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Vibrational circular dichroism (VCD) is one of the most powerful techniques to assess stereochemistry of chiral molecules

in solution state. The need for quantum chemical calculations to interpret experimental data, however, has precluded its

widespread use by non-experts. Herein, we propose the search and validation of IR and VCD spectral markers to circumvent

the requirement of DFT calculations allowing for absolute configuration assignments even in complex mixtures. To that end,

a combination of visual inspection and machine learning based methods is used. Monoterpene mixtures are selected for this

proof-of-concept study.

Introduction

Natural product molecules from land, marine and/or microbial
sources continue to play a crucial role in drug discovery and
development.l The biological potential of natural small
molecules, known as secondary (or special) metabolites, stems
from the fact that they are designed to interact with biological
chiral targets, such as proteins, either inside or outside of the
producing organisms. These compounds are commonly
involved in chemically mediated defence, growth in competitive
environments, signalling, and reproduction. These functions are
closely correlated to their structural and stereochemical
diversity, which are made possible by intricate biosynthetic
machinery.2 Natural products are produced from a variety of
building blocks and are subjected to several post-biosynthetic
modifications. These molecules commonly incorporate distinct
chiral elements (point and axial chirality) within a single
chemical structure and are found in complex mixtures. The
combination of the structural and stereochemical features of
compounds provides the physicochemical and
topological requirements for proper membrane permeation

natural

and selective receptor interactions.3 Despite the potential
biological applications of natural products, their efficient
incorporation into the drug discovery pipeline has a high price
tag. Current regulatory affairs require full pharmacological and
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toxicological characterization of each enantiomer for approval
of chiral drugs,* which makes the determination of the exact
three-dimensional arrangement of the atoms in isolated
compounds an bottleneck. Additionally, the
enantiomeric purity of secondary metabolites adds another

important

layer of complexity to natural product chemistry. Although
natural products are commonly believed to be enantiomerically
pure or enriched, a great number of enantiomeric mixtures or
even racemates have been described for secondary
metabolites.>8 Based on the challenges described above, it is
not uncommon to find in the literature incorrect assignments of
both structure and stereochemistry of natural compounds. This
is particularly worrisome since the use of empirical correlations
of spectral data for structurally related compounds is a common
practice in natural product chemistry, which increases the risks
of error amplifications. A recent survey has demonstrated an
increase in the number of stereochemical reassignments of
natural products over the last decade.® The most used methods
to reassign absolute configuration were organic synthesis,
followed by chiroptical methods, mainly associated with DFT
calculations, and NMR. Chiroptical methods, especially optical
rotation (OR) and electronic circular dichroism (ECD), have a
longstanding history of successful applications to secondary
metabolites.1? Vibrational methods, such as vibrational circular
dichroism (VCD) and Raman optical activity (ROA), on the other
hand, underwent a growth in their use by natural product
chemists only over the last two decades.1112 Historically, the
application of the classic chiroptical spectroscopic methods OR
and ECD has been based on empirical correlations of

structurally-related molecules for which the absolute
configuration was known. Unfortunately, empirical rules
commonly present exceptions leading to frequent

misassignments. Current best practice guidelines recommend
the comparison of observed ECD spectra with quantum
chemically simulated data.l® In the case of VCD for small
molecule stereochemical investigations, widespread empirical



correlations were not observed, and the technique came of age
after the development of the magnetic field perturbation
method by Stephens et al that allowed the calculation of VCD
intensities at DFT level to be incorporated into commercial
software.l* Due to the more complex spectral patterns in the
IR fingerprint region and higher sensitivity to structural
features, finding VCD spectral markers for similar structures was
more challenging than for ECD and a greater dependence on
DFT calculations soon followed. Although the development of
accurate quantum chemical calculations has led to the
renaissancel® of chiroptical spectroscopy with a great increase
in the number of natural product molecules being investigated,
unfortunately, it has not been translated into a similar
expansion on the number of research groups using the
techniques. Most of the VCD assignments of absolute
configuration of natural products published in the literature
come from just a handful of research groups, which are
commonly specialized in chiroptical spectroscopy but not
necessarily in natural product chemistry. This situation indicates
that VCD has not yet been included in the natural product
chemist toolbox. We believe that one of the main difficulties in
attracting more natural product chemists to use chiroptical
spectroscopy for stereochemical elucidation is the
aforementioned need for interpret
experimental spectra.®® Therefore, herein, we propose the
search and validation of IR and VCD spectral markers to
circumvent the requirement of DFT calculations allowing for
absolute configuration assignments even in complex mixtures.
To that end, a combination of visual inspection and machine-
learning based methods will be used. Monoterpene, either
isolated or in mixtures, are selected as target molecules for this
proof-of-concept study.

DFT calculations to

Vibrational Circular Dichroism (VCD)

VCD arises from the differential absorption for left- and right-
circularly polarized infrared (IR) radiation by a chiral (non-
racemic) molecule during a vibrational transition. It is the
expansion of the electronic CD phenomenon into the IR spectral
region where vibrational transitions occur. One of the main
advantages of VCD over other techniques is the possibility of
analysis directly in the solution-state, without requiring either
single-crystals or suitable UV-vis chromophores. Since it is
based on IR spectroscopy, a large number of transitions is
commonly available that are sensitive to both structure
(functional  groups/connectivity) and  stereochemistry.
Additionally, like for other chiroptical methods, the final VCD
spectrum reflects quantitively the conformational population of
the target chiral molecule in a given solvent. Therefore, IR/VCD
represents an ideal tool to simultaneously study composition
and stereochemistry of chiral molecules in complex mixtures.
Deep discussions on VCD history, theory, instrumentation, and
applications are beyond the scope of this manuscript. Further
information can be found elsewhere.1>-20

Monoterpenes

Monoterpenes (Ci0) are members of the large and structurally
diverse natural product family of terpenoids. Monoterpenes
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derive from the condensation of two Cs isoprene units, joined
in a head-to-tail fashion.?! Based on the dominance of
carbocation chemistry for the formation of terpenoids in
general, which commonly involves rearrangements,
monoterpenes are found in nature in a huge variety of
structures (strained/unstrained cyclic, bicyclic, and linear forms)
and stereochemical outcomes. Most monoterpenes are
optically active, with enantiomers of a given compound being
produced either by the same or different organisms. These
compounds are also commonly found in complex mixtures i.e.,
essential oils. Due to the chiral nature, availability in suitable
enantiomeric purity, and conformational rigidity of some
bicyclic monoterpenes, which result in high-quality vibrational
spectra in the mid-IR region, compounds such as a-pinene and
camphor have been used as standards for VCD intensity
calibration.® Historically, monoterpenes have also been used in
important VCD technological advancements, both in theory22-25
and instrumentation.26-31 Regarding applications, VCD has been
used to assign the absolute configuration of a series of isolated
monoterpenes,3236 with a single study attempting to establish
VCD chiral signatures of essential oils.3” A compilation of IR/VCD
spectral standards for terpenes was published in 2006.38

Spectral Markers

In order to facilitate the application of VCD for stereochemical
assignments of complex chiral molecules, some efforts have
been made to reduce the dependency on DFT calculations. One
of the most used approaches involve molecule rigidification
and/or the search for spectral markers. Some examples of
rigidification include the derivatization of endo-borneol,3° the
acetonization of 1,3-diols,%° the derivatization of sphingosine
with glutaraldehyde,*! and the preparation of conformationally
restrained cyclic carbodiimides.*2 Non-covalent derivatization
methods to simplify calculations of carboxylic acids have been
recently devised,*? along with the covalent introduction of a
suitable deuterated VCD chromophore with absorption
removed from the IR fingerprint region for the C-1
configuration of sugar molecules.** Our group has been
particularly interested in finding IR/VCD spectral signatures for
conformation and configuration of chiral natural products.
Examples include VCD markers for the configuration of
esterified chromane and monoterpene moieties,*> for the
configuration of the hexahydroxydiphenoyl (HHDP) group in
ellagitannins,*® for the configuration of the 2(5H)-furanone
moiety in acetogenins,*’ for the configuration at C-9 of both
strepchazolin A and B,*8 as well as the IR marker for the E/Z
double bond configuration of spongosoritins® and the VCD
marker for the stacking of the pyrrolidine ring of proline and the
aromatic ring of tyrosine in pohlianin A.50 These searches of
spectral markers are related to the concept of inherently
dissymmetric VCD chromophores.>! Finally, following important
historical developments,>2-54 a non-empirical VCD method that
does not require DFT calculations was proposed in 2012 for
absolute configuration assignments.>> The VCD exciton chirality
method, however, requires the presence of two infrared
chromophores (e.g. carbonyl groups) close in space, to allow for
their coupling, and chirally disposed. The existence of further
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carbonyl groups, on the other hand, complicates the exciton
coupling analysis, hampering its application without the aid of
DFT calculations.>®

Proposed Approach

As discussed above, one of the main reasons why few natural
product chemists use VCD as a standard method to assign the
absolute configurations of chiral secondary metabolites is the
requirement of quantum chemical calculations to interpret
experimental data. Since the search and validation of IR/VCD
spectral markers have proven to be a viable approach for a
series of structurally diverse molecules, herein, we decided to
investigate monoterpene molecules (37 + 2 sesquiterpenes)
both isolated and in mixtures in a search for spectral signatures
that can be used to both identify and assign their
stereochemistry directly in mixtures and without requiring
further DFT calculations. Visual comparison will be explored in
a search of either similar or discriminative vibrational bands for
individual molecules. Then, inspired by a recent proof-of-
concept study using machine learning (ML) to extract absolute
configurations from VCD spectra of decorated a-pinene
derivatives,>” we will extend the application of the ML
methodology to identify monoterpenes in complex mixtures,
such as essential oils which, to the best of our best knowledge,
has not been tested for VCD. In this way, we will assess the
feasibility of such an approach and identify possible pitfalls for
its future development. This concept, if successful, will allow the
determination of composition, stereochemistry, and
enantiomeric excesses of essential oil components from IR/VCD
spectra not only without requiring DFT calculations, but also
bypassing the need for chiral GC analysis. The main
methodology to study terpene mixtures has been chiral GC,
however, it commonly requires the availability of both
enantiomers of a given target for identification purposes.

Results and Discussion

IR and VCD spectra of commercially available individual
monoterpenes were recorded in CDCls solution in the region of
950-1800 cm- and compared visually. They were grouped first
based on their cyclic skeleton types,2! namely, menthane,
pinane, bornane and fenchane types. The isocamphane type
had no representative, while carene and thujane types had a
single representative each. The linear compounds were
grouped as geraniol derivatives. Achiral compounds, such as
cineole, as well as some racemic monoterpenes (isoborneol and
isobornyl acetate) were also included for the IR analysis. After
the spectra of individual molecules were obtained (Figs. S1-57),
artificial mixtures of monoterpenes of each type were prepared
and subjected to IR/VCD analysis (Figs. S8-S13). These mixtures
were used to investigate possible band overlaps and
cancelations from similar structures thus aiding the spectral
marker validation procedure. Other mixtures with increasing
complexity were then prepared and subjected to the same type
of analysis (A-J, Table S1). These procedures allowed us to
identify the most discriminative
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Figure 1. Monoterpene identified from an artificial mixture (J) of known composition by
means of visual IR/VCD spectral markers. See ESI for detailed analysis of spectral markers
and their vibrational origin.

spectral regions for each molecule type. Once the visual
inspection on mixtures of know composition was finished, the
accuracy of the spectral markers identified was tested on
natural mixtures of unknown composition. For that end, tea
tree, rosemary, lavender, and ylang-ylang essential oils were
employed. The compounds identified in the essential oils by the
IR/VCD analysis were then confronted with GC-MS results on
the same samples. Following the visual inspection approach, ML
methods were applied. The following sections will present the
specific results of both approaches with their potential and
limitations.

Visual Inspection

The monoterpenes investigated at this stage included the
pinane type (1R)-(-)-myrtenol, (1R)-(—)-myrtenal, (1R)-(-)-
myrtenyl acetate, (5)-(—)-B-pinene, (R)-(+)-a-pinene,
(1R,2R,3S,5R)-(—)-pinanediol, (1S)-(—)-verbenone, (1S,2S,55)-
(=)-2-hydroxy-3-pinanone, and (1R,2R,3R,55)-(-)-
isopinocampheol; the menthane type 1 (R)-(—)-terpinen-4-ol,
(5)-(—)-perillaldehyde,  (S)-(—)-a-terpineol, (S)-(=)-perillyl
alcohol, (R)-(—)-carvone, and (R)-(+)-limonene; the menthane
type 2 (1S,2S,5R)-(+)-neomenthol, (1R,2S,5R)-(—)-isopulegol,
(1R,2S5,5R)-(—)-menthol, (1S,2R,5R)-(+)-isomenthol, and (R)-(+)-
pulegone; the bornane type (1R)-(+)-camphor, (15)-(-)-
campbhor, (S)-(—)-endo-borneol, (S)-(—)-endo-bornyl acetate, (£)-
isobornyl acetate, (t)-isoborneol, the fenchane type (S)-(+)-
fenchone, and (1R)-(+)-endo-fenchyl alcohol; the geraniol type
(5)-(—)-B-citronellol, (R)-(=)-linalool, (R)-(—)-linalyl acetate, (R)-
(=)-linalool,  (S)-(+)-B-citronellene, and (S)-(-)-citronellal.
Cineole, (15)-(+)-3-carene, and (1S,4R)-(—)-a.-thujone were also
included in more complex mixtures. Inspections were first
carried out on IR spectra in a search for either similar or
discriminatory bands. Both frequency shifts and relative
intensities were used to cluster different monoterpenes. Then,
VCD spectra were analysed which, due to their bisignated
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Figure 2. Monoterpene identified from natural mixtures of unknown composition (essential oils) by means of visual IR/VCD spectral markers. See text for discussion of individual

bands. Identities of monoterpenes confirmed by GC-MS analysis.

nature, provide better resolution and discriminatory power. On
the other hand, having bisignated bands may lead to
attenuation or even cancelation of oppositely signed bands of
particular monoterpenes when present in mixtures. Detailed
analyses of individual terpene types are provided in the ESI.
Once the markers for each class of monoterpenes were
identified visually for individual compounds, their utility was
tested in complex mixtures. Analyses of mixtures of compounds
belonging to the same molecule type are presented in the ESI
(Figs. S8-S13). This approach allowed us to verify possible
intermolecular interactions, spectral correlations and VCD band
cancellations. Then, the visual IR and VCD spectral markers were
tested on an artificial mixture (mixture J) containing molecules
of different types, which included (1R)-(—)-myrtenal, (S)-(—)-B-

pinene, (R)-(+)-a-pinene, (S)-(—)-perillaldehyde, (S)-(-)-o.-
terpineol,  (S)-(—)-perillyl alcohol, (R)-(-)-carvone, (R)-(+)-
limonene, (1S,2S5,5R)-(+)-neomenthol, (1R,2S,5R)-(-)-

isopulegol, (1S5,2R,5R)-(+)-isomenthol, (R)-(+)-pulegone, (S)-(+)-
fenchone, (S)-(-)-endo-borneol, (S)-(—)-endo-bornyl acetate,
and cineole. These results are presented in Figure 1. As can be
seen in Fig. 1, even in such a complex mixture, a combination of
IR and VCD visual spectral markers were able to tell apart most
of the compounds. Please refer to ESI for specific vibrational
frequencies as well as molecular origin of the selected bands.
Following the analysis of the artificial complex mixture of known
composition, natural mixtures (essential oils) were analysed.
Figure 2 presents the IR and VCD spectra of tea tree, rosemary,
lavender, and ylang-ylang essential oils from which the main
components were identified by means of the spectral markers
described above. The presence of the monoterpenes in
question was confirmed by GC-MS analysis (Figs. S14-S17). It is
important to emphasize that not only was monoterpene
identities secured but also their absolute configuration,
simultaneously. Regarding tea tree oil, the IR band at 1066 cm!
and the corresponding positive VCD bands indicated the
presence of (S)-(+)-terpinen-4-ol, which was confirmed by GC-
MS with abundance of 57.88 (area%). The broad positive VCD
band at around 1250 cm™ confirmed the presence of the
menthane type skeleton. As for rosemary oil, the IR band 1639
cm- indicated the presence of B-pinene, while those at 1214,
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1079 and 977 cm1 were markers for the presence of the achiral
monoterpene cineole. Additionally, the IR band at 1415 cm™!
indicated the presence of camphor. Regarding VCD, the (+)-
1469 and (—)-1195 cm! bands led to the identification of (S)-(—)-
B-pinene, while the positive bands at 1450/1126 cm! indicated
the presence of (R)-(+)-a-pinene. The positive VCD band at 1166
cm showed the occurrence of (1R)-(+)-camphor. The GC-MS
analysis (see ESI) confirmed the presence of [-pinene (5.21
area%), a-pinene (7.28 area%), camphor (7.18 area%), and
cineole (70,9 area%). It is noteworthy that in the case of rigid
bicyclic monoterpenes with large VCD intensities, the present
approach is capable of detecting them and assigning their
absolute configurations when present in abundances as low as
5%. Analysis of the IR spectrum of lavender oil showed bands at
1640 and 1412 cm, which indicated the presence of
compounds with terminal double bonds that, combined with
the band at 1672, led to the identification of acyclic
monoterpenes. The presence of the band at 1106 cm<t
confirmed the presence of linalool, while the bands 1720, 1259
and 1020 cm- confirmed the presence of linalyl acetate. VCD
investigation indicated their assignment as (S)-(+)-linalool
(positive band at 1106 cm-1) and (S)-(+)-linalyl acetate (negative
bands at 1259 and 1020 cm1). GC-MS spectra confirmed these
monoterpenes as the most abundant in the essential oil: 44.6
area% for linalool and 42.66 area% for linalyl acetate (see ESI).
Finally, for ylang-ylang oil, the same IR/VCD bands described for
lavender oil were identified, with the main difference being the
sign of the 1106 cm1 VCD band, which indicated the presence
of (R)-(-)-linalool. GC-MS analysis, on the other hand,
confirmed the linalool (19.48 area%), but did not confirm linalyl
acetate. Despite successful, the use of visually identified
spectral markers requires painstaking analysis which may be
subjected to user bias. Additionally, many IR/VCD bands
remained unassigned. In order to circumvent such drawbacks
and expedite analysis, a ML protocol was idealized, developed
and tested as described in the following section.

Machine Learning
As mentioned in the previous section, the use of visually identified
spectral markers is laborious. Additionally, marker bands in VCD can
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be attenuated or even cancelled in a mixture due to opposite
intensities arising from other components. A ML model can leverage
the intensities in other spectral regions to detect components even
if their marker bands are cancelled. Therefore, we were interested in
testing whether a ML model could identify the monoterpenes
present in different mixtures. If successful, one would no longer need
to manually identify spectral markers and the accuracy of the
detection would be improved. In the absence of a large monoterpene
and mixture spectral dataset, the ML model was trained on a set of
in-silico mixtures (noisy linear combinations of monoterpenes),
yielding an IR- and a VCD-based model. A detailed description of the
ML model and the training procedure is presented in the ESI. A set of
six artificial mixtures containing each up to 8 monoterpenes of
different types was prepared (Table S1, mixtures A-F) to evaluate and
finetune the monoterpene detection. The current dataset covers
representative compounds for most of the common monoterpene
types. An essential oil, on the other hand, likely contains one or more
compounds that are still absent from the present dataset. We mimic
such a situation by excluding myrtenyl acetate from the in-silico
training mixtures, while actually including it in the artificial mixture
A. By doing so, we test the stability of the model in the presence of a
‘new’ component. The predicted relative concentrations obtained
for mixtures A-F are shown in Figure 3. As the decision boundary still
needed to be fine-tuned, we were mainly interested in whether the
largest predicted concentrations were obtained for mixtures
containing each said monoterpene. A detailed analysis of the
predictions and the patterns leveraged by the models is provided in
the ESI. The VCD based model successfully extracted the presence of
26 out of the 30 chiral monoterpenes present throughout mixtures
A-F. The VCD model also demonstrated chiral sensitivity: while (1R)-
(+)-camphor in mixture C was not detected, a strong negative (1R)-
(+)-camphor concentration was obtained for mixture A that contains
(1S)-(—)-camphor. The IR based model properly classified 29 of the 31
monoterpenes present in mixtures A-F. The patterns learned from
the in-silico mixtures (Figs. S27-28) clearly performed well on these
mixtures. As the presence of myrtenyl acetate in mixture A did not
hamper the accuracy, the patterns showed robustness to small
external influences. These patterns also translated well to other
mixtures of similar complexity. When the models were applied to
artificial mixtures of monoterpenes of a single type (Figs. S8-S12), a
similar number of monoterpenes were correctly classified by the
models (Figs. S21-24). For each of these mixtures, the VCD model
correctly classified on average 25 chiral monoterpenes and the IR
model did so for 29 monoterpenes. Thus, even if a mixture contained
structurally similar compounds, its composition can still be extracted.
The ML methodology provides a viable new approach for
determining the composition of monoterpene mixtures. Next, we
tested the model on the artificial mixtures containing a larger
number of monoterpenes (mixtures H-J, Table S1 and Figs. $S25-26).
When the models were applied to mixture J, the VCD model correctly
identified the presence or absence of 24 chiral monoterpenes and
the IR model correctly classified 28 monoterpenes (true positives and
true negatives; see ESI for methodology details). Compared to the
visual inspection (Fig. 1), the ML model enabled to extract more
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information from the marker and non-marker bands in the spectrum.
As a result, a larger number of the monoterpenes present in the
mixture were detectable. The VCD model correctly classified 22 chiral
monoterpenes for mixture H and 20 for mixture I. With the IR model,
22 monoterpenes from mixture H and 23 monoterpenes from
mixture | were correctly identified as either present or absent. With
the lower individual contributions of each single terpene in more
complex mixtures, extracting their composition was more
challenging. Nonetheless, the models could still perform well
depending on the exact mixture composition, as demonstrated for
mixture J. Subsequently, the models were asked to predict the
terpenes present in the 4 essential oils and the results are reported
in Tables S2-S3. The content of the essential oils was unknown prior
to these predictions, removing any potential user bias. Lavender oil
is largely made up of linalool and linalyl acetate which were both
detected by the IR model, whereas the VCD model mainly detected
(R)-(=)-linalool. In ylang-ylang oil both models confirmed the
presence of (R)-(—)-linalool. The major component of rosemary oil,
cineole, was clearly detected by the IR model. The presence of (R)-
(+)-a-pinene and (S)-(—)-B-pinene was additionally detected by both
models. For the final extract, tea tree oil, the IR model correctly
detected terpinen-4-ol and the tiny fraction of limonene; neither of
which was detected by the VCD model. Even so, the IR model
succeeded in correctly detecting these terpenes. It is important to
note that for each of these oils a non-negligible number of false
positives (terpenes absent from the oil which are detected by the
model) was obtained. When only a small number of components in
the oil is included in the dataset, the mixture spectra contain
contributions which the model has not been taught to handle,
resulting in an increased number of false positives. The transparency
of VCD to achiral compounds, on the other hand, limits the number
of new components capable of contributing to the mixture spectrum,
which could result in fewer false positives. To summarize, with the
dataset of terpenes presented in this article, we could build ML
models to determine the terpene composition of mixtures with
moderate complexity. For mixtures of high complexity, the models
begin to struggle to accurately predict the presence of the terpenes,
especially if the major contributions are not accounted for in the
dataset. The current models are not ready yet to tackle analysis of
essential oils in general due to the limited number of compounds in
the spectral database. The approach, however, shows promise in its
ability to detect those compounds indeed represented. We believe
that continuing to build this dataset, with spectra of either pure
compounds or mixtures, will enable researchers to push the
boundaries of VCD applications to secondary metabolites.

Conclusions

Despite advances over the last decade, VCD spectroscopy
remains an untapped resource for the determination of the
absolute configuration by the natural product community. One
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Figure 3. Predicted concentrations (in %) relative to the original concentrations of individual monoterpenes for mixtures A-F by the VCD based (top) and IR based model (bottom).
The predicted concentration for each monoterpene is shown for each of the six mixtures and is colored according to whether the monoterpene is present (green) or absent (red)
for a given mixture. The predicted concentrations are highlighted (in blue) for a monoterpene when no correct decision boundary can be drawn for this monoterpene (for a correct
decision boundary, all mixtures that contain said monoterpene need to lie above it and all mixtures that do not contain said monoterpene below it). The error margin (bars) is the
standard deviation upon the predicted value during cross-validation (see ESI for more details). Some regions are zoomed in for clarity (dotted lines).

of the reasons is the requirement of quantum chemical
calculations to interpret experimental data. In this perspective,
we present an approach to simultaneously detect and assign
absolute configuration of natural products even in mixtures,
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and without the need of DFT calculations. The proposed
approach focuses on the search of IR and VCD spectral
markers/regions of individual molecules to be applied in
complex mixtures. As a proof-of-concept, monoterpenes were

This journal is © The Royal Society of Chemistry 20xx
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chosen as target molecules. The spectral marker/regions
searches were undertaken both by visual inspection and by
means of machine learning. Visual inspection is a viable
procedure for monoterpenes; however, it is time-consuming
and prone to user bias. Machine learning methods, on the other
hand, renders itself as a promising tool for detection and
stereochemical analysis of complex mixtures. Although the
results obtained for natural mixtures could have been better,
the good performance for artificial mixtures indicates that ML is
a promising tool provided the number of molecules/spectra
included in the dataset is expanded. Due to the number of false
positives for natural mixtures, however, the suggested
approach is not yet competitive with other classical methods
such as GC-MS. Consequently, further IR/VCD spectra need to
be recorded for structurally diverse molecules, both
aquiral/racemic and chiral, that commonly compose essential
oils and other important mixtures. Once the number of IR/VCD
spectra available is increased, we expect ML-based methods to
be able to tackle mixtures of increasing complexity, such as
essential oils, crude extracts, as well as reaction media of
stereoselective chemical transformations.
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