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Abstract. Humans make mistakes. Even when a strategy is per-
fectly crafted to address a problem in hand, the implementation of
such a strategy can still be plagued by execution errors if conducted
by a human. The noise associated with human execution is one of the
main contributors to the growth of the AI industry: autonomous arti-
ficial agents are expected to execute the strategies that they are pro-
grammed to implement without such noise. However, because the
designers of such agents are human, errors may occur on the pro-
gramming of such agents. This might lead to an AI agent that per-
fectly executes the strategy it was programmed with, but the strategy
is actually misaligned with the intended goals of the human who con-
figured it, a problem of AI alignment. In this work, we explore, by
means of an evolutionary game-theoretical model, how errors in the
configuration of artificial agents (or in the choice of an artificial del-
egate) changes the outcome of a collective risk dilemma (CRD). We
find that for high risk situations, errors decrease the success rate in
comparison with the case of perfect execution. However, it is better
to delegate and commit to a flawed strategy executed perfectly by an
autonomous agent, than to make execution errors ourselves.

1 Introduction

Over the past years, human society has come to rely more and more
on artificially intelligent (AI) applications to facilitate processes of
decision-making or the execution of physical tasks. One of the rea-
sons humans might choose to delegate any task [19], even in the
human-to-human scenario, is to obtain a better result than they would
have on their own, even if it is simply a matter of saving time. Up un-
til now, AI applications have been incredibly successful in elevating
human performance in an array of different activities, to name a few:
game playing [40, 10], document translation [6, 44], car parking [45],
writing text and code [14, 11] or even navigation [27]. Perhaps due
to its proven success in these areas, humans now appear to also seek
the help of AI to improve their social skills and interpersonal devel-
opment [26]. It therefore appears that human society is ready to also
start using these AI applications in a more social context, which in
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turn has spurred a growing body of literature in the fields of cooper-
ative, social and affective AI [46, 4, 17].

Most of our social interactions are actually mixed motive scenar-
ios, where different humans might display varied preferences in how
to act with regards to others, and these are not necessarily always
in conflict but neither are they in full concordance either. Methods
such as Inverse Reinforcement Learning [2] have been developed
to extract human preferences in a set of different tasks by learning
their goals from their actions when acting on their own. However,
humans themselves are far from perfect and often make mistakes
[41, 34, 28, 25], so that these execution errors might result in a course
of action that deviates from their intended preferences. And even if
the true goals of the human principal are known, another problem
related to how to unambiguously encode the human’s preferences
into the agent’s code arises, which constitutes another part of the AI
value alignment problem [36, 16]. As it was first warned by Norbert
Wiener in 1960 [49], if we choose to delegate our actions to auto-
mated machines whose course of action we might not be able to in-
terrupt, we "better be quite sure that the purpose put into the machine
is the purpose which we really desire". With the scale deployment of
different language models and other AI applications, we will be grad-
ually observing more and more concerning [43]1 (or sometimes just
funny [18]) results of a competent - but misaligned - AI perform-
ing a given task. Provided the intention to develop AI applications to
aid in the decision-making process of social dilemma situations, for
example policy-making for wealth redistribution and climate change
action[22, 12], we believe it is of the utmost importance to under-
stand how such AI applications can influence the evolution of human
behavior in the long-term.

Similarly to other works concerned with the evolution of humans
in the presence of AI [38, 37, 20], we turn to an evolutionary game
theoretical approach [39, 33, 9] to tackle this issue. However, we
believe to be the first that distinguish between delegated and non-
delegated action merely through the moment when mistakes in the
strategy occur. In this work, we assume that when humans choose

1 This event allegedly never happened, but we still consider it to be a
very plausible outcome of such an AI application as a result of reward-
hacking[42].



or program an agent to act in their place, they make mistakes. This
way, a human principal might end up committing to a strategy that
- although close enough (assuming a low error rate) - does not fully
correspond to their own preferences. However, they will be unable
to correct their mistakes during their agent’s course of action and are
therefore bounded to the strategy of an AI misaligned with their own
intentions. In contrast, we assume that when humans do not delegate
in our model, they follow their preferences, although not perfectly,
so that mistakes can happen when executing their strategies at each
round of interaction (similarly to the trembling hand mentioned in
other works that consider execution errors in iterated game-play [32,
34, 35, 29, 28]).

Inspired by recent experimental work in delegation to autonomous
agents within the context of the collective-risk dilemma[12] (CRD),
we also set our model within that realm. As we will further elabo-
rate in the section Methodology, different human preferences arise
when playing the CRD, a game where they are confronted with a
mixed motive situation where they must coordinate behavior to avoid
collective tragedy [31, 7, 12], making it a great tool to abstract hu-
man behavior when tackling pressing global issues such as the cli-
mate change. With the model we are here proposing on delegation
to autonomous agents, we intend to pinpoint where our theoretical
assumptions deviate from the experimental findings and where they
corroborate the results. Moreover, even if the participants of the ex-
periment do not appear to be keen on delegating again, we want to
determine whether delegation within the context of the collective-risk
dilemma could prove itself the dominant strategy in the long-term.

2 Methodology
2.1 Evolutionary game theory

As mentioned before, we use an evolutionary game theoretical
framework [39, 33, 9, 21, 23, 47, 15, 24] to understand how del-
egation to autonomous agents affects human behavior in collective
social dilemmas in the long term. In summary, such an approach
consists of having a population of Z agents that play a game be-
tween themselves according to their randomly assigned strategies.
At the end of a generational round of play, during which they have
accrued payoff in accordance to their strategy and the strategies of
their co-players, one agent is randomly chosen to update their strat-
egy. They do this either by imitation learning or mutation. In the
case of imitation learning, another individual is randomly selected
from the population, and their strategy is more likely to be imitated
if their generational payoff was higher than the current strategy of
the focal agent chosen to update it. This imitation process is more
influential to the evolution of the population the higher the selection
strength (parameter beta) associated with it. The method is therefore
borrowed from the Darwinian competition idea of the survival of the
fittest [30], where the fittest strategy would be the one to consistently
gather higher payoffs in any population configuration until it takes
over the entire population over many rounds of evolution.

2.2 Playing the collective-risk dilemma game

In order for an individual’s strategy to propagate within the popula-
tion, it must harness more fitness than the others. A strategy’s fitness
is calculated based on how much payoff it collects by playing a game
against all the other strategies within the same population. Indeed, the
fitness corresponds to the expected payoff a certain strategy gets if it
plays a game within all possible different group configurations (given
all the other strategies present) within that population. The payoff of

each group interaction depends on the game being played, and is de-
pendent not only on the strategy itself, but also on the strategies it is
interacting with while playing the game.

We use the collective-risk dilemma game [31, 7, 12]. The game is
played in groups of N players, each starting with an endowment of
E monetary units. The players have r rounds to contribute to a public
account a value between 0 and E/r (and this action space S might
be more or less granular [1]). If the group is able to collectively ac-
crue at least E × 2 within the public account by the end of the last
round, everyone is able to keep whatever is left from their endow-
ments. Otherwise, there is a risk probability p of everyone losing it
all.

Given that the reward is not directly proportional to the contributed
effort, but rather dependent on the reaching of a certain threshold,
the collective-risk dilemmas belongs to the class of threshold pub-
lic goods games. On top of this, participants are conflicted with the
choice of costly contributions in every round, but are only able to
connect a reward in the future end of all rounds. These features as-
sociated with risky outcome rather than a certain loss in case of fail-
ure to meet the collective target, make it a good game abstraction of
some of the most pressing issues faced by our current society, for ex-
ample the climate change [31]. Which is why, we specifically choose
this game to analyze the question of how delegation to autonomous
agents might influence the outcome of collective dilemmas. Previous
works have turned to automata to analyze how the construction and
commitment to a certain strategy over a long number of rounds might
influence the outcome of the iterated dilemma [5, 32, 34, 35, 29, 28].
However, few have looked into the construction of a strategy to deal
with a one-shot game, with only one reward, but whose outcome is
dependent on the many rounds play [8, 12]. We consider this to be a
very interesting feature from the point of view of delegation to AI as
a commitment device, because even if given the opportunity to adjust
the behavior of their agents, one can only evaluate their success (or
lack of thereof) at the end of the game, when it might be too late to
steer its behavior.

2.3 Defining the strategies

Since this work focuses on the effect of delegation to AI from an
evolutionary game theoretical perspective, the definition of the com-
peting strategies within the evolving population must reflect the dif-
ference between delegated and non-delegated behavioral profiles. We
consider the specific case where a human delegate is able to convey
their specific behavior preferences to an artificial agent, for exam-
ple, if they were the ones programming the agent themselves as in
[12]. Within such a scenario, classical game theory would predict no
difference between the direct of the principal and the strategy imple-
mented by a program [3], however empirical differences are often
observed in the experimental context [3, 12].

We assume the behavioral diversity present within the population
of individuals to be the same as the one in the delegation treatment
as presented to the participants in [12], where 5 different strategies
are made available to play the collective-risk dilemma: the always-0,
always-2, always-4, the reciprocal and the compensatory. The first
3 behavioral profiles correspond to fixed strategies where the agents
contribute in every round 0, 2 or 4, respectively. The last two behav-
ioral profiles correspond to conditional behavior, where the recipro-
cal strategy corresponds to contributing 0, 2 and 4 given that the rest
of the group members have contributed on average in the previous
round 0, 2 or 4, hence reciprocating their behavior in the following
round; while the compensatory strategy on the contrary contributes 4,



2 and 0 if the others have contributed 0, 2 or 4 on the previous round,
therefore compensating their contributions. Both conditional behav-
ioral profiles are assumed to contribute 2 in the first round when there
is no previous round to condition its behavior and to stop contributing
once the collective target is achieved.

The individuals within the evolving population are assumed to
make mistakes with a certain probability ϵ while executing their
strategies. The way we distinguish between delegated and non-
delegated action lies precisely in the moment on which the individu-
als make those mistakes. In our model, we consider that an individ-
ual playing on their own might deviate from their intended strategy
in each round of play, committing what we may call execution er-
rors. If on the contrary, the individual delegated the strategy to an
autonomous agent, the latter is assumed to not commit any execution
errors during the game-play. However, the principal is considered to
be human, and is therefore bounded by the same probability ϵ of com-
mitting mistakes. So in the case of the delegated action, we assume
the mistakes are committed in the choice or the programming of the
autonomous agent. For example, if the protocol is for the human to
choose from a set of 5 agents and they wrongly choose an agent
that actually does not correspond to their behavior profile (they are
reciprocal but choose always-2 by mistake), we call this a delegate
error. Following [12], another possibility is for the human principal
to program their own agents, in which case a human principal who
is reciprocal might commit a program error and code their agent to
contribute 4 (instead of 0) if the others in the group have contributed
0 in the previous round.

In summary our model considers 5 different behavioral profiles
and 3 different error modes. The 5 different behavioral profiles fol-
low a program with 4 different settings: one setting to define the ac-
tion at the first round, and 3 settings to define how much to contribute
if others have contributed 0, 2 or 4 in the previous round (we assume
at each round, participants can either contribute 0, 2 or 4). The 3
different error modes represent non-delegation action (through exe-
cution errors) and two different modes of delegated action (delegate
error and program error). Even though we consider a universe of
15 different actions, depending on the specific research question, the
evolving population might not consider all the 15 competing against
each other.

2.4 Extracting relevant metrics for analysis

The evolutionary process described allows us to calculate the station-
ary distribution of the competing strategies within an evolving pop-
ulation playing the collective-risk dilemma. The stationary distribu-
tion will mirror the long term success of the strategies relative to each
other within this dilemma’s context, informing us about which ones
will prevail if enough time is provided for evolution to reach a stable
solution. Given that we will always have at least 5 competing strate-
gies within a population we take the small mutation limit[15, 24, 9]
approach to facilitate our analysis. In this case, we assume that the
probability of an individual to adopt another strategy through mu-
tation (rather than imitation) is so small that the population spends
most of its time in a monomorphic state. When a new strategy ap-
pears through mutation, the new strategy either takes over the popu-
lation or disappears long before another mutation appears. This way,
the evolutionary dynamics can be approximated through a Markov
chain with the number of states equal to the number of strategies. Our
implementation follows version v0.1.12 of the recently published hy-
brid C++/Python library EGTtools [9, 13], whose methods allows us
to easily retrieve the stationary distribution provided the game pay-

offs associated with each strategy and group composition and the rel-
evant population parameters such as the selection strength beta and
the number of individuals Z. Given the noisy nature of the model in
analysis, the game payoffs have to be previously estimated through a
series of simulated play within each group composition before being
used as input to the small mutation limit methods described in [9], so
that the number of simulations #sim used to make this estimation
is also a relevant parameter to reproduce the results exhibited in the
section Results and Discussion.

With the stationary distribution, we are then able to calculate
game-related metrics that are relevant for our analysis in a time-
independent way. For example, we can calculate the probability of
a group made of N players of each strategy achieving success in the
collective-risk dilemma. A weighted average of that quantity with
each strategy’s stationary distribution will then return the average
success rate associated with a population where those strategies are
present, similarly to what was done in [48, 7]. By calculating this
quantity for both a population where only no-delegation is allowed
and a population where only delegation is allowed, we can then in-
fer which would be the best long-term solution for the collective-risk
dilemma for any combination of other parameters, for example our
parameter of interest, the probability of error (which is precisely what
we will demonstrate in the Results section).

If instead of populations where only delegation or no-delegation
strategies are considered, we can instead explore a hybrid population
where both delegation and no-delegation strategies are possible. In
this case, we are also able to define a delegation rate, by summing
over the stationary distributions associated with delegation strate-
gies only to examine the prevalence of delegation within such a hy-
brid population. With this delegation vs no-delegation analysis we
are also able to define the average fitness associated with delegation
and no-delegation strategies: through a weighed average between the
payoffs associated with each strategy in their monomorphic state and
their respective stationary distribution for each case, delegation and
no-delegation. Such a method allows us to understand when does
delegation become dominant in a population where it is optional, as
shown in the section Results.

3 Results and Discussion
3.1 When the error probability is small, groups are

more successful in the CRD when they delegate

This first section of Results is dedicated to answering the question:
does delegation increase the success rate of groups of individuals
tackling a CRD? To answer this question we compare the success
rates achieved by 3 different populations, one where individuals do
not delegate and two where individuals delegate through different
methods. As previously discussed in the section Methodology, we
assume that when individuals do not delegate, they commit execution
errors, whereas when they delegate they might commit delegate er-
rors - by choosing the wrong agent from a group of pre-programmed
agents - or program errors by wrongly programming the settings
of an agent. These errors are viewed as deviations from their true
preferences, which we assume are limited to 5 different strategies:
Reciprocal (players start by contributing 2 and then proceed to con-
tribute 0, 2 or 4 if others contributed in the previous round 0, 2 or 4,
respectively), Compensatory (players start by contributing 2 and then
proceed to contribute 4, 2 or 0 if others contributed in the previous
round 0, 2 or 4, respectively), always-0 (players always contribute 0),
always-2 (players always contribute 2) and always-4 (players always
contribute 4).



The success rates obtained for each evolving population (execu-
tion, program and delegate) with regards to different values of er-
ror probability are shown in Fig. 1. As is shown in the figure, suc-
cess rates for a population with execution errors (no-delegation case)
decrease rapidly for small values of error probabilities, resulting in
the lowest success rates between the 3 represented cases when er-
ror probability ≤ 0.15, at which point it returns higher success rates
than the case where individuals program their own agent (program),
but still lower than when they must choose an agent from a group
of pre-set delegates (delegate) for error probabilities ≤ 0.4. For this
figure and the following analysis we have chosen to work with a se-
lection strength beta = 0.05, however similar results (delegation be-
ing more successful in avoiding collective risk than no-delegation for
small error probabilities) can be obtained for other values of beta as
we show in the Supplemental Information (SI). We find these results
to be especially interesting since, for small values of error probabil-
ity, they corroborate the trends observed experimentally [12] using
the same CRD parameters as this model (p = 0.9, N = 6, r = 10,
S = 0, 2, 4, E = 40). Indeed, the region of small error probability
is also the most relevant one for designing future experiments as it is
unlikely that human participants would commit errors with frequency
higher than 0.5, or 1 error for every 2 moves.

Figure 1. Success rate observed in terms of error probability for 3 different
evolving populations: one where individuals do not delegate and therefore

only commit execution errors; one where they delegate to an agent they
choose from a group of pre-set delegates, possibly committing delegate

errors; and one where they program themselves their agent and can therefore
commit program errors. Each different line corresponds to a population,
colored according to the legend on the top right corner of the figure. Two

dotted-dashed lines indicate when (at error≃ 0.15) programming your own
agent and (at error≃ 0.4) choosing a delegate stops being more successful
than not delegating (and just playing by themselves). Selection strength is
indicated on top left of the Figure, and corresponds to beta = 0.05. The

other parameters used to reproduce this image are: p = 0.9, r = 10,
E = 40, S = 0, 2, 4, N = 6, Z = 100, #sim = 1000.

In order to better assess how committing errors influences the suc-
cess rate obtained by the different populations, an analysis of the
transitions observed between each population monomorphic states
at error equal to 0 is conducted. This scenario is identical for all
the different error cases - execution, program and delegate - since it
corresponds to the case where no errors are committed and individ-
uals play exactly with the strategies that they intended to use, inde-
pendently of whether they delegate or not. Figure 2 represents the
Markov chain that illustrates the transitions between the 5 different

monomorphic states, one for each strategy competing within the pop-
ulation. As we can see, for a risk probability p as high as 0.9 (see [8]
for a deeper analysis on the CRD), strategies 2, R and C each occupy
around 33% of the stationary distribution, together fully dominating
the population, which justifies the very high values of success rate
obtained for error= 0 in Fig. 1. Within this figure, arrows represent
invasion relationships between strategies when the fixation probabil-
ity of a mutant strategy in the monomorphic state of another is higher
than random drift (strategy connected to arrow-tail node is invaded
by strategy connected to arrow-head node). Strategy 4 is observed
to be invaded by all strategies, while no strategy invades any of the
others. Moreover, a random drift triad is formed around strategies 2,
R and C, since they all accrue the same fitness when playing among
each other in a group, only random drift determines which one takes
over the population after enough time.

Figure 2. Representation of the Markov chain that illustrations the
transitions between the monomorphic states of the population when

individuals commit no errors when implementing their strategies. Nodes R,
C, 0, 2 and 4 stand for the strategies Reciprocal, Compensatory, always-0,
always-2 and always-4, respectively. The stationary distribution of each

strategy within the evolutionary process is indicated with a number
(approximated to the integer) and the % sign next to each node. Arrows

represent transitions where a mutant from a strategy (arrow head) is able to
invade a monomorphic population of another (arrow tail) with a fixation
probability higher than random drift. A dashed circle around R, C and 2

represents the mutual random drift like fixation that these strategies exhibit
with one another. The values in the image are obtained for any of three

previously mentioned error type populations (execution, program or
delegate) but with error probability equal to 0. The other parameters used to
reproduce this image are: p = 0.9, r = 10, E = 40, S = 0, 2, 4, N = 6,

beta = 0.05, Z = 100, #sim = 1000.

Figure 3 represents the stationary distribution obtained for each
different strategic group in terms of increasing error probabilities for
both a delegation (program errors are made) and the no-delegation
case (execution errors occur). Although the random drift triad as rep-
resented in Fig. 2 encompassing strategies 2, R and C is broken
when errors are present (these perturb the random drift relationship
allowing for small variations in the stationary distribution of these
strategies), their stationary distributions follow similar trends on av-
erage with regards to increasing error probability for the delegation
case. Therefore, to simplify our analysis, in Fig. 3 only the average
stationary distribution of these strategies is shown, so that the col-
ored legend only indicates the 3 different strategic groups 0, 2RC
and 4. In the figure, full lines represent the stationary distribution
for the delegation case (here, program) and dashed lines for the no-
delegation case (execution). As in Fig. 1, a dotted-dashed line de-



termines the boundary below which delegation is always more suc-
cessful than no-delegation strategies in avoiding collective tragedy in
a CRD. This boundary appears to almost coincide with a change in
the stationary distributions of the triad 2RC and 0 within the pro-
gram errors population, where the the stationary distribution appears
to start decreasing with increasing error probability, contrarily to 0,
whose stationary distribution starts increasing at this point. In the ex-
ecution errors population no great changes occur at this point, from
which we infer that the change in success rate at this boundary is
mainly caused by the lack of robustness of delegation strategies in
the presence of higher error probabilities rather than any big changes
caused by higher error rates for no-delegation strategies. For further
detail, the figure corresponding to the stationary distribution of the 5
different strategies can be found in the SI and shows that indeed the
three strategies within the 2RC group change similarly with regards
to the error probability, allowing us to make such a simplification
so that the results can be more easily visualized. Also, note that in
Fig. 3 the focus is on the delegation case where people program their
agents and might commit program errors, simply because it centers
the analysis on the lower boundary at error≃ 0.15, below which del-
egation always results in higher success rates for the population. As it
is shown in the SI, a comparable study can be done to the case where
people choose a delegate agent and can commit delegate errors in
this process (although in this case, the growing of the stationary dis-
tribution of 0 within delegation alone is not sufficient to explain the
change in the success rate trends, one must also consider the slight
decrease of the presence of 0 at this point within the no-delegation
case).

Figure 3. Stationary distribution of the three strategy groups represented in
Fig. 2 in terms of error probability for the case of execution and program

errors. The strategy groups are 0, 2RC and 4 as represented by the colored
legend. The line used to represent the group 2RC indicates the averaged

values of the stationary distribution of the three strategies 2, R and C and the
shadow filling around it the 95% confidence interval around that average.

The figure shows how the stationary distribution of no-delegation strategies,
represented through execution errors (full lines), differs from delegation

strategies, here focused on program errors (dashed lines). A dotted-dashed
line at error probability ≃ 0.15 marks where the success rate of a population
of execution errors starts to surpass the success of a population of program

errors. Selection strength is indicated on top left of the Figure, and
corresponds to beta = 0.05. The other parameters used to reproduce this

image are: p = 0.9, r = 10, E = 40, S = 0, 2, 4, N = 6, Z = 100,
#sim = 1000.

3.2 In the long term, delegation rates are higher when
agents are pre-set rather than programmable

In this section of Results, we try to pinpoint which delegation meth-
ods are more likely to be adopted by a hybrid population in the long-
term. In order to answer this question, two hybrid populations are
compared: one where delegation strategies where individuals pro-
gram their own agents and might commit program errors compete
with no-delegation strategies (with execution errors); and another
where the competition is between no-delegation strategies and del-
egation strategies where individuals have to choose a delegate from
a pre-set group of agents (associated with delegate errors). Again,
within each population we will consider that there are 5 different
strategic behaviors in competition, although in this case each delega-
tion itself, or the lack of thereof, is also part of the strategy taken by
each individual; existing therefore 10 different competing strategies
within each hybrid population.

Figure 4. Delegation rates in terms of error probability for two different
hybrid populations where individuals can either use a delegation or a
no-delegation strategy. In one population the delegation strategy is

represented by program errors, in the other by delegate errors, and these are
distinguished by color following the legend on the top right corner of the
figure. The no-delegation strategies are represented by execution errors in

both cases. Within each population there are therefore 10 competing
strategies: R, C, 0, 2 and 4 for both delegation and the no-delegation case.

With a dotted-dashed line we represent when delegation stops being the most
adopted strategies within the population (the summed stationary distribution

of delegated strategies decreases to ≤ 0.5 with increasing error): at
error ≃ 0.09 for program errors and at error ≃ 0.35 for delegate errors.
Selection strength is indicated on top left of the Figure, and corresponds to

beta = 0.05. The other parameters used to reproduce this image are:
p = 0.9, r = 10, E = 40, S = 0, 2, 4, N = 6, Z = 100, #sim = 1000.

Figure 4 shows the variation of delegation rates obtained within
each hybrid population (one where delegation is given by program
errors and the other where it is represented by delegate choice er-
rors). With a dashed line we denote when the delegation rate, or in
other words, the summed stationary distributions of all delegation
strategies within a population, goes below 50%, therefore marking
the point where delegation stops being the most adopted strategy
within the population. In the experimental study conducted in [12]
(with similar game parameters), participants have answered that they
would rather delegate again if they were given the opportunity to
program their agents, rather than choose a delegate from a group of
pre-set ones. Interestingly, this model predicts that delegation rates



will be higher when delegation is made through a pre-set agent for
almost all error probabilities (and all the plausible ones, as an error
probability above 0.8 is unlikely in a real-world context).

With Fig. 5 we take a closer look into the hybrid population where
delegation happens through the programming of an agent (although a
similar analysis can be taken for the case of choosing a delegate, see
SI for the analogous image). Fig. 5 illustrates the changes in the sta-
tionary distribution of the different strategies (10 in total, although
we reduce the visualization to 6 by once again grouping the triad
composed by the strategies 2, R and C within both delegation and
no-delegation strategic groups). The dashed line at error probability
≃ 0.09 denotes the boundary where delegation stops being the most
adopted group of strategies within the population, following Fig. 4. It
may be observed that this boundary coincides with the moment when
the no-delegation triad 2RC starts to increase their averaged station-
ary distribution, contrarily to its delegation homologue that starts de-
creasing. In the SI it is possible to consult the stationary distribution
of all the 10 individual strategies for both the aforementioned hybrid
populations, from which similar conclusions may be drawn.

Figure 5. Stationary distribution of the three strategy groups represented in
Fig. 2 in terms of error probability of both delegation and no-delegation

strategies in a hybrid population where delegation is represented by program
errors. The colored legend indicates the group (following Fig. 2 notation) to
which the strategy belongs: 0, 2RC or 4. Delegation is represented with full

lines and no-delegation with dashed lines. The line used to represent the
group 2RC indicates the averaged values of the stationary distribution of the

three strategies 2, R and C and the shadow filling around it the 95%
confidence interval around that average. The dotted-dashed line at error

probability≃ 0.09 indicates where delegation rate decreases to ≤ 0.5 within
the hybrid population as observed in Fig. 4. Selection strength is indicated

on top left of the Figure, and corresponds to beta = 0.05. The other
parameters used to reproduce this image are: p = 0.9, r = 10, E = 40,

S = 0, 2, 4, N = 6, Z = 100, #sim = 1000.

4 Conclusion
With this modelling work we are able to draw interesting conclusions
with regards to the success rate and delegation rate obtained for dif-
ferent delegation methods used to tackle the collective-risk dilemma.
We find that for small error probabilities our results corroborate pre-
vious experimental work [12] in finding that groups made of individ-
uals that delegate achieve higher success rates in avoiding the col-
lective disaster. Moreover, we find that delegation is not only more

successful in solving the dilemma, in the long term it is also the most
adopted strategy within a hybrid population where delegation and
no-delegation strategies compete with each other.

Relating specifically to the problem of solving a CRD with high
risk, with this work we find that introducing errors perturbs the ran-
dom drift triad composed by the three strategies responsible for hold-
ing high success rates - reciprocal, compensatory and always-2. All
the interesting conclusions, such as the identification of the bound-
aries when delegation is more successful in solving the dilemma, or
when delegation is more adopted within the population, relate to the
changes observed in the average stationary distribution of these three
strategies. Previous work [7, 8, 12] had already identified the impor-
tance of these three strategies to reach high levels of success, and
this work adds to this literature by showing how the presence of er-
rors perturbs this triad and immediately lowers the expected success
rates even for low error probabilities. However, in real-world scenar-
ios mistakes happen, and our work shows that it is better to commit
them through an artificial delegate than when implementing the strat-
egy ourselves.

To our knowledge, it is also the first time that a delegation mech-
anism is formalized within the context of evolutionary game theory
without having to consider different behavioral strategies, associated
delegation costs or self-interested agents that specifically play a del-
egation game. In itself, we find this to be an interesting contribution
to game-theoretical problems involving delegation to autonomous
agents as often in the experimental settings or real-world applica-
tions, the main difference between delegated and non-delegated ac-
tion lies in the moment when the commitment is made, which in this
modelling work we connect with the moment when errors might be
committed.
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