type specific DE TFs in leaf single-

cell and bulk datasets in maize. Bubble plot showing the ranks of all DE TFs associated with 

motifs within the top 150 enriched motifs in any dataset (bulk or single-cell ACR sets). The 



 

rows are annotated based on the up- or down-regulation status of the TF in mesophyll, bundle 

sheath, guard cell, subsidiary or pavement cell (red for up-regulated genes and blue for down-

regulated genes). The blue or red shade is proportional to -log2(fold change), averaged for 

cell types shared between the single-cell and single-nuclei RNA-seq datasets used. The 

bubble size represents the motif enrichment rank, with larger bubbles indicating lower ranks. 

 

Figure 5. Motif enrichment analysis of a leaf single-cell dataset in maize. Heatmap 

showing motif enrichment ranks of the top 50 enriched motifs in the leaf cell types of the 

Marand dataset. On the x-axis, cell-type specific DE TFs associated with the enriched motifs 

are shown, and, in parentheses, the cell-type where the TF is DE. The column annotation 

corresponds to different color-coded TF families. Cells in gray indicate motifs enriched in a 

cell type, but outside the top 50. 
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Supplementary Table 1 

Supplementary Table 1. Summary of datasets used for MINI-AC benchmark in 

Arabidopsis. 

Supplementary Table 2 

Supplementary Table 2. Statistics of the TF-target gene leaf-specific gold standard set 

adapted to each MINI-AC mode and non-coding genomic space definition. 

Supplementary Table 3 

Supplementary Table 3. Summary of the motif enrichment results and GRNs predicted 

by MINI-AC using two types of ACRs derived from MOA-seq. 
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Supplementary Table 4. Summary of the motif enrichment results for leaf bulk- and 

single-cell-derived ACR sets. 

Supplementary Table 5 

Supplementary Table 5. AGPv4 gene IDs of the genes mentioned in the publication. 

Supplementary Table 6 

Supplementary table 6. Summary of the motif enrichment ranks for cell-type specific 

DE TFs in different bulk- and single-cell-derived ACR sets, along with metadata and 

expression data about those TFs. 

Supplementary Table 7 

Supplementary Table 7. Summary of examples of regulators and regulons predicted by 

MINI-AC which show literature support. 



 

Supplementary Table 8 

Supplementary Table 8. MINI-AC-predicted regulators with regulons showing 

enrichment of GO terms related with C4 metabolism. 

Supplementary Dataset 1 

Supplementary Dataset 1. MINI-AC TF-centered table, motif-centered table, functional 

network and node attributes table result files for the Arabidopsis dataset of mesophyll 

used in this study (Sijacic et al. 2018). 

Supplementary Dataset 2 

Supplementary Dataset 2. GRN predicted from cell-type specific peaks of the Marand 

dataset, reporting cell-type specific interactions in mesophyll, bundle sheath, guard 

cells and subsidiary cells. It includes functional enrichment information. 

Supplementary Dataset 3 

Supplementary Dataset 3. MINI-AC TF-centered table and motif-centered table result 

files for the Marand dataset of the cell types mesophyll, bundle sheath, subsidiary and 

guard cell. 
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