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Analysis for Plant Agriculture

Maxime Van Haeverbeke™!, Bernard De Baets and Michiel Stock

KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Ghent, 9000, Belgium

ARTICLE INFO ABSTRACT

The analysis of a Distribution of Relaxation Times (DRT) has proven to be extremely effective
for the study of electrochemical power sources. Biological systems are non-inductive, making
them very suitable candidates for DRT analysis, as demonstrated by recent research. In this work,
we conduct the first evaluation of DRT analysis in agricultural applications. We revisit published
troscopy equivalent electrical circuit parameter data to evaluate the potential of DRT analysis for various
plant electrochemical impedance spectroscopy applications. We investigate the advantages and
limitations of adopting this emerging analysis method as an impedance modelling strategy
for the electrochemical characterisation of plants. We illustrate its promise by comparing it
with the standard methods using simulations and measurements published in the literature on
Agriculture fruit ripening, plant stress, and post-harvest processing of agricultural products. This study
highlights the potential of DRT analysis as an effective modelling strategy for impedimetric
system characterization in agriculture, with promising advantages over standard techniques.
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1. Introduction

Electrochemical impedance spectroscopy (EIS) is an effective, rapid, non-destructive, inexpensive, in situ, and real-
time plant characterisation method. In its commonly applied potentiostatic form, EIS consists of a small alternating
voltage input V' (f), where f is the frequency applied to a (bio-)electrochemical system under test. The input V'(f)
gives rise to an alternating current I(f) flowing through the system. The electrical elements in the system impede the
current with a total impedance of Z( f) according to the generalised Ohm law to alternating current:

_VW
1(f)

where | Z(f)| is the magnitude of the impedance, ¢(f) is the phase angle between the current and the voltage, and
Jj is the imaginary unit. The value of the impedance depends on the system’s electrochemical properties and on
the applied frequency f. Measuring Z(f) over a range of frequencies gives rise to an electrochemical impedance
spectrum containing substantial information on various properties of the system under test. EIS has been used in
many agricultural applications, including the monitoring of various forms of abiotic and biotic stress [1, 2], nutritional
status [3, 4], and physiological processes [5, 6]. Equivalent Electrical Circuits (EEC) are currently the standard tools
used for the analysis and interpretation of EIS measurements.

The analysis of electrochemical systems with the Distribution of Relaxation Times (DRT) has made great strides in
the last five years. As expected, this happened in the most prominent EIS application domain: electrochemical power
sources, in particular fuel cells and Li-ion batteries. Numerous studies have been published in these areas [7, 8]. There
are, however, several challenges associated with this method. These include the requirement of high-quality data with
limited noise and the sensitivity to the appropriate choice of hyper-parameters. We discuss these in detail in Section 2.

To date, the application of DRT analysis to biological EIS measurements remains limited. Ramirez—Chavarria et
al. [9, 10] initially tested the method for analyzing rat organ tissues. Afterwards, the same authors used the method for

Z(f) = |Z()l(cos(p(f)) + j sin(e(/))) , ey
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Mathematical Notation

B Regression coefficient

y(log7) Relaxation time distribution function (logarithmically spaced frequencies)

A Regularization hyperparameter

(0] Vector of weights 0

Alm Matrix for DRT calculation using the imaginary part of EIS measurements
ARe Matrix for DRT calculation using the real part of EIS measurements

¢(f)  Phase angle

b, Radial basis function with shape factor u
T Relaxation time

0 Weight in Tikhonov regularization

C Capacitance

Cy Nutrient concentration

f Frequency

F Internal penetration force

g(r) Relaxation time distribution function

1(f) Current
J Imaginary unit

J() Objective function

P Porosity

R Resistance

R? Coefficient of determination
Ryys  Days of fruit ripening

V(f) Voltage

Z(f) Impedance

Z™(f) Imaginary part of impedance

ZRe(f) Real part of impedance

Zgyp  Experimental impedance measurements

Zprr  Reconstructed impedance

sensing the concentration of biological cells in suspension [11], showing that DRT analysis can thoroughly characterise
biological cell suspensions in highly conductive culture media. The authors state that a simple parametric model can be
derived from the DRT to decode the biological cell suspension’s electrochemical properties. The DRT of a biological
cell suspension has three distinct peaks, the first of which has a time constant that predicts the cell’s concentration
well. Next, Shi et al. [12] applied DRT analysis to characterise the relaxation mechanisms of rat liver epithelial cells
in a monolayer. The above discussion shows that recent biological DRT applications hold promise, although they are
currently still very limited in number. To the best of our knowledge, so far there have been no studies evaluating the

Van Haeverbeke et al.: Preprint submitted to Elsevier Page 2 of 24



44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70
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use of DRT analysis for plant applications. A straightforward transfer of DRT analysis from electrical power sources
to a biological application is the novel application of DRT analysis to microbial fuel cells [13].

The remainder of this paper is organised as follows. Section 2 introduces the DRT analysis method, with an
elucidation of the estimation of the DRT using Tikhonov regularisation and a discretisation with radial basis functions.
Section 3 provides a brief literature review of the EIS applications in plant agriculture that are relevant to this work.
The data collection and simulation approach used for this work is described in Secion 4. In Section 5, we conduct
a simulation-based evaluation in various plant applications making use of published data in the plant EIS literature.
The freely available accompanying software that was developed for the purpose of this paper is briefly described in
Section 6. The findings are discussed and placed into context in Section 7, followed by a conclusion in Section 8, along
with some perspectives for future research.

2. The Distribution of Relaxation Times analysis method

The electrical components of an electrochemical system become polarised under the influence of an external
electric field. This polarisation depends on the system’s nature and the electric field’s frequency. Upon removal of the
electric field, depolarisation (dielectric relaxation) occurs. This depolarisation is characterised by a specific relaxation
time constant 7. Almost all electrochemical processes are polarisation processes with associated relaxation times [14].
The Distribution of Relaxation Times (DRT) [15], sometimes also referred to as the Distribution Function of Relaxation
Times (DFRT), is an emerging distributed parametric tool that sheds light on hard-to-interpret cases where the system-
under-test involves electrochemical processes with similar time constants [16]. In this section, we first consider the
definition of the DRT in Section 2.1 and then discuss the Tikhonov-regularisation-based DRT deconvolution used in
this work in Section 2.2.

2.1. Distribution of Relaxation Times definition

The DRT analysis method is often reported as being model-free, though strictly speaking, it assumes a very general
model consisting of an Ohmic resistance connected to an infinite number of serially connected Voigt circuits (i.e.,
parallelly connected resistor and capacitor elements) [17]. This model is displayed in Figure 1A. From Kirchhoff’s
laws and the expressions for the impedance over resistors and capacitors, the impedance of a single resistance parallelly
connected to a capacitance is given by

R

Zpo= —————— 2
RC T 1+ 2zjfRC’ 2

where R is the resistance, C the capacitance, and f the interrogated input frequency. Thus the impedance of a resistor
in series with N such Voigt elements is given by

Zvoigy, = Ro + 2 1+ 2ﬂjfT )

DRT analysis assumes an infinite number of Voigt circuits, each characterised by its own relaxation time z, and
associates them with their distribution function g(z) > 0. Following this reasoning, we arrive at the equation relating
the distribution of relaxation times to the impedance of a given system:

g(z)

1+27jfr @

(o]
Zprr(f) = Ry + /0

Here, R, and R, from Eq. (3) are absorbed into R, the high-frequency intercept of the impedance spectrum (i.e., the
value of the real-valued impedance at the point where the spectrum crosses the horizontal axis in the Nyquist plot),
and g(z), respectively. Frequency-domain impedance measurements are deconvoluted to the time constant domain,
where various relaxation processes and their time constants can be examined. In addition, DRT analysis can also aid in
various aspects of equivalent circuit analysis such as EEC topology establishment or confirmation [18, 19], providing
reasonable initial values for the parameter optimization methods that require them [20], and EEC parameterisation [21].
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2.2. Estimating the DRT using Tikhonov Regularisation

Solving Eq. (4) for g(z) is an ill-posed problem (i.e., it is a Fredholm integral equation of the first kind), meaning
there might not be a unique distribution function for a given impedance spectrum. As a result, one requires sophisticated
estimation strategies to solve the inverse problem adequately. To this end, we approximate Eq. (4) with a well-posed
variant. This approximation is currently an active area of research with a variety of proposed strategies, including
Monte Carlo methods [22], evolutionary programming [23], Fourier filtering [24], Tikhonov regularisation (cfr., ridge
regression) [25], hierarchical Bayesian regularisation [26], and supervised deep learning [27]. One of the most popular
approaches that has proven to work well is a basis function discretisation followed by ridge regression [28]. In this
work, we adopt this approach for the DRT calculation, and implement it in the Julia programming language [29] (see
Section 6).

When the impedance measurements are collected at logarithmically-spaced frequencies, a change of variables
(7 — log7) is in order (where log refers to the natural logarithm):

[es]

y(log 1)

i , 5
S Tt2mjf Bt ©)

Zprr(f) = Ry, + /
where y(log7) = 7g(7). Zprt(f) is often referred to as the reconstructed impedance, as the goal is to find an
appropriate function y(log 7) such that a given set of experimental impedance measurements Zgxp is reconstructed by
the right-hand side of Eq. (5). Some authors conduct a normalization, imposing the constraint /_0; y(logr)dlogr =
1 [17]. This way, the resulting distribution function is a valid probability density function. We opted not to include
this constraint because we found that the amplitude of the DRT provides useful information about both the relative
importance of different relaxation processes and the absolute magnitude of the impedance allotted to those processes
across different measurements. In this case, the DRT’s amplitude may be a useful feature when modelling the properties
of an electrochemical system (see Section 4.2). A discretisation of the distribution function y(log 7) is required before
we can estimate the DRT. We use the radial basis function discretisation proposed by Wan et al. [28]:

N
y(ogz) =) 6,,(logz —logz,|), ©6)

n=1

where ¢,(|logz — log7,|) is a radial basis function with shape factor u. Previous work has demonstrated that the
Gaussian radial basis function ¢, (x) = exp(—(ux)?) works well for DRT [11, 12], which is why we chose to adopt
it. Equation (5) describes the distribution of relaxation times y(log 7) as a sum of N radial basis functions centered
at relaxation times 7,, and weighed by 6, > 0. Physically, one can interpret this representation as N generalised RC
circuits with a relaxation time 7, surrounded by a distribution of infinitesimal Voigt circuits. Figures 1B, C, and D
display exemplary plots of what the Gaussian radial basis functions, the values of 8, and the resulting DRT may look
like in practice.

Combining Egs. (5) and (6), we get the expression for impedance (Zprt(f)) reconstructed using the distribution
function discretised by radial basis functions :

o N ¢ (|logr —logz,|)
Roo+/ 29" w108 - il dlogz
—o0 1+27jfr

N
® ¢,(|logr —logz,|)
=R_+ 0 dl . 7
e 0

The reconstructed impedance Zpg(f) can be written as
Ziri(f) = Zge () + i Zppe () ®)

with real part ZSET( f) and imaginary part le)rlnzT( ).
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Figure 1: An overview of the DRT inversion from the frequency domain to the time-constant domain with discretisation
using Gaussian radial basis functions. (A) A series connection of Voigt circuits forms the underlying model of the DRT.
Each of the n Voigt subcircuits entails its corresponding contribution to the DRT at 7,. (B) The DRT is discretised by
Gaussian radial basis functions ¢, generalising the Voigt circuit contributions and allowing the DRT to be defined at —inf
and inf. (C) The weights O resulting from the Tikhonov regularisation given in Eq. (14). The combination of the radial basis
functions with the weights © results in the DRT y(log 7) of the system displayed in (D). (E) The Nyquist representations
of the measurements Zy, and reconstructed impedance Zp,; after optimization. A fundamental advantage of the DRT
can be seen here, as the two relaxation processes cannot be resolved from the Nyquist plots, whereas they are visible in
the DRT. The measurements used in this figure are cabbage leaf EIS measurements with a water content of 84%, also
displayed in Figure 3.

Multiplication of the numerator and denominator of the integrand in Eq. (7) by (1 — jz2) allows to separate the
real and imaginary parts of Zppy, with deT( f) given by

R
al © ¢,(|logz —logz,|)
Rw+29n/ dlogz, )
= —o 1+ Qrfr)?
and j Z% (f) by
al ®2rf¢,(|logz —logz,|)
_jZQH a - logz. (10)
praar —oo 1+ Qrfr)?
When solved numerically, Eq. (8) is written in condensed vector form:
Zprr = 2o + JZir - (11)
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In Eq. (11), Zpgr is the vector of reconstructed impedance values for all considered frequencies, with ZR¢ _and Zi™

DRT DRT
its real and imaginary parts. For a frequency vector F € REX! with values f}, f5, ..., f; , the vectors ZE;T € Rt and
i L
Zr € R™ are calculated as
Re _ R
Ziir = R,1+A™0 (12)
Ziky = JATO, (13)

where the values of the vector @ € RV are 0,0, ...,0x,11is a vector of ones, and the matrices ARe € RLXN and
Am € RIXN are given by

o 1
Re __
A = /_oo 1+(2n)2e2<X+logfn—logfm>d’”('x')dx’

AIm © 2 rextlog f,=log £
mn o 1+ (27)2e2cHog £, log £,)

¢,,(1x)dx

The above equations were obtained through a change of variables of the integrals in Eq. (9) and (10), respectively. They
can be conveniently solved using numerical integration algorithms, such as adaptive Gauss-Kronrod quadrature [30].
In order to approximate the distribution of relaxation times y(log v) using Tikhonov regularisation, we need to
find the optimal vector ® such that the reconstructed impedance vector Zpgt matches the experimentally measured
impedance vector Zgyp from the (bio)electrochemical system-under-test. This amounts to the minimization of a
regularised objective function:
J(©) = |R, 1+ AR® — Z3¢ |I* + [|[A™O — Z% 1> + A[|©]|°. (14)
The last term in Eq. (14) is the regularisation term, where A is the regularisation hyper-parameter applied in Tikhonov
regularisation. In this work, the L,-norm of the vector @ is used to apply regularisation, following the guidelines of
Hahn et al. [31]. Other possibilities to regularise the objective function are terms proportional to the first or second
derivative of y(log7) [12, 28]. The minimization of Eq. (14) is adequately achieved using the Broyden—Fletcher—
Goldfarb—Shanno algorithm [32]. In a Kramers—Kronig compliant system, adhering to the linearity, causal, and time-
invariance quality criteria for EIS measurements [33], the DRT can also be calculated using only the real or only the
imaginary parts of the measurements. This means that the first or second terms in Eq. (14) can be dropped. In some
cases, it can be advisable to use only the real or imaginary parts of the measurements (e.g., due to some measurement
quality considerations). Usually, using the complete Eq. (14) is advisable [31]. The choice of the regularisation hyper-
parameter A has been the subject of extensive study. Large values of A cause extensive smoothing of the DRT, resulting
in flatter and wider peaks. If the value of A is too large, it can cause peaks to disappear, resulting in a misinterpretation
of the system under investigation. Conversely, excessively small values of A should also be avoided, as these give rise
to artifacts and spurious peaks in the DRT. Some developed automatic tuning procedures include the minimization of
the discrepancy between @ calculated using real and imaginary parts of measurements [34], real and imaginary Zpgt
cross-validation [34], the L-curve (offset) method [35, 36], and generalised cross-validation methods [37]. Despite
these efforts, it remains advisable to be cautious when using these automated procedures, as they have been reported
to provide inconsistent results [19, 31]. The shape factor u in the DRT discretised by radial basis functions serves as
another regularisation parameter to be selected. This shape factor is related to the full width at half maximum of the
radial basis functions. Decreasing u causes flattening of the DRT, which is the opposite effect of decreasing A.

3. Impedance spectroscopy in plant agriculture

While the potential of EIS for characterising the physiological processes of plants was already evident in the middle
of the previous century, recent decades have seen a substantial increase in studies exploiting the vast information
contained in impedance spectra for plant agricultural applications [38]. Many such applications have been investigated,
ranging from fruit ripeness to the effect of post-harvest processing operations on the quality and nutritional value of
plant products. This section briefly reviews the literature on the various applications considered in this work. The
considered applications are the impedimetric evaluation of fruit ripening, abiotic stress, seed germination and quality,
plant nutrition, and post-harvest processing operations. A number of the described applications are considered in
Section 5, where we evaluate DRT analysis in plant agriculture.

Van Haeverbeke et al.: Preprint submitted to Elsevier Page 6 of 24



Plant DRT Evaluation

3.1. Fruit ripening

Chowdhury et al. [6] conducted EIS measurements on Citrus reticulata (mandarin oranges) to assess the feasibility
of inferring the ripeness of fruits based on their impedance spectra. To this end, the authors non-invasively measured the
impedance spectra on six consecutive days. The authors observed an increasing impedance magnitude and variations
in the phase angle during the ripening period. An EEC-based analysis was conducted on each day of the experiment.

Harker and Forbes. [39] investigated the changes in impedance spectra during the ripening of Diospyros kaki L.
(persimmon) fruit. They conducted measurements after 1, 25, and 35 days. The authors observed an initial increase of
the impedance between 1 and 21 days, followed by a substantial decrease after 35 days. Using an EEC, an increase in
the cell wall, cytoplasm, and vacuole resistance was reported during the first 21 days. After 31 days, a substantially
lowered cell wall resistance and an increased membrane capacitance were reported. The initial increase before 21 days
of ripening was reported to reflect decreases in the concentration of mobile charged species or an increase in insulatory
compounds such as sugars. The disintegration of the plant cell’s compartmentalization at late-stage ripening grants
low-frequency current access to the cells, which is reflected in a substantially decreased impedance.

The same authors investigated the changes in impedance spectra during the ripening of Prunus persica L.
(nectarines) [40]. Here, they measured the respective impedance spectra of unripe and ripe nectarines and reported
a decrease in all resistances and capacitances based on the change in EEC model parameters.

3.2. Abiotic stress

Zhang and Willison impedimetrically evaluated the effect of freeze-thaw injury on the electrical properties of
Daucus carota L. (carrot) root tissues [41]. The authors reported that the discharge of electrolytes from cells led
to a reduction in extracellular impedance. The freeze-thaw cycles to -3 or -6°C caused the extracellular resistance
and vacuole interior resistance of the carrot tissues to halve relative to the control values, while the cytoplasmic
resistance further decreased to a third of the control value. Tonoplast and plasma membrane capacitances were not
strongly influenced by these non-injurious freeze stresses. At lower temperatures, a large decrease in all resistances
and capacitances was observed due to rupturing of protoplasts.

Watanabe et al. [42] evaluated the effect of mechanical stress on the resulting impedance spectra through drop
shock bruising of Pyrus pyrifolia (Japanese pear), followed by conducting EIS measurements. The authors defined
a damage score to quantify damage to the fruits after drop shock treatment, where a score of 1 corresponds to the
control samples without injury, and a score of 5 corresponds to an injury covering half of the fruit’s bottom surface.
Physical damage is an important factor influencing the quality of fruits when they are being processed, handled, and
distributed. The authors reported a reduced cell membrane capacitance due to damaged membranes after injury and a
reduced extracellular resistance due to leakage of the conducting electrolytes from the protoplast into the apoplast of
the fruit tissue, as well as a slight increase of the intracellular resistance.

3.3. Seed germination

A generally applicable, fast, non-destructive and cheap method for evaluating seed quality is important for
efficient agricultural production and determining optimal storage conditions to delay the decline in seed vigour and
viability. The standard germination test typically takes over a week [43], and the destructive assays based on 2,3,5-
triphenyl tetrazolium chloride (TTC) take 1-2 days [44]. X-ray measurements are fast and reliable for assessing seed
viability [45], but they are expensive and are only effective for certain seed types. Furthermore, X-ray measurements
involve exposure to radiation, which may be a concern for seed samples that need to be used for further breeding or
research.

Ackmann and Seitz [46] were the first to analyse seed germination with EIS in 1984. The authors reported
decreasing characteristic frequencies during seed germination in their study of Ricinus communis L. (castor bean).
Paine et al. [47] and Repo et al. [48] corroborated these results and linked them to changed moisture content during seed
germination, while evaluating EIS as a method to assess seed quality. Here, the germinability of Phaseolus vulgaris L.
(snap bean) seeds was impedimetrically evaluated on fresh seeds and artificially aged seeds with reduced germination
potential. A moisture content of 45% was deemed optimal for classifying a lot of snap bean seeds into germinable and
non-germinable ones.

Vozary et al. [49] assessed the electrochemical properties of Phaseolus vulgaris L. (snap beans) and Glycine max L.
(soybeans) in different states of viability and vigour at a fixed seed moisture content of 45%. Through an EEC model
analysis, they found that the quality of the seeds has a measurable impact on their (non-invasively measured) impedance
spectrum. The physiological state of the seeds, in turn, strongly relates to the seedling’s quality.
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3.4. Plant nutrition

Nitrogen (N), phosphorus (P), and potassium (K) are essential chemical elements of interest for crop quality and
growth. They are the most important macronutrients in modern agricultural fertilisers [50]. The effective and non-
invasive measurement of the concentrations of these nutrients holds promise for precision agriculture and advanced
fertiliser management. Besides the traditional, destructive chemical plant nutrition assessment methods, methods to
interrogate the NPK-nutrition status of plants typically rely on the measurement of optical properties on the leaf or
canopy level. A criticism of these methods is that they are sensitive to environmental conditions [4]. EIS is capable
of meeting the modern agricultural standards of being rapid, non-destructive, and real-time. The quick and precise
identification of a plant’s nutrient status prior to visible symptoms is crucial for optimal fertiliser application and
maximum productivity. Recently, some studies have started to explore the potential of EIS-based methods to assess
the NPK status of plants. Meiqing et al. [51] conducted Solanum lycopersicum (tomato) leaf measurements for the
purpose of detecting the phosphorus nutrition level. In another study, the same authors did similar measurements on
tomato plants for the assessment of the nitrogen nutrition level [4]. Jinyang et al. [52] experimentally analysed tomato
plants’ potassium nutrition levels through EIS measurements. Basak et al. conducted a similar study to determine the
leaf nitrogen content of corn, wheat, canola, and soybeans. They also performed a linear regression with a backward
selection of the many impedance features available. High correlations were reported with their linear models containing
many features. Evaluation of the models on separate data, external to the calibration dataset, was not done in their work.

3.5. Processing of plant products

Due to their ease of storage and convenience, processed foods, including dried, precooked, and frozen vegetables,
are in high demand. Proper safety and quality assurance are essential for such food products, and EIS has great potential
for conducting such a real-time, rapid, automatable, cheap, and non-destructive quality assessment. To this end, several
research works have proposed EIS-based methods. Heat treatment is a common operation in food processing. Imaizumi
et al. [53] subjected Solanum tuberosum L. (potato) tubers to hot water treatment over a range of temperatures. They
found that EIS is capable of describing the textural changes and softening of potatoes during heat treatment. The authors
conducted an EEC-based analysis and reported decreases in the cell membrane capacitance as a result of membrane
damage (and the resulting loss of turgor pressure) and confirmed this through Confocal Laser Scanning Microscopy
(CLSM) with Dil staining and penetration force testing.

Watanabe et al. [54] investigated the mechanical and bioelectrochemical properties of Spinacia oleracea L.
(spinach) after short-duration heat treatment (blanching) using steam at 100°C. Tensile fracture tests and EIS
measurements were conducted along with EEC model parameter fitting after heat treatment. The authors reported
decreased extracellular resistance and cell membrane capacitance after heat treatment.

4. Materials and methods

Relaxation times of plant impedance spectra have already been established as valuable features to describe plant
tissues’ physiological and morphological states. However, traditional calculation methods of these features are based
on finding the peaks in the Nyquist plots of impedance spectra with a limited frequency resolution or are dependent
on proposed (biased) equivalent electrical circuit models. Ozier—Lafontaine and Bajazet [55] report changes in the
relaxation time constants of a tomato root system. The authors already anticipated the limitations of a graphical
approach to identifying relaxation times and the need for effective numerical deconvolution methods. The novel DRT
analysis method does not require equivalent circuit identification and parameterization in the traditional sense and is
calculated directly from the impedance measurements. Furthermore, it is more precise, allowing for electrochemical
relaxation processes with similar relaxation times to be resolved, which allows it to analyse impedance spectra in
greater depth. This section contains a description of the semi-synthetic data collection (Section 4.1) and the conducted
experiments for the evaluation of the potential of DRT analysis for plant applications (Section 4.2).

4.1. Collecting EIS measurements

We conducted an extensive literature search to gather a variety of plant EIS measurements that satisfy our
imposed quality criteria. As raw EIS data of sufficient quality is frequently unavailable, the measurements were
indirectly collected through the reported frequency ranges, the equivalent circuit topologies, and the corresponding
parameter values. As we wish to simulate the impedance measurements as accurately as possible, more complex
(albeit appropriate) circuits with lower fitting errors are preferred, such as models containing ZARC elements, the
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Figure 2: Equivalent Electrical Circuits featuring in the experiments. (A) A resistor serially coupled to N ZARC elements,
each modelling a different segment of the considered plant part. (B) The fractionalised single shell model, where Ry
is the extracellular resistance, R, is the intracellular resistance, and CPE,, is the constant phase element modelling the

capacitance of the cell membrane. (C) The double shell model, where C,, denotes the cell membrane capacitance, C; the
tonoplast capacitance, Ry the extracellular resistance, R; the intracellular resistance, and Ry the vacuolar resistance.

double shell model, and the fractional single shell model displayed in Figure 2A, B, and C, respectively. The measured
frequency range and equivalent electrical circuit parameters were collected, after which 100 logarithmically spaced
impedance measurements were simulated using our previously published EquivalentCircuits. j1 software [56].
The impedance expressions of these equivalent circuits are derived through the application of Kirchhoff’s laws and
the impedance expressions of the circuit components [57]. The obtained measurements were included in this work,
provided that (i) a high-quality circuit parameter fit was reported, indicating that the measurements are approximately
the same as those simulated using the reported circuit parameters, and (ii) the circuit parameters were clearly reported
in tabular or scatter plot form. In the latter case, the parameter values can be reliably obtained using plot digitizing
software. In most cases, the results of different literature sources were compared for the examined physiological
properties. It has been shown that measurements simulated using equivalent circuits comprised of resistors, capacitors,
Warburg elements, and CPE elements are valid impedance spectra conforming to the Kramers—Kronig relations [58].

For the fractional single shell model (displayed in Figure 2B), equivalent capacitance values of the CPE are
typically reported for the membrane capacitance. These apparent capacitance values are based on the widely applied
mathematical formula proposed by Hsu and Mansfield [59]. The assumptions upon which this formula relies imply
that the single main relaxation time response system of homogeneous plant tissues implied through use of the single
shell model remains unchanged upon conversion, justifying the use of the apparent capacitance when simulating the
measurements for the purpose of the DRT evaluation in this work.

4.2. Simulated case studies from the plant literature
We searched the literature for plant EIS studies relevant to several agricultural applications. These applications
are fruit ripening, abiotic stress, seed viability, nutritional status, and post-harvest processing of agricultural products.
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Semi-synthetic measurements were procured from selected studies satisfying the criteria described in Section 4.1. The
DRT of these measurements was subsequently estimated using the deconvolution approach described in Section 2.2.
The 4 and u hyper-parameters were determined manually and using Re-Im cross-validation (see Section 2.2) for each
considered case study. The same hyper-parameters were used within a given case study. One of the aspects to be
evaluated is whether DRT analysis can provide useful features for statistical inference and predictive models. To
this end, linear regression models using DRT features are evaluated for predicting the considered plant properties
of interest, where relevant. The quality of the linear regression fits is evaluated using the coefficient of determination
R2. Next, the predictive performance of the linear regression models is evaluated using R?, based on Leave-One-Out
Cross-Validation (LOOCYV).

5. Results

An illustrative comparison of the DRT with the traditional EIS representations is given in Section 5.1. The DRT
evaluation case studies in various agricultural applications are presented in Section 5.2.

5.1. Comparative overview of EIS representations

Traditional Nyquist and Bode representations are compared with the DRT in Figure 3. The measurements
represented in this figure were selected from Zhang and Willison’s work [60]. Brassica oleracea L. (cabbage) leaf
development was impedimetrically analysed by Zhang and willison [60]. These EIS measurements were simulated
(see Section 4.1) to illustrate the different EIS representations. The authors found that leaf development was correlated
with the parameters of the double shell EEC model (shown in Figure 2C), which they developed [61]. Leaf development
manifested itself electrochemically through increased extracellular, cytoplasmic, and vacuole interior resistances along
with decreases in the plasma membrane and tonoplast capacitances. The authors measured the water content by
weighing the fresh and dried samples. The different EIS representations are displayed in Figure 3. Concerning the water
content for the considered measurements, there is no visual relation to be seen in the Nyquist (A) or Bode magnitude
(C) representations. Upon careful inspection of the Bode phase plot (D), the frequency at which the phase reaches
a minimum provides some information, indicating that the minimum occurs at higher frequencies with increasing
water content. Two relaxation processes that were not visible in the Nyquist plots are identified in the DRT (B). These
measurements indicate that the relaxation time = of the second relaxation process (i.e., the second peak) becomes
longer with increasing water content. Since Zhang and Willison’s experiments, several more recent studies have been
conducted regarding the moisture content of plants.

5.2. Case studies in agriculture

The potential of DRT analysis is evaluated through several case studies relevant to agriculture. The case studies
considered are fruit ripening, plant stress, seed germination, plant nutrition, and postharvest processing. The conducted
DRT evaluations include informative figures. In the cases where sufficient measurements are available, the potential of
DRT-based variables to determine properties relevant to plant agriculture is assessed through regression models. For
a given quantity Q describing a particular plant property, the following linear regression models are evaluated:

O(Tpear) = Po + PiTpeak » (15)

0 (pea)) = Fo+ P17 () (16)
Q(Tpeak’ Y(Tpeak)) = fo+ ﬂlTpeak + 5 y(Tpeak) > (17)
Q(Tpeakv Y(Tpeak)) =P+ h Tpeak T By logg Y(Tpea.k) . (13)

Here, fy, ;. B, are the intercept and fitted regression coefficients, while 7pe,, 7(7peq) are the respective log;g

relaxation time and amplitude of the peak of interest in the DRT. The coefficient of determination R> = 1 — RSS

(where RSS stands for the residual sum of squares and TSS stands for the total sum of squares) is calculated for thTeSs%
regression models, and the model with the highest R? value, given that the included variables are all significant, is
reported. We consider a regressor to be significant if the two-sided t-test yields a p-value lower than the conventional
threshold of 5%. Information on the statistical significance of the DRT-based variables, their 95% confidence intervals
and standard errors can be found in Table 1.
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Figure 3: A comparison of the traditional Nyquist and Bode plot EIS representations with the corresponding DRT. (A)
Nyquist plots. (B) DRT. (C) Bode magnitude plots. (D) Bode phase plots. Note that only the DRT correctly manifests
the order of water contents via the location of the second peak.

5.2.1. Fruitripening

Figure 4A displays the DRT of the collected mandarin ripening (MR) measurements from Chowdhury et al. [6]
where the authors considered an EEC consisting of a resistor serially connected to a parallelly connected CPE and
resistor (with similar impedimetric behaviour as a ZARC element). Two peaks are observed for all stages of ripeness.
The first peak’s amplitude and relaxation time increase as ripening progresses. A less visually clear trend is the decrease
in the relaxation time of the second peak during the ripening of the mandarin oranges. After fitting and evaluating the
linear regression models described in Section 5.2, the most suitable model to describe mandarin ripening turned out
to be Eq 16, resulting in:

Rgays (1 (Tpeak, ) = =2.22 + 0.001 1y (Tpeqi,) 19)

where Ry, is the days of ripening and y (7., ) is the amplitude of the first peak in the DRT. The linear fit and the
original observations are displayed in Figure 4A and B. The linear regression fit yielded a coefficient of determination
R? = 0.960. When evaluating the predictive performance using LOOCYV, an R? value of 0.926 is attained using
Eq. (18). The resulting model is given by:

Rdays,predict (Tpeakl ), }’(Tpea_kl )) = _233 + 1. 17Tpeak1 + 238 loglo y(TpCa.kl) . (20)

The persimmon ripening EIS measurements conducted by Harker and Forbes [39] were originally analysed using
the double shell model (see Figure 2C). We can see from Figure 4C that the impedance initially increases between 1
and 21 days, as was the case with the ripening of mandarin oranges. The DRT plot also shows a similar pattern as for
the mandarin orange between 1 and 21 days, where the two peaks of the DRT move to higher relaxation times. After
35 days, an opposite phenomenon is observed.
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Figure 4D displays the DRT of measurements from Harker et al.’s double shell EEC model-based nectarine ripening
analysis [40], where we observe a decrease in the impedance and a shift to lower relaxation times after ripening. These
results resemble what happens during the final stages of persimmon ripening between 21 and 35 days.

5.2.2. Abiotic stress

Figure 5 displays the DRTs calculated from Zhang and Willison’s carrot freeze-thaw injury measurements. As
the authors reported the equivalent circuit parameter values for the double shell and the single shell model, we can
compare the two, allowing us to demonstrate the bias introduced by the choice of the equivalent circuit configuration
during EIS analysis. From the quality of the complex non-linear least squares (CNLS) fit, the authors recognised that
the single shell model was not as capable of modelling the EIS measurements as the double shell model. Figure 5A
shows the corresponding DRTs. Freezing at -3 or -6°C manifests itself as a decrease in impedance magnitude and shift
to lower relaxation times of both peaks. At -9°C, the freeze damage causes one of the peaks to disappear, as well as a
further decrease in impedance magnitude. Figure 5B shows the same analysis conducted based on the assumption of
the single shell model. Here, the DRTs all consist of a single peak, and the -3 and -6°C freeze-thawed carrot tissues
become indistinguishable. In both cases, the impedance magnitude of the -12°C freeze treatments becomes negligible
compared to the earlier treatments. The authors reported a considerably improved fit of the double shell model, which
is also reflected in the increased information to be seen in the corresponding DRT. This is not always the case, as some
works report an excellent fit with the single shell model (i.e., homogeneous tissues where only a single polarisation
process is of significance).
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Figure 5: Influence of freezing on the DRT of carrot root cortical tissue. The DRT of impedance measurements simulated
using the reported parameters of the double shell model is displayed in (A), whereas that of the single shell model is
shown in (B), illustrating how an excessively simple equivalent circuit model can introduce bias into the analysis of EIS
measurements.

The DRTs of Watanabe et al.’s experiments impedimetrically evaluating mechanical damage of Japanese pears
(JP) [42] are displayed in Figure 6. Here we see a consistent shortening of the relaxation time with increasing damage
to the Japanese pear tissue. Furthermore, the gradual decrease in amplitude with increasing damage corroborates the
reported decreasing impedance due to membrane ruptures and electrolyte leakage. A linear fit to the damage scores
using the relaxation time feature (Eq. (15)) results in the following model:

D(tey) = —2.55 = 2.751, 2D

eak >

where D(7c,
fit linear regression model given by Eq. (21) yields an R? value of 0.985. The best predictive performance is attained

using Eq. (18). This results in the following model:

«) is the damage score described in Section 3.2, presented as a function of the relaxation time feature. The

Dpredict (Tpeak’ J/Tpeak) = —4298 + 2.00Tpeak -9.37 loglo J/Tpeak N (22)
which has a LOOCV R? predictive performance value of 0.960 with only a limited number of measurements.

5.2.3. Seed germination

A Voigt model consisting of a resistor and two ZARC elements (i.e., Figure 2A with N = 2) was used in the studies
of bean seed impedance spectroscopy by Paine et al. [47] and Repo et al. [48]. Figure 7 displays the DRTs of the snap
beans for different moisture contents. The decrease in the impedance of both relaxation processes can be seen with
increasing moisture content. In this case, higher moisture leads to greater ion mobility which, in turn, decreases the
impedance. Differences in relaxation times can be observed for different moisture contents and between seed viabilities
at a given moisture content. According to the authors of these studies, this first relaxation process is due to the cell
membranes, while the second relaxation process is due to the cell walls.

Next, we consider snap and soybean EIS measurements conducted by Vozary et al. [49]. These were analysed with
an EEC containing 3 ZARC elements (see Figure 2A with N = 3). When comparing the DRTs displayed in Figure 8 to
the dispersion arcs in the Nyquist representations reported in the original publication [49], one can see that the DRTSs
provide an improved resolution of the different polarisation processes which, in itself, provides sufficient motivation to
adopt the DRT analysis method. Based on the investigations by Kuang and Nelson [62], the first peaks (relating to the
higher frequencies) are assumed to be caused by the plasmalemma of cellular membranes, while the second peaks (at
lower frequencies) are assumed to be caused by the cell walls. The peaks at the lowest frequencies are assumed to be
due to the embryo and the space between the two cotyledons. The disappearance of this DRT peak in non-viable seeds

Van Haeverbeke et al.: Preprint submitted to Elsevier Page 13 of 24



Plant DRT Evaluation

Japanese pear mechanical stress Fruit damage model
1.50x10" - sto
Score 1 — Linear model
Score 1 O Observations
Score 2 8 4 R? = 0.985
Loox10* F ~— Score 3 8
o —— Score 4 Score 2 R
~ = Score 5 & 3
5.00x10° - = e
A
1
0 L L 1 L L L J
1640 1035 16730 1025 10720 1015 10710 1070 26 -24 -22 -20 -18 -16 -la
T () T ()

Figure 6: Mechanical damage to fruit. The DRTs of the pears subjected to increasing degrees of drop shock damage (left).
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Figure 7: DRTs of snap beans of different Moisture Content (MC) and physiological condition (viable vs non-viable)
measured at longitudinal positions.

is assumed to be caused by membrane injury of embryonic tissue and characteristic changes in the inter-cotyledon
space. Due to the ventral location of the embryos in the seeds, this peak is less pronounced for the measurements at
the longitudinal position, where it is not present for snap beans.

5.2.4. Plant nutrition

Impedimetric analyses by Meiqing et al. [4, 51] and Jinyang et al. [52] evaluated the N, P, and K status of tomato
plants' employing a similar methodology with EEC analysis using the fractional single shell model (see Figure 2B) and
step-wise linear model selection of impedance measurement values to find the optimal variables for their linear models.
The variables to select from were impedance moduli and capacitance values at a range of frequencies. The reported
coefficients of determination (R2) were 0.837, 0.864, and 0.856 for the respective N, P, and K regression models. In
the present work, linear regression models were fitted using the relaxation times 7 and their corresponding amplitudes
y(7). Among the models presented in Eqs. 15-18, the most suitable models for the determination of the N, P, and K
concentration of tomato plants turned out to be Egs. 16, 17, and 16, respectively. Fitting these linear regressions results
in the following equations:

Cove(r(Tpeat)) = 109+ 425 = 5y (e (23)
Cpop(T, ¥ (Tpear)) = 442+ 0.797, + —6.69¢ — 67 (7pear) » (24)

labbreviated below as TPN, TPP, and TPK, respectively.
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Figure 8: DRTs of snap beans and soybeans in different physiological conditions measured at longitudinal and lateral
positions.

Cia (¥ (Tpear)) = 2.12 + 1.52¢ = 5y (Tpenr) - (25)

Here, Cy, denotes the concentration of the considered nutrient. The DRTs and fitted linear models are displayed for the
three considered nutrients in Figure 9A, B, and C, respectively. Note that the bivariate linear model for phosphorus is
shown in only two dimensions, which is why it is not a straight line such as linear models for the other two nutrients.
The best-performing linear regression models for the prediction of nitrogen content and potassium content are the same
as those for inference, namely Eqs. (24) and (25). Equation (18) yields the best LOOCV R? value for the prediction of
the phosphorus content and yields the following model:

Cpeppredict (7 T (Tpear)) = 8.48 + 0.897,.1 — 0.841080 7 (Tpeq) 26)

The linear regression models evaluated using LOOCYV result in R? values of 0.917, 0.836, and 0.951 for the N, P, and
K regression models. While these and previous results show that NPK deficiency can be detected using EIS when all
other nutrient values are kept constant, further research is required to evaluate whether deficiencies in one of these
nutrients can be ascertained while the others are also variable.

5.2.5. Processing of plant products

Figure 10A (left) presents the DRTs of the measured potato samples for the different heat treatment regimes applied
by Imaizumi et al. [53]. A clear trend is the decreased impedance as the heat treatments intensify. There is also a clear
shortening of the distribution times, which was used to fit a linear regression model demonstrating their capability to
model the change in the texture and softness (quantified by the internal penetration force (PF) reported as Fj by the
authors) of the considered food product after the blanching treatments. This linear model given by Eq. (15) is the most
suitable among the four evaluated DRT-based linear regression models. The resulting fitted linear model is displayed
on the right-hand side of Figure 10A and is expressed as:

Fy(r) = 3242+ 4.67r. (27)

The best LOOCV R? performance value of 0.840 was achieved using Eq. (18) for the fit of Eq. (27). As such we obtain
the following fitted model:

F predict (7) = —64.60 — 7.497 + 951 log; (7). (28)

The same authors [63] applied hot water treatment over a range of temperatures to Ipomoea batatas L. (sweet potato)
and subsequently evaluated changes in tissue structure, moisture content, porosity, mechanical, and electrical properties
of the tubers in parallel with fitting the parameters of the fractional single shell model. The latter was done using EIS.
A similar effect of the various heat treatments on the DRTs as the previous investigation can be seen on the left in
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Figure 9: The nutritional NPK status of tomato plants is reflected in their DRTs. (A), (B) and (C) display the DRT for
varying potassium, phosphorus, and nitrogen concentrations. The DRT figures are accompanied by visualizations of the
fitted linear models given by Eqs. (24)—(25) using the DRT-based features. The reported coefficients of determination R?
in this figure illustrate the capacity of the linear models to describe the nutrient concentration of tomato plants.

Figure 10B. A linear model based on the relaxation times and their amplitudes for the porosity or void fraction (VF)
can be seen on the right side of Figure 10B and yields a R? value of 0.956. This also yields the most performant
predictive model with a LOOCV R? value of 0.950:

P(Tpeater ¥ (Tpear, ) = 079 + 0.1 170, + 6.48¢ — 57 (Tpes) - (29)

Van Haeverbeke et al.: Preprint submitted to Elsevier Page 16 of 24



347

348

349

350

Plant DRT Evaluation

Table 1

Summary of the most suitable evaluated DRT-based linear regression models from the considered applications in plant
agriculture: mandarin ripening (MR), Japanese pear mechanical stress (JP), tomato plant nitrogen content (TPN), tomato
plant phosphorus content (TPP), tomato plant potassium content (TPK), penetration force of heat-treated potatoes (PF),
porosity or void fraction of heat-treated sweet potatoes (VF), and fractional stress of blanched spinach (FS).

Experiment Var. Coefficient ~ 95% Conf. Int. Std. Error t Pr(> [¢]) R?
MR Intercept -2.22 [-4.00,-0.43] 0.64 -3.46 0.025 0.960
Y Coea,) 1.10e-3  [0.81e-3,1.30e-3]  1.0e4  10.68  0.0004 =
P Intercept -2.55 [-3.84,-1.27] 0.402 -6.34  0.0079 0.985
Tk, 2.75 [-3.37,-2.13] 0194  -1422 00008
Intercept 1.09 [0.77,1.41] 0.152 7.17 <1e-05
TPN Y Crea,) 425e5  [3.68e54.825 270e-6 1571 <lell 0932
Intercept 4.42 [-26.12,54.11] 0.351 12.62 <1le-08 0916
TPP Tk, 0.79 [-3.04,7.17] 72e2 1098  <le07
Y Foeat,) 6.69e-6  [4.0e-4,2.0e-3]  6.79e7  -9.84  <le06
TPK Intercept 2.12 [1.91,2.33] 0.099 21.47 <le-11 0.961
¥ (Tpeak,) 1.52e-5 [1.35e-5,1.69e-5] 7.90e-7 19.20 <le-11
PE Intercept 32.42 [28.21,36.63] 2.03 15.98 <le-12 0.850
T, 4.67 [3.83,5.51] 0404 1155 <lel0
Intercept 0.794 [0.516,1.073] 0.138 5.78 <1e-05
VF Tpeak, 0.113 [0.068 ,0.158] 0.0222 5.09 <le-04  0.956
Y Toear,) 6.48¢5  [5.25¢.5,7.72¢-5]  6.08e6  10.67 <le-12
Intercept 7.10 [1.64,12.55] 1.71 414 00256 oo
FS T, 0.45 [0.001,0.894] 0.14 472 00497
10g0 7 (Tpe)  -1.03 [-1.84,-0.22] 0254  -4.06  0.0270

The calculated DRTs for investigations by Watanabe et al. [54] utilising impedance spectroscopy with fractional single
shell EEC model parameter fitting after heat treatments of spinach also show a similar shortening of the relaxation
time and a decrease in the impedance magnitudes. This can be seen in Figure 10C, along with the linear model based
on the DRTS to fit the fracture stress (FS) with R2 = 0.941 and a LOOCV R? value of 0.854. The fracture stress is a
mechanical property of the food specimens, calculated as the ratio of the maximum load to the cross-sectional area.

S(Tpeakl N )/(Tpeakl )) =17. 10 + 0‘451-]3631(1 - 103 loglo }/(Tpeakl ) N (30)

where S(7pea, > 7 (Tpeak, ) denotes the fracture stress as a function of the relaxation times and amplitudes of the DRT
peaks.

5.2.6. Summary of regression model estimates

Table 1 summarises the best-performing linear regression model estimates, their confidence intervals, standard
errors and significance. Table 2 compares the LOOCV-based predictive performances of the four considered DRT-
based regression models (Eqs. (15)—(18)) using their R? values. One can observe that for experiments considering
the tomato plant nitrogen content, tomato plant potassium content, sweet potato porosity and spinach fractional stress
experiments the regression models for inference also yield the best predictive performances. This is not the case for
the mandarin ripening, Japanese pear mechanical damage, tomato plant phosphorus, and potato penetration force case
studies, where Eq. (18) yields the best-performing linear models for prediction given by Egs. (20), (22), (26), and (28),
respectively. For all the considered case studies, we can observe in Table 2 that one or more of the considered DRT-
based linear regression models are capable of adequately predicting the property of interest.
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Figure 10: Heat treatment of vegetables. (A) DRT of potato samples subjected to varying heat treatments (left) and the
fitted linear model based on the relaxation times to model the internal penetration force of the potato samples at varying
heat treatments, given by Eq. (27) (right). (B) DRT representations of heat-treated sweet potato samples (left) and the
linear model based on DRT features to model the porosity of the heat-treated samples, given by Eq. (29) (right). (C) DRT
of heat-treated spinach samples (left) and the linear model based on DRT features to model the fracture stress of the
samples using DRT features, given by Eq. (30) (right).

6. Accompanying software

The publicly available software developed for this work is a Julia package called DRT. j1. It uses a radial-basis-
function-based discretisation, followed by Tikhonov regularisation to calculate the distribution of relaxation times of
impedance spectra. The software together with documentation and examples can be found at https://github.com/
MaximeVH/DRT. j1.
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Table 2
LOOCV R? values for the four considered DRT-based linear regression models predicting plant (product) properties. Models
1-4 represent Egs. (15)—(18).

Experiment Modell Model 2 Model 3 Model 4

MR 0.903 0.864 0.791 0.926
JP 0.956 0.679 0.911 0.960
TPN 0.776 0.917 0.870 0.775
TPP 0.197 0.124 0.723 0.836
TPK 0.828 0.951 0.943 0.832
PF 0.822 0.680 0.821 0.840
VF 0.803 0.921 0.950 0.877
FS 0.327 0.160 0.276 0.854

7. Discussion

A limitation of the current work is the reliance on impedance spectroscopy data reported in the literature, which
are currently limited in quality and quantity. The further development of novel methods for analysing impedance
spectroscopy measurements for plant applications would greatly benefit from publishing and maintaining collected
data in a public database accessible to other researchers. This could be done in a fashion similar to the many databases
available for the bio-informatics community, such as Uniprot [64] and Genbank [65], to name a few.

Ehosioke et al. [66] stated that future EIS-based studies analyzing root systems should incorporate the microscopic
level interpretations, which are based on the roots’ physiological properties so as to improve the understanding of the
polarization mechanisms at the root segment scale. We envision that the DRT-based analysis of EIS measurements will
make such interpretations possible. The same goes for the interpretation of multi-component system measurements.

Equivalent circuit models need to be chosen on a case-by-case basis, and different equivalent electrical circuits
are being proposed for different fruit varieties [6]. Additionally, mathematical models are being proposed that use
a selection of the measured impedance measurements to predict plant properties (e.g., selected using backward
elimination [51]). These observations show that there is no generally applicable model for a specific physiological
plant feature. The DRT method uses all the information in the EIS measurements, and it provides generally applicable
predictive features.

The number of measurements in EIS studies is typically in the range of tens to a few hundred, highlighting the
need for informative features to achieve optimal predictive performance. Even in cases where a large number of mea-
surements is available, sophisticated deep learning models can be supplemented with additional informative features
such as EEC parameters and DRT features using multimodal data fusion methods for further improvement [67, 68].

A commonly reported weakness of EIS is its ambiguous and system-dependent interpretation. A thorough
experimental characterisation of application-specific DRTs will be a step toward mitigating this issue. As a novel
analysis method, DRT analysis is not exempt from due criticism. Much work has yet to be done on the rigorous
interpretation of the DRT for plant systems. Furthermore, analyzing experimental impedance measurements with
the DRT requires high data quality standards to be met and a sufficiently high frequency resolution (i.e., many
measurements over the relevant frequency range) to be used in order to obtain clear and reproducible results. Before
calculating the DRT, we recommend the evaluation of the validity of EIS measurements using the Kramers—Kronig
relations or their modern variants [33].

While there is tremendous potential for the adoption of the DRT analysis method for the characterisation of plant
systems, a drawback is that it requires many (around 100) high-quality EIS measurements over the relevant frequency
range without the measurement taking long enough for the linearity requirement of EIS to no longer be applicable.
Furthermore, its computational cost is larger than a quick CNLS fit of (a part of) an impedance spectrum, resulting
in a larger hardware burden for in-field applications. However, these issues are being resolved with the rapid progress
of microcontroller systems. Plant applications of EIS with around 100 measurements within the frequency range of
interest are already common in recent work [69].

Ivers—Tiffee and Weber [16] report two main uses of the DRT analysis method: (i) The black box approach, where
no physicochemical background is required. In this approach, the goal is to predict the considered system’s dynamic
behaviour. (ii) The rigorous identification of the different processes in a complex electrochemical system. The former
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approach is mainly considered in this work, where we found that features provided by the DRT analysis method are
very useful in modelling the physiological properties of plants. While some indications of the underlying interpretation
of the relaxation times can be ascertained from the relevant literature [62, 70], rigorous studies investigating the DRT
based on many high-quality measurements and over different experimental conditions are required to fully characterise
the biological meaning of the DRT peaks. This has also been the case for the in-depth characterisation of fuel cells and
Li-ion batteries using the DRT analysis method [71, 72].

Obtaining a DRT using Tikhonov regularisation [73] at present requires some fine-tuning of the regularisation
hyper-parameter, and according to Ivers—Tiffee and Weber [16], this step is unlikely to be robustly automated. Another
reported weakness of the DRT analysis method is that it is not good at dealing with inductive effects. However, this is
not an issue for the analysis of biological tissues, as they show capacitive rather than inductive behaviour [74].

The simulations based on equivalent electrical circuits used in this work are according to the previous authors’
choice of equivalent electrical circuit model, which can be subject to bias [75]. The simulations are also limited to the
previous authors’ number and quality of measurements within the frequency range. The case studies give an indication
of the effectiveness of the DRT analysis method. Nevertheless, due to the simulation-based nature of this study, with the
simulated spectra limited by the capacity of the underlying circuit models, the potential of the DRT analysis method is
likely to be far greater than presented in this work. In spite of these limitations, a high predictive performance is already
achieved through use of the DRT features in the considered case studies in Section 5.2. From Tables 1 and 2 one can
observe that relaxation times or their corresponding amplitudes by themselves are often adequate for describing changes
in plant physiology, with models containing both typically performing best for prediction. Therefore, the collection
of impedance measurements of sufficiently high frequency resolution impedance measurements of plant systems in
varying physiological states, followed by a DRT analysis, is the next step to be undertaken in future work. High-
quality measurements will be required to optimally capture the electrochemical information that can be interrogated
from the plant systems through EIS, which will be reflected in the DRTs and provide more detailed information on the
electrochemical processes taking place during fruit ripening and other plant applications of interest.

Besides the case studies discussed in the present work, many other applications of plant impedance spectroscopy
(e.g., in agriculture) can benefit from DRT analysis. These include fruit ripeness and quality control [76, 77, 78],
drought stress [79], morphological damage [80, 81], irradiation [1], frost hardness [82, 83, 84, 85], chemical
damage [86], nutrient status [51, 87], and infectious diseases [88, 89], to name but a few.

8. Conclusion and future perspectives

A great deal of information on the physiological status of plants is contained in their electrochemical impedance
spectra. One of the main challenges for plant EIS practitioners is extracting this information. In this work, we conducted
the first thorough simulation-based evaluation of the emerging Distribution of Relaxation Times analysis method in
plant EIS applications. With a sufficient number of high-quality measurements, the distribution of relaxation times
would provide informative features for predictive models able to classify the physiological status of plants and their
fruits.

The simulation-based case studies in this work demonstrate that the DRT analysis method holds promise for the
investigation of a range of plant properties, yet there is still much to explore for unravelling the full potential of this
method. These results, along with recent studies on other biological systems and the freely available software developed
software in this work, give the impetus for further work on analysing plant systems on the basis of DRTs. High-quality
impedance measurements of different plant organs with a sufficiently high frequency resolution will allow practitioners
to obtain an impedimetric fingerprint of a plant’s physiological status, as is the case for fuel cells, where DRT-based
EIS investigations are already becoming common practice.
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