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Abstract – The heterogeneous character of concrete results in spatial variation of its material 6 

properties. Random field models are often used to account for this effect. Due to the large scatter on 7 

the correlation lengths suggested in literature, tests could be performed to determine the most 8 

appropriate correlation model and corresponding correlation length. Subsequently, different 9 

techniques can be employed to fit an analytical model to the experimental semivariogram resulting in 10 

the most appropriate correlation model and corresponding correlation length. However, the resulting 11 

correlation lengths can largely depend on the experimental design. In this work, the effect of several 12 

parameters and choices to be made by an engineer in deriving the correlation model based on 13 

experimental data from destructive tests has been investigated. It was found that the curve fitting 14 

method generally leads to better estimates of the scale of fluctuation compared to the maximum 15 

likelihood method. Moreover, there is a clear benefit of applying a bootstrapping procedure to the 16 

experimental data to estimate the covariance matrix adopted in the fitting procedures as well as to 17 

estimate the uncertainty related to the estimated parameters. When a measurement error is 18 

suspected to be present and cannot be neglected, the nugget should be estimated together with the 19 

variance and the scale of fluctuation. Furthermore, the Gaussian correlation model was found to be 20 

the most robust choice, even if the actual correlation model is not Gaussian. the latter was confirmed  21 

for actual experimental data on the material properties of concrete, where a linear model was found 22 

to fit the data best but the Gaussian model provided comparable results.   23 
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Introduction 24 

Material properties of concrete are having some spatial variation due to the heterogeneous character 25 

of the concrete. To account for this spatial variation, random field models are often used. Nevertheless, 26 

there is no general consensus on which correlation model should be applied and what are the 27 

appropriate correlation lengths for different concrete properties. Variables often modelled by random 28 

fields are the concrete cover, surface chloride concentration, concrete compressive strength, critical 29 

chloride concentration, diffusion coefficient of the concrete, water/cement ratio, Young’s modulus of 30 

the concrete, Poisson coefficient of the concrete, tensile strength of concrete, etc. (Vu & Stewart, 31 

2005; Straub, 2011; Tran et al., 2012; Criel et al., 2014; Chen et al., 2018; Liang et al., 2022; Feng et al., 32 

2022). There can be a large spread on the correlation lengths used for one variable, for example with 33 

ranges from 1 m to 3.5 m for the concrete cover and surface chloride concentration (Engelund, 1997; 34 

Vu, 2003; Li et al., 2004; Duprat, 2007; Stewart & Mullard, 2007). For the diffusion coefficient of 35 

concrete, suggested values for the correlation length range from 0.8 m to 2 m (Straub et al., 2009; 36 

Straub, 2011). Hence, it is not clear which correlation lengths should be used to model the spatial 37 

variation of the material properties of concrete. 38 

Due to the large scatter on the correlation lengths suggested in literature, tests could be performed to 39 

determine the most appropriate correlation model and corresponding correlation length. Recently, 40 

some authors have proposed methods to recover the properties of the correlation structure using 41 

spatially sparse data based on advanced signal processing methods. Some successful applications of 42 

these methods can be found in e.g. Zhao & Wang (2020), He et al. (2021) and He et al. (2022). The 43 

current work focusses on a different approach frequently adopted in geosciences, in which an 44 

experimental semivariograms is derived from the experiments, providing an estimation of the 45 

correlation between measurements at specified distances from each other (i.e. lag distances). 46 

Subsequently, an analytical model is fit to such an experimental semivariogram, for which different 47 

techniques can be employed. Based on the results of this fitting procedure, the most appropriate 48 

correlation model and corresponding correlation length can be derived. However, the resulting 49 
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correlation lengths can largely depend on the experimental design. For example, in (Zheng & Silliman, 50 

2000) it is stated that a common ‘rule’ applied for the estimation of the correlation model is that at 51 

least 30 pairs of measurements are required for each lag distance in order to ensure a reliable 52 

semivariogram estimate (Matheron, 1965; Journel & Huijbregts, 1978). When using a uniform, square 53 

sampling grid, at least 200-300 measurements are needed in order to estimate the semivariogram 54 

reliably (Webster & Oliver, 1992). These rules of thumb lead to a very large number of measurements 55 

to be performed. This might be achievable in the application domains of the mentioned references 56 

(i.e. geosciences), but such a large number of measurements is not practical and unfeasible when 57 

considering measurements from destructive tests on concrete structures. Moreover, the requirements 58 

found for soil properties might differ from those for concrete, due to the differences in spatial variation 59 

(Cami et al., 2020; Yu et al., 2020; Tomizawa & Yoshida, 2022). Hence, in this work, it is investigated 60 

for what ratio of the correlation length to the structural length and for what sampling distances an 61 

appropriate estimate of the actual correlation model can be found. Such analyses have previously been 62 

executed in the field of geosciences. In (Christodoulou et al., 2021), the influence of the sampling 63 

domain length and the sampling interval on the correlation length has been investigated. Here it was 64 

found that the domain length strongly affects the results from the estimation of the correlation length, 65 

where larger domains improve the estimate. They also found that smaller intervals between the 66 

measurements improve the estimate of the correlation length. Hence, the current work investigates 67 

whether these results can be extended when applied to concrete structures. 68 

In the abovementioned references, one single analytical correlation model has been assumed for the 69 

analyses. Nevertheless, it is often not known beforehand which correlation model is the most 70 

appropriate, and different correlation models can be fit to the experimental data, such as exponential 71 

and Gaussian correlation models. Each model might be assumed when fitting the correlation length to 72 

the experimental results, and the model with the best fit can be chosen as the most appropriate one. 73 

However, it might be that one model in general performs better than another correlation model. To 74 

the authors’ best knowledge, such analyses have previously not been executed in existing literature. 75 
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Therefore, this will be investigated in the current work, considering the Gaussian and exponential 76 

correlation model since these are appearing most frequently in literature. In addition, the linear 77 

correlation model is considered because of its simplicity. 78 

To fit an analytical correlation model to experimental data, different methods exist, such as the curve 79 

fitting method (Vanmarcke, 1977; Vanmarcke, 2010; O’Connor & Kenshel, 2013) and the maximum 80 

likelihood method (Li et al., 2004; O’Connor & Kenshel, 2013). In these methods, there can also be 81 

accounted for the uncertainty on the experimental data. One method to account for this uncertainty 82 

is by application of bootstrapping (Olea & Pardo-Igúzquiza, 2011). In this work, these different methods 83 

will be compared and it will be investigated whether one outperforms the others. 84 

The outline of the paper is as follows: first, the experimental derivation of correlation models is 85 

explained, where first a short review on the topic of random fields is given, followed by an overview of 86 

different methods for fitting the correlation length to experimental data. Next, numerical analyses are 87 

performed to derive general guidelines for the most appropriate sampling pattern as a function of the 88 

structure length and the expected correlation length. Also, the different methods for the derivation of 89 

the correlation length are compared, together with different assumptions on the analytical correlation 90 

model. Moreover, different situations are considered, with varying assumptions on the standard 91 

deviation of the parameter of interest and on the measurement error. Finally, the processing of actual 92 

experimental data is treated and the correlation lengths are derived based on the different methods 93 

and recommendations derived from the theoretical analyses. 94 

Experimental derivation of the correlation model 95 

Parameters that are measured at different spatial coordinates are possibly correlated. To model this 96 

spatial correlation, random fields are often used. A brief introduction to random field modelling and 97 

the derivation of the appropriate correlation models based on experimental data is given in the 98 

sections below. 99 
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Definition of random fields 100 

A random field {�(s), s ∈ �} is a function whose values are random variables for any position s in the 101 

domain � ⊂ ℝd (Vanmarcke, 2010). These random variables may have different characteristics for any 102 

point s in the random domain. A deterministic function �(s) implies a single realisation of the random 103 

field �(s). Two important features of a random field are the mean value �X or trend surface 	(s), and 104 

the covariance function 
(si, sj) as given by equation (1). Here, �² is the variance of the parameter 105 

under consideration. 106 


�� , ��� = 
 ����� − ����� = 
��� 


�0� = �² 

(1) 

This formulation, which only depends on the distance � between two location vectors si and sj, is valid 107 

when assuming homogenous, isotropic and ergodic fields. A summary of the covariance functions 108 

considered in this work is given in Table 1. The parameters � and ρl designate, respectively, the scale 109 

of fluctuation and the correlation length. These parameters indicate the degree of spatial dependence 110 

in the random field. A large value for � and ρl corresponds to a slowly varying field, while a small value 111 

represents a field characterised by a rapid spatial variation. The parameter �� represents the nugget, 112 

i.e. the value of the semivariogram at a lag distance τ equal to 0. This nugget effect quantifies the 113 

variability at distances smaller than the spacing of the measurements, including the measurement 114 

error. The latter effect is often neglected in scientific literature dealing with the assessment of spatial 115 

variability in concrete structures. 116 

It should be pointed out that, when dealing with Gaussian random fields (i.e. the marginal distribution 117 

is a Gaussian or normal distribution), the mean �X and covariance function 
(si, sj) are sufficient to 118 

completely specify the field. 119 

In spatial data analysis of random fields, the use of a semivariogram  �� − ��� is often preferred over 120 

the covariance function. A semivariogram contains the same information as the covariance function 121 

and the relation is described in equation (2), where !"#[∙] and $%![∙] are the variance and 122 

covariance operator, respectively. 123 
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2 �� − ��� = !"#'����� − ����(
= !"#)�����* + !"#'����( − 2$%!)�����, ����* 

(2) 

This expression can be reduced for homogenous, isotropic and ergodic fields which are second-order 124 

stationary. The simplification is given by equation (3) and shows the relationship between the 125 

semivariogram and the covariance function. 126 

 ��� = �� + �, − 
��� (3) 

Methods for determination of the correlation model 127 

Different methods exist to determine the correlation model and correlation length based on an 128 

experimental dataset. In the following, two methods are described, i.e. the curve fitting (CF) method 129 

and the maximum likelihood (ML) method. These methods can be used to fit an analytical 130 

semivariogram to the experimentally obtained semivariogram. The latter is obtained by grouping the 131 

measurement points in pairs with separation distances approximating the lag distance �. The number 132 

of pairs separated by this lag distance � is then given by N���. An increase of this number generates a 133 

semivariogram that is less influenced by noisiness. The empirical semivariogram is then given by 134 

equation (4), where x(si) resembles the measurement point at location si (Matheron, 1965). 135 

 /01��� = 123��� 4)���� + �� − �����*,5�6�
�78  (4) 

Curve fitting (CF) method 136 

A curve fitting method, also known as least squares method (LSM), can be performed to obtain an 137 

estimation of the parameters of the chosen analytical autocorrelation function. Therefore, the 138 

parameters � and � are adjusted to the values �9, �:� that minimize the difference between the 139 

theoretical model and the experimental semivariogram according to equation (5). 140 

�9, �:� = ;<=	>? �@/01 − @��, ���A BC8 �@/01 − @��, ��� (5) 

Here, @/01 and @��, �� are the experimental and theoretical semivariogram values, respectively, and 141 

B is a matrix in which the elements are defined by the type of LSM used, i.e. ordinary least squares 142 
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(OLS), weighted least squares (WLS) or generalized least squares (GLS). In case of the OLS, the matrix 143 

B is the identity matrix; in the WLS, it is a diagonal matrix with the variances of the experimental 144 

semivariogram values on the diagonal; and in case of GLS, the matrix B is the covariance matrix of the 145 

semivariogram values. Traditionally, the OLS method is applied. 146 

Maximum likelihood (ML) method 147 

The maximum likelihood method determines values for the parameters of a model by maximising the 148 

likelihood that the process described by the model produced the data that was actually observed. 149 

Mathematically, this comes down to minimizing the negative log-likelihood function, as given by 150 

equation (6). 151 

D EFG�����, �� = ?2 ln�?J� + 12 ln|B|
+ 12 �@LMN���� − @��, ���A BC8 �@LMN���� − @��, ��� 

(6) 

Here, ? represents the number of lags considered in the semivariograms. Similar to the LSM,  B is the 152 

covariance matrix of the empirical semivariogram. In the standard maximum likelihood method, this 153 

will be a diagonal matrix. Additionally, one could account for the covariance between different points 154 

of the semivariogram. A bootstrap procedure can be applied to estimate the variance-covariance 155 

matrix based on the observed experimental data. 156 

Bootstrapping 157 

In the curve fitting method and maximum likelihood method as described above, also the uncertainty 158 

on the empirical semivariogram and the correlation between the different points on this 159 

semivariogram can be accounted for, i.e. the covariance matrix of the empirical semivariogram can be 160 

included in the analysis. In the curve fitting method, this matrix can be accounted for by application of 161 

generalized least squares (GLS) fitting instead of ordinary least squares (OLS). In the maximum 162 

likelihood method, the matrix B in equation (6) can represent the covariance matrix of the empirical 163 

semivariogram. 164 
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The covariance matrix of the empirical semivariogram can be determined by application of 165 

bootstrapping. Olea & Pardo-Igúzquiza (2011) pointed out that bootstrapping the empirical 166 

semivariogram itself is incorrect as the squared differences of data pairs are not a set of independent 167 

and identically distributed data but are correlated because the data themselves correlated and 168 

because the same data appears in different pairs. Therefore, it is proposed to generate bootstrap 169 

resamples for the spatial data themselves. For this purpose, the LU decomposition can be used, as 170 

shown in (Solow, 1985; Olea & Pardo-Igúzquiza, 2011).  171 

Estimation of scale of fluctuation: determination of sampling pattern 172 

and selection of the most robust method 173 

General methodology 174 

In this section, it is investigated how the sampling distance should be related to the structure length 175 

and to the scale of fluctuation in order to determine the scale of fluctuation based on the experimental 176 

results in one-dimensional elements such as beams and columns. Also, it is investigated whether one 177 

of the abovementioned methods for determination of the scale of fluctuation is more robust than the 178 

others, or whether one analytical correlation model is more stable than the others. These 179 

investigations are performed based on simulated data and the general procedure is visualized in the 180 

flowchart in Fig. 1. 181 

First, an actual correlation model is assumed, together with a correlation length and a value for the 182 

variability of the parameter that is considered to be measured. Based on these assumptions, N 183 

realizations of the random field are generated. These realizations of the random field are used to 184 

generate fictitious measurements, by superimposing a measurement error and considering a sampling 185 

scheme, i.e. the distance Δ� between the different measurements. By application of one of the 186 

methods described before and by assuming an analytical correlation model from Table 1, the scale of 187 

fluctuation and standard deviation of the parameter are estimated. These estimated values are 188 

indicated by �: and �91PQ. Hence, for each assumption on the actual correlation model, the correlation 189 
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length θ/L, the variability of the parameter �1PQ, the sampling scheme Δ�, the measurement error, 190 

estimation method and assumed analytical correlation model, N values of �: and �91PQ are obtained. As 191 

such, it can be assessed how well a combination of different parameters leads to an accurate estimate 192 

of the actual scale of fluctuation and variability of the parameter. A comparison is made by analysing 193 

boxplots of ln �RSR� favouring a low median and interquartile range (IQR), representing a low variability 194 

of the estimate. 195 

 196 

Fig. 1. Flowchart for the analyses performed in this work 197 

For the actual correlation model, three different correlation models are considered: Gaussian, 198 

exponential and linear. For the correlation length relative to the structure length, the following values 199 

are considered: θ/L equal to 1.0, 0.5, 0.1 and 0.01. The semivariograms of these different correlation 200 

models are visualized in Fig. 2. Besides the correlation model, the random field is also defined by a 201 

mean value and a standard deviation. The mean value of the random field is assumed equal to 1 for 202 

Actual correlation model: 

Exponential, Gaussian, Linear 

Correlation length 

θ/L 

Variability parameter �1PQ  

Generate N realizations of the random field:  T = � + 4 U����VW�X�  

Generate fictitious measurements Y = T + Z 

Sampling scheme(1): Δ� 

Measurement error �/QQ[Q 

Estimate parameters �: and �91PQ 

Assumed correlation model(2): 

Exponential, Gaussian, Linear 

Estimation method(3): 

CF, ML, bootstrapping 

Assess performance of 

(1)+(2)+(3) based on 

boxplots 
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the purpose of generality, while for the standard deviation �1PQ a high (0.15) and low (0.05) value are 203 

considered. In a first analysis, the measurement error is neglected and hence set equal to zero. 204 

Consequently, in these first analysis, the nugget effect is neglected (c0 = 0). The effect of the 205 

measurement error will also be investigated further in the contribution. Here, the assumed 206 

measurement errors are represented by random white noise errors, considering different values for 207 

the standard deviation of this measurement error �/QQ[Q: 0.01 and 0.05. Finally, for the sampling 208 

distances Δ�, values of 0.001L, 0.01L and 0.1L are considered. 209 

 210 

Fig. 2. Semivariograms for the different correlation models considered in this work (situation without measurement error) 211 

Results when assuming no measurement error 212 

The different assumptions on the analytical model, actual correlation model, sampling distance, scale 213 

of fluctuation and variability of the parameter as summarized in the previous section are considered. 214 

The influence of these different parameters on the estimate of the scale of fluctuation is investigated 215 

in order to detect whether suggestions can be provided on the most appropriate fitting method and/or 216 

the most appropriate sampling distance to experimentally determine the scale of fluctuation. 217 
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Results 218 

For a certain combination of �1PQ, given correlation model, scale of fluctuation, sampling distance, 219 

assumed analytical model, and one of the fitting methods, a set of estimated scales of fluctuation �: is 220 

found. An example of the associated boxplots is given in Fig. 3, when the scale of fluctuation is 221 

determined based on the curve-fitting method (without (CF) or with (CFCOV) bootstrapping) and the 222 

maximum likelihood method (without (ML) or with (MLCOV) bootstrapping), the actual correlation 223 

model is Gaussian and the assumed analytical model is also Gaussian. The values summarized in the 224 

boxplots represent the natural logarithm of the ratio �: �⁄ . The variability of the parameter �1PQ is 225 

equal to 0.15, but similar boxplots are found for a variability of 0.05. The horizontal axis either 226 

represents the sampling distance relative to the scale of fluctuation (Δ�/ � – bottom axis) or relative 227 

to the structure length (Δ�/L – top axis). The different subplots correspond to the different scales of 228 

fluctuation used to generate the measurement results. The black horizontal lines represent the 229 

situation of a perfect estimation of the actual scale of fluctuation, or �: = �. 230 
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 231 

Fig. 3. Boxplots of the estimated scale of fluctuation when the actual correlation model and the analytical model are both 232 

Gaussian and the variability of the parameter is equal to 0.15 233 

The results of the analyses are presented as a summarizing table, considering the median (M) and 234 

interquartile range (IQR) of the sets of estimations in Table 2. 235 

For each estimation method different values for ]�: �⁄ � and ^_#�: �⁄ � are found depending on the 236 

combination of correlation models, scale of fluctuation, sampling distance, etc. Their mean values can 237 

be used in order to detect the most appropriate method. Similarly, for each considered analytical 238 

model, also different values for ]�: �⁄ � and ^_#�: �⁄ � are found, for which the mean values allow 239 

to detect the most robust analytical correlation model. Also the mean values of ]�: �⁄ � and of 240 

^_#�: �⁄ � for the two considered values of �1PQ are summarized. 241 

Besides the effects of the analytical model, the variability of the parameter and the method for deriving 242 

the scale of fluctuation, there is also an influence of the sampling distance relative to the scale of 243 
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fluctuation and of the scale of fluctuation relative to the length of the sampling domain. These results 244 

are shown in Table 3. 245 

Correlation structure of empirical semivariogram 246 

To illustrate the fact that there is indeed (significant) correlation between the different points in the 247 

empirical semivariogram, the correlation matrix for one sampled measurement result is provided in 248 

Table 4 for �/L = 0.5 and Δ�/L = 0.1. The corresponding semivariogram is visualized in Fig. 4. 249 

 250 

Fig. 4. Empirical semivariogram for which the correlation matrix is provided in Table 4 251 

Discussion 252 

When looking at Table 2, it can be seen that including the bootstrapping method in the estimation of 253 

the scale of fluctuation generally leads to a better estimation (more accurate median estimate and 254 

lower IQR). The curve fitting method also performs better than the maximum likelihood method, with 255 

a better median fit.  256 

When considering the influence of the assumed analytical model, the best fit of the median scale of 257 

fluctuation to the actual value is found for the exponential model, closely followed by the Gaussian 258 

model. The worst fit is found for the linear model. Whereas the exponential model gives the best 259 

median fit, it leads to the largest IQR (Table 2). This IQR is smallest when assuming the Gaussian model. 260 
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Hence, overall the Gaussian model can be assumed to be the best performing and to provide the most 261 

robust estimates even if the actual correlation model is not Gaussian. 262 

In Table 2 it can be seen that there is no clear influence of the variability of the parameter. It seems 263 

that for largest variability (�1PQ= 0.15) the best median fit is found, whereas for the smallest variability 264 

(�1PQ= 0.05) the lowest IQR is found. 265 

From Table 3, it can be seen that if the sampling distance is equal to or larger than the scale of 266 

fluctuation, the median fit becomes worse and the IQR increases. 267 

Furthermore, it can be seen that for the lowest value of the scale of fluctuation a bad median fit is 268 

found. This improves towards a maximum for a scale of fluctuation equal to 10% of the domain length 269 

L and then decreases again for an increase in scale of fluctuation. Similarly, the IQR is large for the 270 

smallest scale of fluctuation, then decreases to a minimum for a scale of fluctuation of 10% of the 271 

domain length L and then increases again for an increasing scale of fluctuation. It should be pointed 272 

out that for the lowest scale of fluctuation, the relative values of the sampling distance to the scale of 273 

fluctuation are also larger, which could be a cause of the bad estimates for this scale of fluctuation. 274 

Hence, ideally, the domain length is at least 10 times as large as the scale of fluctuation to be estimated 275 

and the sampling distances are sufficiently small (smaller than the scale of fluctuation to be estimated). 276 

When looking at all results provided in the previous section, generally the values for ]�: �⁄ � are 277 

negative and hence an underestimation of the scale of fluctuation is found. 278 

To conclude, there seems to be a benefit of including correlation of the semivariogram by the 279 

bootstrapping method. Moreover, the curve fitting method seems to perform better than the 280 

maximum likelihood method. When an analytical correlation model is to be chosen, the Gaussian 281 

model seems the most robust choice. There is no substantial influence of the variability of the 282 

parameter. The sampling distance needs to be smaller than the scale of fluctuation to be estimated 283 

and the domain length is ideally at least 10 times as large as this scale of fluctuation. If these criteria 284 

cannot be met, generally an underestimation of the scale of fluctuation will be found. Finally, it is 285 

important to note that for all combinations that have been assessed a significant scatter of the 286 
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estimations is found (reflected by relatively large IQR values). This explains the variability of values 287 

reported in literature and also shows the possible benefit of the application of Bayesian updating 288 

techniques in which prior information regarding the spatial variability can be updated based on in situ 289 

measurements (Criel et al., 2004). 290 

Influence of a measurement error 291 

The influence of the presence of a measurement error is investigated in this section. A measurement 292 

error can be accounted for by means of the nugget effect in the semivariogram, i.e. the semivariogram 293 

is not equal to zero for zero lag, but will have a specific value, called the nugget c0. To the knowledge 294 

of the authors, this effect has not been considered in scientific literature related to spatial variability 295 

in concrete structures. 296 

In this section, the actual model to simulate the measurement results is assumed to be the Gaussian 297 

model. The assumed measurement errors are represented by random white noise, considering two 298 

different values for the standard deviation of this measurement error �/QQ[Q: 0.01 and 0.05. 299 

The analytical model to fit the semivariogram to the empirical one is assumed Gaussian, corresponding 300 

to the conclusions of the previous section. The sampling distance is taken sufficiently small compared 301 

to the scale of fluctuation, i.e. Δ�/� is chosen equal to 0.1. Two values for the scale of fluctuation are 302 

considered, i.e. �/L equal to 0.1 and 1. The curve fitting method (with and without bootstrapping) will 303 

be used to estimate the scale of fluctuation. When applying the curve fitting method, two situations 304 

are investigated. In the first situation, the nugget effect is neglected, i.e. c0 = 0 corresponding to current 305 

practice. In the second situation, the nugget c0 is estimated based on the curve fitting method, together 306 

with the scale of fluctuation � and the variability of the parameter �1PQ. 307 

The results of these investigations are illustrated in Fig. 5 and Fig. 6, considering �1PQ = 0.05 and 308 

�1PQ = 0.15 respectively. Here, ‘CF nugget’ indicates that the curve fitting method is applied and that 309 

the nugget c0 is also estimated. When looking at Fig. 5 and Fig. 6, it can be seen that in case of the 310 

presence of a measurement error, the curve fitting method combined with bootstrapping still 311 

performs better than the ordinary curve fitting method in most of the situations. Furthermore, also 312 
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estimating the nugget provides a better fit to the actual scale of fluctuation when looking at the median 313 

of the boxplot. The larger the measurement error �/QQ[Q, the larger the benefit of also estimating the 314 

nugget effect. If the nugget effect is neglected for the larger measurement errors, the median of the 315 

boxplot deviates significantly from the actual value. This is more pronounced for �1PQ = �/QQ[Q = 0.05 316 

due to the large measurement error compared to the variability of the parameter. The estimate of the 317 

scale of fluctuation is also better for a lower ratio of �/L, which could be expected beforehand based 318 

on the results in the previous section. Finally, the IQR’s are also larger than for the situation where no 319 

measurement errors are considered (see Fig. 3) and as also found in the previous section, generally 320 

the median of the boxplots tends to underestimate the actual scale of fluctuation if the experimental 321 

parameters are chosen inappropriate. 322 

 323 

Fig. 5. Results of investigations with a measurement error with �1PQ = 0.05 324 
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 325 

Fig. 6. Results of investigations with a measurement error with �1PQ = 0.15 326 

Application example: experimental investigation of spatial variability in 327 

reinforced concrete 328 

In this section, the correlation length is determined based on experimental investigations on a 329 

reinforced concrete beam. Different mechanical properties of concrete (compressive strength, tensile 330 

strength and diffusion coefficient) have been determined based on drilled cores taken from the beam. 331 

The correlation model and correlation length for these different material properties are determined 332 

based on the different estimation methods described before. Furthermore, four other beams have 333 

been subjected to accelerated corrosion. Also this data is used to estimate the scale of fluctuation 334 

corresponding to the corrosion process. 335 

Description of the experimental campaign 336 

The beams under investigation are reinforced concrete beams of 5 m long, with a height of 400 mm 337 

and a width of 300 mm. The reinforcement layout of the beams is illustrated in Fig. 7 and 8. 338 
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 339 

Fig. 7. Longitudinal section of the beams (dimensions in mm) 340 

 341 

Fig. 8. Cross-section of the beams (dimensions in mm) 342 

The concrete used for the beams has a composition according to Table 5. The concrete has chloride 343 

class 0.4%, environment class EI, maximum aggregate size Dmax= 14 mm, consistency class S4 and 344 

strength class C25/30. 345 

At a concrete age of 65 days, cores were drilled horizontally from one of the beams, through the entire 346 

thickness of the beam, resulting in cores with a height of 300 mm. The diameter of these cores was 347 

100 mm. Furthermore, these cores were taken in between the stirrups, with two cores in between 348 

each pair of stirrups. The cores were taken at 140 mm from the bottom edge and the spacing between 349 

two consecutive cores equals 135 mm. After drilling, the cores were cut in three slices, which were 350 

subsequently used to determine the compressive strength, tensile strength and diffusion coefficient.  351 

The concrete compressive strength was tested according to NBN EN 12390-3 (CEN, 2019), the concrete 352 

tensile strength was tested according to NBN EN 12390-6 (CEN, 2005), and the diffusion coefficient 353 
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was determined based on a rapid chloride migration test as described in (NORDTEST, 1999). The 354 

resulting data sets are the following: 355 

- 36 test results for concrete compressive strength (on 36 locations along the beam, spacing 356 

135 mm); 357 

- 18 test results for concrete tensile strength (on 18 locations along the beam, spacing 270 mm); 358 

- 18 test results for the rapid chloride migration test (on 18 locations along the beam, spacing 359 

270 mm). 360 

Here, these data sets are used to determine the correlation model for the concrete compressive 361 

strength, the concrete tensile strength and the diffusion coefficient of the concrete. 362 

The remaining four beams (indicated as ‘B’, ‘C’, ‘D’ and ‘E’) were subjected to accelerated corrosion. 363 

Therefore, an imposed current of 100 µA/cm² was applied to the reinforcement, whereas a stainless 364 

steel plate submerged in a 5% NaCl solution was used as cathode. After reaching a certain target 365 

corrosion degree between 2% and 30%, the reinforcement was removed from the beam and cut into 366 

pieces of 200 mm. Next, these pieces were cleaned and weighed, to determine the mass loss due to 367 

corrosion. The resulting data sets are used to determine the correlation model for the corrosion degree 368 

in this work. More details regarding the accelerated corrosion tests can be found in (Vereecken, 2022). 369 

Empirical semivariograms and bootstrapping 370 

In this section, based on the different datasets, the empirical semivariograms are derived. It was found 371 

previously that bootstrapping can be used to, among others, determine the variance-covariance matrix 372 

of the points in the semivariogram. Additionally, the results of such bootstrapping procedure also 373 

allows estimating the average semivariogram as well as uncertainty bounds based on the 374 

experimentally observed data. Such an approach is deemed extremely useful since experimental 375 

semivariograms that are determined based on limited data (which is often the case for destructive 376 

tests on concrete) can be significantly affected by outliers. Due to the bootstrapping procedure the 377 

effect of these outliers on the semivariogram can be reduced.  378 
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From the M (= 2000) bootstrapping resamples, the median semivariogram is evaluated as well as the 379 

68% confidence interval (CI) according to (Olea & Pardo-Igúzquiza, 2011). These results are visualized 380 

in Fig. 9. In case of the corrosion degree, the considered experimental results are normalized by 381 

considering the measured corrosion degrees divided by the average corrosion degree over the length 382 

of the beam. As such, the corrosion degrees of the four beams subjected to accelerated corrosion can 383 

be compared amongst each other. Furthermore, such normalization does not influence the estimation 384 

of the scale of fluctuation. 385 

In general, Fig. 9 shows that the uncertainty related to the semivariogram values increases for larger 386 

lag distances. This can be attributed to the fact that for these larger lag distances less data is available. 387 

Furthermore, the typical trend for a semivariogram is more apparent for the derived median of the 388 

semivariogram than for the experimentally observed semivariogram. 389 

 390 

Fig. 9. Empirical semivariograms and results of bootstrapping 391 
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Determination of the correlation model 392 

Next, the correlation model is estimated based on the experimental data. For this purpose, the curve 393 

fitting method will be applied since this was found to provide better results compared to the maximum 394 

likelihood method. The three different analytical models are considered, and each time the nugget is 395 

once estimated and once neglected. The most appropriate model is selected as the one providing the 396 

best fit to the experimental semivariogram, i.e. the one with the lowest least-squares value. For each 397 

variable, the selected correlation model, scale of fluctuation, variability of the parameter and nugget 398 

are summarized in Table 6.  399 

It can be seen that for the concrete properties, generally a linear correlation model provides the best 400 

fit, and that a nugget effect is present. Especially in case of the compressive strength, the latter effect 401 

seems to be significant, indicating a relatively large measurement error possibly induced by drilling the 402 

cores. The scale of fluctuation differs between the different properties, with a scale of fluctuation of 403 

813 mm for the concrete tensile strength, 2160 mm for the concrete compressive strength and 404 

3605 mm for the diffusion coefficient of the concrete. These values are in the same order of magnitude 405 

as often suggested in literature based on engineering judgement, see e.g. (Straub, 2011; Tran et al., 406 

2012; Hajializadeh et al., 2016). In literature, the linear correlation model is not selected. Nevertheless, 407 

for the investigated experimental results, the fit when assuming a Gaussian correlation model is almost 408 

equally good as for a linear correlation model. Furthermore, the corresponding estimates of the 409 

nugget, variance of the parameter and scale of fluctuation are almost unaffected when changing from 410 

a linear to a Gaussian correlation model. The corresponding results are provided in Table 7. 411 

Apart from estimating the covariance matrix, the bootstrapping procedure also allows to assess the 412 

uncertainties related to the estimated parameters by fitting a semivariogram to each bootstrapped 413 

semivariogram. The results are provided for the concrete properties in Table 7  in terms of the median 414 

estimate as well as the first and third quartile, assuming a Gaussian model for each fit. As expected 415 

from the theoretical investigations (cfr. supra), a relatively large scatter of the scale of fluctuation is 416 
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observed. Furthermore, it is clear that the median estimate of this parameter obtained by 417 

bootstrapping is not necessarily close to the value obtained from fitting the experimental results. 418 

For the corrosion degrees, generally the Gaussian model provides the best fit. For this situation, the 419 

nugget effect was neglected as no large measurement error was expected due to the non-destructive 420 

nature of the measurements. For most beams, the variability of the parameter �91PQ is about the same, 421 

and lies around 0.0025. The scales of fluctuation for the corrosion degrees are all of the same order of 422 

magnitude, ranging from 327 mm to 879 mm if the Gaussian correlation model and no nugget effect 423 

are assumed. It should be pointed out that these correlation lengths for the corrosion degree are in 424 

contrast to the results provided in (Zhou et al., 2022) where no correlation for the corrosion degree 425 

was found. Nevertheless, the latter research was based on bars with a length of 500 mm cut in pieces 426 

of 20 mm. This bar length of 500 mm is smaller than the correlation length found for the corrosion 427 

degree in the current work, and could hence not detect these larger correlation lengths, which was 428 

acknowledged by the authors in their conclusions. 429 

It was observed that when considering the nugget effect in the estimation for the corrosion degrees, 430 

this could result in significantly different estimated scales of fluctuation, e.g. 2200 mm in case of beam 431 

D. For the latter case, the nugget effect (�̂� = 1.24d − 6) was estimated to be (significantly) higher 432 

than the variance (�91PQ, = 1.08d − 6) and, consequently, a semivariogram with a longer scale of 433 

fluctuation better fits the data. Therefore, it seems important to carefully consider whether or not a 434 

(significant) nugget effect is to be expected and taken along in the estimation process. 435 

Discussion 436 

When considering the experimental results, there are some links to be made with the analytical results 437 

from the previous section. Overall, the Gaussian correlation model provides a good fit to the data. Also 438 

in the theoretical analyses it was found that generally the Gaussian correlation model is a robust choice 439 

for the analytical correlation model. Further, the theoretical analyses showed that there is a benefit of 440 

applying the bootstrapping method and including correlation between the points of the empirical 441 

semivariogram in the analyses. This also shown in the plots in Fig. 9, where the median of the 442 
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bootstrapping method indeed better approximates a semivariogram that could be represented by one 443 

of the assumed analytical correlation models.  444 

According to the theoretical analysis (cfr. supra), the sampling distance needs to be smaller than the 445 

scale of fluctuation. This is indeed the case for the results summarized in the previous section. 446 

Consequently also the effect of the different sampling distance for the compressive strength compared 447 

to the tensile strength and diffusion coefficient is expected to be very limited. 448 

From the theoretical analyses, the ideal ratio between the scale of fluctuation and the sampling 449 

domain was equal to 0.1, in this case leading to a scale of fluctuation of 500 mm. Nevertheless, most 450 

estimates of the scale of fluctuation in the analysis above are larger than 500 mm. Hence, the estimates 451 

found for the scale of fluctuation might underestimate the actual scale of fluctuation. The estimated 452 

scale of fluctuation is largest for the diffusion coefficient and close to the length of the beam (5000 453 

mm). Hence, there might be some uncertainty on this estimate, which is reflected by the large 454 

interquartile interval for this parameter. Finally, for all concrete parameters also including the nugget 455 

effect in the estimate led to the best fit. This is in correspondence with the observations from the 456 

theoretical investigations presented before. 457 

Conclusions 458 

The authors investigated the effect of several parameters and choices to be made by an engineer in 459 

deriving the correlation model based on experimental data from destructive tests. The influence of 460 

different parameters in the experimental program were investigated, such as the sampling distance, 461 

the size of the sampling domain compared to the scale of fluctuation and the measurement error. Also 462 

the influence of assumptions that need to be made when fitting the correlation model to the 463 

experimental data has been studied, including the choice of the analytical correlation model and the 464 

method applied to perform the fit. 465 

Different methods for deriving the scale of fluctuation were selected and compared, i.e. the curve 466 

fitting method and the maximum likelihood method, with or without the consideration of correlation 467 

by application of bootstrapping. It has been illustrated that the curve fitting method generally leads to 468 
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better estimates of the scale of fluctuation compared to the maximum likelihood method. Moreover, 469 

there is a clear benefit of applying the bootstrapping procedure to the experimental data. 470 

Also the influence of the selected analytical correlation model has been investigated, and here the 471 

Gaussian model was found to be the most robust choice, even if the actual correlation model is not 472 

Gaussian.  473 

Considering the design of an experimental program, it was found that the sampling distance needs to 474 

be small with respect to the scale of fluctuation to be estimated and that the size of the sampling 475 

domain needs to be at least 10 times larger than the actual scale of fluctuation. If these criteria are not 476 

met, generally an underestimation of the scale of fluctuation is found. 477 

If there are no measurement errors, there is almost no influence of the variability of the measured 478 

parameter on the estimate of the scale of fluctuation. This variability becomes more important if also 479 

measurement errors are present: if the measurement error becomes large with respect to the 480 

variability of the measured parameter, this leads to an increased deviation between the actual scale 481 

of fluctuation and the estimated scale of fluctuation, especially if the nugget effect is neglected. Hence, 482 

when a measurement error is suspected to be present and cannot be neglected, the nugget should be 483 

estimated together with the variance and the scale of fluctuation.  484 

The findings from the numerical analyses were subsequently applied to actual experimental data on 485 

the material properties of concrete, i.e. data related to the concrete tensile strength, compressive 486 

strength and diffusion coefficient. Also the spatial variability of the corrosion degree obtained in 487 

accelerated corrosion tests was investigated. It was found that a Gaussian model provided a good fit 488 

to the data in all cases, which is in line with the findings from the numerical analyses which indicated 489 

that this model is the most robust. Furthermore, including the nugget effect led to a better fit of the 490 

experimentally obtained semivariogram of the concrete properties. The latter indicate the presence of 491 

an important uncertainty introduced by destructive testing of specimens (e.g. drilling of cores). In case 492 

of non-destructive testing (determination of the corrosion degree of corroded reinforcement), it was 493 
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found that including the nugget effect in the estimation process could result in significantly different 494 

results. Therefore, the parameters to be estimated should be chosen with care. 495 

Finally, the estimated scales of fluctuation were in line with those currently found in literature, which 496 

are based on engineering judgement. Apart from a median estimate of the scale of fluctuation, also 497 

the uncertainty of this estimate could be obtained in case a bootstrapping procedure is adopted. The 498 

latter uncertainties were shown to be significant, implying the importance of assessing the sensitivity 499 

of the behaviour of the element under consideration to spatial variability. In case of elements sensitive 500 

to spatial variations, one might consider to update the model describing the spatial variability by means 501 

of e.g. Bayesian updating (Criel et al., 2004), where the prior information can be adopted from this 502 

research. 503 
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Tables 606 

Table 1. Summary of covariance functions and corresponding semivariograms used in this work 607 

Name Covariance function B(τ) Semivariogram @�g� θ(ρl) 

Exponential �, exp k− |�|�2 l �� + �, k1 − exp k− |�|�2 ll 2ρl 

Gaussian �, exp
⎝
⎜⎛− |�|²

p �√Jr,
⎠
⎟⎞ �� + �,

⎝
⎜⎛1 − exp

⎝
⎜⎛− |�|,

p �√Jr,
⎠
⎟⎞

⎠
⎟⎞ vw√J 

Linear x�, �1 − ��� � < �0 z{ℎd<}>�d ~�� + �, ���� � < ��� + �, z{ℎd<}>�d ρl 

 608 

Table 2. Influence of the method used for parameter estimation and of the assumed analytical model on the estimated 609 

scale of fluctuation  610 

�N�� 
Analytical 

model 

Method for parameter estimation 

CF CFCOV ML MLCOV (1) 

M IQR M IQR M IQR M IQR M IQR 

0.15 

Exponential 0.1 3.5 1.5 2.5 -0.9 4.9 0.5 4.5 0.3 3.8 

Gaussian -0.2 1.6 -1.4 1.7 -0.2 1.8 -0.5 1.9 -0.5 1.7 

Linear -0.8 1.4 -0.3 2.3 -1.0 1.5 -1.0 1.7 -0.7 1.7 

(2) -0.3 2.2 0.0 2.2 -0.7 2.7 -0.3 2.7 -0.3 2.4 

0.05 

Exponential 0.3 3.8 1.6 2.8 -0.2 2.3 -0.2 2.2 0.4 2.8 

Gaussian -0.2 1.6 -1.0 1.6 -0.4 1.7 -0.6 1.9 -0.6 1.7 

Linear -0.8 1.4 -0.3 2.3 -1.0 1.6 -1.1 1.9 -0.8 1.8 

(2) -0.2 2.3 0.1 2.2 -0.6 1.8 -0.6 2.0 -0.3 2.1 
(1) Average over the different estimation methods 611 

(2) Average over the different analytical models 612 

Table 3. Influence of the sampling distance and the actual scale of fluctuation on the estimated scale of fluctuation 613 

�M/� M IQR  �/L M IQR 

0.001 -0.1 1.6  0.01 -0.6 2.5 

0.002 -0.3 1.5  0.1 -0.2 1.2 

0.01 -0.1 1.2  0.5 -0.3 1.5 

0.02 -0.3 1.6  1 -0.4 1.7 

0.1 -0.0 1.0     

0.2 -0.3 1.6     

1 -0.6 2.9     

10 -1.4 4.8     

 614 
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Table 4. Example of a correlation matrix between the points of an empirical semivariogram derived based on bootstrapping 615 

(symmetric matrix – only lower triangle values are presented) 616 

 9���� k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 

k = 1 1.00          

k = 2 0.99 1.00         

k = 3 0.93 0.98 1.00        

k = 4 0.83 0.89 0.97 1.00       

k = 5 0.68 0.75 0.86 0.96 1.00      

k = 6 0.50 0.57 0.68 0.81 0.94 1.00     

k = 7 0.32 0.38 0.47 0.61 0.79 0.94 1.00    

k = 8 0.20 0.24 0.32 0.45 0.61 0.80 0.94 1.00   

k = 9 0.14 0.17 0.24 0.33 0.45 0.61 0.80 0.94 1.00  

k = 10 0.13 0.16 0.19 0.23 0.31 0.42 0.58 0.78 0.93 1.00 

 617 
Table 5. Concrete composition 618 

Component Content [kg/m³] 

K 6.3/14 (limestone 6.3/14 Benor Holcim) 955 

Sea sand 518 

K 0/4 (washed limestone sand Holcim Gaurain Benor) 427 

CEM I 52.5 N Holcim 270 

Water 174 (183 incl. absorption water) 

Superplasticizer Sky 571 (BASF) 1.9 

 619 

Table 6. Results of the fits to the experimental data 620 

Variable Model �S [mm] ��N��² �9� 

Concrete tensile strength  fct Linear 813 0.14 MPa² 0.04 MPa² 

Concrete compressive 

strength 

fc 
Linear 2160 3.57 MPa² 6.92 MPa² 

Diffusion coefficient D Linear 3605 89.11 (mm²/yr.)² 1.96 (mm²/yr.)² 

Corrosion degree beam B �� Gaussian 352 8.62e-6 0 

Corrosion degree beam C ��  Gaussian 879 6.77e-6 0 

Corrosion degree beam D �� Gaussian 327 2.44e-6 0 

Corrosion degree beam E �� Gaussian 339 6.55e-7 0 
 621 
Table 7. Results of the fits to the experimental data for the concrete properties and uncertainty assessment based on 622 

bootstrapping procedure when assuming a Gaussian correlation model 623 

 � �N���  �� 

Var. Exp. M [Q1; Q3] Exp. M [Q1; Q3] Exp. M [Q1; Q3] 

fct 856 760 [385; 3292] 0.13 0.13 [0.07; 0.19] 0.05 0.05 [0.00; 0.10] 

fc 2288 507 [279; 2218] 3.20 8.72 [5.70; 12.41] 7.25 4.61 [0.98; 6.82] 

D 4155 2763 [1182; 7664] 82.63 89.25 [34.43; 513.48] 1.96 5.23 [0.00; 11.56] �� 352 195 [37; 332] 8.6e-6 7.9e-6 [6.2e-6; 9.4e-6] - - - ��  879 509 [369; 917] 6.8e-6 4.5e-6 [3.2e-6; 6.5e-6] - - - �� 327 501 [349; 1050] 2.4e-6 3.5e-6 [2.4e-6; 5.3e-6] - - - ��  339 259 [49; 343] 6.6e-7 6.6e-7 [5.2e-7; 7.2e-7] - - - 

Note: Exp.: fit on experimental data – M: Median bootstrap – Q1: 1st quartile – Q3: 3rd quartile 624 
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Figure captions 625 

Fig. 1. Flowchart for the analyses performed in this work 626 

Fig. 2. Semivariograms for the different correlation models considered in this work (situation without 627 

measurement error) 628 

Fig. 3. Boxplots of the estimated scale of fluctuation when the actual correlation model and the 629 

analytical model are both Gaussian and the variability of the parameter is equal to 0.15 630 

Fig. 4. Empirical semivariogram for which the correlation matrix is provided in Table 4 631 

Fig. 5. Results of investigations with a measurement error with �1PQ = 0.05 632 

Fig. 6. Results of investigations with a measurement error with �1PQ = 0.15 633 

Fig. 7. Longitudinal section of the beams (dimensions in mm) 634 

Fig. 8. Cross-section of the beams (dimensions in mm) 635 

Fig. 9. Empirical semivariograms and results of bootstrapping 636 


