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Abstract
Little is known about the dynamics of k-ary (binary, ternary, quaternary, quinary, etc.) reversible number-conserving cellular
automata. Here, we present some preliminary results in the case of seven states. In particular, we examine one of the most
complex seven-state reversible and number-conserving rules and provide a full description of its dynamics.

Keywords Multi-state cellular automata · Number conservation · Reversibility

1 Introduction

A popular class of multi-state cellular automata (CAs) is the
class of so-called k-ary CAs having {0, 1, 2, . . . , k − 1} as
state set, for some natural number k greater than 1. Since
each state is a nonnegative integer, it can, for instance, be
interpreted as the number of particles occupying a given cell
and, for this reason, these CAs are readily used for modeling
various physical phenomena.Unfortunately,we cannot equip
the state set {0, 1, 2, . . . , k − 1} with a nice mathematical
structure as, for example, in the case of the ring Zk , to resort
to methods that have been developed so far.

When physical phenomena governed by some conserva-
tion law (e.g., of mass or energy) are simulated, usually
a special subclass of CAs is used: number-conserving CAs
(NCCAs), i.e., CAs that preserve the sum of the states of all
the cells upon every update (see, e.g., Durand et al. 2003).
The second very desirable property ofCAs used formodeling
physical phenomena is reversibility, which ensures preserva-
tion of information. As a result, from the modeling point
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of view, k-ary CAs that are both number conserving and
reversible are the most interesting ones.

The dynamics of reversible k-ary NCCAs has been very
little studied, even in the one-dimensional case. However,
when the smallest possible radius of the neighborhood is
considered, i.e., radius 1/2, it is known that all reversible
k-ary NCCAs can be seen as shift-identity product cellular
automata (García-Ramos 2012). Of course, such CAs have a
very simple dynamics and therefore their computing abilities
are seriously limited. On the other hand, it has been shown
that when the radius is increased to 3/2, then it is possible to
find a reversible k-ary NCCA that is computationally univer-
sal (Morita 2017).

The study of the dynamics of reversible k-ary NCCAs
with radius 1 has gained momentum in recent years, in par-
ticular thanks to the establishment of complete lists of such
CAs for k ∈ {5, 6, 7} (previously, complete lists were known
only for k ≤ 4). These investigations revealed, inter alia, that
for k = 7 all reversible k-ary NCCAs (septenary NCCAs),
except for shifts, have a finite order. More precisely, each of
them repeats each configuration in a 60-cycle (Wolnik et al.
2022). Hence, their dynamics is definitely simpler than that
of reversible k-ary NCCAs for k = 6 (senary NCCAs), as
most of the latter (306 out of 471) do not have a finite order.
For example, this means that there is a particle interpretation
of a reversible septenary NCCA, where each particle moves
in a restricted space, while for reversible senary NCCAs
the particles can move arbitrarily far (see Figs. 1a, b for a
visual comparison of the dynamics of reversible senary and
septenary NCCAs). It is worth pointing out here that Kari
and Ollinger (2008) showed that, in general, the problem of
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Fig. 1 A sample space-time
diagram of a reversible
senary (a) and a reversible
septenary (b) NCCA

(a) (b)

determining if a given reversible one-dimensional cellular
automata has a finite order (is periodic) is undecidable.

It is not known why the reversible septenary NCCAs with
radius 1 are so simple, but intuition says that it has to do with
the fact that 7 is a prime number. Indeed, if k is a composite
number, then there exist methods (see, e.g., Wolnik et al.
2022) that allow to construct reversible k-ary NCCAs with
radius 1 having infinite order (other than shifts). Hence, such
a simple dynamics can happen only for prime k. Moreover,
we observe such a simple dynamic for k ∈ {2, 3, 5} (see, for
example, Wolnik et al. 2022 or Sect. 2.2). But does it happen
for every prime k? In an attempt to answer this question,
we initiated the study of reversible septenary NCCAs and
present our first observations.

2 Preliminaries

2.1 Basic definitions

We decided to only sketch the notations needed, as we hope
that the readers are familiar with cellular automata. In the
paper we consider only CAs with radius 1, even if we do not
emphasize it in some places.

Let k be some natural number greater than 1 and let [0..k)
denote the set {0, 1, 2, . . . , k − 1} (we adopt the notation
of García-Ramos 2012). A one-dimensional k-ary CA with
radius 1 is defined by a function f : [0..k)3 → [0..k),
referred as the local rule. For a natural number N , as cell space
we will consider regular linear grids CN = {0, 1, . . . , N −1}
with periodic boundary conditions or the infinite linear grid
C∞ = Z.

A configuration on CN is any mapping from the grid CN
to [0..k). The set of all possible configurations on the grid
CN is denoted by XN and is identified with [0..k)N . The set
of all configurations is denoted by X∗, i.e.,

X∗ =
∞⋃

N=1

XN =
∞⋃

N=1

[0..k)N .

Analogously, an infinite configuration is any mapping from
the grid C∞ to [0..k). The set of all possible infinite config-
urations is denoted by X∞ and is identified with [0..k)Z.

For a given configuration x (infinite or not), the value of
cell n is denoted by xn and #(x) denotes the sum of the
states in x, i.e., #(x) = ∑

n∈C xn , where C stands for C∞
or CN . Additionally, in the case of x ∈ X∞, we define the
partial sum of x between the index −n and the index n as
#n(x) = ∑n

i=−n xi .
Furthermore, by Xfin we denote the subset of X∞ consist-

ing of all infinite configurations with finite sum of states, or
equivalently

Xfin = {
x ∈ X∞ : {n ∈ Z : xn �= 0} is finite} ,

while by Xper we denote the subset of X∞ consisting of all
periodic configurations, i.e.,

Xper = {
x ∈ X∞ : ∃i ∈ N ∀n ∈ Z x(n + i) = x(n)

}
.

A given local rule f induces the following three global
functions:

– the global rule F : X∗ → X∗, which we identify
with the cellular automaton and which is defined in the
usual way: if x ∈ XN , then F(x) ∈ XN and F(x)n =
f (xn−1, xn, xn+1), where, in view of periodic boundary
conditions, all operations on the indices are performed
modulo N ;

– the infinite global rule F∞ : X∞ → X∞ given for each
x ∈ X∞ and n ∈ Z by F∞(x)n = f (xn−1, xn, xn+1);

– the block-mapping Fbl : ⋃∞
N=3 XN → X∗ given for

each N ∈ N and x ∈ XN+2 by

Fbl(x0, x1, . . . , xN+1) = ( f (x0, x1, x2), f (x1, x2, x3),

. . . , f (xN−1, xN , xN+1)).

Additionally, one can consider the restriction of F∞ to the
set Xper, which we will denote by F. Of course F : Xper →
Xper. The differences between the definitions of F , F∞ and
Fbl are shown in Fig. 2.

123



An exploration of reversible septenary number-conserving cellular automata: a survey of… 465

Fig. 2 Differences between the functions F, F∞ and Fbl

Let us recall that each local rule f : [0..k)3 → [0..k) can
be represented as a labelled graph with [0..k)2 as the set of
vertices (the so-called de Bruijn representation). The set of
edges is then defined as follows: for any a, b, c ∈ [0..k), there
is an edge abc from vertex ab to vertex bc and it is labelled by
f (a, b, c) (e.g., Fig. 3 presents the de Bruijn representation
of the elementary cellular automaton ECA110).

The de Bruijn representation allows to see configura-
tions (infinite or not) as paths in this graph. Moreover,
it enables a very simple way to read the value of the
functions F, F∞ and Fbl. Indeed, for any configuration
x ∈ ⋃∞

N=3 XN , the value Fbl(x) is given by a word con-
sisting of labels of edges along the corresponding path
x0x1x2, x1x2x3, . . . , xN−1xN xN+1. For any configuration
x ∈ XN the value F(x) is given by a word consist-
ing of labels of edges along the corresponding cycle
xN−1x0x1, x0x1x2, . . . , xN−3xN−2xN−1, xN−2xN−1x0.
Similarly, values of F∞ are given by labels of edges along
bi-infinite paths.

In our investigation, we focus on k-ary CAs that have two
important (from the point of view of applications) proper-
ties. The first one is number conservation, which means that
the sum of all states in any configuration remains constant
throughout the evolution of the automaton.

Definition 2.1 A global rule F : X∗ → X∗ is number con-
serving if for all x ∈ X∗, it holds that #(F(x)) = #(x).

If a local rule f satisfies f (0, 0, 0) = 0, then it is called
legal (or we say that 0 is a quiescent state). Obviously, if
a global rule F is number conserving, then the correspond-
ing local rule has to be legal, i.e., the following necessary
condition holds (see, e.g., Boccara and Fukś 1998).

0 1

1

1

0

1
1

0
00

01

10

11

Fig. 3 The de Bruijn representation of the elementary cellular automa-
ton ECA110

Remark 2.2 Let f : [0..k)3 → [0..k) be a local rule and F :
X∗ → X∗ be the corresponding global rule. If F : X∗ → X∗
is number conserving, then f (0, 0, 0) = 0.

In the case of the infinite grid C∞, the definition of the
property of being number conserving is a little bit compli-
cated.

Definition 2.3 An infinite global rule F∞ is number conserv-
ing if the following conditions hold:

(1) f (0, 0, 0) = 0,
(2) for each non-zero infinite configuration x ∈ X∞,

lim
n→∞

#n(F∞(x))
#n(x)

= 1.

Fortunately, according to Proposition 1 in Dennunzio et al.
(2013), these definitions are equivalent in the sense presented
below.

Remark 2.4 For a given local rule f the global rule F is
number conserving if and only if the infinite global rule F∞
is number conserving.

Note that for a legal local rule f the restriction of F∞ to the
set Xfin, which we will denote by Ffin, is an endomorphism,
i.e., Ffin : Xfin → Xfin. Moreover, one-dimensional k-ary
number-conserving global rules have a very simple charac-
terization in terms of their local rules (see, e.g., Boccara and
Fukś 1998).

Theorem 2.5 Let f : [0..k)3 → [0..k) be a local rule and
F : X∗ → X∗ be the corresponding global rule. The global
rule F is number conserving if and only if for any x, y, z ∈
[0..k) it holds that

f (x, y, z) = x + f (0, y, z) − f (0, x, y)

+ f (0, 0, y) − f (0, 0, x) . (1)

An equivalent formulation of the above condition is also

f (x, y, z) = z + f (x, y, 0) − f (y, z, 0)

+ f (y, 0, 0) − f (z, 0, 0) . (2)

The second property of k-ary CAs we are interested in is
reversibility. Since X∗ is a disjunctive sum of finite sets XN ,
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bijectivity of F is equivalent to injectivity. We thus use this
property as a definition.

Definition 2.6 A global rule F : X∗ → X∗ is reversible if F
is an injection, i.e., for any x1, x2 ∈ X∗ such that x1 �= x2, it
holds that F(x1) �= F(x2).

Of course, for any k > 1 there are at least three global rules
that are both number conserving and reversible: the iden-
tity rule fId(x, y, z) = y, the left-shift rule fL(x, y, z) = z
and the right-shift rule fR(x, y, z) = x . We will call these
rules trivial. For k < 4, there is no other reversible k-ary
NCCA (even in a multi-dimensional case—see Wolnik and
De Baets 2019, 2020). However, for k ≥ 4, there are some
non-trivial ones.Until advancesweremade recently, the com-
plete lists of reversible k-ary NCCAs were known only for
k ≤ 4. First, the theory introduced in Wolnik et al. (2020)
made it possible to find all quinary NCCAs (k = 5) and then
check which of them are reversible. Next, using the method
described inWolnik et al. (2022) it was possible to enumerate
all reversible senary and septenary NCCAs, without listing
all the NCCAs first. The cardinalities of the obtained sets
are shown in Table 1 and the mentioned lists can be found
in Dziemiańczuk et al. (2020).

The following definition is formulated in the language of
group theory.

Definition 2.7 Let F be a global rule. If there exists a natural
number m such that the function Fm is the identity on X∗,
then we say that F has finite order and we define the order
of F as the smallest natural number with this property.

If a global rule F has a finite order, then it is not very
interesting for applications as it repeats each configuration
in an m-cycle, where m is the order of F . In particular, such
a CA cannot be computationally universal (in any reasonable
sense).

At the end of this section, in Fig. 4 we present the depen-
dencies between the surjectivity and injectivity of F∞, F, F
and Ffin (in the case of a legal local rule f ). Sincewedealwith
one-dimensional CAs, all the dependencies between F∞, F
and Ffin are known (see, e.g., Hedlund 1969 or Kari 2005a),
while the presented dependencies between F and F are obvi-
ous.

It is known that in the case of the infinite global rule F∞ the
concepts of injectivity, bijectivity and reversibility are equiv-
alent (see, e.g., Kari 2005b). Thus, according to Remark 2.4,
for a given local rule f the infinite global rule F∞ is reversible
and number conserving if and only if the global rule F is so.

Although in this paperwe focus on the global rules F only,
we present the other ones and the dependences between them,
since we will use results from papers that consider infinite
grids and, accordingly, F∞, Ffin or F are used.

Fig. 4 Implications between the injectivity and surjectivity properties
of F∞, F, F and Ffin, in the case of a legal local rule f

2.2 The description of reversible quinary NCCAs

Although our investigation concerns reversible septenary
NCCAs, we start by recalling the description of the dynamics
of reversible quinary NCCAs (since k = 5 is also a prime
number). The full description of all 21 such CAs is given
in Wolnik et al. (2022), but we decided to present it here for
two reasons: for the readers’ convenience and to have the
possibility to introduce the language of swaps.

Since the state set [0..5) is sufficiently rich, we can easily
design a quinary CA that is both number conserving and
reversible. Indeed, ifwe pick some swap (ab) ↔ (cd), where
a, b, c, d are different elements from [0..5) such that a+b =
c + d, then we can define a CA of radius 1 by a simple
relation: if in a given time step in a configuration there is the
pattern ‘ab’, then in the next time step it will be replaced by
the pattern ‘cd’, while each pattern ‘cd’ will be replaced by
the pattern ‘ab’. Such a CA is obviously number conserving
(since we assume that a+b = c+d) and reversible (since it
has order 2, i.e., it is self-inverse). In the case of [0..5), there
are exactly 12 possible swaps, thus we can easily design 12
reversible quinary NCCAs using this method.

We will call two swaps (a1b1) ↔ (c1d1) and (a2b2) ↔
(c2d2) grade-separated if no two patterns (a1b1, c1d1, a2b2
and c2d2) can overlap. Note that two grade-separated swaps
(a1b1) ↔ (c1d1) and (a2b2) ↔ (c2d2) can coexist in the
same CA. For example, (30) ↔ (12) and (14) ↔ (32) can
coexist, i.e., we can define a reversible NCCAby the relation:
each pattern ‘30’, ‘12’, ‘14’, ‘32’ is replaced in the next time
step by the pattern ‘12’, ‘30’, ‘32’, ‘14’, respectively. Since
in the case of the set [0..5) there are exactly six pairs of such
swaps, we can design an additional six reversible quinary
NCCAs.

It turned out that there exists no other non-trivial quinary
reversible NCCA apart from the ones described above (Wol-
nik et al. 2022). Moreover, each of the non-trivial quinary
reversible NCCAs acts as follows: each configuration is
repeated every two time steps. The list of all reversible
quinary NCCAs and their description in the language of
swaps is given in Table 2.

123



An exploration of reversible septenary number-conserving cellular automata: a survey of… 467

Table 1 Numbers of specific
types of one-dimensional k-ary
CAs with radius 1

k All k-ary CAs k-ary NCCAs Reversible k-ary CAs Reversible k-ary NCCAs

2 22
3 = 256 5 6 3

3 33
3 ≈ 7.6 · 1012 144 1800 3

4 44
3 ≈ 3.4 · 1038 89588 ? 21

5 55
3 ≈ 2.4 · 1087 1876088314 ? 21

6 66
3 ≈ 1.2 · 10168 ? ? 471

7 77
3 ≈ 7.4 · 10289 ? ? 1669

Table 2 The list of all reversible
quinary NCCAs with radius 1

F Description of F F Description of F F Description of F

1 The right-shift rule 8 (31)↔(40), (32)↔(41) 15 (04)↔(13), (14)↔(23)

2 (12)↔(30) 9 The identity rule 16 (04)↔(31)

3 (12)↔(30), (14)↔(32) 10 (32)↔(41) 17 (03)↔(12)

4 (21)↔(30), (31)↔(40) 11 (23)↔(41) 18 (03)↔(12), (04)↔(13)

5 (21)↔(30) 12 (14)↔(23) 19 (03)↔(21)

6 (13)↔(40) 13 (14)↔(32) 20 (03)↔(21), (23)↔(41)

7 (31)↔(40) 14 (04)↔(13) 21 The left-shift rule

The global rule of a given CA is described in terms of swaps, where a swap (ab) ↔ (cd) means that every
pattern ‘ab’ in the subsequent time step is replaced by the pattern ‘cd’ and vice versa

Table 3 The number of reversible septenary NCCAs with radius 1 that
have order m (Table 6 in Wolnik et al. (2022))

m 1 2 3 4 6 12 30 60

1 634 72 324 540 8 60 28

3 An exploration of the dynamics of
reversible septenary NCCAs

We have been able to find all reversible NCCAs with state
set [0..7) and radius 1 (Wolnik et al. 2022). It turns out
that there are as many as 1669 of them. It is not possi-
ble to list all of them in this paper, but the complete list
can be found in Dziemiańczuk et al. (2020). A computa-
tional study of the obtained CAs has shown that all reversible
septenary NCCAs have a very limited dynamical behavior:
for each global rule F , except for two shifts, there exists
m ∈ {1, 2, 3, 4, 6, 12, 30, 60} such that Fm is the identity
rule (see Table 3), i.e., all of them have finite order.

Additionally, 1249 reversible septenary NCCAs have an
inverse CA with radius 1 and only 420 rules have an inverse
CAs with radius 2. Moreover, if F is the global rule of a CA
with radius 1, then its m-th power Fm can even have radius
m. For non-trivial reversible septenary NCCAs, however, we
have found that the actual radius of any power is at most 2
(thanks to this property, the calculation of F60 was possible).
More general approach to determining the minimal radius of
an inverse CA was studied by Czeizler (2004).

Unfortunately, the language of swaps used for quinary
CAs proved to be insufficient to describe the rules with seven
states: only 634 of them allow for a description using swaps
only. These are exactly the ones having order 2.

In [0..7) we can consider longer pattern cycles than just
swaps (one can see a swap (ab) ↔ (cd) as a pattern 2-cycle
(ab) → (cd) → (ab)). There are 72 new global rules that
can be described by using pattern 3-cycles (ab)→(cd)→
(e f )→ (ab), where {a, b, c, d, e, f } ⊂ {0, 1, 2, 3, 4, 5, 6}
and a + b = c + d = e + f ∈ {6, 7, 8}. Obviously, these
global rules have order 3 and their inverse CA has radius 1,
since it can be described by the reverse pattern 3-cycles (the
reverse pattern 3-cycle of (ab)→(cd)→(e f )→(ab) is, of
course, (ab)→(e f )→(cd)→(ab)).

Considering the combination of swaps and pattern 3-
cycles (taking into account grade separation), we obtain
another set of 540 global rules. These rules have order 6 and
their inverse rules are to be found among them (in particular
the inverse is of radius 1).

There are 420 remaining rules that do not allow for a sim-
ple description as above. They need to be more complicated
as their orders are 4, 12, 30 or 60. Moreover, we know that
their inverses have radius 2. We set forth to create another
description of these rules in order to understand them better
and explain their order.

It is known that there always exists a particle represen-
tation of an NCCA, however, it is usually not unique (see,
e.g., Boccara and Fukś 2006 or Pivato 2002). We decided
to base our particle representation on 2-cell patterns, which

123



468 B. Wolnik et al.

could be seen as a generalization of the descriptions in the
language of swaps and pattern 3-cycles.

Consider a global rule F . We will write the arrow a
x−→b,

where a, b ∈ [0..7) and x > 0, to indicate that F acts as
follows: exactly x particles from state a move to the right,
whenever the cell on the right is in state b (and analogously
a

x←−b). For example, a swap (ab)↔(cd), with a > c, can
be described as a pair of arrows a

x−→b and c
x←−d, where

x = a − c. Similarly, for a < c, we get c
x−→d and a

x←−b,
where x = c − a. The set of all arrows for the global rule F
will be denoted as α(F). Note that the corresponding local
rule f can be obtained by the following simple formula:

f (a, b, c) = b + x + y − z − u,

where α(F) contains the arrows a
x−→ b, b

y←− c, a
z←− b

and b
u−→ c (if α(F) does not contain any of these arrows,

then we put 0 as the corresponding term). This approach also
allowsus to introduce apartial order on the set of all reversible
septenary NCCAs: F1 ≤ F2 if and only if α(F1) ⊆ α(F2).
Although this partial order is quite sparse (as there are as
many as 416 maximal elements), it seems to be a decent
measure of the complexity of the considered global rules.

We decided to choose one of the most complex rules to
carry out a more comprehensive study and the choice fell on
Rule2 (we use this name because this rule has number 2
in the dataset in Dziemiańczuk et al. (2020)), since (i) it is
a maximal element in the partial order, (ii) it is one of 28
global rules having order 60 and (iii) its inverse has radius 2.
Belowwe present the lookup table of Rule2 as the sequence
of 73 values f (0, 0, 0), f (0, 0, 1), f (0, 0, 2), . . . , f (6, 6, 6)
with additional spaces after each seven values for the reader’s
convenience:

0000000 1131313 2222622 1353135 4444444 1555355 2666666
0000000 1131313 0000400 1353135 2222222 1555355 0444444
0000000 1131313 2222622 1353135 0000000 1555355 2666666
2222222 1131313 0000400 1353135 6666666 1555355 0444444
0000000 1131313 2222622 1353135 4444444 1555355 2666666
4444444 1131313 2222622 1353135 6666666 1555355 2666666
4444444 1131313 2222622 1353135 4444444 1555355 2666666

A detailed study of Rule2 allows to explain where the
order 60 originates from and fully describe its dynamics.
More precisely, the dynamics of Rule2 can be described
easily in terms of the rows of the following seven matrices:

A =

⎡

⎢⎢⎢⎢⎣

3 6 0
5 0 4
1 4 4
3 2 4
5 4 0

⎤

⎥⎥⎥⎥⎦
, B =

⎡

⎢⎢⎣

1 6 0
3 0 4
1 2 4
3 4 0

⎤

⎥⎥⎦ , C =
⎡

⎣
3 2
5 0
1 4

⎤

⎦ ,

D =
[
3 0
1 2

]
, E =

[
1 6
3 4

]
, F =

[
2 4
6 0

]
, G =

[
3 6
5 4

]
. (3)

Indeed, let any initial configuration x ∈ X∗ be given. We
can cut it into small pieces (with a length of at most three)
according to the following procedure. First, we find andmark
all positions in x at which there is some row ofA or B. Next,
in parts of x not marked at this time, we find and mark all
positions at which there is some row of C,D, E,F or G.
Finally, all unmarked parts of x are cut into one-cell pieces.
It turns out that Rule2 acts on each of the obtained pieces
separately. The pieces with length one remain unaltered. The
pieces with length two or three change cyclically, accord-
ing to the cycle given by the appropriate matrix. Below we
describe this more formally.

For M ∈ {A,B, C,D, E,F ,G}, let M denote the number
of rows of M and for i ∈ {1, 2, . . . ,M}, let Mi denote the i-th
row of M . Then in each time step, Rule2 acts as follows:

Mi
(Rule2)t−−−−−→ Mmod(i+t,M) ,

where mod(t,m) denotes the remainder of the division of t
by m. Since 60 is the least common multiple of 5, 4, 3 and
2, it is the order of Rule2. Figure5 illustrates the above
description on a sample configuration.
Following this description, it is easily to see that any power
of Rule2 has radius at most 2. Indeed, the mth power of

Rule2 acts as follows: Mi
(Rule2m )t−−−−−−→ Mmod(i+mt,M). Since

each row of M ∈ {A,B, C,D, E,F ,G} has a length of at
most three, so the radius 2 is sufficient to define Rule2m .

We are able to theoretically prove all the facts about
Rule2presented above, however, our proof is strongly based
on properties of Rule2’s lookup table, thus it cannot be
easily adapted to other rules. In the future, more general
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Fig. 5 Illustration on a sample
configuration with periodic
boundary conditions of how
Rule2 acts in terms of the rows
of the matrices listed in (3)

methods to discover the dynamics of reversible septenary
NCCAs would need to be found. Nevertheless we decided
to present our current version of the proof for the readers’
convenience in Appendix A.

4 The neighborhood scope of inverse
automata

The description of the inverse rule by indicating its radius
expressed as a natural number, as was done in the previous
section, is very imprecise. A more detailed description uses
the notion of scope of the neighborhood (for a given local
rule f , the scope of its neighborhood means the number of
consecutive cells whose states are needed to calculate the
values of f ). Indeed, suppose that we consider a local rule f
with radius r , i.e.,

F(x)n = f (xn−r , . . . , x0, . . . , xn+r ).

It may happen that f does not depend on xn+r−1 and
xn+r . In such case, the scope of the neighborhood is definitely
smaller than 2r + 1. For example, the left-shift rule and the
right-shift rule both have radius 1, but the scope of their
neighborhood is not 3, but only 1. In this section we present
a very useful tool introduced in Nasu (1977) for surjective
legal CAs that allows to easily determine the scope of the
neighborhood of the inverse automaton (see Theorem 4.9
below).

4.1 Bundle graphs for reversible NCCAs

The theory presented in Nasu (1977) has been developed for
the general case of an arbitrary surjective F∞ (in particu-
lar, there is no condition on the radius). According to Fig. 4,
we can use this theory in the case of a reversible F . Below
we recall the definitions and facts from Nasu (1977) refor-
mulated to the present setting, i.e., with state set [0..k) and
radius equal to 1. Note that we can use this theory to study
reversible NCCAs, since they are surjective (see Fig. 4) and
their local rules are legal (which is additionally required for
some theorems in Nasu (1977)).

For a given x ∈ XN+2, let us define the left end and
the right end of x as l(x) = x0x1 and r(x) = xN xN+1,
respectively. Using the de Bruijn representation, we can say
that the path corresponding to the configuration x starts at
the vertex x0x1 and ends at the vertex xN xN+1.

Definition 4.1 Let f be a local rule, u ∈ [0..k)2 and x ∈ XN .
The right bundle R f (u, x) is the set of all v ∈ [0..k)2 such
that there exists y ∈ XN+2 with l(y) = u, r(y) = v and
Fbl(y) = x.

In the language of the de Bruijn representation, the right
bundle R f (u, x) is the set of all vertices v such that there
exists a path y from the vertex u to v satisfying Fbl(y) = x.
To illustrate this definition, let us look at Fig. 3 showing the
de Bruijn representation of the elementary cellular automa-
ton ECA110. One can see, for example, that R f (00, 1) =
{01}, R f (00, 10) = ∅, and R f (01, 111) = {01, 11}.

Analogously, we define the left bundle L f (u, x) as the set
of all vertices v such that there exists a path y from the vertex
v to u satisfying Fbl(y) = x.

Definition 4.2 Let F be a local rule, u ∈ [0..k)2 and x ∈ XN .
The left bundle L f (u, x) is the set of all v ∈ [0..k)2 such
that there exists y ∈ XN+2 with l(y) = v, r(y) = u and
Fbl(y) = x.

For example, for the local rule f of ECA110, we have
L f (00, 1) = ∅, L f (00, 10) = {01, 11}, and L f (01, 111) =
{00, 01, 10}.

Note that for any u ∈ [0..k)2 and x ∈ XN , the cardinality
of R f (u, x) does not exceed k2 (since R f (u, x) ⊆ [0..k)2).
Thus, we can definemaximal right bundles as those that have
the maximum cardinality among all the right bundles of f .
Analogously, L f (u, x) is said to be maximal if it has the
maximum cardinality among all the left bundles of f . Let
R f and L f denote the set of all maximal right bundles and
all maximal left bundles, respectively.

The following theorem collects essential facts about the
setsR f and L f proved in Nasu (1977).

Theorem 4.3 Let F be a reversible k-ary CA.

(P1) If R f (u, x) ∈ R f , then R f (u, xy) ∈ R f , for any
y ∈ [0..k).
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Fig. 6 The example used in the proof of Lemma 4.4

(P2) Let R f (u1, x1), R f (u2, x2) ∈ R f . If R f (u1, x1) =
R f (u2, x2), then R f (u1, x1y) = R f (u2, x2y), for any
y ∈ [0..k).

(P3) The right bundle R f (00, 0k
2
) is maximal.

(P1’) If L f (u, x) ∈ L f , then L f (u, yx) ∈ L f , for any
y ∈ [0..k).

(P2’) Let L f (u1, x1), L f (u2, x2) ∈ L f . If L f (u1, x1) =
L f (u2, x2), then L f (u1, yx1) = L f (u2, yx2), for any
y ∈ [0..k).

(P3’) The left bundle L f (00, 0k
2
) is maximal.

Note that in the above theorem, it is not required that
F is number conserving. The following lemma shows the
additional benefit of number conservation.

Lemma 4.4 Let F be a reversible k-ary NCCA. Then
R f (00, 0k

2
) = R f (00, 00) and L f (00, 0k

2
) = L f (00, 00).

In particular, both R f (00, 00) and L f (00, 00) are maximal.

Proof Let u1u2 ∈ R f (00, 0k
2
). Thus Fbl(00x1x2 . . . xk2−2

u1u2) = 0k
2
(see Fig. 6). We will show that all xi have to

be zero. If not, then there exists xm with minimal index m
such that xm �= 0. But then, according to Eq. (1), we have (if
needed, we put xk2−1 = u1 and xk2 = u2)

0 = f (xm, xm+1, xm+2) = xm + f (0, xm+1, xm+2)

− f (0, xm, xm+1)

+ f (0, 0, xm+1) − f (0, 0, xm)

= xm + f (0, xm+1, xm+2)

+ f (0, 0, xm+1),

which means that all terms xm, f (0, xm+1, xm+2),
f (0, 0, xm+1) are zero. In particular, xm = 0 contrary to
the assumption. As all xi are zero, then both f (0, 0, u1) =
0 and f (0, u1, u2) = 0, so u1u2 ∈ R f (00, 00). Thus

R f (00, 0k
2
) ⊆ R f (00, 00). Since R f (00, 0k

2
) is maxi-

mal, it holds that R f (00, 0k
2
) = R f (00, 00). The proof of

L f (00, 0k
2
) = L f (00, 00) is similar and is based on Eq. (2).

��
Properties (P1) and (P2) allow to construct a directed

graph R f having R f as set of vertices and labelled arcs.
Indeed, let R ∈ R f , i.e. R = R f (u, x) for some u ∈ [0..k)2
and x ∈ XN , then for any y ∈ [0..k) we add an arc from R
to R f (u, xy) labelled by y.
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Fig. 7 Bundle graphs for the quinary NCCAwith f being the local rule
with index 18 listed in Table 2

Analogously, properties (P1’) and (P2’) allow to construct
a directed graph L f havingL f as set of vertices and labelled
arcs created as follows: if L = L f (u, x) ∈ L f , then for any
y ∈ [0..k) we add an arc from L to L f (u, yx) ∈ L f labelled
by y.

The following important theorem holds Nasu (1977).

Theorem 4.5 Let F be a reversible k-ary CA. Both graphs
R f and L f are strongly connected.

A useful consequence of the above theorem is the possibil-
ity of constructing the entire graph R f (or L f ) knowing at
least one vertex of it. By Lemma 4.4, we know that the right
bundle R f (00, 00) is maximal, so it is one of the vertices of
R f . Moreover, the right bundle R f (00, 00) is very simple to
calculate. Thus, we can generate the entire graph R f using
Algorithm 1; the algorithm for generating the graph L f is
analogous.

Figure 7 shows the graphs R f and L f for the reversible
quinary NCCA with f being the local rule with index 18
listed in Table 2. The vertices of these graphs are maximal
(left and right, respectively) bundles and are listed below.

vertex maximal left bundle vertex maximal right bundle
in L f nR f

v0 {00, 10, 20, 30, 40} v0 {00, 01, 02, 12, 13}
v1 {01, 11, 21, 31, 41} v1 {03, 04, 10, 11, 14}
v2 {02, 03, 22, 32, 42} v2 {20, 21, 22, 23, 24}
v3 {04, 12, 23, 33, 43} v3 {30, 31, 32, 33, 34}
v4 {13, 14, 24, 34, 44} v4 {40, 41, 42, 43, 44}

It appears that for all reversible quinary NCCAs except
for the shifts (i.e., the quinary NCCAs listed in Table 2 with
indices 2–20), the bundle graphs have a similar structure.
Each of them has five vertices representing pairwise disjoint
sets. For the right-shift rule, the left bundle graph has 25
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Algorithm 1 Generating the right bundle graph RF

Input: a local rule f given as a lookup table (LUT).
Output: right bundle graph RF given as (V , E), where V is the set
of vertices, E is the set of labelled arcs represented as triples (u, v, z),
where (u, v) is a directed edge from vertex u to vertex v with label z.

1. Set V = ∅, E = ∅.
2. Construction of the first vertex v0 (using Lemma 4.4)

Set v0 = ∅.
for x, y in {0, 1, . . . , k − 1} do

if f (0, 0, x) = 0 and f (0, x, y) = 0 then
Add (x, y) to v0.

end if
end for

3. Calculate the remaining vertices and edges using theBFS algorithm
starting at vertex v0 using the procedure newEdge(v, z) which
creates the outgoing edge with label z from the vertex v.
procedure newEdge(v,z):

Set u = ∅.
for (a, b) in v do

for c in [0..k) do
if f (a, b, c) = z then

Add (b, c) to u
end if

end for
end for
if u /∈ V then

Add vertex u to V
end if
Add (v, u, z) to E

end procedure

vertices (each is a singleton), while the right bundle graph
has only one vertex (equal to [0..k)2). For the left-shift rule,
of course, it is the opposite.

4.2 Definite finite automata

Any labelled directed graph can be considered as a finite
automaton. Let us recall the definition and some useful prop-
erties of this concept (see, e.g., Nasu 1977 for details).

Definition 4.6 A finite automaton A is a triple 〈�, S, T 〉,
where � is an input alphabet, S is a finite set of states and
T : S × � → S is a transition function.

Any transition function T can be extended in a natural way
to �∗, where �∗ is the set of all finite strings of elements of
�, as follows:

T (s, ε) = s and T (s, xy) = T (T (s, x), y),

for any s ∈ S, x ∈ �∗ and y ∈ � (here ε denotes the string
of length zero).

In the theory of finite automata, the notion of definiteness
is of importance. A finite automaton A = 〈�, S, T 〉 is 0-
definite if it has only one state, while it is d-definite, with

d ≥ 1, if for each string x ∈ �∗ of length d and any states
s1 and s2, it holds that T (s1, x) = T (s2, x), while there are
two states s′

1 and s
′
2 and a string y ∈ �∗ of length d − 1 such

that T (s′
1, y) �= T (s′

2, y). An automaton A is definite if it is
d-definite for some d ≥ 0.

Definition 4.7 Let A = 〈�, S, T 〉 be a finite automaton. Two
states s1, s2 ∈ S are said to be one-equivalent if T (s1, y) =
T (s2, y) for each y ∈ �. The fact that states s1 and s2 are
one-equivalent is denoted by s1 � s2.

Note that the relation � is indeed an equivalence relation.
Hence, starting fromanyfinite automaton A = 〈�, S, T 〉, we
can define the contraction of Aw.r.t.�, which yields the finite
automaton A/� = 〈�, S/�, T ′〉 where S/� = {[s] : s ∈ S}
is the quotient set of S w.r.t. � (the set of all equivalence
classes) and T ′ acts as follows: T ′([s], y) = [T (s, y)]. If S
contains at least two one-equivalent states, then the resulting
finite automaton has less states, so it is easier to study.Wewill
use the following facts concerning definite automata (Perles
et al. 1963) (see also Nasu 1977).

Theorem 4.8 Let A = 〈�, S, T 〉 be a finite automaton with
at least two states. If A is d-definite, for some d ≥ 1, then
there exist two distinct one-equivalent states in S. Moreover,
the contracted automaton A/� = 〈�, S/�, T ′〉 is (d − 1)-
definite.

According to the above theorem, for any definite automa-
ton A with at least two states, repeatedly applying con-
traction, we get a sequence of simpler and simpler finite
automata:

A0, A1, A2 . . . , Ad−1, Ad ,

where A0 = A, for k ∈ {0, 1, . . . , d−1}, Ak+1 = Ak/� and
Ad has only one state. Moreover, since Ad is 0-definite, the
initial finite automaton A then is d-definite.

4.3 Definiteness of bundle graphs

For a given k-ary global rule F , the graph R f is a finite
automatonR f = 〈[0..k),R f , T 〉, where the transition func-
tion T is determined by the arcs of R f in the following way:
for R1, R2 ∈ R f and y ∈ [0..k), it holds that T (R1, y) = R2

if and only if there is an arc in R f from R1 to R2 labelled by
y. The main result of Nasu (1977) states the following.

Theorem 4.9 Let F be a reversible k-ary NCCA. There
exist natural numbers dr and dl such that R f is dr -
definite and L f is dl -definite. Moreover, dr + dl − 1 is
the least scope of the neighbourhood of the local rule g
of the inverse automaton of F. More specifically, xi =
g(yi−(dr−1), . . . , yi , . . . , yi+(dl−1)).
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Fig. 8 a The right bundle graph R f for the quinary NCCA with f
being the local rule with index 18 listed in Table 2, b the contraction of
the graph in a, c the contraction of the graph in b

Note that according to the above theorem, the neighbor-
hood of the inverse automaton includes dr − 1 cells on the
left, the cell itself and dl − 1 cells on the right. Hence, the
radius of the inverse automaton equals max(dr , dl).

Using Theorem 4.8, we can calculate dr and dl for a given
reversible k-ary NCCA. For example, let us start with the
right bundle graph R f given in Fig. 7. This graph has five
vertices v0, v1, v2, v3 and v4. Among them, three vertices
have the same set of outgoing arcs (w.r.t. the labels): v2, v3
and v4 (see Fig. 8(a)). Therefore, we use the contraction to
obtain a newgraphwith three vertices only, given in Fig. 8(b).
These three vertices have the same set of outgoing arcs and
contracting them we obtain a new graph with one vertex and
one loop arc with all labels, as shown in Fig. 8(c).We applied
contraction twice and therefore R f is 2-definite.

To conclude our exploratory study of reversible septenary
NCCAs, we have applied the above theorems to all 1669
rules. The results are gathered in Table 4. We were curious
what the bundle graphs for reversible septenary NCCAs look
like. In particular, we were interested whether their vertices
are disjoint subsets of [0..7) or not. Additionally, we wanted
to see if there were any dependencies between the descrip-
tion of reversible septenary NCCAs via bundle graphs and
the previously considered descriptions in the terminology of
patterns or arrows. As we have not observed any relationship
with the number of arrows from α(F) in the representation
of the rule (we had expected such a dependence at the begin-
ning of the study), we do not mention these numbers in the
table.

Below we present the main results of our investigation,
but, tomake the descriptionmore clear, we exclude the trivial
rules and focus on the remaining 1666 reversible septenary
NCCAs (rows 4–7 in Table 4).

First of all, unlike in the quinary case, the bundle graphs
for reversible septenary NCCAs need not have disjoint ver-

tices. However, L f has disjoint vertices if and only if R f is
2-definite. Moreover, all 1246 reversible septenary NCCAs
that allow for a description in the language of pattern 2-
and 3-cycles (and only these) have bundle graphs L f and
R f with disjoint vertices. For this reason, both L f and R f

are 2-definite, which agrees with the fact that their inverse
automaton has radius 1, but now we have additional infor-
mation that the scope of the neighborhood of their local rules
is really equal to 3 (see row 4 in Table 4).

We already knew that the other 420 reversible septenary
NCCAs are more complicated—in particular, their inverse
automata have radius 2. It appeared that only for 72 of them
the scope of the neighborhood really equals 5. Moreover,
these CAs have only order 4, 12 or 60 (see row 7 in Table 4).
The vast majority of reversible septenary NCCAs having an
inverse automaton of radius 2 have to be, in a way, less com-
plicated, since the scope of the neighborhood of their inverse
automata is only 4. Note that these CAs have only order 4,
30 or 60 (see rows 5 and 6 in Table 4).

Our exploratory study suggests that there is hope to incor-
porate the property of number conservation in the theory
developed in Nasu (1977) in order to make some general
statements about the scope of inverse automata. The goal
would be to find considerably sharper estimates for inverse
automata of reversible NCCAs.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A

Below we present the reasoning that leads to finding a
description of Rule2 dynamics in terms of the matrices
A,B, C,D, E,F ,G. We start with the following definition.

Definition A.1 Let F be the global rule of a reversible septe-
nary NCCA and let a, b ∈ [0..7). We will say that the
string ab is a left barrier (resp. a right barrier) for F , if
for each q ∈ [0..7) it holds that F(xab) = F(0ab) (resp.
F(abx) = F(ab0)).

Note that the barriers for a given global rule F are very
easy to see in its lookup table, as long as it is presented as
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Table 4 Description of all 1669
reversible septenary NCCAs
partitioned into seven classes
according to values of dl and dr

No Defined numbers Number of rules Description

1 dl = 0, dr = 2 1 Left shift

2 dl = 1, dr = 1 1 Identity rule

3 dl = 2, dr = 0 1 Right shift

4 dl = 2, dr = 2 1246 Each rule has graphsL f andR f
with 7 disjoint vertices. Each
rule is described in the language
of pattern 2-cycles and pattern
3-cycles. Each of these rules of
order 2, 3 or 6

5 dl = 2, dr = 3 174 Each rule has a graphR f with 7
disjoint vertices. The vertices of
the graphL f are not necessarily
disjoint and there are 11, 13 or
14 vertices. Each of these rules
is of order 4, 30 or 60

6 dl = 3, dr = 2 174 Each rule has a graphL f with 7
disjoint vertices. The vertices of
the graphR f are not necessarily
disjoint and there are 11, 13 or
14 vertices. Each of these rules
is of order 4, 30 or 60

7 dl = 3, dr = 3 72 For each rule the vertices of
both graphs L f and R f are
not disjoint. The numbers of
vertices are (11, 11), (12, 13) or
(13, 12). Eachof these rules is of
order 4, 12 or 60

the one for Rule2. Indeed, each seven-element string repre-
sents the values: f (ab0), f (ab1), f (ab2), f (ab3), f (ab4),
f (ab5), f (ab6) for some a, b ∈ [0..7), thus if all elements
of this string are the same, then ab is a right barrier for F .
Similarly for columns: each homogeneous column indicates
the existence of a left barrier. For example, Rule2 has the
following barriers:

left: 10 11 12 13 14 15 16
30 31 32 33 34 35 36
50 51 52 53 54 55 56

right: 00 10 20 30 40 50 60
04 14 24 34 44 54 64

The next definition highlights those parts of an initial con-
figuration where the global rule F always behaves the same,
no matter what the rest of the configuration looks like.

Definition A.2 Let F be the global rule of a reversible septe-
nary NCCA and let q1q2 . . . qs ∈ [0..7) be a string of
length s. We will say that F is locally number-conserving
on q1q2 . . . qs , if the following holds: there exists a string
q ′
1q

′
2 . . . q ′

s such that q1 +q2 +· · ·+qs = q ′
1 +q ′

2 +· · ·+q ′
s

and as soon as the string q1q2 . . . qs appears in a configura-
tion, F always converts it to the string q ′

1q
′
2 . . . q ′

s .

It appears that if ab and cd are a left and a right barrier
for F , respectively, then F is locally number-conserving on
each string starting with ab and ending with cd.

Lemma A.3 Let F be the global rule of a reversible septenary
NCCA and let q1q2 . . . qs ∈ [0..7) be a string of length s ≥ 2.
If q1q2 is a left barrier and qs−1qs is a right barrier for F,
then F is locally number-conserving on q1q2 . . . qs.

Proof If q1q2 is a left barrier and qs−1qs is a right barrier
for F , then F always converts q1q2 . . . qs to q ′

1q
′
2 . . . q ′

s =
f (0, q1, q2) f (q1, q2, q3) . . . f (qs−1, qs, 0). Thus, for the
configurationx = q1q2 . . . qs ∈ Xs wehave F(q1q2 . . . qs) =
q ′
1q

′
2 . . . q ′

s , which givesq1+q2+· · ·+qs = q ′
1+q ′

2+· · ·+q ′
s ,

since F is number-conserving. ��

Let us note that the above lemma also holds for a very
short string, for example for abc if ab is a left barrier and bc
is a right barrier, or even for ab in the case when ab is both
left and right barrier for F .

For a given matrix M let M denote the number of rows of
M and for i ∈ {1, 2, . . . ,M}, let Mi denote the i-th row of
M .

Theorem A.4 If M ∈ {A,B}, then Rule2 is locally number-
conserving on each row of M. Moreover in each time step,

123



474 B. Wolnik et al.

Rule2 acts as follows on a given row Mi :

Mi
(Rule2)t−−−−−→ Mmod(i+t,M) ,

where mod(t,m) denotes the remainder of the division of t
by m.

Proof Let us consider M = A. First of all, let us note that
Rule2 is locally number-conserving on the first row 360
(since 36 is a left barrier and 60 is a right barrier) as well
as on each of the other rows. Moreover, it is easily to check
that Rule2 converts q1q2q3 = 360 to q ′

1q
′
2q

′
3 = 504, 504 to

144, 144 to 324, 324 to 540 and 540 back to 360. According
to Lemma A.3 the proof in the case of M = A is finished.
The case of M = B is similar. ��

The above theorem has a very significant impact on the
form of space-time diagrams for Rule2. Indeed, let us con-
sider some initial configuration x ∈ X∗. If we find and mark
all positions in x at which there is some row of A or B, then
Theorem A.4 describes the look of parts of the space-time
diagram for x below the marked parts: these will be columns
of width 3 repeating some patterns in a cycle of length 5
or 4. Moreover, in the parts of x not marked at this time,
there is no strings identical with rows of A or B. Thus, to
calculate F(x) for these parts, we do not need the values
f (3, 6, 0), f (5, 0, 4) and so on. If so, then we can use the
following lookup table (LUT*):

0000000 1131313 2222622 1353135 4444444 1555355 2666666
0000000 1131313 0000*00 1353135 2222*22 1555355 *444444
0000000 1131313 2222622 1353135 0000000 1555355 2666666
2222*22 1131313 0000*00 1353135 *666666 1555355 *444444
0000000 1131313 2222622 1353135 4444444 1555355 2666666
4444*44 1131313 2222622 1353135 *666666 1555355 2666666
4444444 1131313 2222622 1353135 4444444 1555355 2666666

whereby*wedenote all the unusedvalues, so these placeswe
can fill in any way, for example, keeping the seven-element
strings or columns homogeneous. Note that after such a
procedure, we get additional barriers for, so now the list of
all barriers is as follows:

Left: 10 11 12 13 14 15 16
30 31 32 33 34 35 36
50 51 52 53 54 55 56
24 60

Right: 00 10 20 30 40 50 60
04 14 24 34 44 54 64
12 16 32 36

The next theorem describes how Rule2 works on each
of the unmarked segment of x separately.

Theorem A.5 Let x ∈ X∗ and let xn . . . xm be a segment
of x that contains no rows of A or B. On each row Mi

of a matrix M ∈ {C,D, E,F ,G} occurring in the segment
xn . . . xm Rule2 acts as follows:

Mi
(Rule2)t−−−−−→ Mmod(i+t,M) (4)

and leaves all other parts of the segment xn . . . xm unchanged.

Proof First of all, let us note that the formula given in Eq. (4)
holds for t = 1. Indeed, is some row Mi of a matrix
M ∈ {C,D, E,F ,G} occurs in the segment xn . . . xm , then
to calculate Rule2 on Mi we can use LUT*, since the seg-
ment xn . . . xm contains no rows of A or B. Note that each
row Mi of C,D, E,F ,G is both a left and a right barrier for
LUT*. Moreover, as one can easily check, Mi is converted
to Mmod(i+t,M).

Additionally, if we want to calculate Rule2 on the rest
of the segment xn . . . xm , then we do not need the val-
ues f (q, a, b) and f (a, b, q), where ab is any row of
C,D, E,F ,G and q ∈ [0..7). Thus we can use the following
lookup table:
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0000000 11*1*1* 2222*22 *3*3*3* 4444444 *555*55 *666666
0000000 11*1*1* ******* *3*3*3* ******* *555*55 *******
0000000 11*1*1* 2222*22 *3*3*3* ******* *555*55 *666666
******* 11*1*1* 0000*00 *3*3*3* ******* *555*55 *******
0000000 11*1*1* 2222*22 *3*3*3* 4444444 *555*55 *666666
******* 11*1*1* 2222*22 *3*3*3* ******* *555*55 *666666
******* 11*1*1* 2222*22 *3*3*3* 4444444 *555*55 *666666

so, we see that Rule2 acts on the rest of the segment
xn . . . xm as the identity.

To the end, it is sufficient to show that F(x)n . . . F(x)m
also contains no rows of A or B, since then the principle
of mathematical induction will do the rest. But it is easily
(though arduous) to check. ��
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