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8

The analysis of a Distribution of Relaxation Times (DRT) has proven to be extremely effective9

for the study of electrochemical power sources. Biological systems are non-inductive, making10

them very suitable candidates for DRT analysis, as demonstrated by recent research. In this work,11

we conduct the first evaluation of DRT analysis in agricultural applications. We revisit published12

equivalent electrical circuit parameter data to evaluate the potential of DRT analysis for various13

plant electrochemical impedance spectroscopy applications. We investigate the advantages and14

limitations of adopting this emerging analysis method as an impedance modelling strategy15

for the electrochemical characterisation of plants. We illustrate its promise by comparing it16

with the standard methods using simulations and measurements published in the literature on17

fruit ripening, plant stress, and post-harvest processing of agricultural products. This study18

highlights the potential of DRT analysis as an effective modelling strategy for impedimetric19

system characterization in agriculture, with promising advantages over standard techniques.20

21

1. Introduction22

Electrochemical impedance spectroscopy (EIS) is an effective, rapid, non-destructive, inexpensive, in situ, and real-
time plant characterisation method. In its commonly applied potentiostatic form, EIS consists of a small alternating
voltage input 𝑉 (𝑓 ), where 𝑓 is the frequency applied to a (bio-)electrochemical system under test. The input 𝑉 (𝑓 )
gives rise to an alternating current 𝐼(𝑓 ) flowing through the system. The electrical elements in the system impede the
current with a total impedance of 𝑍(𝑓 ) according to the generalised Ohm law to alternating current:

𝑍(𝑓 ) =
𝑉 (𝑓 )
𝐼(𝑓 )

= |𝑍(𝑓 )|(cos(𝜙(𝑓 )) + 𝑗 sin(𝜙(𝑓 ))) , (1)

where |𝑍(𝑓 )| is the magnitude of the impedance, 𝜙(𝑓 ) is the phase angle between the current and the voltage, and23

𝑗 is the imaginary unit. The value of the impedance depends on the system’s electrochemical properties and on24

the applied frequency 𝑓 . Measuring 𝑍(𝑓 ) over a range of frequencies gives rise to an electrochemical impedance25

spectrum containing substantial information on various properties of the system under test. EIS has been used in26

many agricultural applications, including the monitoring of various forms of abiotic and biotic stress [1, 2], nutritional27

status [3, 4], and physiological processes [5, 6]. Equivalent Electrical Circuits (EEC) are currently the standard tools28

used for the analysis and interpretation of EIS measurements.29

The analysis of electrochemical systems with the Distribution of Relaxation Times (DRT) has made great strides in30

the last five years. As expected, this happened in the most prominent EIS application domain: electrochemical power31

sources, in particular fuel cells and Li-ion batteries. Numerous studies have been published in these areas [7, 8]. There32

are, however, several challenges associated with this method. These include the requirement of high-quality data with33

limited noise and the sensitivity to the appropriate choice of hyper-parameters. We discuss these in detail in Section 2.34

To date, the application of DRT analysis to biological EIS measurements remains limited. Ramirez–Chavarria et35

al. [9, 10] initially tested the method for analyzing rat organ tissues. Afterwards, the same authors used the method for36
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Mathematical Notation

𝛽 Regression coefficient

𝛾(log 𝜏) Relaxation time distribution function (logarithmically spaced frequencies)

𝜆 Regularization hyperparameter

𝚯 Vector of weights 𝜃

𝐀Im Matrix for DRT calculation using the imaginary part of EIS measurements

𝐀Re Matrix for DRT calculation using the real part of EIS measurements

𝜙(𝑓 ) Phase angle

𝜙𝜇 Radial basis function with shape factor 𝜇

𝜏 Relaxation time

𝜃 Weight in Tikhonov regularization

𝐶 Capacitance

𝐶% Nutrient concentration

𝑓 Frequency

𝐹I Internal penetration force

𝑔(𝜏) Relaxation time distribution function

𝐼(𝑓 ) Current

𝑗 Imaginary unit

𝐽 (⋅) Objective function

𝑃 Porosity

𝑅 Resistance

𝑅2 Coefficient of determination

𝑅days Days of fruit ripening

𝑉 (𝑓 ) Voltage

𝑍(𝑓 ) Impedance

𝑍 Im(𝑓 ) Imaginary part of impedance

𝑍Re(𝑓 ) Real part of impedance

𝑍EXP Experimental impedance measurements

𝑍DRT Reconstructed impedance

sensing the concentration of biological cells in suspension [11], showing that DRT analysis can thoroughly characterise37

biological cell suspensions in highly conductive culture media. The authors state that a simple parametric model can be38

derived from the DRT to decode the biological cell suspension’s electrochemical properties. The DRT of a biological39

cell suspension has three distinct peaks, the first of which has a time constant that predicts the cell’s concentration40

well. Next, Shi et al. [12] applied DRT analysis to characterise the relaxation mechanisms of rat liver epithelial cells41

in a monolayer. The above discussion shows that recent biological DRT applications hold promise, although they are42

currently still very limited in number. To the best of our knowledge, so far there have been no studies evaluating the43
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use of DRT analysis for plant applications. A straightforward transfer of DRT analysis from electrical power sources44

to a biological application is the novel application of DRT analysis to microbial fuel cells [13].45

The remainder of this paper is organised as follows. Section 2 introduces the DRT analysis method, with an46

elucidation of the estimation of the DRT using Tikhonov regularisation and a discretisation with radial basis functions.47

Section 3 provides a brief literature review of the EIS applications in plant agriculture that are relevant to this work.48

The data collection and simulation approach used for this work is described in Secion 4. In Section 5, we conduct49

a simulation-based evaluation in various plant applications making use of published data in the plant EIS literature.50

The freely available accompanying software that was developed for the purpose of this paper is briefly described in51

Section 6. The findings are discussed and placed into context in Section 7, followed by a conclusion in Section 8, along52

with some perspectives for future research.53

2. The Distribution of Relaxation Times analysis method54

The electrical components of an electrochemical system become polarised under the influence of an external55

electric field. This polarisation depends on the system’s nature and the electric field’s frequency. Upon removal of the56

electric field, depolarisation (dielectric relaxation) occurs. This depolarisation is characterised by a specific relaxation57

time constant 𝜏. Almost all electrochemical processes are polarisation processes with associated relaxation times [14].58

The Distribution of Relaxation Times (DRT) [15], sometimes also referred to as the Distribution Function of Relaxation59

Times (DFRT), is an emerging distributed parametric tool that sheds light on hard-to-interpret cases where the system-60

under-test involves electrochemical processes with similar time constants [16]. In this section, we first consider the61

definition of the DRT in Section 2.1 and then discuss the Tikhonov-regularisation-based DRT deconvolution used in62

this work in Section 2.2.63

2.1. Distribution of Relaxation Times definition64

The DRT analysis method is often reported as being model-free, though strictly speaking, it assumes a very general
model consisting of an Ohmic resistance connected to an infinite number of serially connected Voigt circuits (i.e.,
parallelly connected resistor and capacitor elements) [17]. This model is displayed in Figure 1A. From Kirchhoff’s
laws and the expressions for the impedance over resistors and capacitors, the impedance of a single resistance parallelly
connected to a capacitance is given by

𝑍RC = 𝑅
1 + 2𝜋𝑗𝑓𝑅𝐶

, (2)

where 𝑅 is the resistance, 𝐶 the capacitance, and 𝑓 the interrogated input frequency. Thus the impedance of a resistor
in series with 𝑁 such Voigt elements is given by

𝑍Voigtn = 𝑅0 +
𝑁
∑

𝑛=1

𝑅𝑛
1 + 2𝜋𝑗𝑓𝜏𝑛

. (3)

DRT analysis assumes an infinite number of Voigt circuits, each characterised by its own relaxation time 𝜏, and
associates them with their distribution function 𝑔(𝜏) ≥ 0. Following this reasoning, we arrive at the equation relating
the distribution of relaxation times to the impedance of a given system:

𝑍DRT(𝑓 ) = 𝑅∞ + ∫

∞

0

𝑔(𝜏)
1 + 2𝜋𝑗𝑓𝜏

d𝜏 . (4)

Here, 𝑅0 and 𝑅𝑛 from Eq. (3) are absorbed into 𝑅∞, the high-frequency intercept of the impedance spectrum (i.e., the65

value of the real-valued impedance at the point where the spectrum crosses the horizontal axis in the Nyquist plot),66

and 𝑔(𝜏), respectively. Frequency-domain impedance measurements are deconvoluted to the time constant domain,67

where various relaxation processes and their time constants can be examined. In addition, DRT analysis can also aid in68

various aspects of equivalent circuit analysis such as EEC topology establishment or confirmation [18, 19], providing69

reasonable initial values for the parameter optimization methods that require them [20], and EEC parameterisation [21].70
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2.2. Estimating the DRT using Tikhonov Regularisation71

Solving Eq. (4) for 𝑔(𝜏) is an ill-posed problem (i.e., it is a Fredholm integral equation of the first kind), meaning72

there might not be a unique distribution function for a given impedance spectrum. As a result, one requires sophisticated73

estimation strategies to solve the inverse problem adequately. To this end, we approximate Eq. (4) with a well-posed74

variant. This approximation is currently an active area of research with a variety of proposed strategies, including75

Monte Carlo methods [22], evolutionary programming [23], Fourier filtering [24], Tikhonov regularisation (cfr., ridge76

regression) [25], hierarchical Bayesian regularisation [26], and supervised deep learning [27]. One of the most popular77

approaches that has proven to work well is a basis function discretisation followed by ridge regression [28]. In this78

work, we adopt this approach for the DRT calculation, and implement it in the Julia programming language [29] (see79

Section 6).80

When the impedance measurements are collected at logarithmically-spaced frequencies, a change of variables
(𝜏 ↦ log 𝜏) is in order (where log refers to the natural logarithm):

𝑍DRT(𝑓 ) = 𝑅∞ + ∫

∞

−∞

𝛾(log 𝜏)
1 + 2𝜋𝑗𝑓𝜏

d log 𝜏 , (5)

where 𝛾(log 𝜏) = 𝜏𝑔(𝜏). 𝑍DRT(𝑓 ) is often referred to as the reconstructed impedance, as the goal is to find an
appropriate function 𝛾(log 𝜏) such that a given set of experimental impedance measurements 𝑍EXP is reconstructed by
the right-hand side of Eq. (5). Some authors conduct a normalization, imposing the constraint ∫ ∞

−∞ 𝛾(log 𝜏)d log 𝜏 =
1 [17]. This way, the resulting distribution function is a valid probability density function. We opted not to include
this constraint because we found that the amplitude of the DRT provides useful information about both the relative
importance of different relaxation processes and the absolute magnitude of the impedance allotted to those processes
across different measurements. In this case, the DRT’s amplitude may be a useful feature when modelling the properties
of an electrochemical system (see Section 4.2). A discretisation of the distribution function 𝛾(log 𝜏) is required before
we can estimate the DRT. We use the radial basis function discretisation proposed by Wan et al. [28]:

𝛾(log 𝜏) =
𝑁
∑

𝑛=1
𝜃𝑛𝜙𝜇(| log 𝜏 − log 𝜏𝑛|) , (6)

where 𝜙𝜇(| log 𝜏 − log 𝜏𝑛|) is a radial basis function with shape factor 𝜇. Previous work has demonstrated that the81

Gaussian radial basis function 𝜙𝜇(𝑥) = exp(−(𝜇𝑥)2) works well for DRT [11, 12], which is why we chose to adopt82

it. Equation (5) describes the distribution of relaxation times 𝛾(log 𝜏) as a sum of 𝑁 radial basis functions centered83

at relaxation times 𝜏𝑛 and weighed by 𝜃𝑛 ≥ 0. Physically, one can interpret this representation as 𝑁 generalised RC84

circuits with a relaxation time 𝜏𝑛 surrounded by a distribution of infinitesimal Voigt circuits. Figures 1B, C, and D85

display exemplary plots of what the Gaussian radial basis functions, the values of 𝜃𝑛, and the resulting DRT may look86

like in practice.87

Combining Eqs. (5) and (6), we get the expression for impedance (𝑍DRT(𝑓 )) reconstructed using the distribution88

function discretised by radial basis functions :89

𝑅∞ + ∫

∞

−∞

𝑁
∑

𝑛=1
𝜃𝑛

𝜙𝜇(| log 𝜏 − log 𝜏𝑛|)
1 + 2𝜋𝑗𝑓𝜏

d log 𝜏

= 𝑅∞ +
𝑁
∑

𝑛=1
𝜃𝑛 ∫

∞

−∞

𝜙𝜇(| log 𝜏 − log 𝜏𝑛|)
1 + 2𝜋𝑗𝑓𝜏

d log 𝜏 . (7)

The reconstructed impedance 𝑍DRT(𝑓 ) can be written as

𝑍DRT(𝑓 ) = 𝑍Re
DRT(𝑓 ) + 𝑗𝑍Im

DRT(𝑓 ) , (8)

with real part 𝑍Re
DRT(𝑓 ) and imaginary part 𝑍Im

DRT(𝑓 ).90
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Figure 1: An overview of the DRT inversion from the frequency domain to the time-constant domain with discretisation
using Gaussian radial basis functions. (A) A series connection of Voigt circuits forms the underlying model of the DRT.
Each of the 𝑛 Voigt subcircuits entails its corresponding contribution to the DRT at 𝜏𝑛. (B) The DRT is discretised by
Gaussian radial basis functions 𝜙𝜇, generalising the Voigt circuit contributions and allowing the DRT to be defined at − inf
and inf . (C) The weights 𝚯 resulting from the Tikhonov regularisation given in Eq. (14). The combination of the radial basis
functions with the weights 𝚯 results in the DRT 𝛾(log 𝜏) of the system displayed in (D). (E) The Nyquist representations
of the measurements 𝑍EXP and reconstructed impedance 𝑍DRT after optimization. A fundamental advantage of the DRT
can be seen here, as the two relaxation processes cannot be resolved from the Nyquist plots, whereas they are visible in
the DRT. The measurements used in this figure are cabbage leaf EIS measurements with a water content of 84%, also
displayed in Figure 3.

Multiplication of the numerator and denominator of the integrand in Eq. (7) by (1 − 𝑗𝜋2) allows to separate the
real and imaginary parts of 𝑍DRT, with 𝑍Re

DRT(𝑓 ) given by

𝑅∞ +
𝑁
∑

𝑛=1
𝜃𝑛 ∫

∞

−∞

𝜙𝜇(| log 𝜏 − log 𝜏𝑛|)

1 + (2𝜋𝑓𝜏)2
d log 𝜏 , (9)

and 𝑗𝑍Im
DRT(𝑓 ) by

−𝑗
𝑁
∑

𝑛=1
𝜃𝑛 ∫

∞

−∞

2𝜋𝑓𝜙𝜇(| log 𝜏 − log 𝜏𝑛|)

1 + (2𝜋𝑓𝜏)2
d log 𝜏 . (10)

When solved numerically, Eq. (8) is written in condensed vector form:

𝐙DRT = 𝐙Re
DRT + 𝑗𝐙im

DRT . (11)
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In Eq. (11), 𝐙DRT is the vector of reconstructed impedance values for all considered frequencies, with 𝐙Re
DRT and 𝐙im

DRT91

its real and imaginary parts. For a frequency vector 𝐅 ∈ ℝ𝐿×1 with values 𝑓1, 𝑓2,… , 𝑓𝐿, the vectors 𝐙Re
DRT ∈ ℝ𝐿 and92

𝐙im
DRT ∈ ℝ𝐿 are calculated as93

𝐙Re
DRT = 𝑅∞𝟏 + 𝐀Re𝚯 (12)

𝐙im
DRT = 𝑗𝐀Im𝚯 , (13)

where the values of the vector 𝚯 ∈ ℝ𝑁 are 𝜃1, 𝜃2… , 𝜃𝑁 , 𝟏 is a vector of ones, and the matrices 𝐀Re ∈ ℝ𝐿×𝑁 and94

𝐀Im ∈ ℝ𝐿×𝑁 are given by95

𝐀Re
𝑚,𝑛 = ∫

∞

−∞

1
1 + (2𝜋)2𝑒2(𝑥+log 𝑓𝑛−log 𝑓𝑚)

𝜙𝜇(|𝑥|)d𝑥 ,

𝐀Im
𝑚,𝑛 = ∫

∞

−∞

2𝜋𝑒𝑥+log 𝑓𝑛−log 𝑓𝑚
1 + (2𝜋)2𝑒2(𝑥+log 𝑓𝑛−log 𝑓𝑚)

𝜙𝜇(|𝑥|)d𝑥 .

The above equations were obtained through a change of variables of the integrals in Eq. (9) and (10), respectively. They96

can be conveniently solved using numerical integration algorithms, such as adaptive Gauss-Kronrod quadrature [30].97

In order to approximate the distribution of relaxation times 𝛾(log 𝜏) using Tikhonov regularisation, we need to
find the optimal vector 𝚯 such that the reconstructed impedance vector 𝐙DRT matches the experimentally measured
impedance vector 𝐙EXP from the (bio)electrochemical system-under-test. This amounts to the minimization of a
regularised objective function:

𝐽 (𝚯) = ‖𝑅∞𝟏 + 𝐀Re𝚯 − 𝐙Re
EXP‖

2 + ‖𝐀Im𝚯 − 𝐙Im
EXP‖

2 + 𝜆‖𝚯‖

2 . (14)

The last term in Eq. (14) is the regularisation term, where 𝜆 is the regularisation hyper-parameter applied in Tikhonov98

regularisation. In this work, the 𝐿2-norm of the vector 𝚯 is used to apply regularisation, following the guidelines of99

Hahn et al. [31]. Other possibilities to regularise the objective function are terms proportional to the first or second100

derivative of 𝛾(log 𝜏) [12, 28]. The minimization of Eq. (14) is adequately achieved using the Broyden–Fletcher–101

Goldfarb–Shanno algorithm [32]. In a Kramers–Kronig compliant system, adhering to the linearity, causal, and time-102

invariance quality criteria for EIS measurements [33], the DRT can also be calculated using only the real or only the103

imaginary parts of the measurements. This means that the first or second terms in Eq. (14) can be dropped. In some104

cases, it can be advisable to use only the real or imaginary parts of the measurements (e.g., due to some measurement105

quality considerations). Usually, using the complete Eq. (14) is advisable [31]. The choice of the regularisation hyper-106

parameter 𝜆 has been the subject of extensive study. Large values of 𝜆 cause extensive smoothing of the DRT, resulting107

in flatter and wider peaks. If the value of 𝜆 is too large, it can cause peaks to disappear, resulting in a misinterpretation108

of the system under investigation. Conversely, excessively small values of 𝜆 should also be avoided, as these give rise109

to artifacts and spurious peaks in the DRT. Some developed automatic tuning procedures include the minimization of110

the discrepancy between 𝚯 calculated using real and imaginary parts of measurements [34], real and imaginary 𝑍DRT111

cross-validation [34], the L-curve (offset) method [35, 36], and generalised cross-validation methods [37]. Despite112

these efforts, it remains advisable to be cautious when using these automated procedures, as they have been reported113

to provide inconsistent results [19, 31]. The shape factor 𝜇 in the DRT discretised by radial basis functions serves as114

another regularisation parameter to be selected. This shape factor is related to the full width at half maximum of the115

radial basis functions. Decreasing 𝜇 causes flattening of the DRT, which is the opposite effect of decreasing 𝜆.116

3. Impedance spectroscopy in plant agriculture117

While the potential of EIS for characterising the physiological processes of plants was already evident in the middle118

of the previous century, recent decades have seen a substantial increase in studies exploiting the vast information119

contained in impedance spectra for plant agricultural applications [38]. Many such applications have been investigated,120

ranging from fruit ripeness to the effect of post-harvest processing operations on the quality and nutritional value of121

plant products. This section briefly reviews the literature on the various applications considered in this work. The122

considered applications are the impedimetric evaluation of fruit ripening, abiotic stress, seed germination and quality,123

plant nutrition, and post-harvest processing operations. A number of the described applications are considered in124

Section 5, where we evaluate DRT analysis in plant agriculture.125
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3.1. Fruit ripening126

Chowdhury et al. [6] conducted EIS measurements on Citrus reticulata (mandarin oranges) to assess the feasibility127

of inferring the ripeness of fruits based on their impedance spectra. To this end, the authors non-invasively measured the128

impedance spectra on six consecutive days. The authors observed an increasing impedance magnitude and variations129

in the phase angle during the ripening period. An EEC-based analysis was conducted on each day of the experiment.130

Harker and Forbes. [39] investigated the changes in impedance spectra during the ripening of Diospyros kaki L.131

(persimmon) fruit. They conducted measurements after 1, 25, and 35 days. The authors observed an initial increase of132

the impedance between 1 and 21 days, followed by a substantial decrease after 35 days. Using an EEC, an increase in133

the cell wall, cytoplasm, and vacuole resistance was reported during the first 21 days. After 31 days, a substantially134

lowered cell wall resistance and an increased membrane capacitance were reported. The initial increase before 21 days135

of ripening was reported to reflect decreases in the concentration of mobile charged species or an increase in insulatory136

compounds such as sugars. The disintegration of the plant cell’s compartmentalization at late-stage ripening grants137

low-frequency current access to the cells, which is reflected in a substantially decreased impedance.138

The same authors investigated the changes in impedance spectra during the ripening of Prunus persica L.139

(nectarines) [40]. Here, they measured the respective impedance spectra of unripe and ripe nectarines and reported140

a decrease in all resistances and capacitances based on the change in EEC model parameters.141

3.2. Abiotic stress142

Zhang and Willison impedimetrically evaluated the effect of freeze-thaw injury on the electrical properties of143

Daucus carota L. (carrot) root tissues [41]. The authors reported that the discharge of electrolytes from cells led144

to a reduction in extracellular impedance. The freeze-thaw cycles to -3 or -6◦C caused the extracellular resistance145

and vacuole interior resistance of the carrot tissues to halve relative to the control values, while the cytoplasmic146

resistance further decreased to a third of the control value. Tonoplast and plasma membrane capacitances were not147

strongly influenced by these non-injurious freeze stresses. At lower temperatures, a large decrease in all resistances148

and capacitances was observed due to rupturing of protoplasts.149

Watanabe et al. [42] evaluated the effect of mechanical stress on the resulting impedance spectra through drop150

shock bruising of Pyrus pyrifolia (Japanese pear), followed by conducting EIS measurements. The authors defined151

a damage score to quantify damage to the fruits after drop shock treatment, where a score of 1 corresponds to the152

control samples without injury, and a score of 5 corresponds to an injury covering half of the fruit’s bottom surface.153

Physical damage is an important factor influencing the quality of fruits when they are being processed, handled, and154

distributed. The authors reported a reduced cell membrane capacitance due to damaged membranes after injury and a155

reduced extracellular resistance due to leakage of the conducting electrolytes from the protoplast into the apoplast of156

the fruit tissue, as well as a slight increase of the intracellular resistance.157

3.3. Seed germination158

A generally applicable, fast, non-destructive and cheap method for evaluating seed quality is important for159

efficient agricultural production and determining optimal storage conditions to delay the decline in seed vigour and160

viability. The standard germination test typically takes over a week [43], and the destructive assays based on 2,3,5-161

triphenyl tetrazolium chloride (TTC) take 1-2 days [44]. X-ray measurements are fast and reliable for assessing seed162

viability [45], but they are expensive and are only effective for certain seed types. Furthermore, X-ray measurements163

involve exposure to radiation, which may be a concern for seed samples that need to be used for further breeding or164

research.165

Ackmann and Seitz [46] were the first to analyse seed germination with EIS in 1984. The authors reported166

decreasing characteristic frequencies during seed germination in their study of Ricinus communis L. (castor bean).167

Paine et al. [47] and Repo et al. [48] corroborated these results and linked them to changed moisture content during seed168

germination, while evaluating EIS as a method to assess seed quality. Here, the germinability of Phaseolus vulgaris L.169

(snap bean) seeds was impedimetrically evaluated on fresh seeds and artificially aged seeds with reduced germination170

potential. A moisture content of 45% was deemed optimal for classifying a lot of snap bean seeds into germinable and171

non-germinable ones.172

Vozary et al. [49] assessed the electrochemical properties of Phaseolus vulgaris L. (snap beans) and Glycine max L.173

(soybeans) in different states of viability and vigour at a fixed seed moisture content of 45%. Through an EEC model174

analysis, they found that the quality of the seeds has a measurable impact on their (non-invasively measured) impedance175

spectrum. The physiological state of the seeds, in turn, strongly relates to the seedling’s quality.176
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3.4. Plant nutrition177

Nitrogen (N), phosphorus (P), and potassium (K) are essential chemical elements of interest for crop quality and178

growth. They are the most important macronutrients in modern agricultural fertilisers [50]. The effective and non-179

invasive measurement of the concentrations of these nutrients holds promise for precision agriculture and advanced180

fertiliser management. Besides the traditional, destructive chemical plant nutrition assessment methods, methods to181

interrogate the NPK-nutrition status of plants typically rely on the measurement of optical properties on the leaf or182

canopy level. A criticism of these methods is that they are sensitive to environmental conditions [4]. EIS is capable183

of meeting the modern agricultural standards of being rapid, non-destructive, and real-time. The quick and precise184

identification of a plant’s nutrient status prior to visible symptoms is crucial for optimal fertiliser application and185

maximum productivity. Recently, some studies have started to explore the potential of EIS-based methods to assess186

the NPK status of plants. Meiqing et al. [51] conducted Solanum lycopersicum (tomato) leaf measurements for the187

purpose of detecting the phosphorus nutrition level. In another study, the same authors did similar measurements on188

tomato plants for the assessment of the nitrogen nutrition level [4]. Jinyang et al. [52] experimentally analysed tomato189

plants’ potassium nutrition levels through EIS measurements. Basak et al. conducted a similar study to determine the190

leaf nitrogen content of corn, wheat, canola, and soybeans. They also performed a linear regression with a backward191

selection of the many impedance features available. High correlations were reported with their linear models containing192

many features. Evaluation of the models on separate data, external to the calibration dataset, was not done in their work.193

3.5. Processing of plant products194

Due to their ease of storage and convenience, processed foods, including dried, precooked, and frozen vegetables,195

are in high demand. Proper safety and quality assurance are essential for such food products, and EIS has great potential196

for conducting such a real-time, rapid, automatable, cheap, and non-destructive quality assessment. To this end, several197

research works have proposed EIS-based methods. Heat treatment is a common operation in food processing. Imaizumi198

et al. [53] subjected Solanum tuberosum L. (potato) tubers to hot water treatment over a range of temperatures. They199

found that EIS is capable of describing the textural changes and softening of potatoes during heat treatment. The authors200

conducted an EEC-based analysis and reported decreases in the cell membrane capacitance as a result of membrane201

damage (and the resulting loss of turgor pressure) and confirmed this through Confocal Laser Scanning Microscopy202

(CLSM) with Dil staining and penetration force testing.203

Watanabe et al. [54] investigated the mechanical and bioelectrochemical properties of Spinacia oleracea L.204

(spinach) after short-duration heat treatment (blanching) using steam at 100◦C. Tensile fracture tests and EIS205

measurements were conducted along with EEC model parameter fitting after heat treatment. The authors reported206

decreased extracellular resistance and cell membrane capacitance after heat treatment.207

4. Materials and methods208

Relaxation times of plant impedance spectra have already been established as valuable features to describe plant209

tissues’ physiological and morphological states. However, traditional calculation methods of these features are based210

on finding the peaks in the Nyquist plots of impedance spectra with a limited frequency resolution or are dependent211

on proposed (biased) equivalent electrical circuit models. Ozier–Lafontaine and Bajazet [55] report changes in the212

relaxation time constants of a tomato root system. The authors already anticipated the limitations of a graphical213

approach to identifying relaxation times and the need for effective numerical deconvolution methods. The novel DRT214

analysis method does not require equivalent circuit identification and parameterization in the traditional sense and is215

calculated directly from the impedance measurements. Furthermore, it is more precise, allowing for electrochemical216

relaxation processes with similar relaxation times to be resolved, which allows it to analyse impedance spectra in217

greater depth. This section contains a description of the semi-synthetic data collection (Section 4.1) and the conducted218

experiments for the evaluation of the potential of DRT analysis for plant applications (Section 4.2).219

4.1. Collecting EIS measurements220

We conducted an extensive literature search to gather a variety of plant EIS measurements that satisfy our221

imposed quality criteria. As raw EIS data of sufficient quality is frequently unavailable, the measurements were222

indirectly collected through the reported frequency ranges, the equivalent circuit topologies, and the corresponding223

parameter values. As we wish to simulate the impedance measurements as accurately as possible, more complex224

(albeit appropriate) circuits with lower fitting errors are preferred, such as models containing ZARC elements, the225
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Figure 2: Equivalent Electrical Circuits featuring in the experiments. (A) A resistor serially coupled to 𝑁 ZARC elements,
each modelling a different segment of the considered plant part. (B) The fractionalised single shell model, where 𝑅E
is the extracellular resistance, 𝑅I is the intracellular resistance, and CPEM is the constant phase element modelling the
capacitance of the cell membrane. (C) The double shell model, where 𝐶M denotes the cell membrane capacitance, 𝐶T the
tonoplast capacitance, 𝑅E the extracellular resistance, 𝑅I the intracellular resistance, and 𝑅V the vacuolar resistance.

double shell model, and the fractional single shell model displayed in Figure 2A, B, and C, respectively. The measured226

frequency range and equivalent electrical circuit parameters were collected, after which 100 logarithmically spaced227

impedance measurements were simulated using our previously published EquivalentCircuits.jl software [56].228

The impedance expressions of these equivalent circuits are derived through the application of Kirchhoff’s laws and229

the impedance expressions of the circuit components [57]. The obtained measurements were included in this work,230

provided that (i) a high-quality circuit parameter fit was reported, indicating that the measurements are approximately231

the same as those simulated using the reported circuit parameters, and (ii) the circuit parameters were clearly reported232

in tabular or scatter plot form. In the latter case, the parameter values can be reliably obtained using plot digitizing233

software. In most cases, the results of different literature sources were compared for the examined physiological234

properties. It has been shown that measurements simulated using equivalent circuits comprised of resistors, capacitors,235

Warburg elements, and CPE elements are valid impedance spectra conforming to the Kramers–Kronig relations [58].236

For the fractional single shell model (displayed in Figure 2B), equivalent capacitance values of the CPE are237

typically reported for the membrane capacitance. These apparent capacitance values are based on the widely applied238

mathematical formula proposed by Hsu and Mansfield [59]. The assumptions upon which this formula relies imply239

that the single main relaxation time response system of homogeneous plant tissues implied through use of the single240

shell model remains unchanged upon conversion, justifying the use of the apparent capacitance when simulating the241

measurements for the purpose of the DRT evaluation in this work.242

4.2. Simulated case studies from the plant literature243

We searched the literature for plant EIS studies relevant to several agricultural applications. These applications244

are fruit ripening, abiotic stress, seed viability, nutritional status, and post-harvest processing of agricultural products.245
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Semi-synthetic measurements were procured from selected studies satisfying the criteria described in Section 4.1. The246

DRT of these measurements was subsequently estimated using the deconvolution approach described in Section 2.2.247

The 𝜆 and 𝜇 hyper-parameters were determined manually and using Re-Im cross-validation (see Section 2.2) for each248

considered case study. The same hyper-parameters were used within a given case study. One of the aspects to be249

evaluated is whether DRT analysis can provide useful features for statistical inference and predictive models. To250

this end, linear regression models using DRT features are evaluated for predicting the considered plant properties251

of interest, where relevant. The quality of the linear regression fits is evaluated using the coefficient of determination252

𝑅2. Next, the predictive performance of the linear regression models is evaluated using 𝑅2, based on Leave-One-Out253

Cross-Validation (LOOCV).254

5. Results255

An illustrative comparison of the DRT with the traditional EIS representations is given in Section 5.1. The DRT256

evaluation case studies in various agricultural applications are presented in Section 5.2.257

5.1. Comparative overview of EIS representations258

Traditional Nyquist and Bode representations are compared with the DRT in Figure 3. The measurements259

represented in this figure were selected from Zhang and Willison’s work [60]. Brassica oleracea L. (cabbage) leaf260

development was impedimetrically analysed by Zhang and willison [60]. These EIS measurements were simulated261

(see Section 4.1) to illustrate the different EIS representations. The authors found that leaf development was correlated262

with the parameters of the double shell EEC model (shown in Figure 2C), which they developed [61]. Leaf development263

manifested itself electrochemically through increased extracellular, cytoplasmic, and vacuole interior resistances along264

with decreases in the plasma membrane and tonoplast capacitances. The authors measured the water content by265

weighing the fresh and dried samples. The different EIS representations are displayed in Figure 3. Concerning the water266

content for the considered measurements, there is no visual relation to be seen in the Nyquist (A) or Bode magnitude267

(C) representations. Upon careful inspection of the Bode phase plot (D), the frequency at which the phase reaches268

a minimum provides some information, indicating that the minimum occurs at higher frequencies with increasing269

water content. Two relaxation processes that were not visible in the Nyquist plots are identified in the DRT (B). These270

measurements indicate that the relaxation time 𝜏 of the second relaxation process (i.e., the second peak) becomes271

longer with increasing water content. Since Zhang and Willison’s experiments, several more recent studies have been272

conducted regarding the moisture content of plants.273

5.2. Case studies in agriculture274

The potential of DRT analysis is evaluated through several case studies relevant to agriculture. The case studies275

considered are fruit ripening, plant stress, seed germination, plant nutrition, and postharvest processing. The conducted276

DRT evaluations include informative figures. In the cases where sufficient measurements are available, the potential of277

DRT-based variables to determine properties relevant to plant agriculture is assessed through regression models. For278

a given quantity 𝑄 describing a particular plant property, the following linear regression models are evaluated:279

𝑄(𝜏peak) = 𝛽0 + 𝛽1𝜏peak , (15)
𝑄(𝛾(𝜏peak)) = 𝛽0 + 𝛽1𝛾(𝜏peak) , (16)

𝑄(𝜏peak , 𝛾(𝜏peak)) = 𝛽0 + 𝛽1𝜏peak + 𝛽2 𝛾(𝜏peak) , (17)
𝑄(𝜏peak , 𝛾(𝜏peak)) = 𝛽0 + 𝛽1𝜏peak + 𝛽2 log10 𝛾(𝜏peak) . (18)

Here, 𝛽0, 𝛽1, 𝛽2 are the intercept and fitted regression coefficients, while 𝜏peak , 𝛾(𝜏peak) are the respective log10280

relaxation time and amplitude of the peak of interest in the DRT. The coefficient of determination 𝑅2 = 1 − RSS
TSS281

(where RSS stands for the residual sum of squares and TSS stands for the total sum of squares) is calculated for these282

regression models, and the model with the highest 𝑅2 value, given that the included variables are all significant, is283

reported. We consider a regressor to be significant if the two-sided t-test yields a p-value lower than the conventional284

threshold of 5%. Information on the statistical significance of the DRT-based variables, their 95% confidence intervals285

and standard errors can be found in Table 1.286
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Figure 3: A comparison of the traditional Nyquist and Bode plot EIS representations with the corresponding DRT. (A)
Nyquist plots. (B) DRT. (C) Bode magnitude plots. (D) Bode phase plots. Note that only the DRT correctly manifests
the order of water contents via the location of the second peak.

5.2.1. Fruit ripening287

Figure 4A displays the DRT of the collected mandarin ripening (MR) measurements from Chowdhury et al. [6]
where the authors considered an EEC consisting of a resistor serially connected to a parallelly connected CPE and
resistor (with similar impedimetric behaviour as a ZARC element). Two peaks are observed for all stages of ripeness.
The first peak’s amplitude and relaxation time increase as ripening progresses. A less visually clear trend is the decrease
in the relaxation time of the second peak during the ripening of the mandarin oranges. After fitting and evaluating the
linear regression models described in Section 5.2, the most suitable model to describe mandarin ripening turned out
to be Eq 16, resulting in:

𝑅days(𝛾(𝜏peak1 )) = −2.22 + 0.0011𝛾(𝜏peak1 ) , (19)

where 𝑅days is the days of ripening and 𝛾(𝜏peak1 ) is the amplitude of the first peak in the DRT. The linear fit and the
original observations are displayed in Figure 4A and B. The linear regression fit yielded a coefficient of determination
𝑅2 = 0.960. When evaluating the predictive performance using LOOCV, an 𝑅2 value of 0.926 is attained using
Eq. (18). The resulting model is given by:

𝑅days,predict(𝜏peak1 ), 𝛾(𝜏peak1 )) = −2.33 + 1.17𝜏peak1 + 2.38 log10 𝛾(𝜏peak1 ) . (20)

288

The persimmon ripening EIS measurements conducted by Harker and Forbes [39] were originally analysed using289

the double shell model (see Figure 2C). We can see from Figure 4C that the impedance initially increases between 1290

and 21 days, as was the case with the ripening of mandarin oranges. The DRT plot also shows a similar pattern as for291

the mandarin orange between 1 and 21 days, where the two peaks of the DRT move to higher relaxation times. After292

35 days, an opposite phenomenon is observed.293
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Figure 4: Impedimetric analysis of fruit ripening using DRT analysis. (A) DRT of mandarin orange during 6 days of
ripening and (B) the results of a linear regression fit using 𝜏𝑝𝑒𝑎𝑘1 and 𝛾(𝜏𝑝𝑒𝑎𝑘1 ). (C) Ripening of persimmon fruit. (D)
Nectarine ripening.

Figure 4D displays the DRT of measurements from Harker et al.’s double shell EEC model-based nectarine ripening294

analysis [40], where we observe a decrease in the impedance and a shift to lower relaxation times after ripening. These295

results resemble what happens during the final stages of persimmon ripening between 21 and 35 days.296

5.2.2. Abiotic stress297

Figure 5 displays the DRTs calculated from Zhang and Willison’s carrot freeze-thaw injury measurements. As298

the authors reported the equivalent circuit parameter values for the double shell and the single shell model, we can299

compare the two, allowing us to demonstrate the bias introduced by the choice of the equivalent circuit configuration300

during EIS analysis. From the quality of the complex non-linear least squares (CNLS) fit, the authors recognised that301

the single shell model was not as capable of modelling the EIS measurements as the double shell model. Figure 5A302

shows the corresponding DRTs. Freezing at -3 or -6◦C manifests itself as a decrease in impedance magnitude and shift303

to lower relaxation times of both peaks. At -9◦C, the freeze damage causes one of the peaks to disappear, as well as a304

further decrease in impedance magnitude. Figure 5B shows the same analysis conducted based on the assumption of305

the single shell model. Here, the DRTs all consist of a single peak, and the -3 and -6◦C freeze-thawed carrot tissues306

become indistinguishable. In both cases, the impedance magnitude of the -12◦C freeze treatments becomes negligible307

compared to the earlier treatments. The authors reported a considerably improved fit of the double shell model, which308

is also reflected in the increased information to be seen in the corresponding DRT. This is not always the case, as some309

works report an excellent fit with the single shell model (i.e., homogeneous tissues where only a single polarisation310

process is of significance).311
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Figure 5: Influence of freezing on the DRT of carrot root cortical tissue. The DRT of impedance measurements simulated
using the reported parameters of the double shell model is displayed in (A), whereas that of the single shell model is
shown in (B), illustrating how an excessively simple equivalent circuit model can introduce bias into the analysis of EIS
measurements.

The DRTs of Watanabe et al.’s experiments impedimetrically evaluating mechanical damage of Japanese pears
(JP) [42] are displayed in Figure 6. Here we see a consistent shortening of the relaxation time with increasing damage
to the Japanese pear tissue. Furthermore, the gradual decrease in amplitude with increasing damage corroborates the
reported decreasing impedance due to membrane ruptures and electrolyte leakage. A linear fit to the damage scores
using the relaxation time feature (Eq. (15)) results in the following model:

𝐷(𝜏peak) = −2.55 − 2.75𝜏peak , (21)

where 𝐷(𝜏peak) is the damage score described in Section 3.2, presented as a function of the relaxation time feature. The
fit linear regression model given by Eq. (21) yields an 𝑅2 value of 0.985. The best predictive performance is attained
using Eq. (18). This results in the following model:

𝐷predict(𝜏peak , 𝛾𝜏peak) = −42.98 + 2.00𝜏peak − 9.37 log10 𝛾𝜏peak , (22)

which has a LOOCV 𝑅2 predictive performance value of 0.960 with only a limited number of measurements.312

5.2.3. Seed germination313

A Voigt model consisting of a resistor and two ZARC elements (i.e., Figure 2A with 𝑁 = 2) was used in the studies314

of bean seed impedance spectroscopy by Paine et al. [47] and Repo et al. [48]. Figure 7 displays the DRTs of the snap315

beans for different moisture contents. The decrease in the impedance of both relaxation processes can be seen with316

increasing moisture content. In this case, higher moisture leads to greater ion mobility which, in turn, decreases the317

impedance. Differences in relaxation times can be observed for different moisture contents and between seed viabilities318

at a given moisture content. According to the authors of these studies, this first relaxation process is due to the cell319

membranes, while the second relaxation process is due to the cell walls.320

Next, we consider snap and soybean EIS measurements conducted by Vozary et al. [49]. These were analysed with321

an EEC containing 3 ZARC elements (see Figure 2A with 𝑁 = 3). When comparing the DRTs displayed in Figure 8 to322

the dispersion arcs in the Nyquist representations reported in the original publication [49], one can see that the DRTs323

provide an improved resolution of the different polarisation processes which, in itself, provides sufficient motivation to324

adopt the DRT analysis method. Based on the investigations by Kuang and Nelson [62], the first peaks (relating to the325

higher frequencies) are assumed to be caused by the plasmalemma of cellular membranes, while the second peaks (at326

lower frequencies) are assumed to be caused by the cell walls. The peaks at the lowest frequencies are assumed to be327

due to the embryo and the space between the two cotyledons. The disappearance of this DRT peak in non-viable seeds328
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Figure 6: Mechanical damage to fruit. The DRTs of the pears subjected to increasing degrees of drop shock damage (left).
The linear regression model using the relaxation times 𝜏, given by Eq. (21), is capable of describing the extent of damage
to the fruit (right).
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Figure 7: DRTs of snap beans of different Moisture Content (MC) and physiological condition (viable vs non-viable)
measured at longitudinal positions.

is assumed to be caused by membrane injury of embryonic tissue and characteristic changes in the inter-cotyledon329

space. Due to the ventral location of the embryos in the seeds, this peak is less pronounced for the measurements at330

the longitudinal position, where it is not present for snap beans.331

5.2.4. Plant nutrition332

Impedimetric analyses by Meiqing et al. [4, 51] and Jinyang et al. [52] evaluated the N, P, and K status of tomato333

plants1 employing a similar methodology with EEC analysis using the fractional single shell model (see Figure 2B) and334

step-wise linear model selection of impedance measurement values to find the optimal variables for their linear models.335

The variables to select from were impedance moduli and capacitance values at a range of frequencies. The reported336

coefficients of determination (𝑅2) were 0.837, 0.864, and 0.856 for the respective N, P, and K regression models. In337

the present work, linear regression models were fitted using the relaxation times 𝜏 and their corresponding amplitudes338

𝛾(𝜏). Among the models presented in Eqs. 15–18, the most suitable models for the determination of the N, P, and K339

concentration of tomato plants turned out to be Eqs. 16, 17, and 16, respectively. Fitting these linear regressions results340

in the following equations:341

𝐶𝑁%(𝛾(𝜏peak)) = 1.09 + 4.25𝑒 − 5𝛾(𝜏peak) , (23)
𝐶𝑃%(𝜏, 𝛾(𝜏peak)) = 4.42 + 0.79𝜏peak + −6.69𝑒 − 6𝛾(𝜏peak) , (24)

1abbreviated below as TPN, TPP, and TPK, respectively.
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Figure 8: DRTs of snap beans and soybeans in different physiological conditions measured at longitudinal and lateral
positions.

𝐶𝐾%(𝛾(𝜏peak)) = 2.12 + 1.52𝑒 − 5𝛾(𝜏peak) . (25)

Here, 𝐶% denotes the concentration of the considered nutrient. The DRTs and fitted linear models are displayed for the
three considered nutrients in Figure 9A, B, and C, respectively. Note that the bivariate linear model for phosphorus is
shown in only two dimensions, which is why it is not a straight line such as linear models for the other two nutrients.
The best-performing linear regression models for the prediction of nitrogen content and potassium content are the same
as those for inference, namely Eqs. (24) and (25). Equation (18) yields the best LOOCV 𝑅2 value for the prediction of
the phosphorus content and yields the following model:

𝐶𝑃%,predict(𝜏, 𝛾(𝜏peak)) = 8.48 + 0.89𝜏peak − 0.84 log10 𝛾(𝜏peak) , (26)

The linear regression models evaluated using LOOCV result in 𝑅2 values of 0.917, 0.836, and 0.951 for the N, P, and342

K regression models. While these and previous results show that NPK deficiency can be detected using EIS when all343

other nutrient values are kept constant, further research is required to evaluate whether deficiencies in one of these344

nutrients can be ascertained while the others are also variable.345

5.2.5. Processing of plant products346

Figure 10A (left) presents the DRTs of the measured potato samples for the different heat treatment regimes applied
by Imaizumi et al. [53]. A clear trend is the decreased impedance as the heat treatments intensify. There is also a clear
shortening of the distribution times, which was used to fit a linear regression model demonstrating their capability to
model the change in the texture and softness (quantified by the internal penetration force (PF) reported as 𝐹I by the
authors) of the considered food product after the blanching treatments. This linear model given by Eq. (15) is the most
suitable among the four evaluated DRT-based linear regression models. The resulting fitted linear model is displayed
on the right-hand side of Figure 10A and is expressed as:

𝐹I(𝜏) = 32.42 + 4.67𝜏 . (27)

The best LOOCV 𝑅2 performance value of 0.840 was achieved using Eq. (18) for the fit of Eq. (27). As such we obtain
the following fitted model:

𝐹I,predict(𝜏) = −64.60 − 7.49𝜏 + 9.51 log10 𝛾(𝜏) . (28)

The same authors [63] applied hot water treatment over a range of temperatures to Ipomoea batatas L. (sweet potato)
and subsequently evaluated changes in tissue structure, moisture content, porosity, mechanical, and electrical properties
of the tubers in parallel with fitting the parameters of the fractional single shell model. The latter was done using EIS.
A similar effect of the various heat treatments on the DRTs as the previous investigation can be seen on the left in
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Figure 9: The nutritional NPK status of tomato plants is reflected in their DRTs. (A), (B) and (C) display the DRT for
varying potassium, phosphorus, and nitrogen concentrations. The DRT figures are accompanied by visualizations of the
fitted linear models given by Eqs. (24)–(25) using the DRT-based features. The reported coefficients of determination 𝑅2

in this figure illustrate the capacity of the linear models to describe the nutrient concentration of tomato plants.

Figure 10B. A linear model based on the relaxation times and their amplitudes for the porosity or void fraction (VF)
can be seen on the right side of Figure 10B and yields a 𝑅2 value of 0.956. This also yields the most performant
predictive model with a LOOCV 𝑅2 value of 0.950:

𝑃 (𝜏peak , 𝛾(𝜏peak1 )) = 0.79 + 0.11𝜏peak + 6.48𝑒 − 5𝛾(𝜏peak) . (29)
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Table 1
Summary of the most suitable evaluated DRT-based linear regression models from the considered applications in plant
agriculture: mandarin ripening (MR), Japanese pear mechanical stress (JP), tomato plant nitrogen content (TPN), tomato
plant phosphorus content (TPP), tomato plant potassium content (TPK), penetration force of heat-treated potatoes (PF),
porosity or void fraction of heat-treated sweet potatoes (VF), and fractional stress of blanched spinach (FS).

Experiment Var. Coefficient 95% Conf. Int. Std. Error 𝑡 Pr(> |𝑡|) 𝑅2

MR Intercept -2.22 [-4.00,-0.43] 0.64 -3.46 0.025 0.960𝛾(𝜏peak1 ) 1.10e-3 [0.81e-3,1.30e-3] 1.0e-4 10.68 0.0004

JP Intercept -2.55 [-3.84,-1.27] 0.402 -6.34 0.0079 0.985𝜏peak1 -2.75 [-3.37,-2.13] 0.194 -14.22 0.0008

TPN Intercept 1.09 [0.77,1.41] 0.152 7.17 <1e-05 0.932𝛾(𝜏peak1 ) 4.25e-5 [3.68e-5,4.82e-5] 2.70e-6 15.71 <1e-11

TPP
Intercept 4.42 [-26.12,54.11] 0.351 12.62 <1e-08 0.916𝜏peak1 0.79 [-3.04,7.17] 7.22e-2 10.98 <1e-07
𝛾(𝜏peak1 ) -6.69e-6 [-4.0e-4, 2.0e-3] 6.79e-7 -9.84 <1e-06

TPK Intercept 2.12 [1.91,2.33] 0.099 21.47 <1e-11 0.961𝛾(𝜏peak1 ) 1.52e-5 [1.35e-5,1.69e-5] 7.90e-7 19.20 <1e-11

PF Intercept 32.42 [28.21,36.63] 2.03 15.98 <1e-12 0.859𝜏peak1 4.67 [3.83,5.51] 0.404 11.55 <1e-10

VF
Intercept 0.794 [0.516,1.073] 0.138 5.78 <1e-05

0.956𝜏peak1 0.113 [0.068 ,0.158] 0.0222 5.09 <1e-04
𝛾(𝜏peak1 ) 6.48e-5 [5.25e-5,7.72e-5] 6.08e-6 10.67 <1e-12

FS
Intercept 7.10 [1.64,12.55] 1.71 4.14 0.0256 0.941𝜏peak1 0.45 [0.001,0.894] 0.14 4.72 0.0497

log10 𝛾(𝜏peak1 ) -1.03 [-1.84,-0.22] 0.254 -4.06 0.0270

The calculated DRTs for investigations by Watanabe et al. [54] utilising impedance spectroscopy with fractional single
shell EEC model parameter fitting after heat treatments of spinach also show a similar shortening of the relaxation
time and a decrease in the impedance magnitudes. This can be seen in Figure 10C, along with the linear model based
on the DRTs to fit the fracture stress (FS) with 𝑅2 = 0.941 and a LOOCV 𝑅2 value of 0.854. The fracture stress is a
mechanical property of the food specimens, calculated as the ratio of the maximum load to the cross-sectional area.

𝑆(𝜏peak1 , 𝛾(𝜏peak1 )) = 7.10 + 0.45𝜏peak1 − 1.03 log10 𝛾(𝜏peak1 ) , (30)

where 𝑆(𝜏peak1 , 𝛾(𝜏peak1 )) denotes the fracture stress as a function of the relaxation times and amplitudes of the DRT347

peaks.348

5.2.6. Summary of regression model estimates349

Table 1 summarises the best-performing linear regression model estimates, their confidence intervals, standard350

errors and significance. Table 2 compares the LOOCV-based predictive performances of the four considered DRT-351

based regression models (Eqs. (15)–(18)) using their 𝑅2 values. One can observe that for experiments considering352

the tomato plant nitrogen content, tomato plant potassium content, sweet potato porosity and spinach fractional stress353

experiments the regression models for inference also yield the best predictive performances. This is not the case for354

the mandarin ripening, Japanese pear mechanical damage, tomato plant phosphorus, and potato penetration force case355

studies, where Eq. (18) yields the best-performing linear models for prediction given by Eqs. (20), (22), (26), and (28),356

respectively. For all the considered case studies, we can observe in Table 2 that one or more of the considered DRT-357

based linear regression models are capable of adequately predicting the property of interest.358
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Figure 10: Heat treatment of vegetables. (A) DRT of potato samples subjected to varying heat treatments (left) and the
fitted linear model based on the relaxation times to model the internal penetration force of the potato samples at varying
heat treatments, given by Eq. (27) (right). (B) DRT representations of heat-treated sweet potato samples (left) and the
linear model based on DRT features to model the porosity of the heat-treated samples, given by Eq. (29) (right). (C) DRT
of heat-treated spinach samples (left) and the linear model based on DRT features to model the fracture stress of the
samples using DRT features, given by Eq. (30) (right).

6. Accompanying software359

The publicly available software developed for this work is a Julia package called DRT.jl. It uses a radial-basis-360

function-based discretisation, followed by Tikhonov regularisation to calculate the distribution of relaxation times of361

impedance spectra. The software together with documentation and examples can be found at https://github.com/362

MaximeVH/DRT.jl.363
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Table 2
LOOCV 𝑅2 values for the four considered DRT-based linear regression models predicting plant (product) properties. Models
1–4 represent Eqs. (15)–(18).

Experiment Model 1 Model 2 Model 3 Model 4

MR 0.903 0.864 0.791 0.926
JP 0.956 0.679 0.911 0.960

TPN 0.776 0.917 0.870 0.775
TPP 0.197 0.124 0.723 0.836
TPK 0.828 0.951 0.943 0.832
PF 0.822 0.680 0.821 0.840
VF 0.803 0.921 0.950 0.877
FS 0.327 0.160 0.276 0.854

7. Discussion364

A limitation of the current work is the reliance on impedance spectroscopy data reported in the literature, which365

are currently limited in quality and quantity. The further development of novel methods for analysing impedance366

spectroscopy measurements for plant applications would greatly benefit from publishing and maintaining collected367

data in a public database accessible to other researchers. This could be done in a fashion similar to the many databases368

available for the bio-informatics community, such as Uniprot [64] and Genbank [65], to name a few.369

Ehosioke et al. [66] stated that future EIS-based studies analyzing root systems should incorporate the microscopic370

level interpretations, which are based on the roots’ physiological properties so as to improve the understanding of the371

polarization mechanisms at the root segment scale. We envision that the DRT-based analysis of EIS measurements will372

make such interpretations possible. The same goes for the interpretation of multi-component system measurements.373

Equivalent circuit models need to be chosen on a case-by-case basis, and different equivalent electrical circuits374

are being proposed for different fruit varieties [6]. Additionally, mathematical models are being proposed that use375

a selection of the measured impedance measurements to predict plant properties (e.g., selected using backward376

elimination [51]). These observations show that there is no generally applicable model for a specific physiological377

plant feature. The DRT method uses all the information in the EIS measurements, and it provides generally applicable378

predictive features.379

The number of measurements in EIS studies is typically in the range of tens to a few hundred, highlighting the380

need for informative features to achieve optimal predictive performance. Even in cases where a large number of mea-381

surements is available, sophisticated deep learning models can be supplemented with additional informative features382

such as EEC parameters and DRT features using multimodal data fusion methods for further improvement [67, 68].383

A commonly reported weakness of EIS is its ambiguous and system-dependent interpretation. A thorough384

experimental characterisation of application-specific DRTs will be a step toward mitigating this issue. As a novel385

analysis method, DRT analysis is not exempt from due criticism. Much work has yet to be done on the rigorous386

interpretation of the DRT for plant systems. Furthermore, analyzing experimental impedance measurements with387

the DRT requires high data quality standards to be met and a sufficiently high frequency resolution (i.e., many388

measurements over the relevant frequency range) to be used in order to obtain clear and reproducible results. Before389

calculating the DRT, we recommend the evaluation of the validity of EIS measurements using the Kramers–Kronig390

relations or their modern variants [33].391

While there is tremendous potential for the adoption of the DRT analysis method for the characterisation of plant392

systems, a drawback is that it requires many (around 100) high-quality EIS measurements over the relevant frequency393

range without the measurement taking long enough for the linearity requirement of EIS to no longer be applicable.394

Furthermore, its computational cost is larger than a quick CNLS fit of (a part of) an impedance spectrum, resulting395

in a larger hardware burden for in-field applications. However, these issues are being resolved with the rapid progress396

of microcontroller systems. Plant applications of EIS with around 100 measurements within the frequency range of397

interest are already common in recent work [69].398

Ivers–Tiffee and Weber [16] report two main uses of the DRT analysis method: (i) The black box approach, where399

no physicochemical background is required. In this approach, the goal is to predict the considered system’s dynamic400

behaviour. (ii) The rigorous identification of the different processes in a complex electrochemical system. The former401
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approach is mainly considered in this work, where we found that features provided by the DRT analysis method are402

very useful in modelling the physiological properties of plants. While some indications of the underlying interpretation403

of the relaxation times can be ascertained from the relevant literature [62, 70], rigorous studies investigating the DRT404

based on many high-quality measurements and over different experimental conditions are required to fully characterise405

the biological meaning of the DRT peaks. This has also been the case for the in-depth characterisation of fuel cells and406

Li-ion batteries using the DRT analysis method [71, 72].407

Obtaining a DRT using Tikhonov regularisation [73] at present requires some fine-tuning of the regularisation408

hyper-parameter, and according to Ivers–Tiffee and Weber [16], this step is unlikely to be robustly automated. Another409

reported weakness of the DRT analysis method is that it is not good at dealing with inductive effects. However, this is410

not an issue for the analysis of biological tissues, as they show capacitive rather than inductive behaviour [74].411

The simulations based on equivalent electrical circuits used in this work are according to the previous authors’412

choice of equivalent electrical circuit model, which can be subject to bias [75]. The simulations are also limited to the413

previous authors’ number and quality of measurements within the frequency range. The case studies give an indication414

of the effectiveness of the DRT analysis method. Nevertheless, due to the simulation-based nature of this study, with the415

simulated spectra limited by the capacity of the underlying circuit models, the potential of the DRT analysis method is416

likely to be far greater than presented in this work. In spite of these limitations, a high predictive performance is already417

achieved through use of the DRT features in the considered case studies in Section 5.2. From Tables 1 and 2 one can418

observe that relaxation times or their corresponding amplitudes by themselves are often adequate for describing changes419

in plant physiology, with models containing both typically performing best for prediction. Therefore, the collection420

of impedance measurements of sufficiently high frequency resolution impedance measurements of plant systems in421

varying physiological states, followed by a DRT analysis, is the next step to be undertaken in future work. High-422

quality measurements will be required to optimally capture the electrochemical information that can be interrogated423

from the plant systems through EIS, which will be reflected in the DRTs and provide more detailed information on the424

electrochemical processes taking place during fruit ripening and other plant applications of interest.425

Besides the case studies discussed in the present work, many other applications of plant impedance spectroscopy426

(e.g., in agriculture) can benefit from DRT analysis. These include fruit ripeness and quality control [76, 77, 78],427

drought stress [79], morphological damage [80, 81], irradiation [1], frost hardness [82, 83, 84, 85], chemical428

damage [86], nutrient status [51, 87], and infectious diseases [88, 89], to name but a few.429

8. Conclusion and future perspectives430

A great deal of information on the physiological status of plants is contained in their electrochemical impedance431

spectra. One of the main challenges for plant EIS practitioners is extracting this information. In this work, we conducted432

the first thorough simulation-based evaluation of the emerging Distribution of Relaxation Times analysis method in433

plant EIS applications. With a sufficient number of high-quality measurements, the distribution of relaxation times434

would provide informative features for predictive models able to classify the physiological status of plants and their435

fruits.436

The simulation-based case studies in this work demonstrate that the DRT analysis method holds promise for the437

investigation of a range of plant properties, yet there is still much to explore for unravelling the full potential of this438

method. These results, along with recent studies on other biological systems and the freely available software developed439

software in this work, give the impetus for further work on analysing plant systems on the basis of DRTs. High-quality440

impedance measurements of different plant organs with a sufficiently high frequency resolution will allow practitioners441

to obtain an impedimetric fingerprint of a plant’s physiological status, as is the case for fuel cells, where DRT-based442

EIS investigations are already becoming common practice.443
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