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Pushing the boundaries of VCD spectroscopy in natural product 
chemistry  
Tom Vermeyen,a,b Andrea N. L. Batista, c Alessandra L. Valverde,c Wouter Herrebout a* and João M. 
Batista Jr.d* 

Vibrational circular  dichroism (VCD) is one of the most powerful techniques to assess stereochemistry of chiral molecules 
in solution state. The need for quantum chemical calculations to interpret experimental data, however, has precluded its 
widespread use by non-experts. Herein, we propose the search and validation of IR and VCD spectral markers to circumvent 
the requirement of DFT calculations allowing for absolute configuration assignments even in complex mixtures. To that end, 
a combination of visual inspection and machine learning based methods is used. Monoterpene mixtures are selected for this 
proof-of-concept study.

Introduction 
Natural product molecules from land, marine and/or microbial 
sources continue to play a crucial role in drug discovery and 
development.1 The biological potential of natural small 
molecules, known as secondary (or special) metabolites, stems 
from the fact that they are designed to interact with biological 
chiral targets, such as proteins, either inside or outside of the 
producing organisms. These compounds are commonly 
involved in chemically mediated defence, growth in competitive 
environments, signalling, and reproduction. These functions are 
closely correlated to their structural and stereochemical 
diversity, which are made possible by intricate biosynthetic 
machinery.2 Natural products are produced from a variety of 
building blocks and are subjected to several post-biosynthetic 
modifications. These molecules commonly incorporate distinct 
chiral elements (point and axial chirality) within a single 
chemical structure and are found in complex mixtures. The 
combination of the structural and stereochemical features of 
natural compounds provides the physicochemical and 
topological requirements for proper membrane permeation 
and selective receptor interactions.3 Despite the potential 
biological applications of natural products, their efficient 
incorporation into the drug discovery pipeline has a high price 
tag. Current regulatory affairs require full pharmacological and 

toxicological characterization of each enantiomer for approval 
of chiral drugs,4 which makes the determination of the exact 
three-dimensional arrangement of the atoms in isolated 
compounds an important bottleneck. Additionally, the 
enantiomeric purity of secondary metabolites adds another 
layer of complexity to natural product chemistry. Although 
natural products are commonly believed to be enantiomerically 
pure or enriched, a great number of enantiomeric mixtures or 
even racemates have been described for secondary 
metabolites.5-8 Based on the challenges described above, it is 
not uncommon to find in the literature incorrect assignments of 
both structure and stereochemistry of natural compounds. This 
is particularly worrisome since the use of empirical correlations 
of spectral data for structurally related compounds is a common 
practice in natural product chemistry, which increases the risks 
of error amplifications. A recent survey has demonstrated an 
increase in the number of stereochemical reassignments of 
natural products over the last decade.9 The most used methods 
to reassign absolute configuration were organic synthesis, 
followed by chiroptical methods, mainly associated with DFT 
calculations, and NMR. Chiroptical methods, especially optical 
rotation (OR) and electronic circular dichroism (ECD), have a 
longstanding history of successful applications to secondary 
metabolites.10 Vibrational methods, such as vibrational circular 
dichroism (VCD) and Raman optical activity (ROA), on the other 
hand, underwent a growth in their use by natural product 
chemists only over the last two decades.11,12 Historically, the 
application of the classic chiroptical spectroscopic methods OR 
and ECD has been based on empirical correlations of 
structurally-related molecules for which the absolute 
configuration was known. Unfortunately, empirical rules 
commonly present exceptions leading to frequent 
misassignments. Current best practice guidelines recommend 
the comparison of observed ECD spectra with quantum 
chemically simulated data.13 In the case of VCD for small 
molecule stereochemical investigations, widespread empirical 
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correlations were not observed, and the technique came of age 
after the development of the magnetic field perturbation 
method by Stephens et al that allowed the calculation of VCD 
intensities at DFT level to be incorporated into commercial 
software.14  Due to the more complex spectral patterns in the 
IR fingerprint region and higher sensitivity to structural 
features, finding VCD spectral markers for similar structures was 
more challenging than for ECD and a greater dependence on 
DFT calculations soon followed. Although the development of 
accurate quantum chemical calculations has led to the 
renaissance15 of chiroptical spectroscopy with a great increase 
in the number of natural product molecules being investigated, 
unfortunately, it has not been translated into a similar 
expansion on the number of research groups using the 
techniques. Most of the VCD assignments of absolute 
configuration of natural products published in the literature 
come from just a handful of research groups, which are 
commonly specialized in chiroptical spectroscopy but not 
necessarily in natural product chemistry. This situation indicates 
that VCD has not yet been included in the natural product 
chemist toolbox. We believe that one of the main difficulties in 
attracting more natural product chemists to use chiroptical 
spectroscopy for stereochemical elucidation is the 
aforementioned need for DFT calculations to interpret 
experimental spectra.6,8 Therefore, herein, we propose the 
search and validation of IR and VCD spectral markers to 
circumvent the requirement of DFT calculations allowing for 
absolute configuration assignments even in complex mixtures. 
To that end, a combination of visual inspection and machine-
learning based methods will be used. Monoterpene, either 
isolated or in mixtures, are selected as target molecules for this 
proof-of-concept study. 
 
Vibrational Circular Dichroism (VCD) 
VCD arises from the differential absorption for left- and right-
circularly polarized infrared (IR) radiation by a chiral (non-
racemic) molecule during a vibrational transition. It is the 
expansion of the electronic CD phenomenon into the IR spectral 
region where vibrational transitions occur. One of the main 
advantages of VCD over other techniques is the possibility of 
analysis directly in the solution-state, without requiring either 
single-crystals or suitable UV-vis chromophores. Since it is 
based on IR spectroscopy, a large number of transitions is 
commonly available that are sensitive to both structure 
(functional groups/connectivity) and stereochemistry. 
Additionally, like for other chiroptical methods, the final VCD 
spectrum reflects quantitively the conformational population of 
the target chiral molecule in a given solvent. Therefore, IR/VCD 
represents an ideal tool to simultaneously study composition 
and stereochemistry of chiral molecules in complex mixtures. 
Deep discussions on VCD history, theory, instrumentation, and 
applications are beyond the scope of this manuscript. Further 
information can be found elsewhere.15-20  
 
Monoterpenes 
Monoterpenes (C10) are members of the large and structurally 
diverse natural product family of terpenoids. Monoterpenes 

derive from the condensation of two C5 isoprene units, joined 
in a head-to-tail fashion.21 Based on the dominance of 
carbocation chemistry for the formation of terpenoids in 
general, which commonly involves rearrangements, 
monoterpenes are found in nature in a huge variety of 
structures (strained/unstrained cyclic, bicyclic, and linear forms) 
and stereochemical outcomes. Most monoterpenes are 
optically active, with enantiomers of a given compound being 
produced either by the same or different organisms. These 
compounds are also commonly found in complex mixtures i.e., 
essential oils. Due to the chiral nature, availability in suitable 
enantiomeric purity, and conformational rigidity of some 
bicyclic monoterpenes, which result in high-quality vibrational 
spectra in the mid-IR region, compounds such as a-pinene and 
camphor have been used as standards for VCD intensity 
calibration.16 Historically, monoterpenes have also been used in 
important VCD technological advancements, both in theory22-25 
and instrumentation.26-31 Regarding applications, VCD has been 
used to assign the absolute configuration of a series of isolated 
monoterpenes,32-36 with a single study attempting to establish 
VCD chiral signatures of essential oils.37 A compilation of IR/VCD 
spectral standards for terpenes was published in 2006.38 
 
Spectral Markers 
In order to facilitate the application of VCD for stereochemical 
assignments of complex chiral molecules, some efforts have 
been made to reduce the dependency on DFT calculations. One 
of the most used approaches involve molecule rigidification 
and/or the search for spectral markers. Some examples of 
rigidification include the derivatization of endo-borneol,39 the 
acetonization of 1,3-diols,40 the derivatization of sphingosine 
with glutaraldehyde,41 and the preparation of conformationally 
restrained cyclic carbodiimides.42 Non-covalent derivatization 
methods to simplify calculations of carboxylic acids have been 
recently devised,43 along with the covalent introduction of a 
suitable deuterated VCD chromophore with absorption 
removed from the IR fingerprint region for the C-1 
configuration of sugar molecules.44 Our group has been 
particularly interested in finding IR/VCD spectral signatures for 
conformation and configuration of chiral natural products. 
Examples include VCD markers for the configuration of 
esterified chromane and monoterpene moieties,45 for the 
configuration of the hexahydroxydiphenoyl (HHDP) group in 
ellagitannins,46 for the configuration of the 2(5H)-furanone 
moiety in acetogenins,47 for the configuration at C-9 of both 
strepchazolin A and B,48 as well as the IR marker for the E/Z 
double bond configuration of spongosoritins49 and the VCD 
marker for the stacking of the pyrrolidine ring of proline and the 
aromatic ring of tyrosine in pohlianin A.50  These searches of 
spectral markers are related to the concept of inherently 
dissymmetric VCD chromophores.51 Finally, following important 
historical developments,52-54 a non-empirical VCD method that 
does not require DFT calculations was proposed in 2012 for 
absolute configuration assignments.55 The VCD exciton chirality 
method, however, requires the presence of two infrared 
chromophores (e.g. carbonyl groups) close in space, to allow for 
their coupling, and chirally disposed. The existence of further 
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carbonyl groups, on the other hand, complicates the exciton 
coupling analysis, hampering its application without the aid of 
DFT calculations.56    
 
Proposed Approach 
As discussed above, one of the main reasons why few natural 
product chemists use VCD as a standard method to assign the 
absolute configurations of chiral secondary metabolites is the 
requirement of quantum chemical calculations to interpret 
experimental data. Since the search and validation of IR/VCD 
spectral markers have proven to be a viable approach for a 
series of structurally diverse molecules, herein, we decided to 
investigate monoterpene molecules (37 + 2 sesquiterpenes) 
both isolated and in mixtures in a search for spectral signatures 
that can be used to both identify and assign their 
stereochemistry directly in mixtures and without requiring 
further DFT calculations. Visual comparison will be explored in 
a search of either similar or discriminative vibrational bands for 
individual molecules. Then, inspired by a recent proof-of-
concept study using machine learning (ML) to extract absolute 
configurations from VCD spectra of decorated a-pinene 
derivatives,57 we will extend the application of the ML 
methodology to identify monoterpenes in complex mixtures, 
such as essential oils which, to the best of our best knowledge, 
has not been tested for VCD. In this way, we will assess the 
feasibility of such an approach and identify possible pitfalls for 
its future development. This concept, if successful, will allow the 
determination of composition, stereochemistry, and 
enantiomeric excesses of essential oil components from IR/VCD 
spectra not only without requiring DFT calculations, but also 
bypassing the need for chiral GC analysis. The main 
methodology to study terpene mixtures has been chiral GC, 
however, it commonly requires the availability of both 
enantiomers of a given target for identification purposes. 

Results and Discussion 
IR and VCD spectra of commercially available individual 
monoterpenes were recorded in CDCl3 solution in the region of 
950-1800 cm-1 and compared visually. They were grouped first 
based on their cyclic skeleton types,21 namely, menthane, 
pinane, bornane and fenchane types. The isocamphane type 
had no representative, while carene and thujane types had a 
single representative each. The linear compounds were 
grouped as geraniol derivatives. Achiral compounds, such as 
cineole, as well as some racemic monoterpenes (isoborneol and 
isobornyl acetate) were also included for the IR analysis. After 
the spectra of individual molecules were obtained (Figs. S1-S7), 
artificial mixtures of monoterpenes of each type were prepared 
and subjected to IR/VCD analysis (Figs. S8-S13). These mixtures 
were used to investigate possible band overlaps and 
cancelations from similar structures thus aiding the spectral 
marker validation procedure. Other mixtures with increasing 
complexity were then prepared and subjected to the same type 
of analysis (A-J, Table S1). These procedures allowed us to 
identify the most discriminative  

Figure 1. Monoterpene identified from an artificial mixture (J) of known composition by 
means of visual IR/VCD spectral markers. See ESI for detailed analysis of spectral markers 
and their vibrational origin. 

spectral regions for each molecule type. Once the visual 
inspection on mixtures of know composition was finished, the 
accuracy of the spectral markers identified was tested on 
natural mixtures of unknown composition. For that end, tea 
tree, rosemary, lavender, and ylang-ylang essential oils were 
employed. The compounds identified in the essential oils by the 
IR/VCD analysis were then confronted with GC-MS results on 
the same samples. Following the visual inspection approach, ML 
methods were applied. The following sections will present the 
specific results of both approaches with their potential and 
limitations.  
 
Visual Inspection 
The monoterpenes investigated at this stage included the 
pinane type (1R)-(-)-myrtenol, (1R)-(-)-myrtenal, (1R)-(-)-
myrtenyl acetate, (S)-(-)-b-pinene, (R)-(+)-a-pinene, 
(1R,2R,3S,5R)-(-)-pinanediol, (1S)-(-)-verbenone, (1S,2S,5S)-
(-)-2-hydroxy-3-pinanone, and (1R,2R,3R,5S)-(-)-
isopinocampheol; the menthane type 1 (R)-(-)-terpinen-4-ol, 
(S)-(-)-perillaldehyde, (S)-(-)-a-terpineol,  (S)-(-)-perillyl 
alcohol, (R)-(-)-carvone, and (R)-(+)-limonene; the menthane 
type 2 (1S,2S,5R)-(+)-neomenthol, (1R,2S,5R)-(-)-isopulegol, 
(1R,2S,5R)-(-)-menthol, (1S,2R,5R)-(+)-isomenthol, and (R)-(+)-
pulegone; the bornane type (1R)-(+)-camphor, (1S)-(-)-
camphor, (S)-(-)-endo-borneol, (S)-(-)-endo-bornyl acetate, (±)-
isobornyl acetate, (±)-isoborneol, the fenchane type (S)-(+)-
fenchone, and (1R)-(+)-endo-fenchyl alcohol; the geraniol type 
(S)-(-)-b-citronellol, (R)-(-)-linalool, (R)-(-)-linalyl acetate,  (R)-
(-)-linalool, (S)-(+)-b-citronellene, and (S)-(-)-citronellal. 
Cineole, (1S)-(+)-3-carene, and (1S,4R)-(-)-a-thujone were also 
included in more complex mixtures. Inspections were first 
carried out on IR spectra in a search for either similar or 
discriminatory bands. Both frequency shifts and relative 
intensities were used to cluster different monoterpenes. Then, 
VCD spectra were analysed which, due to their bisignated 
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nature, provide better resolution and discriminatory power. On 
the other hand, having bisignated bands may lead to 
attenuation or even cancelation of oppositely signed bands of 
particular monoterpenes when present in mixtures. Detailed 
analyses of individual terpene types are provided in the ESI. 
Once the markers for each class of monoterpenes were 
identified visually for individual compounds, their utility was 
tested in complex mixtures. Analyses of mixtures of compounds 
belonging to the same molecule type are presented in the ESI 
(Figs. S8-S13). This approach allowed us to verify possible 
intermolecular interactions, spectral correlations and VCD band 
cancellations. Then, the visual IR and VCD spectral markers were 
tested on an artificial mixture (mixture J) containing molecules 
of different types, which included (1R)-(-)-myrtenal, (S)-(-)-b-
pinene, (R)-(+)-a-pinene, (S)-(-)-perillaldehyde, (S)-(-)-a-
terpineol,  (S)-(-)-perillyl alcohol, (R)-(-)-carvone, (R)-(+)-
limonene, (1S,2S,5R)-(+)-neomenthol, (1R,2S,5R)-(-)-
isopulegol, (1S,2R,5R)-(+)-isomenthol, (R)-(+)-pulegone, (S)-(+)-
fenchone, (S)-(-)-endo-borneol, (S)-(-)-endo-bornyl acetate, 
and cineole. These results are presented in Figure 1. As can be 
seen in Fig. 1, even in such a complex mixture, a combination of 
IR and VCD visual spectral markers were able to tell apart most 
of the compounds. Please refer to ESI for specific vibrational 
frequencies as well as molecular origin of the selected bands. 
Following the analysis of the artificial complex mixture of known 
composition, natural mixtures (essential oils) were analysed. 
Figure 2 presents the IR and VCD spectra of tea tree, rosemary, 
lavender, and ylang-ylang essential oils from which the main 
components were identified by means of the spectral markers 
described above. The presence of the monoterpenes in 
question was confirmed by GC-MS analysis (Figs. S14-S17). It is 
important to emphasize that not only was monoterpene 
identities secured but also their absolute configuration, 
simultaneously. Regarding tea tree oil, the IR band at 1066 cm-1 
and the corresponding positive VCD bands indicated the 
presence of (S)-(+)-terpinen-4-ol, which was confirmed by GC-
MS with abundance of 57.88 (area%). The broad positive VCD 
band at around 1250 cm-1 confirmed the presence of the 
menthane type skeleton. As for rosemary oil, the IR band 1639 
cm-1 indicated the presence of b-pinene, while those at 1214, 

1079 and 977 cm-1 were markers for the presence of the achiral 
monoterpene cineole. Additionally, the IR band at 1415 cm-1 
indicated the presence of camphor. Regarding VCD, the (+)-
1469 and (-)-1195 cm-1 bands led to the identification of (S)-(-)-
b-pinene, while the positive bands at 1450/1126 cm-1 indicated 
the presence of (R)-(+)-a-pinene. The positive VCD band at 1166 
cm-1 showed the occurrence of (1R)-(+)-camphor. The GC-MS 
analysis (see ESI) confirmed the presence of b-pinene (5.21 
area%), a-pinene (7.28 area%), camphor (7.18 area%), and 
cineole (70,9 area%). It is noteworthy that in the case of rigid 
bicyclic monoterpenes with large VCD intensities, the present 
approach is capable of detecting them and assigning their 
absolute configurations when present in abundances as low as 
5%. Analysis of the IR spectrum of lavender oil showed bands at 
1640 and 1412 cm-1, which indicated the presence of 
compounds with terminal double bonds that, combined with 
the band at 1672, led to the identification of acyclic 
monoterpenes. The presence of the band at 1106 cm-1 
confirmed the presence of linalool, while the bands 1720, 1259 
and 1020 cm-1 confirmed the presence of linalyl acetate.  VCD 
investigation indicated their assignment as (S)-(+)-linalool 
(positive band at 1106 cm-1) and (S)-(+)-linalyl acetate (negative 
bands at 1259 and 1020 cm-1). GC-MS spectra confirmed these 
monoterpenes as the most abundant in the essential oil: 44.6 
area% for linalool and 42.66 area% for linalyl acetate (see ESI). 
Finally, for ylang-ylang oil, the same IR/VCD bands described for 
lavender oil were identified, with the main difference being the 
sign of the 1106 cm-1 VCD band, which indicated the presence 
of (R)-(-)-linalool. GC-MS analysis, on the other hand, 
confirmed the linalool (19.48 area%), but did not confirm linalyl 
acetate. Despite successful, the use of visually identified 
spectral markers requires painstaking analysis which may be 
subjected to user bias. Additionally, many IR/VCD bands 
remained unassigned. In order to circumvent such drawbacks 
and expedite analysis, a ML protocol was idealized, developed 
and tested as described in the following section.  
 
Machine Learning 
As mentioned in the previous section, the use of visually identified 
spectral markers is laborious. Additionally, marker bands in VCD can 
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Figure 2. Monoterpene identified from natural mixtures of unknown composition (essential oils) by means of visual IR/VCD spectral markers. See text for discussion of individual 
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be attenuated or even cancelled in a mixture due to opposite 
intensities arising from other components. A ML model can leverage 
the intensities in other spectral regions to detect components even 
if their marker bands are cancelled. Therefore, we were interested in 
testing whether a ML model could identify the monoterpenes 
present in different mixtures. If successful, one would no longer need 
to manually identify spectral markers and the accuracy of the 
detection would be improved. In the absence of a large monoterpene 
and mixture spectral dataset, the ML model was trained on a set of 
in-silico mixtures (noisy linear combinations of monoterpenes), 
yielding an IR- and a VCD-based model. A detailed description of the 
ML model and the training procedure is presented in the ESI. A set of 
six artificial mixtures containing each up to 8 monoterpenes of 
different types was prepared (Table S1, mixtures A-F) to evaluate and 
finetune the monoterpene detection. The current dataset covers 
representative compounds for most of the common monoterpene 
types. An essential oil, on the other hand, likely contains one or more 
compounds that are still absent from the present dataset.  We mimic 
such a situation by excluding myrtenyl acetate from the in-silico 
training mixtures, while actually including it in the artificial mixture 
A. By doing so, we test the stability of the model in the presence of a 
‘new’ component.  The predicted relative concentrations obtained 
for mixtures A-F are shown in Figure 3. As the decision boundary still 
needed to be fine-tuned, we were mainly interested in whether the 
largest predicted concentrations were obtained for mixtures 
containing each said monoterpene. A detailed analysis of the 
predictions and the patterns leveraged by the models is provided in 
the ESI. The VCD based model successfully extracted the presence of 
26 out of the 30 chiral monoterpenes present throughout mixtures 
A-F. The VCD model also demonstrated chiral sensitivity: while (1R)-
(+)-camphor in mixture C was not detected, a strong negative (1R)-
(+)-camphor concentration was obtained for mixture A that contains 
(1S)-(-)-camphor. The IR based model properly classified 29 of the 31 
monoterpenes present in mixtures A-F. The patterns learned from 
the in-silico mixtures (Figs. S27-28) clearly performed well on these 
mixtures. As the presence of myrtenyl acetate in mixture A did not 
hamper the accuracy, the patterns showed robustness to small 
external influences. These patterns also translated well to other 
mixtures of similar complexity. When the models were applied to 
artificial mixtures of monoterpenes of a single type (Figs. S8-S12), a 
similar number of monoterpenes were correctly classified by the 
models (Figs. S21-24). For each of these mixtures, the VCD model 
correctly classified on average 25 chiral monoterpenes and the IR 
model did so for 29 monoterpenes. Thus, even if a mixture contained 
structurally similar compounds, its composition can still be extracted. 
The ML methodology provides a viable new approach for 
determining the composition of monoterpene mixtures.  Next, we 
tested the model on the artificial mixtures containing a larger 
number of monoterpenes (mixtures H-J, Table S1 and Figs. S25-26). 
When the models were applied to mixture J, the VCD model correctly 
identified the presence or absence of 24 chiral monoterpenes and 
the IR model correctly classified 28 monoterpenes (true positives and 
true negatives; see ESI for methodology details). Compared to the 
visual inspection (Fig. 1), the ML model enabled to extract more 

information from the marker and non-marker bands in the spectrum. 
As a result, a larger number of the monoterpenes present in the 
mixture were detectable. The VCD model correctly classified 22 chiral 
monoterpenes for mixture H and 20 for mixture I. With the IR model, 
22 monoterpenes from mixture H and 23 monoterpenes from 
mixture I were correctly identified as either present or absent. With 
the lower individual contributions of each single terpene in more 
complex mixtures, extracting their composition was more 
challenging. Nonetheless, the models could still perform well 
depending on the exact mixture composition, as demonstrated for 
mixture J. Subsequently, the models were asked to predict the 
terpenes present in the 4 essential oils and the results are reported 
in Tables S2-S3.  The content of the essential oils was unknown prior 
to these predictions, removing any potential user bias. Lavender oil 
is largely made up of linalool and linalyl acetate which were both 
detected by the IR model, whereas the VCD model mainly detected 
(R)-(-)-linalool. In ylang-ylang oil both models confirmed the 
presence of (R)-(-)-linalool. The major component of rosemary oil, 
cineole, was clearly detected by the IR model. The presence of (R)-
(+)-α-pinene and (S)-(-)-β-pinene was additionally detected by both 
models. For the final extract, tea tree oil, the IR model correctly 
detected terpinen-4-ol and the tiny fraction of limonene; neither of 
which was detected by the VCD model. Even so, the IR model 
succeeded in correctly detecting these terpenes. It is important to 
note that for each of these oils a non-negligible number of false 
positives (terpenes absent from the oil which are detected by the 
model) was obtained. When only a small number of components in 
the oil is included in the dataset, the mixture spectra contain 
contributions which the model has not been taught to handle, 
resulting in an increased number of false positives. The transparency 
of VCD to achiral compounds, on the other hand, limits the number 
of new components capable of contributing to the mixture spectrum, 
which could result in fewer false positives. To summarize, with the 
dataset of terpenes presented in this article, we could build ML 
models to determine the terpene composition of mixtures with 
moderate complexity. For mixtures of high complexity, the models 
begin to struggle to accurately predict the presence of the terpenes, 
especially if the major contributions are not accounted for in the 
dataset. The current models are not ready yet to tackle analysis of 
essential oils in general due to the limited number of compounds in 
the spectral database. The approach, however, shows promise in its 
ability to detect those compounds indeed represented. We believe 
that continuing to build this dataset, with spectra of either pure 
compounds or mixtures, will enable researchers to push the 
boundaries of VCD applications to secondary metabolites.  

Conclusions 
Despite advances over the last decade, VCD spectroscopy 
remains an untapped resource for the determination of the 
absolute configuration by the natural product community. One 
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of the reasons is the requirement of quantum chemical 
calculations to interpret experimental data. In this perspective, 
we present an approach to simultaneously detect and assign 
absolute configuration of natural products even in mixtures, 

and without the need of DFT calculations. The proposed 
approach focuses on the search of IR and VCD spectral 
markers/regions of individual molecules to be applied in 
complex mixtures. As a proof-of-concept, monoterpenes were 

Figure 3. Predicted concentrations (in %) relative to the original concentrations of individual monoterpenes for mixtures A-F by the VCD based (top) and IR based model (bottom). 
The predicted concentration for each monoterpene is shown for each of the six mixtures and is colored according to whether the monoterpene is present (green) or absent (red) 
for a given mixture. The predicted concentrations are highlighted (in blue) for a monoterpene when no correct decision boundary can be drawn for this monoterpene (for a correct 
decision boundary, all mixtures that contain said monoterpene need to lie above it and all mixtures that do not contain said monoterpene below it). The error margin (bars) is the 
standard deviation upon the predicted value during cross-validation (see ESI for more details). Some regions are zoomed in for clarity (dotted lines). 
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chosen as target molecules. The spectral marker/regions 
searches were undertaken both by visual inspection and by 
means of machine learning. Visual inspection is a viable 
procedure for monoterpenes; however, it is time-consuming 
and prone to user bias. Machine learning methods, on the other 
hand, renders itself as a promising tool for detection and 
stereochemical analysis of complex mixtures. Although the 
results obtained for natural mixtures could have been better, 
the good performance for artificial mixtures indicates that ML is 
a promising tool provided the number of molecules/spectra 
included in the dataset is expanded. Due to the number of false 
positives for natural mixtures, however, the suggested 
approach is not yet competitive with other classical methods 
such as GC-MS. Consequently, further IR/VCD spectra need to 
be recorded for structurally diverse molecules, both 
aquiral/racemic and chiral, that commonly compose essential 
oils and other important mixtures. Once the number of IR/VCD 
spectra available is increased, we expect ML-based methods to 
be able to tackle mixtures of increasing complexity, such as 
essential oils, crude extracts, as well as reaction media of 
stereoselective chemical transformations. 
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