
Fuzzy Rough Set Methods for Emotion Detection and
Sentiment Analysis

Olha Kaminska

Dissertation submitted in fulfilment of the requirements for
the degree of Doctor of Science: Computer Science

Academic year 2022–2023

Department of Applied Mathematics,
Computer Science and Statistics
LT3 Language and Translation Technology Team
Faculty of Sciences
Ghent University

Supervisors
Prof. dr. Chris Cornelis
Department of Applied Mathematics, Computer Science and Statistics,
Ghent University, Belgium

Prof. dr. Veronique Hoste
LT3 Language and Translation Technology Team,
Ghent University, Belgium

Other members of the examination board
Prof. dr. Kris Coolsaet (chair)
Department of Applied Mathematics, Computer Science and Statistics,
Ghent University, Belgium

Prof. dr. Guy De Tré
Department of Telecommunications and Information Processing,
Ghent University, Belgium

Prof. dr. Els Lefever
Department of Translation, Interpreting and Communication,
Ghent University, Belgium

Dr. Enislay Ramentol
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung, Germany

Prof. dr. Walter Daelemans
Department of Linguistics,
University of Antwerp, Belgium

Dr. Germán Hurtado Martín
Data as a Service, Search & Match Team,
The Stepstone Group, Belgium

This work was supported by
Research Foundation Flanders (grant no. G0H9118N)

Contents

Contents vii

List of Tables xi

List of Figures xv

List of Acronyms xvii

Summary xxi

Nederlandstalige samenvatting xxiii

Acknowledgements xxv

1 Introduction 1
1.1 Emotion detection challenges in Natural Language Processing . . 1

1.1.1 Overview of emotion detection tasks 2
1.1.2 Emotion detection tasks and datasets presented in our work 3

1.2 Machine learning and fuzzy rough set based methods for emotion
detection . 5
1.2.1 State-of-the-art methods 5
1.2.2 Fuzzy rough set based methods 7

1.3 Overview of the dissertation . 8

2 Related work 11
2.1 SemEval competitions: tasks and winning solutions 11

2.1.1 Emotion intensity . 12
2.1.2 Hate speech detection . 12
2.1.3 Irony and sarcasm detection 13
2.1.4 Summary . 14

2.2 Aspect-Based Sentiment Analysis 15
2.2.1 ABSA studies summary 15
2.2.2 ABSA as a SemEval task 15
2.2.3 SentEMO project . 16

2.3 Interpretability in text analysis 16

vii

2.3.1 Post-hoc methods . 17
2.3.2 Self-explanatory methods 17
2.3.3 Main explainability techniques 18
2.3.4 Our choice for a local, self-explaining example-driven method 19

3 Data and resources 21
3.1 Text cleaning techniques . 21

3.1.1 Emojis . 21
3.1.2 Hashtags . 22
3.1.3 Non-textual parts of text 23
3.1.4 Stop words cleaning . 23

3.2 Text vectorization with embedding methods 23
3.2.1 Bag of Words and N-grams 24
3.2.2 Word2Vec and its variants 24
3.2.3 DeepMoji . 25
3.2.4 Universal Sentence Encoder 25
3.2.5 Transformer-based encoders 25
3.2.6 Other embedding methods 26

3.3 Lexicons . 27

4 Prediction methods 29
4.1 Similarity relation . 29
4.2 Classification models . 30

4.2.1 Weighted kNN . 30
4.2.2 FRNN-OWA . 31
4.2.3 FROVOCO . 33

4.3 Regression models . 34
4.4 Ensembles . 34
4.5 Evaluation . 35

4.5.1 Pearson Correlation Coefficient 35
4.5.2 Mean Absolute Error . 36
4.5.3 F1-score . 36
4.5.4 Accuracy and CCA . 37

5 Application 1: emotion recognition 39
5.1 Emotion intensity detection . 39

5.1.1 Datasets and task . 39
5.1.2 The baseline . 40
5.1.3 Model tuning . 41
5.1.4 Ensemble of models . 52
5.1.5 Test data results . 59
5.1.6 Summary . 62

5.2 Hate speech and irony recognition 63
5.2.1 Dataset and task . 63
5.2.2 The baseline . 64
5.2.3 Model tuning . 64

5.2.4 Ensemble of models . 67
5.2.5 Test data results . 68
5.2.6 Summary . 69

6 Application 2: Aspect Based Sentiment Analysis 71
6.1 Dataset and task description . 71
6.2 The baseline . 73
6.3 Three pipeline approaches . 74

6.3.1 Methodology description 74
6.3.2 Model tuning . 77
6.3.3 Systems’ results . 80

6.4 Summary . 81

7 Interpretability and error analysis 83
7.1 Emotion datasets . 83
7.2 Hate speech and irony-based datasets 86
7.3 ABSA dataset . 88

8 Conclusion 93
8.1 Summary . 93
8.2 Future work . 94

8.2.1 Data manipulations . 94
8.2.2 Further exploration of explainability 96

Appendices 101

A Software overview 103
A.1 wknn_emotion_detection . 103
A.2 frnn_emotion_detection . 104
A.3 frnn_absa . 106

B List of publications 107

List of Tables

4.1 Emotion intensity cost matrix for the emotion classification task
[93]. 37

4.2 Sentiment cost matrix for the ABSA task. 38
4.3 Emotion cost matrix for the ABSA task. 38

5.1 Characteristics of the training data for the four emotion datasets. 40
5.2 PCC scores for a Bag of N-grams (with N=1,2,3) and the wkNN

model applied to the four emotion datasets. 41
5.3 Time of Anger dataset encoding with various embedding methods. 42
5.4 PCC scores for the best setup for each emotion dataset for differ-

ent embeddings with the wkNN model. 43
5.5 PCC scored for the lexicon-based features for the wkNN. 44
5.6 PCC scores for the best setup for each emotion dataset for differ-

ent lexicon-based feature vectors with the wkNN model. 44
5.7 PCC scores for the lexicon combination approach with wkNN. . . 45
5.8 Optimal FRNN-OWA classification setup (preprocessing, number

of neighbours k) and corresponding PCC score per embedding for
the emotion datasets. 46

5.9 PCC scored for the lexicon-based features for the FRNN-OWA. . 47
5.10 PCC scores for the best setup for each emotion dataset for differ-

ent lexicon-based feature vectors with the FRNN-OWA model. . 47
5.11 PCC scores for the lexicon combination with FRNN-OWA. . . . 48
5.12 Optimal FRNN regression setup (preprocessing, number of neigh-

bours k) and corresponding PCC score per embedding for the
emotion datasets. 49

5.13 PCC scored for the lexicon-based features for the FRNN regression. 50
5.14 PCC scores for the best setup for each emotion dataset for differ-

ent lexicon-based feature vectors with the FRNN regression model. 50
5.15 PCC for the lexicon combination with FRNN regression. 51
5.16 PCC scores for an ensemble of six wkNN methods with different

embeddings, using two different voting functions. 53
5.17 PCC scores for the ensemble approach with different feature com-

binations for all emotion datasets with wkNN method. 54

xi

5.18 PCC scores for the best wkNN setup and its modification without
the usage of lexicons. 54

5.19 PCC scores of the best subsets of embedding models for wkNN
classification ensemble for the emotion datasets. 55

5.20 PCC scores for an ensemble of six FRNN-OWA methods with
different embeddings using two different voting functions. 55

5.21 PCC scores for the ensemble approach with different feature com-
binations for all emotion datasets with FRNN-OWA method. . . 56

5.22 PCC scores of the best subsets of embedding models for FRNN-
OWA classification ensemble for the emotion datasets. 56

5.23 PCC scores of the best subsets of embedding models for FRNN
regression ensemble for the emotion datasets. 57

5.24 Optimal FRNN regression ensemble setup and corresponding
PCC score for the emotion datasets. 58

5.25 PCC scores of the best approach for the wkNN, FRNN-OWA,
and FRNN regression on the cross-validation and test data for
the emotion datasets. 59

5.26 MAE scores of the best approach for the wkNN, FRNN-OWA,
and FRNN regression on the cross-validation and test data for
the emotion datasets. 60

5.27 CCA scores of the best approach for the wkNN, FRNN-OWA,
and FRNN regression on the cross-validation and test data for
the emotion datasets. 60

5.28 Characteristics of the training data for Hate Speech, Offensive
Language, Irony, and Sarcasm datasets. 63

5.29 F1-scores for a Bag of N-grams (with N=1,2,3) and the wkNN
model applied to Hate Speech, Offensive, Irony, and Sarcasm
datasets. 64

5.30 F1-scores for optimal weighted kNN classification setup (prepro-
cessing, number of neighbours k) for all embeddings for the Hate
Speech, Offensive, Irony, and Sarcasm datasets. 65

5.31 F1-scores for optimal FRNN-OWA classification setup (prepro-
cessing, number of neighbours k) for all embeddings for the Hate
Speech, Offensive, Irony, and Sarcasm datasets. 66

5.32 F1-score values for an ensemble of six weighted kNN methods with
different embeddings, using two different voting functions. 67

5.33 F1-score values for an ensemble of six FRNN-OWA methods with
different embeddings, using two different voting functions. 67

5.34 Test F1-scores for the best wkNN and FRNN-OWA setups with
RoBERTa embedding for Hate Speech, Offensive, Irony, and Sar-
casm datasets. 68

6.1 Characteristics of the training data for the different ABSA tasks. 73
6.2 The weighted F1-scores, accuracy, and cost-corrected accuracy for

all classification tasks for the baseline, based on the wkNN and
Bag of N-grams. 74

6.3 The weighted F1-scores of sentiment classification task for three
BERT-based embedding methods (BERT AT, ALBERT AT, and
DBERT YRS) with four text spans and number of neighbours k=7. 78

6.4 Time of ABSA dataset encoding with various embedding methods. 78
6.5 The weighted F1-scores for best setups for each individual clas-

sification task: category, sentiment and emotion prediction with
DistilBERT embedding. 79

6.6 The weighted F1-scores, accuracy, and cost-corrected accuracy for
all classification tasks for the three pipeline systems, based on the
best individual-task performances. 80

7.1 Confusion matrices for emotion test datasets. 84
7.2 Confusion matrices for Hate Speech, Offensive Language, and

Irony test datasets. 86
7.3 Confusion matrices for emotion detection task of ABSA datasets

with the system #1, where we filter out all wrong predictions. . . 89
7.4 Training neighbour instances for Example 7.3.1. 90
7.5 Training neighbour instances for Example 7.3.2. 90
7.6 Training neighbour instances for Example 7.3.3. 91

8.1 Training neighbour instances for Example 8.2.1. 98
8.2 Updated training neighbour instances for Example 8.2.1. 99

List of Figures

3.1 Example of the tweet preprocessing steps, for training instance
from Irony dataset [126]. 22

4.1 Confidence scores sensitivity (before rescaling) for two classifica-
tion methods and different embeddings on the Anger dataset. . . 33

4.2 Scheme of our approach with an ensemble of prediction models. . 35

5.1 Sensitivity analysis of k parameter for three different models and
four datasets with RoBERTa embedding. 52

5.2 Sensitivity analysis of α parameter for two classification models
and four datasets with RoBERTa embedding. 58

5.3 Time performance for wkNN, FRNN OWA, and FRNN regression
models on the Anger dataset for different embedding methods. . 61

6.1 Annotation example of the user review with a demonstration of
the defined term’s category, sentiment, and emotion classes. . . . 71

6.2 Histograms depicting class distribution for training data for each
classification task. 72

6.3 System 1: pipeline of three classification tasks in sequence with
modifications in the form of aspects’ main categories prediction
and two emotion models. 76

6.4 System 2: a modification of System 1, where after the sentiment
prediction step, data reduction is performed based on misclassifi-
cation cost. 76

6.5 System 3: three independent classification tasks on the full test
set with no data reduction. 77

6.6 Time performance for FRNN OWA and FROVOCO models on
ABSA dataset for three classification subtasks. 81

xv

List of Acronyms

NLP Natural Language Processing . 1

FRS Fuzzy Rough Set . 1

ML Machine Learning . 1

OLID Offensive Language Identification Dataset 2

ABSA Aspect-Based Sentiment Analysis 2

SemEval Semantic Evaluation . 4

FMCG Fast Moving Consumer Goods . 5

DL Deep Learning . 5

kNN k Nearest Neighbours . 5

CNN Convolutional Neural Networks . 5

NN Neural Network . 5

LSTM Long Short Term Memory . 6

BERT Bidirectional Encoder Representations from Transformers 6

RoBERTa Robustly Optimized BERT Pre-training Approach 6

MLM Masked Language Modeling . 6

NER Named Entity Recognition . 6

ALBERT A Lite Bidirectional Encoder Representations from Transformers 7

ELECTRA Efficiently Learning an Encoder that Classifies Token Replacements
Accurately . 7

T5 Text-to-Text Transfer Transformer . 7

GPT Generative Pre-trained Transformer 7

PCC Pearson Correlation Coefficient . 12

GRU Gated Recurrent Units . 12

xvii

BiGRUs Bidirectional Gated Recurrent Units 13

BiLSTM Bi-directional Long Short Term Memory 13

RNN Recurrent Neural Network . 13

SVM Support Vector Machine . 13

TF-IDF Term Frequency-Inverse Document Frequency 13

USE Universal Sentence Encoder . 13

LR Logistic Regression . 14

DeBERTa Decoding-enhanced BERT with disentangled attention 14

ERNIEM Multilingual Enhanced Representation through kNowledge IntEgra-
tion . 14

MABSA Multimodal Aspect-Based Sentiment Analysis 15

ABED Aspect-Based Emotion Detection 16

LIME Local Interpretable Model-agnostic Explanations 17

VMASK Variational Word Masks . 17

HAN Hierarchical Attention Network . 17

LRP Layer-wise Relevance Propagation 19

CV Cross-Validation . 22

BOW Bag of Words . 24

CBOW Continuous Bag of Words . 24

DAN Deep Averaging Network . 25

SBERT Sentence-Bidirectional Encoder Representations from Transformers 25

TA Text-Attack . 26

NRC VAD Valence Arousal Dominance 27

EMOLEX Emotional Lexicon . 27

AI Affect Intensity . 27

ANEW Affective norms for English words 27

wkNN weighted k Nearest Neighbours . 30

FRNN Fuzzy-Rough Nearest Neighbour 31

OWA Ordered Weighted Average . 31

FROVOCO Fuzzy Rough One-Versus-One COmbination 33

OVO One-Vs.-One . 33

OVA One-Vs.-All . 33

IFROWANN Imbalanced Fuzzy RoughOrdered Weighted Average Nearest
Neighbour . 34

IR Imbalance Ratio . 33

MAE Mean Absolute Error . 36

CCA Cost Corrected Accuracy . 37

POS Part-Of-Speech . 95

FRKNN Fuzzy Rule-Based k Nearest Neighbours 97

Summary

In this thesis, we consider several challenges from the Natural Language Process-
ing area connected to the fields of emotion detection and sentiment analysis. We
approached these tasks with strategies based on fuzzy rough set models, since
they are simple yet effective methods from the classic machine learning family
that also can present a local explainability for the results. The goal of this work
is to provide an overview of fuzzy rough set based models’ performance for emo-
tion detection-related tasks, compare the obtained results with state-of-the-art
solutions, and investigate the explainability of our approach.

Particularly, we work with ordinal multiclassification tasks for emotion inten-
sity categorization and binary classification for offensive language, hate speech,
irony, and sarcasm detection. As prediction models, we use the following
instance-based methods: weighted kNN, fuzzy-rough nearest neighbour (FRNN)
classification, and FRNN regression model. We apply several embedding tech-
niques for each of them to transform the text into vector form, and we improve
our models’ performance by means of parameter tuning, confidence scores and
ensembles. In our results, for all emotion detection-related tasks, we demon-
strate that simple nearest neighbour-based approaches obtain comparable results
to advanced deep learning methods.

The second task that we tackle with the fuzzy-rough-based approach is
aspect-based sentiment analysis (ABSA). We consider a dataset of product re-
views, where each includes several sentences with predefined aspects, labelled
with three classes: category of the product, sentiment, and emotion. For this
challenge, we suggest three pipelines involving FRNN classification and fuzzy
rough one-versus-one combination (FROVOCO) methods that can provide high
accuracy for all three steps of aspect, sentiment, and emotion classification. Our
results for the English data perform on the same level as approaches without the
usage of fuzzy rough set theory done for the Dutch version of the same dataset.

In the end, another important characteristic of our approach is its explainabil-
ity. We can classify our approach as a local, self-explaining and example-driven
method. We show through error analysis that our methods can extract useful
patterns from the data on the local level, in other words, for any test instance in-
dividually. In future, this approach can be extended and automatized to provide
improvement of the methods described in this thesis.

xxi

Nederlandstalige samenvatting

In dit proefschrift richten we ons op diverse uitdagingen uit het domein van
natuurlijke taalverwerking, gelinkt aan de gebieden van emotiedetectie en senti-
mentanalyse. We lossen deze taken op met behulp van fuzzy rough set gebaseerde
modellen, aangezien het eenvoudige maar effectieve methoden zijn uit de familie
van klassieke machine learning technieken die ook hun resultaten lokaal kunnen
verklaren. Het doel van deze thesis bestaat erin om een overzicht te geven van
de performantie van fuzzy rough set gebaseerde modellen voor taken gerelateerd
aan emotiedetectie, de bekomen resultaten te vergelijken met state-of-the-art
aanpakken, en de uitlegbaarheid van onze methode te onderzoeken.

In het bijzonder werken we met ordinale multiklasse-classificatie voor het
categoriseren van emotie-intensiteit; binaire classificatie voor het detecteren van
aanstootgevende taal, het aanzetten tot haat, ironie en sarcasme; en aspectge-
baseerde sentimentanalyse (ABSA) voor gebruikersrecensies. Als predictiemod-
ellen gebruiken we de volgende instantiegebaseerde methoden: gewogen kNN,
fuzzy-rough nearest neighbour (FRNN) classificatie en regressie. We gebruiken
verschillende woordinbeddingstechnieken voor elk model om tekst om te zetten
in vectorvorm, en we verbeteren de prestaties van onze modellen door middel van
parameter-tuning, betrouwbaarheidsscores en ensembles. Voor alle emotiedetec-
tietaken laten we zien dat eenvoudige, op naaste buren gebaseerde benaderingen
vergelijkbare resultaten opleveren als geavanceerde deep learning-methoden.

De tweede taak die we hebben aangepakt met fuzzy rough set gebaseerde
methoden is aspectgebaseerde sentimentanalyse (ABSA). We beschouwen een
dataset met productbeoordelingen, die elk bestaan uit meerdere zinnen met
daarin voorgedefinieerde aspecten, gelabeld met drie klassen: categorie van het
product, sentiment, en emotie. Voor de ABSA-taak stellen we drie pijplijnen
voor met methoden gebaseerd op FRNN en op fuzzy rough one-versus-one com-
bination (FROVOCO) die een hoge nauwkeurigheid opleveren voor alle drie de
stappen: aspect-, sentiment- en emotieclassificatie. Onze resultaten voor de En-
gelstalige data liggen op hetzelfde niveau als aanpakken zonder fuzzy rough set
theorie uitgevoerd voor de Nederlandstalige versie van dezelfde dataset.

Tot slot is een ander belangrijk kenmerk van onze aanpak haar uitleg-
baarheid. We kunnen onze aanpak typeren als een lokale, zelfverklarende en
voorbeeldgestuurde methode. We laten door foutanalyse zien dat onze meth-
oden bruikbare patronen uit de gegevens kunnen halen op lokaal niveau, met

xxiii

andere woorden, voor elk testvoorbeeld afzonderlijk. In de toekomst kan deze
aanpak worden uitgebreid en geautomatiseerd om de methdoden beschreven in
dit proefschrift te verbeteren.

Acknowledgements

These four years of my PhD journey felt like a totally different life and changed
a lot of who I was and what I had. I perceive it as a long journey, full of ups
and downs, with plenty of life lessons. Nevertheless, here I am, at the end of
this way, holding this book in my hands. This is possible thanks to great people
that I was lucky enough to have by my side. And this section is a crucial part
of my work, in which I will thank every one of them.

First of all, I want to say the greatest “thank you!” to my dear supervisors,
Dr. Chris Cornelis and Dr. Veronique Hoste. Chris was a person who believed in
me so much that offered me this great opportunity, relying only on my documents
and one online meeting! He also helped me the most during my move to Ghent,
and I will always be grateful for this. I greatly appreciate all the academic and
research work we did together, and I can say that I learned a lot from him.
Veronique was a great example and a huge inspiration for me. Her input in our
work and academic suggestions for our publications cannot be overestimated.
I truly believe that supervisors are a crucial part of any PhD experience, and
from this perspective, I consider myself a very lucky PhD student. Heel hartelijk
bedankt!

I also want to express my gratefulness to the members of the examination
boards: Dr. Kris Coolsaet, Dr. Guy De Tré, Dr. Els Lefever, Dr. Enislay
Ramentol, Dr. Walter Daelemans, and Dr. Germán Hurtado Martín. Your
feedback was so kind and helpful that it makes me a lot more proud looking at
my thesis and knowing how greatly it was improved thanks to you. Thank you
for your attention to my work. It was a great honour to present it to you all.
Bedankt! ¡Muchas gracias!

A huge part of my PhD experience were my dear colleagues, who made
my life much brighter. Especially, my favourite “board game” group: Camila,
Marko, Slađa, Paweł, and Oliver L.! During the most challenging times, every
our meeting, every board game, every birthday party, and every small trip kept
my spirit and gave me strength to go on. I want to say a separate “thank you”
to Camila for our great talks, adventures, and your kind words. To Marko and
Slađa for every great trip and kitchen talk, and for sharing your culture and
fun moments with me. To Paweł for every “7 Wonders” game session and every
borsch and sushi we shared. To Oliver L. for being a huge example for me and
for all your help with my work. I also want to say thank you to Martina for

xxv

joining our team and bringing so much joy to you. I want to mention all my
colleagues from the Statistics department. It is probably impossible, but I will
try my best, sending my regards to Adnan, Henri, Hege, J., Hans, Oliver D.,
Kelly, Wout, Georgi, Stijn, Fatemeh, Joris, and anyone I could unintentionally
miss!

Separately, I want to mention my second dear lab named LT3. It is a great
community full of brilliant people, and was so grateful for the opportunity to
join it (maybe much less often than it actually deserves). I’m grateful to Bram
and Sofie for being my first co-authors in our SemEval paper! I want to express
my appreciation to Luna, for working together on Digital Humanities seminars
and for her adorable thesis cover, which inspired me a lot. Thanks to Gilles for
the great Belgian-style housewarming party in Leuven. Thanks to Cynthia for
huge help during my moving and support during the loss of phone situation.
Also, I’m very grateful to Ellen for her help with SentEmo data and for her cute
pets’ stories! Particularly, I want to express my great gratefulness to Margo,
with whom we started our LT3 journey almost at the same time and shared a
lot of coffee cups, yoga lessons, and warm talks! I also want to mention Or-
phee, Claudia, Aaron, Arda, Jasper, Joke, Lieve, Loic, Michael, Paola, Pranay,
Toon, Ayla, Thierry, Camiel, Seza, Colin, Johnatan, Serafina, and anyone I could
unintentionally miss!

In the end, I saved my appreciation to my lovely friends and family. These
words I want to shape in our beautiful native language - Ukrainian.

Перш за все, я хочу подякувати захисникам i захисницям України, якi
боронять наш дiм i нашi родини, даючи iншим змогу працювати та надси-
лати донати.

Також я дуже вдячна своїм друзям, яких я зустрiла вже в Гентi - Русланi
та Лесi. Дякую Русланi за чудовий час разом за настолками та пивом, а
Лесi за довгi прогулянки, душевнi бесiди та смачнi коктейлi. Кожна зустрiч
з кожною з вас дуже допомагала менi справлятися з тугою за домом!

Хочу подякувати всiм своїм дорогим друзям, якi знаходились так далеко
вiд мене, але завжди поруч морально. Дякую Михайлу, Вiктору, Катеринi та
Аннi Мiт. за наш прекрасний книжковий клуб, походи по театрах i мораль-
ну пiдтримку одне одного в такi складнi часи. Дякую Маргаритi, Артему,
Катеринi П., Євгенiї, Алiнi, Владиславу, Дiанi, Олегу, Антону, що ви є i за
всi тi короткi зустрiчi, якi ми мали вiдтодi як я поїхала з Естонiї. Дякую
Олександрi та Наталi за те що залишилися в моєму життi та за всi чудовi
зустрiчi, що ми мали пiсля випуску з IПСА. Дякую Юлiї та Олександру за
ваш академiчний приклад в моєму життi, поїздки разом та короткi зустрi-
чi за кавою. Дякую Аннi К. та Володимиру за гостиннiсть i ту величезну
роботу що ви робите. Дякую Аннi Л. за час в Гентi та Нансi та роздiлення
захоплення модерном.

Окремо хочу згадати українську художню спiльноту, з якою менi випала
честь спiвпрацювати. Дякую за можливiсть винести моє захоплення малю-
ванням довжиною в життя на зовсiм iнший рiвень i пiдтримку!

Ближче до кiнця цiєї глави, хочу сказати про найважливiших людей у

моєму свiтi. Перш за все, за моїх найкращих у свiтi подружок, про яких я
могла б тiльки мрiяти - Олену, Катерину Б., Єлизавету та Дарину. Менi не
вистачить всiєї цiєї книги, щоб описати наскiльки я вас люблю i за що я вам
вдячна... Але я спробую! Дякую Ленi за години аудiо, розмови про роботу,
життя та все на свiтi та нашi пригоди в Дрезденi. Дякую Катi за те що ти
є в моєму життi, за всi нашi пригоди та iнтереси якi ми дiлимо вже стiльки
рокiв. Дякую Лiзi за всi ночiвлi в Краковi та те, що я завжди знаю що ти
мене пiдтримаєш i зрозумiєш. Дякую Дашi за той позитив, що ти завжди
вносиш в моє життя з собою i за неоцiненний досвiд зi Спарклом! Також
хочу окремо подякувати Аннi Маз. за те що повернулась в моє життя.

Пiд кiнець, хочу подякувати своїй родинi. Дякую бабусi Валентинi та
дiду Володимиру за пiдтримку i вiру в мене. Дякую бабусi Лiдiї, дiду Ва-
силю i всiм родичам зi сторони мого чоловiка - Людмилi, Iгорю, Валентинi,
Михайлу та Вiталiю за вашу доброту. Найголовнiше, хочу подякувати своїм
дорогим батькам Ярославi та Миколi. Менi важко описати наскiльки для
мене важливо все, що ви для мене зробили. Дякую вам за пiдтримку, години
в Скайпi та вiру в мене. Я б не впоралась без вас i всi цi роки я щодня за
вами сумую. Люблю вас!

Якщо ви дочитали до цього мiсця, ви напевно знаєте хто лишився. Най-
краща людина у всесвiтi та мiй коханий чоловiк - Вячеслав. Ти значиш свiт
для мене i кожна секунда з тобою дає менi сенс йти далi. Я маю цю книгу
завдяки тобi, як i все щастя у своєму життi. Кохаю тебе.

Chapter 1

Introduction

In this chapter, we provide a general introduction to this dissertation. In Section
1.1, we discuss emotion detection challenges in the area of Natural Language Pro-
cessing (NLP), particularly, sentiment analysis, emotion intensity classification,
and others. We also list tasks and datasets considered in our work. Section 1.2
provides an overview of Machine Learning (ML) methods for emotion detection,
beginning from state-of-the-art approaches to Fuzzy Rough Set (FRS) based
techniques that we considered in our experiments. Finally, Section 1.3 contains
an overview of the thesis with a short description of each chapter’s content.

1.1 Emotion detection challenges in Natural
Language Processing

The exponential growth of social media has created various novel ways of commu-
nication. A significant part of online content is formed by textual information,
which gives rise to diverse tasks within the data science branch of NLP [57].
This field is represented by various tasks, including customer feedback analysis
[103], sentiment interpretation [118], topic detection [60], and many others.

The process of revealing emotions in written or spoken language is known as
emotion detection [122], which is a major task of the NLP field of study. It can
offer important insights into the underlying mood, attitudes, and intentions of
people or organizations in different areas. Previously, studies on emotion iden-
tification have been conducted in the field of human-computer interaction in a
variety of ways, such as the analysis of facial expressions [42] or emotion recog-
nition using a range of sensors [102]. However, the complexity and ambiguity of
human language, as well as the delicacy of emotional expression, make it difficult
to recognize emotions, especially in NLP-related tasks, where it should be done
from the standalone text without concomitant facial expressions, gestures and
the tone of a person’s voice.

From an application standpoint, automatic emotion recognition in texts is

1

Chapter 1. Introduction

becoming more and more significant in computational linguistics. It can be used
in various fields, including opinion mining of users, market analysis, usage of
natural language in entertaining games, or online learning platforms.

1.1.1 Overview of emotion detection tasks
Emotion detection could be categorized under the more general and widely-
investigated area of sentiment analysis, where the purpose is to define the atti-
tude conveyed in a text. The sentiment is usually either positive or negative but
can also have a third neutral meaning, see e.g. [115].

The sentiment and emotion detection area includes a lot of NLP challenges,
such as the identification of specific emotions, as well as their intensity or va-
lence. It can also include the recognition of the speaker’s underlying attitudes
or objectives (for example, irony, sarcasm, or persuasion). Below, we provide
an overview of the main tasks connected to this field of subjective language
detection and emotion detection:

• Stance detection, which identifies the author’s stance of the considered
part of the text toward the specific target. Stance usually is classified into
one of three classes: “in favour”, “against”, or “neither” [71].

• Classification of emotion presented in a text, for example, customer com-
ments, based on whether they express an angry, happy, or disappointed
feeling, see e.g. [151]. This challenge can be shaped in different forms,
including binary classification, where the goal is to identify if the targeted
emotion is present in a piece of text or not, as well as multi-classification
tasks, where one emotion can have several types. As a related exam-
ple of the task, we can consider the Offensive Language Identification
Dataset (OLID) by [141], where for each offensive text, the authors pro-
vided additional categories, for example: is the offensive speech targeted,
and in case it is, is it targeted against individuals, groups, or others.

• Emotion intensity classification, where ordinal labels represent different
levels of a given emotion. For example, in [49], the authors labelled a
dataset for sentiment with scores from 0 (very negative) to 1 (very posi-
tive). They also labelled the same data for various emotions (fear, anger,
happiness, etc.), ranging from 0 (absence of the emotion) to 1 (extreme
intensity of the emotion).

• Aspect-Based Sentiment Analysis (ABSA), which is a method for exam-
ining how people feel about particular qualities or elements of an item,
service, or event, see e.g. [106] and [22]. ABSA aims to determine the
sentiment connected with specific characteristics of a product or service,
unlike traditional sentiment analysis mentioned above, which assigns an
overall sentiment score for the whole text. To illustrate the ABSA task,
let us take a look at a customer’s feedback “the battery of the phone works
well”, which expresses a positive opinion (satisfaction) about the aspect of

2

Chapter 1. Introduction

“battery”. At the same time, the same customer could also complain that
“the memory is too limited”, expressing a negative opinion about the as-
pect of “memory” and showing disappointment.

• Inter-domain tasks, which include the intersection of emotion detection
with other fields of data analysis; for example, recommending material
(such as movies, songs, or purchase products) based on user interactions
with a system (streaming service or online shop) is at the intersection
with the recommender systems area and is named "emotion-based content
recommendation", see e.g. [72].

In this dissertation, we considered several tasks mentioned above, including tasks
that are a bit different but still close to emotion detection. Particularly, as
an example of binary classification, we approached two important subjective
language classification tasks:

• Hate speech classification. The term “hate speech” is a broad concept that
includes all kinds of negative comments targeted to insult someone based
on some aspect (gender, race, religion, political beliefs, etc.) Most social
networks provide automated hate speech detection and cleaning tools, and
research in this area is very active, see e.g. [84]. In our study, we consider a
binary classification task, where for each text sample, we should determine
if it is hateful or not.

• Irony (or sarcasm) detection. Irony is often identified as a trope or fig-
urative language use where the actual meaning is different from what is
literally enunciated [19]. Modelling irony has a lot of potential for various
NLP applications, such as automatic sentiment and emotion analysis, but
also for online hate speech detection, etc. Unfortunately, detecting irony
is complicated, even from a human perspective, as it can be expressed in
a variety of ways, using metaphoric language or humour, and very often
contextual information or facial expression information is needed to distin-
guish between ironic and non-ironic utterances. It makes irony detection
a very challenging task, both to label such datasets and to train classifica-
tion models, see e.g. [45]. Here we also tackle a binary classification task
with two classes: ironic and non-ironic.

In the following section we discuss these tasks in more details and present
specific datasets that we used in our work.

1.1.2 Emotion detection tasks and datasets presented in our
work

We apply our methods to the different classification tasks introduced above,
particularly: the emotion intensity task, binary emotion classification for hate
speech and irony, and the ABSA. For each task, we used one or several datasets,

3

Chapter 1. Introduction

where the majority of them were provided by the online Semantic Evaluation
(SemEval)1 competitions:

1. For emotion intensity classification, we use the data provided by the
SemEval 2018 Task 1 “EI-oc: Affect in Tweets for English”2, where for
four emotions (anger, joy, sadness, and fear), the organisers provided a
collection of tweets with intensity labels (ranging from 0, which corre-
sponds to “no emotion can be inferred”, to 3, “a high amount of emotion
can be inferred").

2. For hate speech detection, we consider two different datasets. The first
dataset originates from SemEval 2019 Task 5, “Shared Task on Multilin-
gual Detection of Hate”3. We consider English tweets from subtask A,
“Hate Speech Detection against Immigrants and Women”, a binary classi-
fication task with 9,000 training and 1,000 development instances. It refers
to an important problem in modern social media communication, such as
racism and sexism detection. The second dataset was released in the con-
text of SemEval 2019 Task 6: “OffensEval: Identifying and Categorizing
Offensive Language in Social Media”4. In subtask A, “Offensive language
identification”, the authors presented a dataset of more than 13,000 En-
glish tweets labelled as offensive or not. Offensive language was defined as
language aimed to hurt someone’s feelings, increase the level of anger and
start arguing5. This definition illustrates that the concepts of offensive
language and hate speech are very similar. Both of them identify prob-
lematic and harmful content, but they still have a different focus. Hate
speech detection mostly targets discrimination and violence towards indi-
viduals or groups based on race, gender, sexuality and others. Meanwhile,
offensive language recognition identifies inappropriate language in general,
including profanity, insults, vulgarities, and so on.

3. For irony detection, we use two datasets as well, where the first is the
dataset from SemEval 2018 Task 3, “Irony detection in English tweets”6

and solve subtask A, which is a binary classification issue: is a given tweet
ironic or not? The authors gathered the dataset of nearly 4,000 English
tweets using three hashtags: #irony, #sarcasm, and #not. After manu-
ally labelling the data, the authors gathered a similar number of non-ironic
tweets to obtain a balanced dataset. The second dataset originates from
SemEval 2022 Task 6 called “iSarcasmEval”, which considers sarcasm de-
tection in two languages: English and Arabic [1]. We tackled subtask A
for English with approximately 4,800 instances, where for a given text, we
should determine whether it is sarcastic. As described by the authors of

1https://semeval.github.io/
2https://competitions.codalab.org/competitions/17751
3https://competitions.codalab.org/competitions/19935
4https://competitions.codalab.org/competitions/20011
5https://aclawgroup.com.au/criminal-law/offences/offensive-language/
6https://competitions.codalab.org/competitions/17468

4

https://semeval.github.io/
https://competitions.codalab.org/competitions/17751
https://competitions.codalab.org/competitions/19935
https://competitions.codalab.org/competitions/20011
https://aclawgroup.com.au/criminal-law/offences/offensive-language/
https://competitions.codalab.org/competitions/17468

Chapter 1. Introduction

the dataset, text writers provided the labels by themselves to exclude sub-
jective labelling. As we mentioned, irony detection is quite a challenging
task because the concept of irony itself is vague even for human beings, and
it requires manual annotation to obtain a high-quality dataset. Meanwhile
the concept of irony portrays a contrast between reality and human expec-
tations; sarcasm employs mocking language for neglect or amusement.

4. For the ABSA, we used Fast Moving Consumer Goods (FMCG) reviews
which were collected and manually labelled within SentEMO project7 and
contain about 1,300 product reviews. Each review is represented by one
or multiple sentences and contains several or no “aspect terms”, which
are words or collocations which have been assigned three labels, namely a
category class, sentiment class and emotion class. In further experiments,
we will divide each of these annotations into three separate tasks, each of
which generates a set of classification labels.

1.2 Machine learning and fuzzy rough set based
methods for emotion detection

The NLP field offers a variety of techniques for emotion recognition challenges,
including rule-based systems, ML, and Deep Learning (DL) approaches. Rule-
based systems offer different solutions, for example, based on the usage of lexi-
cons or knowledge bases, which link words or phrases with particular emotions.
ML-based algorithms learn models to recognize the patterns and attributes hid-
den in the data to detect them in new, unseen instances. Such techniques can be
divided into three main groups, including supervised learning (where the model
learns from labelled data with corresponding instance-class examples), unsuper-
vised learning (where data is unlabelled and the model learns to identify hidden
patterns and clusters), and reinforcement learning (where a so-called “agent”
learns in a dynamical environment based on feedback). In this thesis, our focus
will be on supervised classification approaches. The description of DL-based
methods is provided in the following section.

Before we dive into those methods, it is important to mention that k Nearest
Neighbours (kNN)-based methods were used for NLP-based tasks previously [31].
The main motivation for their usage in such challenges was their non-parametric
characteristic, which allows diverse representation learning methods. The kNN-
based methods can also provide the handling of exceptions and generalizations,
as well as allow similarity-based nearest neighbour explanations.

1.2.1 State-of-the-art methods
Cutting-edge solutions to the NLP-based problems are typically based on DL
(see e.g. [56]), where the dominant methods for a long time were Neural Net-
work (NN) approaches, including Convolutional Neural Networks (CNN) [14,

7http://sentemo.org

5

http://sentemo.org

Chapter 1. Introduction

121], Long Short Term Memory (LSTM) [8, 113], and similar. During the last
years, transformers were introduced. Transformers have a neural network ar-
chitecture and deserve a more detailed description. The encoder and decoder
are the main parts of transformers. To create contextualized representations
for each token, the encoder goes through the input sequence token by token.
By paying attention to every other token in the sequence, each token’s rep-
resentation is improved, capturing both local and global context. While the
encoder concentrates on comprehending the input sequence, the decoder pays
attention to the encoder’s representations to produce the output sequence. An-
other fundamental element of transformers is the attention mechanism, which
enables the model to concentrate on important sections of the input sequence.
Self-attention is a form of attention in which the input sequence is viewed as a
collection of questions, keys, and values. This technique enables the model to
recognize dependencies between various input sequence positions. One of the
transformers’ advantages, compared to the older approaches, is that they enable
parallel processing and capture distant dependencies, which reduces the draw-
backs of sequential processing. Transformers have demonstrated state-of-the-art
performance on various benchmarks, surpassing previous techniques.

One of the first presented transformer-based models was Bidirectional En-
coder Representations from Transformers (BERT) by [37]. BERT works by
pre-training a language representation model with a transformer-based archi-
tecture on massive volumes of text. BERT is pre-trained using unsupervised
learning to pick up general language representations from a big corpus. During
pre-training, it makes use of challenges for Masked Language Modeling (MLM)
and next-sentence prediction. This model can afterwards be adjusted for subse-
quent tasks by fine-tuning on additional data. So during the following tuning,
the model is refined using task-specific labelled data for downstream tasks like
text categorization or named entity recognition. By including task-specific lay-
ers and training on the labelled data, fine-tuning adjusts the previously trained
BERT model to particular tasks This model was a significant advance in the
NLP area and produced state-of-the-art outcomes on a variety of challenges,
including sentiment analysis, Named Entity Recognition (NER) and question
answering.

Since the introduction of BERT, several novel models were presented, which
are, in fact, modifications of this first model. One of the most notable of such
models is Robustly Optimized BERT Pre-training Approach (RoBERTa) by
[82]. The RoBERTa model is an improvement and expansion of the BERT
approach. Although the two models are comparable, RoBERTa incorporates
adjustments and training techniques that enhance performance. Its pre-training
procedure is similar to BERT’s but with some changes, particularly, RoBERTa
uses a higher percentage of masked input tokens and completely skips the next-
sentence prediction task since it was proven to be less useful for downstream
tasks. Both BERT and RoBERTa’s architectures use the transformer model,
which consists of encoder layers with self-attention mechanisms. However, in
comparison to the original BERT, RoBERTa is trained with larger model sizes

6

Chapter 1. Introduction

and more parameters, enabling it to recognize more intricate linguistic patterns.
Other modifications of BERT are Efficiently Learning an Encoder that Clas-

sifies Token Replacements Accurately (ELECTRA) by [26] (a more sample-
efficient version of BERT), A Lite Bidirectional Encoder Representations from
Transformers (ALBERT) by [74] (a smaller version of BERT with parameters
reduction and increased speed of performance), and more. In contrast to these
models, which often were created for specialized tasks, the most recent state-of-
the-art transformers were created to be a general-purpose NLP model that can
be applied to any task, for example, Text-to-Text Transfer Transformer (T5)
by [109], or transformer-based text generative models, such as Generative Pre-
trained Transformer (GPT) models, especially GPT-3 [17] with 175 billion pa-
rameters and the newest GPT-4 [98], which is even bigger.

Meanwhile, transformers-based models remain state-of-the-art language
models for various emotion detection-based tasks, including the ones we con-
sider in this thesis: sentiment analysis and emotion intensity recognition [23],
hate speech detection [95], and irony classification [108]. While such solutions
are generally able to reach high prediction accuracy, a downside to their use is
that they are black-box solutions and hence suffer from a lack of explainabil-
ity regarding the way the predictions are obtained. Therefore, a growing need
emerges for explainable models that can identify e.g. why a particular text was
labelled with a particular emotion intensity level and which patterns can be iden-
tified. For these reasons, we consider kNN-based solutions, not as a replacement,
but as an alternative and extension of DL-based methods.

1.2.2 Fuzzy rough set based methods
Inspired by the fuzzy nature of textual data, in our research, we consider the
usage of FRS-based methods. Firstly proposed by [140], fuzzy logic and fuzzy
set theory are normally used to model the partial truth of logical propositions.
It assumes that an expression has a degree of truth represented by a value from
0, which denotes a statement that is entirely false, to 1, which corresponds
to an entirely true statement. Fuzzy relations and fuzzy membership degrees in
decision classes are two main applications of fuzzy logic in the data analysis field.
The first ones are used to measure the relationships among vector-represented
instances, including text embedding vectors. The second one assumes that one
instance can be part of various classes on different levels, where such an approach
can be used in tasks like a recommendation. It also can be applied to the emotion
detection task, with the assumption that some emotions are presented in multiple
text pieces with different degrees.

One of the first approaches based on fuzzy rough methods and nearest neigh-
bours was proposed in [61]. Such FRS approaches have been used successfully
in various ML applications [127], including rule-based classifiers [149], fuzzy de-
cision trees [143], learning from imbalanced data [128], feature and instance
selection [146], fuzzy rough neural networks [147], etc. As an added value of
fuzziness we can name gradual similarity (elements can have varying degrees of
membership as opposed to being simply in or out) since rough sets do not have

7

Chapter 1. Introduction

it.
An advantage of instance-based methods like those based on FRS is that they

provide a more understandable architecture with interpretable results by virtue
of the concept of graded similarity. Concretely, new text fragments are paired
with similar extracts from training data, providing immediate and intuitive clues
as to why a given decision was made. While FRS-based methods initially provide
less accurate predictions than DL approaches, we show in our study that with
proper feature engineering and ensemble construction, we can obtain results on
the same level as state-of-the-art DL approaches.

Finally, we would like to highlight that FRS-based methods have previously
rarely been applied to text analysis tasks, and their explainability advantage was
not investigated. Several fields of application of methods based on FRS to the
emotion-related NLP tasks and exploration of the obtained results to improve
our model provide the novelty of our research and give a lot of opportunities for
future studies.

1.3 Overview of the dissertation
In this thesis, we explore an application of FRS-based prediction models to
emotion detection tasks in the NLP area. Particularly, we investigate the ex-
plainability of such an approach and how it can be used to improve the model.
These ideas were not analysed in detail before; this investigation is therefore a
novel contribution of this dissertation.

This dissertation has the following structure:

• Chapter 2 provides an overview of related studies. Particularly, in the
first part, we take a look at the SemEval competitions from the authors
whose datasets we used and the winning teams. It gives us an opportunity
to explore novel solutions that were used and compare the performance
of our methods to that of theirs. In the second part, we discuss papers
in the field of ABSA, from the first works to the corresponding SemEval
competitions and the SentEmo project, which provided us with the dataset
we considered in our work. Finally, we analyse studies in the area of
interpretability of methods for text analysis. There we provide several
classifications of such approaches; in particular, we talk about post-hoc
and self-explanatory methods. In the end, we describe our solution as
local, self-explaining, and example-driven.

• In Chapter 3, we provide a list of methods that we used for data prepro-
cessing and transformation. In the first part, we discuss all text cleaning
techniques that we considered for the datasets we used, such as emoji mod-
ification, stop word cleaning, and others. In the second, we describe all
text vectorization or embedding methods that we used in our work, for
example, Word2Vec, DeepMoji, BERT-based models, and so on. Finally,
we review the concept of lexicons and list several of them that we were
using.

8

Chapter 1. Introduction

• Chapter 4 provides the main theoretical background behind our experi-
ments, describing the classification and regression model that we consid-
ered, alongside the similarity relation we used. It also depicts the idea of
an ensemble of methods and gives the list of metrics that we applied for
result evaluation.

• Chapter 5 provides the results of our experiments for different emotion
recognition tasks and is divided into two parts. In the first one, we dive
into the topic of emotion intensity recognition, where we tackle the multi-
class classification task with two classification models and one regression
model, comparing their outcomes. In the second part, we consider a binary
classification task, particularly hate speech and irony detection, using the
kNN-based and FRS models.

• In Chapter 6, we show our outcomes for the ABSA task, starting with the
dataset and task interpretation, following an overview of the three pipeline
approaches we suggested. There, beside the methodology description, we
also review the model tuning steps and illustrate how we combine them
into pipelines. In the end, we discuss the obtained results and evaluate the
performance of our pipelines.

• Chapter 7 uses the results of the previous two chapters to perform an
error analysis. For each dataset, we illustrate how the explainability of
our approach on the local level works and what kind of patterns we can
observe.

• In Chapter 8, we recapitulate the main conclusions of the dissertation, and
discuss different opportunities for future work.

• At the end of the thesis, we provide Appendix A with an overview of
the software that we produced during the work on the dissertation and
Appendix B with the list of publications.

9

Chapter 2

Related work

In this chapter, we provide an overview of the main sources that we considered
during the work on this dissertation. Since we were researching several aspects
of our methodology by using various datasets and methods and investigating
explainability techniques, we split this chapter into several parts. In Section
2.1, we describe emotion-based datasets from different SemEval competitions
with which we were working. In Section 2.2, we provide an overview of ABSA
related works through the history of its development and the specific setup that
we considered. In the last Section 2.3, we explore the topic of interpretability in
text analysis methods and classify our solution regarding provided criteria.

2.1 SemEval competitions: tasks and winning
solutions

To investigate the performance of our proposal based on fuzzy-rough method-
ologies for the emotion detection area, we apply our methods to different clas-
sification problems originating from the SemEval1 competition. The SemEval
competition is an annual event that provides a set of challenges for researchers in
different aspects of the NLP field. Each year, the SemEval competition presents
around twelve tasks divided into groups based on a common topic. During the
last several years, the most repeated topics were lexical semantics, emotions de-
tection or sentiment analysis, information extraction, and application of NLP
techniques to textual datasets from other fields such as law or medicine.

In our experiments, we considered datasets for emotion intensity (Section
2.1.1), hate speech classification (Section 2.1.2), and sarcasm and irony detection
(Section 2.1.3). Below we will describe the competitions’ tasks and winners’
solutions, meanwhile, our results and obtained places are provided in Chapter
5.

1https://semeval.github.io/

11

https://semeval.github.io/

Chapter 2. Related work

2.1.1 Emotion intensity
We considered SemEval 2018 Task 1 [93] for the task of assessing emotion inten-
sity. It has several subtasks for emotion detection, such as an emotion intensity
regression task, an emotion intensity ordinal classification task, a sentiment in-
tensity regression task, a sentiment analysis (ordinal classification) task, and an
emotion classification task. We focused on an emotion intensity ordinal classi-
fication task, where contestants had to categorize a particular tweet into one
of four ordinal classes of one of four given emotions that best reflected the
tweeter’s mental state. As for any SemEval competition, the organisers used
a leaderboard, where all solutions were ranked according to some specific eval-
uation method, thus allowing the participating research teams to compare their
solutions with those of their competitors. As the evaluation metric, we used the
one suggested by organisers - Pearson Correlation Coefficient (PCC), see also
Section 4.5.1 - evaluating on a set of unseen test tweets.

The winning solutions described in [93] are mainly based on DL methods.
The first-placed team [41] proposed an ensemble of Random Forest and XG-
Boost based on embedding vectors. To make a final prediction, their system
does domain adaptation for four different models to create an ensemble. The
authors also included similar preprocessing as we considered in our study, partic-
ularly the transformation of emojis to their textual descriptions. For the feature
extraction, they considered several options, including DeepMoji. The second-
placed team [44] presented a solution with LSTM-based models and transfer
learning techniques. Particularly, the authors considered as their first model a
bidirectional LSTM and as their second one, an LSTM with an attention mech-
anism. To use transfer learning in their approach, the authors first pre-train the
mentioned LSTM models using the sentiment data, and then extract a single
vector out of them to use it as input to new dense layers. The third-placed team
[116] used an ensemble of models with Gated Recurrent Units (GRU) and CNN.
Particularly, the suggested system has three main parts: first, word embeddings,
tuned for the specific task, secondly, model training (GRU with a CNN attention
mechanism), and lastly, for each subtask it trains stacking-based ensembles.

2.1.2 Hate speech detection
Binary hate speech classification consists of categorizing text as hateful or non-
hateful. For this task, we considered several datasets. The first one was pre-
sented by [142] in the form of the SemEval 2019 Task 6. It involves several
classification problems related to offensive language detection. This competition
is based on the OLID dataset from [141] that was created specifically for it. The
competition has three subtasks that can be performed one by one: offensive lan-
guage identification, automatic categorization of offence types, and offence target
identification. In our work, we primarily focus on the first step of the binary
classification subtask to decide whether a tweet is offensive or not. The authors
provided an overview of the winning solutions, where they reported that 70% of
the winning solutions were based on DL, where the three best ones for the binary

12

Chapter 2. Related work

classification subtask [81, 97, 150] propose a fine-tuned BERT-based approach.
Particularly, the first place [81] also used in their preprocessing a transformation
of emojis to texts and they trained BERT-Base for three epochs. The second
place [97] considered a lot of different models, including CNN, Recurrent Neural
Network (RNN), and others, but the best-performing one for the binary offen-
sive speech detection subtask was BERT-Large uncased (Base model has twelve
layers in the encoder stack, when Large - twenty-four layers). For the same sub-
task, the third place [150] fine-tuned BERT-Base uncased model using a linear
layer with a text sequence classification on top.

While SemEval 2019 Task 6 is focused on the broader topic of offensive lan-
guage detection, Task 5 from the same SemEval 2019 competition, proposed by
[12], considers a more specific type of hate speech. In the first subtask, contes-
tants should classify if the text has hate speech detection against immigrants
and women. In the second subtask, the target is to detect aggressive behaviour
and classify the target. In this thesis, we consider the first binary classifica-
tion subtask, for which the authors provided two baselines: one assigns the
most frequent training label to all test instances, and the second is based on an
Support Vector Machine (SVM) model with Term Frequency-Inverse Document
Frequency (TF-IDF) features. In [58], the first-place team obtained the best
result using an SVM model with pre-trained Universal Sentence Encoder (USE)
embeddings [18]. The authors also noticed that, however, the mentioned setup
was the best for the test dataset, for the development one, the most efficient was
the usage of pre-trained Infersent embeddings [27] with XGBoost algorithm.
While the second team did not publish their solution, the third-placed team [38]
used a capsule network [117] with training stacked Bidirectional Gated Recur-
rent Units (BiGRUs) [24] including FastText word embeddings [63]. Specifically,
text embeddings obtained with FastText were used in stacked BiGRUs models.
Then, their output was considered as the input to the capsule network. Finally,
the final prediction was calculated by the softmax function.

2.1.3 Irony and sarcasm detection
In order to detect irony (or sarcasm), we need to classify if the particular tweet
is ironic (sarcastic) or not. For this task, we also considered a couple of datasets.
Particularly, [126] released a dataset of tweets for irony detection in the frame-
work of SemEval 2018 Task 3. Participants had to decide if a tweet is ironic or
not for the first subtask, whereas, for the second subtask, they had to distin-
guish between non-ironic and ironic tweets – the latter of which are separated
into various categories. The authors provided two baselines: one with random
labels assigned and the second based on a SVM model with TF-IDF features.
We participated in the binary irony classification, where the best solution pro-
vided by [134] proposed densely connected LSTM models that uses all outputs
of the previous layer as inputs of the next one. The authors used different fea-
tures, such as text embeddings, sentiment, and syntactic features. In contrast,
the runner-up [13] used RNN-based solutions such as Bi-directional Long Short
Term Memory (BiLSTM) on both word and character levels in order to get

13

Chapter 2. Related work

both the syntactic and the semantic information hidden in the text. The au-
thors also implemented a self-attention mechanism into the system to identify
in the tweets the most valuable words, in this way, adding more explainability
to their solution. The third place system [114] combined SVM and Logistic
Regression (LR) into an ensemble with averaged tweet embeddings as features.
Particularly, they considered a combination of different types of features, such
as sentiment, distributional semantic, and text surface.

We also experimented with the dataset released in the framework of SemEval
2022 Task 6 called “iSarcasmEval”, which considers sarcasm detection in two
languages: English and Arabic [2]. It has three subtasks: in the first, partici-
pants must decide if a text is sarcastic or not; in the second, they must decide
which category of ironic speech the text, if any, falls into. Lastly, they must
determine which of two texts that have the same meaning but different expres-
sions is sarcastic in the third task for a given sarcastic text and its non-sarcastic
paraphrase. We tackled the first binary classification task for English. The top
solutions for this subtask considered transformer-based models. The approach
which ranked first [139] used an ensemble of RoBERTa [82], Decoding-enhanced
BERT with disentangled attention (DeBERTa) [52], and XLMRoBERTa [28].
The authors used the external data for the model tuning, including the Irony
dataset from SemEval 2018 [126] described above. Additionally, they applied
several types of lexical-based and statistical features to the data, which were
applied to irony detection in related works. The second place system [50] used
DeBERTa and Multilingual Enhanced Representation through kNowledge In-
tEgration (ERNIEM) [99]. The authors finetuned those pre-trained language
models to recognise sarcasm for both Arabic and English languages with multi-
lingual settings. In the end, they applied an ensemble approach by taking the
average of all test sets’ outputs with optimal models. The third place system [6]
applied a standalone BERT model using BERTweet checkpoints that were fine-
tuned on another sarcasm-detection dataset. Particularly, the authors used the
intended sarcasm subset of the SPIRS dataset [120] as the second pre-training
phase after pre-training on sentiment and emotion BERTweet. They finalized
the pre-trained model on the targeted Sarcasm dataset.

2.1.4 Summary
As can be concluded from this overview, the recent boost of transformers in NLP
significantly impacted the solutions for the considered tasks. The majority of
the systems use deep NN models or BERT transformers. However, despite their
higher performance compared to more traditional feature-based methodologies,
they also often remain black boxes that are unable to justify their predictions.
Our proposed approach, therefore, aims to provide more explanation for the
predicted labels. We do not avoid DL altogether since we still use text embedding
techniques that were pre-trained using NN techniques or transformers, but as
classification methods, we consider more interpretable nearest neighbour-based
approaches.

14

Chapter 2. Related work

2.2 Aspect-Based Sentiment Analysis
In this section, we review the general ABSA task. We describe how it evolved
into its current form and briefly review the three SemEval competitions that
were devoted to this task. Finally, we introduce the specific task we are working
on.

2.2.1 ABSA studies summary
One of the first studies that presented a task similar to ABSA was [54] in 2004,
where the authors called this task “feature-based summary” or “feature-based
opinion mining”. They formulated a sentiment analysis task containing three
subtasks: (1) identifying the specific product features about which customers left
their opinion (referred to as product features), (2) identifying review sentences
that give positive or negative opinions for each feature and (3) constructing a
summary using the information that has been discovered.

Some years later, [80] formulated ABSA as a task with two steps: aspect ex-
traction and aspect sentiment classification. While initially, lexicon-based and
feature-based supervised learning approaches were applied to the ABSA task,
the introduction of transformer-based approaches in NLP also led to their appli-
cation in ABSA. In [79], the authors presented a solution where a BERT-based
architecture outperformed all previous approaches with a superficial linear clas-
sification layer. Later, in [70], the authors used adversarial training on a general
BERT and a domain-specific post-trained BERT for the two ABSA tasks men-
tioned before, i.e., aspect extraction and aspect sentiment classification. Mean-
while, in [145], a knowledge-enabled language representation BERT-based model
was introduced for the ABSA task. This model could provide explainable results
by leveraging extra information obtained from a sentiment knowledge graph to
navigate the input embedding of a sentence with a BERT language representa-
tion model.

Recent studies targeting ABSA are primarily based on transformer-based
models [70, 145, 137]. Particularly, in [137], the authors presented a transformer-
based multi-task learning framework. They called this solution the Cross-Modal
Multitask Transformer, whose task is to deal with Multimodal Aspect-Based
Sentiment Analysis (MABSA), where aspect-sentiment tandems were extracted
from pairs of sentences and images.

2.2.2 ABSA as a SemEval task
ABSA was presented for the first time in the format of a shared task at SemEval-
2014 Task 4 by [104]. The organisers presented several datasets of reviews for
different business types, where aspect terms and their corresponding polarities
were annotated for each sentence. They expanded their work in SemEval 2015
Task 12 [105], where all the recognised components of the expressed opinions
(i.e., aspects, opinion target expressions, and sentiment polarities) were linked

15

Chapter 2. Related work

within sentence-level tuples in a framework, which combined previously intro-
duced subtasks into a single task. The organisers extended this task once again
using text-level ABSA annotations in the following SemEval 2016 Task 5 [107].
They also expanded tasks to new domains and presented seven more languages
besides English. After that year, there were no more ABSA-related challenges
presented by this team. However, this task is still in demand nowadays. For
example, at the domain www.kaggle.com, new datasets related to ABSA task
are published each year. We decided to use in our experiments a newer labelled
dataset gathered by the platform described in the following Section 2.2.3.

2.2.3 SentEMO project
The specific task that we worked on was provided by [35]. In their paper, the
authors presented the SentEMO platform, a tool which performs ABSA, but also
Aspect-Based Emotion Detection (ABED), after which the results are visualised
by means of different dashboards. For both sentiment and emotion detection,
they trained a model established on transformer-based text embeddings and
SVM classifiers for six domains of the Dutch language. Moreover, the authors
introduced a pipeline structure similar to the one we will design in our study,
where the output of each step serves as the input for the next one. Their pipeline
consists of four steps: (1) extraction of an aspect term, (2) aspect category
classification, (3) polarity classification and (4) emotion classification, where
each aspect is thus assigned a sentiment and an emotion. In our experiment, we
will use the English version of one of the authors’ datasets, described further in
Section 6.1.

2.3 Interpretability in text analysis
To examine the explainability of methods available for emotion detection and
ABSA tasks, as well as to compare our solution with them, in this section, we
provide an overview of several methods’ explainability classification criteria. We
can discern two main aspects in model interpretability for text analysis [32, 48,
3]. The first one defines the “level” of explainability: local methods deliver an
explanation for a single prediction, and global ones provide an explanation for
the whole prediction model. For the second main aspect in model interpretabil-
ity and the one we will be focusing on mostly in this section, we can define two
types: post-hoc interpretation (Section 2.3.1) and self-explanatory models (Sec-
tion 2.3.2). For the second approach, which is more recent and widely used, we
will describe its application for emotion-detection-related tasks (Section 2.3.2).
Finally, in Section 2.3.3, we discuss five main explainability techniques; and in
Section 2.3.4, we will classify our solution by the interpretability type it can
provide.

16

www.kaggle.com

Chapter 2. Related work

2.3.1 Post-hoc methods
As an example of post-hoc interpretation, we can take a look at Perturbed
Masking [135], which uses MLM to calculate a particular word’s impact on the
prediction results for another word. The concept underlying MLM is to replace
or mask part of the words in a sentence, train a model to predict the missing or
replaced words based on the context that the remaining words offer, and then
use that information to estimate the missing or masking words. Correspond-
ingly, Perturbed Masking’s core principle is to vary or perturb the input text
by masking various groups of words and then track how the model’s predictions
change as a result. We may determine which words or phrases in the input text
are most crucial for the model’s prediction by contrasting the predictions of the
original text to the predictions of the perturbed texts. In particular, a word or
phrase is likely to be significant for the model’s prediction if masking it results
in a significant difference in prediction scores.

Yet another example of a post-hoc method is Local Interpretable Model-
agnostic Explanations (LIME) [112], which aims to approximate the behaviour
of the black-box model in a local region surrounding the instance in order to
provide interpretable reasons for specific prediction. In order to accomplish this,
LIME first chooses a “neighbourhood” around the target instance, which is a
collection of related examples used to train the local interpretable model. This
model is trained using a collection of created by LIME “perturbations”, which
are changed replicas of the instances from the neighbourhood. Then, LIME uses
the black-box model’s predictions as labels to train a simple interpretable model
on the perturbed data. The prediction is then explained using the newly trained
model and determining which features are most crucial for the output.

Another such method is SampleShapley [123], which uses primary concepts of
coalitional game theory, where contributions of individual feature values explain
the predictions by evaluating how much each feature contributes to the predic-
tion of the model. To be more precise, this method accomplishes this evaluation
by randomly selecting subsets of features and calculating the difference between
predictions made with and without them. The relevance of each feature can be
calculated by averaging over all potential feature subsets. SampleShapley can
be used with any black-box model, including ones based on embeddings, where
it can be employed to determine the relative weights of different embedding
dimensions.

2.3.2 Self-explanatory methods
Most current explainable models in NLP belong to the self-explanatory category.
For example, Variational Word Masks (VMASK) [21] make the model focus on
the most important words during the prediction-making process. We can also
use attention weights from the model to analyze its predictions, as was done e.g.
by [138], who propose a Hierarchical Attention Network (HAN) for a document
classification task. Their solution includes an attention mechanism with two
levels (word and sentence level) and provides a clear visualization for the human

17

Chapter 2. Related work

eye, where the most meaningful words and parts of a sentence are highlighted.

Example of usage for irony and hate speech detection

In [4], the authors aimed to develop an interpretable DL model for sarcasm
detection for English social media data. They used preprocessed data and BERT
embeddings in a NN based solution, including a multi-head self-attention module
and GRU. The self-attention part was added for interpretability purposes, and
the authors demonstrated that this module improved the results. They built an
attention map that provides a picture of the per-word attention weights for the
sentences. So for sentences with sarcasm, this map showed words that have more
attention than others (for example, “just”, “again”, “totally”) in order to give
the researcher more insight about which words attribute a high sarcasm level to
the text.

Another self-explanatory method was investigated for hate speech detection
in [136]. The authors examined hate speech in social media data at the span
level (a span is an ordered sequence of tokens, in other words, a slice of the
text) and interpreted the model based on the assumption that the toxicity of a
text corresponds to its most toxic span. They trained transformer-based models
(BERT and ELECTRA [26]) for hate speech detection on two levels: the whole
text and the span. By interpretability of the model, the authors mean that it
should provide a set of words to justify its prediction; they also listed the twenty
most frequent toxic words.

As an example of a self-explanatory solution for irony detection, [46] used an
architecture similar to BERT but with in-domain embeddings. They addressed
the explainability of their approach by investigating multi-head self-attention
mechanisms. The authors evaluated their approach to English and Spanish
irony datasets showing promising results.

2.3.3 Main explainability techniques
Besides distinguishing between “local” vs. “global” and “post-hoc” vs. “self-
explanatory” explanations, [32] also identified the following five main explain-
ability techniques:

1. Feature importance: an explanation is obtained by investigating the im-
portance scores of features that were used to generate predictions.

2. Surrogate models: predictions of the model are explained by learning an-
other, more explainable model.

3. Example-driven techniques: they explain the prediction for the input in-
stance by connecting it to other labelled instances.

4. Provenance-based: we can explain some of the prediction-making process
steps, which are usually represented by an intuitive approach, so the result
is obtained as a series of logical transformations.

18

Chapter 2. Related work

5. Declarative induction: by means of human-level readable explanations, for
example, a set of rules.

Two of the most widely used techniques are the attention mechanism [9]
and first-derivative saliency [78], which are part of feature importance-based
explanation methods. Such approaches can consider different types of features;
however, they all share the same idea, i.e., to explain model predictions by
examining the importance of different features.

We can illustrate this by considering another paper for hate speech detection
[86]. The authors tried to extend DL-based solutions with more understandable
features and performed experiments to evaluate the influence of emotion-based
features and stylometric features (representing the style of the text, for exam-
ple, the unique style of a particular author). They also extracted other features
(character N-grams, words, etc.) for comparison and used them in an SVM clas-
sifier. The authors compared their results with models based on CNN, LSTM,
and BERT. They found that, although stylometric and emotion-based features
were not the most informative ones, those features can be helpful in combination
with other methods, especially in ensembles with NN models. They may provide
some cross-domain rules to identify hate speech.

Another popular type is example-driven solutions. These techniques relate
the input instance to other labelled examples in the dataset to explain the pre-
diction for the target instance. As we can see from the definition, example-driven
type of approaches is typical for local-level explainability models, which provide
an explanation for a single prediction. Particularly, [30] provides an example of
such a local self-explanatory solution based on Layer-wise Relevance Propaga-
tion (LRP). The LRP works by using a set of specifically created propagation
rules to the NN to propagate the prediction backwards. Meanwhile, [62] presents
a local post-hoc approach that uses explainability-aware architecture.

2.3.4 Our choice for a local, self-explaining example-driven
method

Considering that we represent tweets as high-dimensional text embedding vec-
tors, feature importance-based methods are not the best choice since the individ-
ual components of an embedding vector are difficult to interpret. By contrast,
in our approach, we provide explanations for the predicted label of the test
instance by looking at its neighbouring labelled instances; thus, it can be cate-
gorized as a local, self-explaining example-driven method. It gives a novelty to
our approach since interpretability was not investigated much for the considered
emotion-detection tasks before, nor was the usage of DL-based and BERT-based
embedding techniques with the nearest neighbour fuzzy rough-based approaches.

In Section 7, we will illustrate our method as part of the error analysis process
and show that it may provide a more informative picture than an attention-
based map. Particularly, besides detecting the keywords that influenced the
prediction-making process, we can identify topics related to a given tweet. We
can also identify mistakes caused by similar tweet topics and detect confusing

19

Chapter 2. Related work

tweets that affect our results. In this way, we can correct our model to obtain
better results in future.

It is also worth mentioning that our best solution can provide insights into
the dissimilarity between instances (Section 4.2.2). In other words, it is able to
define not only how the instance is similar to every class, but also, how it differs
from each of them.

20

Chapter 3

Data and resources

This chapter presents the theoretical background of our data preparation steps
and the resources we used for this. Section 3.1 describes the different text
preprocessing steps we considered. Then, Section 3.2 presents a description of
text embedding methods and explains how we applied them in our pipeline.
Finally, in Section 3.3, we describe one of the techniques we used to improve the
quality of our embeddings using emotion lexicons.

3.1 Text cleaning techniques
Besides pure text, every tweet usually also contains some of the following infor-
mation: name tags, hashtags, emojis, links, etc. Some of them can be a source
of helpful information, while others should be cleaned to improve the quality of
the text embedding process, described in Section 3.2.

In general, we tried three different text preprocessing approaches for each
dataset and each embedding method to identify the best setups:

1. Using raw tweets without any preprocessing (Figure 3.1.a).

2. Using tweet cleaning (Figure 3.1.b): masking numbers, special symbols,
links, user tags (Section 3.1.3), and deleting the "#" symbol (Section 3.1.2),
as well as replacing emojis with their textual descriptions (Section 3.1.1).

3. Similar to the previous setup, but with additional stop word removal (Sec-
tion 3.1.4, Figure 3.1.c).

3.1.1 Emojis
We decided to retain emojis because they may provide hints about the writer’s
emotional state (as illustrated by [15, 133]). We tried direct and indirect ap-
proaches to adapt the emoji Unicode format for text embedding. In the direct

21

Chapter 3. Data and resources

Figure 3.1: Example of the tweet preprocessing steps, for training instance from
Irony dataset [126].

approach, we used an embedding method called Emoji2Vec1, which represents
a dictionary and transforms each emoji into a vector. However, this solution is
limited to a particular set of emojis and does not consider the text’s context.
In the indirect approach, we used the Emoji package2 which transforms each
emoji to its textual description, such that it becomes part of the textual content
of the tweet and is embedded with it. We performed experiments for the emo-
tion detection dataset with the same classification setup, Cross-Validation (CV),
and evaluation measurement for both emoji preprocessing methods. The results
showed that the indirect approach provides higher evaluation scores, so we kept
this method for our future experiments.

3.1.2 Hashtags
Another specific feature of tweets is the use of hashtags. Hashtags are an instance
of textual information, but they usually contain more important keywords than
the main part of the tweet. Often, hashtags are used to collect data (e.g. [93]
used a list of hashtags to parse tweets and to gather emotion datasets). Initially,
we tried to delete "#" symbols before hashtags and keep them as part of the text.
However, since hashtags could be part of a tweet message ("I feel so #angry,
can’t believe that really happened to me!") or be listed at the end of the tweet
("Well, I guess my day is ruined... #sad #angst #sadness"), we also tried

1https://github.com/uclnlp/emoji2vec
2https://pypi.org/project/emoji/

22

https://github.com/uclnlp/emoji2vec
https://pypi.org/project/emoji/

Chapter 3. Data and resources

to take this into account by transforming these latter hashtags into separate
sentences ("Well, I guess my day is ruined... Sad. Angst. Sadness."). We
also considered providing more weights to hashtags, by calculating the separate
embedding vector for each hashtag word and combining them with the tweet’s
vector. However, both described approaches did not affect our results much, so
we kept the initial approach - deleting the "#" symbol and maintaining hashtags
as they are.

3.1.3 Non-textual parts of text
Regarding the rest of the non-textual parts of texts, such as numbers, punctua-
tion, special symbols (like "/n"), links, and user tags, we tried to delete, mask or
keep them to improve our results. “Masking” means that we replace the actual
number with the tag “number” in the text, the link with the tag “URL”, and
so on. This transforming can be done with custom functions using the Regex
package3 or using existing packages for tweet parsing, like Tweet-preprocessor4.
It is worth mentioning that we did not consider link parsing to extract more text
since a majority of links had expired and was not working.

After experiments on the different datasets, we concluded that the most
effective approach is to delete non-textual tweet parts for emotion detection
datasets and mask them for hate speech and irony ones (Figure 3.1). As for
punctuation marks, we kept them for all cases because they could be useful
during the data embedding step to save the tweet’s context.

3.1.4 Stop words cleaning
A final possibility to clean tweets consists in deleting stop words from the main
text of the tweet. Stop words are frequently used words that do not have any
important meaning ("the", "a", "any", etc.). A list of such words for the English
language is provided in the NLTK package5. As we will show in the experimental
part, this solution proves useful for some embedding techniques but is mostly
inferior when the embedding algorithm considers the whole context of the text.

3.2 Text vectorization with embedding methods
To use tweets in classification methods, we shall represent them as vectors in
an N -dimensional space, so tweets with similar meanings will be represented by
neighbouring vectors. This is achieved by embedding algorithms: they trans-
form the text into a numerical shape while maintaining their similarities. Tweet
embeddings operate on different text levels - at the level of individual symbols,
words, collocations, sentences, paragraphs, or the whole text. Also, the method
itself can take various shapes, ranging from simple dictionaries to context-based

3https://docs.python.org/3/library/re.html
4https://pypi.org/project/tweet-preprocessor/
5https://www.nltk.org/

23

https://docs.python.org/3/library/re.html
https://pypi.org/project/tweet-preprocessor/
https://www.nltk.org/

Chapter 3. Data and resources

language models. In this work, we will consider different types of text embed-
ding techniques. Before we will dive into each of them, we will discuss the basic
method for representing text in a numerical format, which we used as a baseline.

3.2.1 Bag of Words and N-grams
Bag of Words (BOW) is the name of the fundamental approach for the trans-
formation of textual data into numerical format. It disregards grammar and
word order but takes into account multiplicity, representing text as a collec-
tion (or bag) of words. BOW is typically used to generate features based on a
text corpus. Although it is a straightforward method, BOW has one significant
drawback: when encoding, it ignores word order and semantics.

To improve the basic approach of BOW, instead of each word separately,
we can consider N-grams. An N-gram represents a connecting sequence of N
elements, which are usually words, as we will consider for our experiments as
well. In this way, with a Bag of N-grams, we pay more attention to collocations
since they can contain more context than a single word. However, this approach
creates a much bigger dictionary than BOW, which takes a lot of memory and
creates long sparse vectors (the ones that have a relatively small number of
non-zero elements). We will elaborate on those ideas with our experiments in
Chapter 5.

3.2.2 Word2Vec and its variants
The first and earliest type of DL-based embedding method is Word2Vec, initially
presented in [89] and [88]. Word2Vec has two architecture options: Continuous
Bag of Words (CBOW) and Skip-gram. The CBOW model uses context rep-
resentations to predict a missing word, whereas the Skip-gram model uses a
representation of the word to predict the context. After model training, spe-
cific weights for every word are extracted as embedding vectors. As such, the
Word2Vec model used in this work represents each word as a 300-dimensional
vector. This dimensionality was used as the standard one for the Word2Vec
model presented in the Gensim package6. It provides a Word2Vec model pre-
trained on a Google News dataset containing nearly 100 billion words. Word2Vec
has the form of a dictionary of almost 3 million words and phrases and cannot
be fine-tuned.

After the Word2Vec papers were published, many similar approaches ap-
peared, for example, the earlier mentioned Emoji2Vec and the Doc2Vec7 pack-
ages. The last one works similarly to Word2Vec, but for whole text paragraphs
rather than individual words. We also tried this approach but got very unsatis-
fying results for our datasets. Therefore, we will only use the Gensim pre-trained
Word2Vec model. We take the mean of all its words’ vectors to obtain a vector
for a whole tweet.

6https://radimrehurek.com/gensim/models/word2vec.html
7https://radimrehurek.com/gensim/models/doc2vec.html

24

https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/doc2vec.html

Chapter 3. Data and resources

3.2.3 DeepMoji
Embedding methods can also take into account the sentiment hidden in a sen-
tence. For example, the DeepMoji model presented in [43] is an LSTM-based
model trained on over one million tweets containing one out of sixty-four differ-
ent emojis with the purpose of recognizing emotions in text. DeepMoji, unlike
Word2Vec, provides a vector representation for the full tweet. For our experi-
ments, we used the PyTorch implementation of the DeepMoji model provided
by Huggingface8, which encodes text as a 2,304-dimensional vector.

3.2.4 Universal Sentence Encoder
We also used more advanced recent methods, for example, the USE developed
by TensorFlow9 and described in [18]. This model was pre-trained on vari-
ous datasets for different tasks, from text classification to sentence similarity.
USE works at the level of paragraphs and provides a 512-dimensional (standard
size of the pre-trained USE embedding) vector representation for the full tweet.
USE has two available architectures; one is based on a Deep Averaging Net-
work (DAN), and the second uses a transformer encoder. After experimenting
on the emotion detection dataset with the same classification method, text pre-
processing steps and evaluation, we chose the second option as it gave better
results.

3.2.5 Transformer-based encoders
The transformer encoders represent the current state-of-the-art approach in the
NLP area. The very first such model was BERT, introduced in [37]. It was
developed by the Google AI Language Team with the idea of pre-training deep
bidirectional representations based on unlabelled text. BERT was pre-trained
on datasets for two tasks: language modelling and next-sentence prediction.
However, this model can be easily fine-tuned for different tasks with extra out-
put layers without architecture modifications. We used the PyTorch10 BERT
realisation to extract 768-dimensional vectors for each subword identified by the
model and again used the mean to obtain the whole tweet’s vector. The size of
768 dimensions is standard for the base-BERT model; however, it increases for
larger models.

We also considered other models based on BERT, for example, Sentence-
Bidirectional Encoder Representations from Transformers (SBERT) by [111],
which is a variation of the original BERT, tuned for sentence-level vector extrac-
tion. SBERT was trained on a collection of sentence pairs, and it can process
two tweets simultaneously because it uses twin network structures, providing a
768-dimensional vector for the whole tweet.

8https://github.com/huggingface/torchMoji
9https://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_

universal_encoder
10https://pytorch.org/

25

https://github.com/huggingface/torchMoji
https://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
https://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
https://pytorch.org/

Chapter 3. Data and resources

Another model is the Twitter-RoBERTa-based model by [11]. The authors
presented several models for different tasks: emotion detection, hate speech,
irony classification, and more. These models are fine-tuned on similar SemEval
data versions of the RoBERTa, analogous to the BERT model, but with some
minor changes in the training procedure and architecture.

For the ABSA task, we also considered several BERT-based models, includ-
ing the BERT11 and ALBERT12 models, fine-tuned using the Text-Attack (TA)
package [94] and the YELP polarity dataset [144] for the sequence classifica-
tion task. The original ALBERT model was presented by [74] and consumes
less time and memory for training compared to the regular BERT model. The
authors also showed that this model has 89% parameters reduction, in contrast
to BERT, with equal performance. However, the best results for our ABSA ex-
periments were obtained with the DistilBERT Yelp Review Sentiment model13,
which was fine-tuned on one million reviews from the YELP dataset [144] for
the sentiment analysis task. The DistilBERT architecture, initially presented in
[119], is a lighter and faster version of BERT that takes less time to fine-tune.
The mentioned BERT-based models were fine-tuned on the YELP dataset that
contains user reviews from yelp.com. We chose such models due to the similar
nature of the data used for their fine-tuning and ours. Although these models
were used as classification/regression models for the sequence classification and
sentiment analysis tasks, we will use them as embedding models by extracting
the encoded vector representations of text.

In general, all described transformers-based models can perform classifica-
tion directly. For example, consider text classification with the BERT model.
In the first step, it tokenizes input text as subword tokens and then converts
them into embedding representations. Secondly, the BERT model is pre-trained
on unlabeled data, from which it learns contextual word representations using
MLM. The following step of fine-tuning includes an adaptation of the BERT
model to specific tasks. It is performed by replacing the model’s last layer with
a classification head. Next, during the training of the model, it uses labelled
data to update weights. Meanwhile, for the inference step, the input text goes
through the model, so it computes class probabilities, which are based on the
task-specific classification layer. Finally, by aggregation of information from
the specific [CLS] token (or by the usage of other pooling strategies), the bidi-
rectional attention of BERT enables it to provide high results for classification
tasks.

In our experiments, we used transformer-based models to extract texts’ em-
bedding vectors. They were calculated as weights from the inner model’s layer.

3.2.6 Other embedding methods
Besides the previously described methods, we also investigated several other
embedding approaches that did not perform well and therefore were not included

11https://huggingface.co/textattack/bert-base-uncased-yelp-polarity
12https://huggingface.co/textattack/albert-base-v2-yelp-polarity
13https://huggingface.co/spentaur/yelp

26

yelp.com
https://huggingface.co/textattack/bert-base-uncased-yelp-polarity
https://huggingface.co/textattack/albert-base-v2-yelp-polarity
https://huggingface.co/spentaur/yelp

Chapter 3. Data and resources

in our main experiments. Mainly, we tried FastText pre-trained word vectors
by [87], which is a more advanced Word2Vec solution based on CBOW, spaCy
embedding models14 by [53] which are based on CNN models and available for
English in two sizes (small and large, both considered for our experiments), and
BERTweet by [96], which is a BERT-based model with a RoBERTa pre-training
procedure executed on 850 million English tweets.

3.3 Lexicons
Finally, we also investigated the idea of using emotion lexicons to improve the
quality of the obtained embedding vectors and add more emotion-related infor-
mation. An emotion lexicon is a word vocabulary where each word is assigned
an emotional intensity score. In our experiments, we used the following English
lexicons:

• Valence Arousal Dominance (NRC VAD) lexicon (20,007 words) [90] – each
word has a score (float number between 0 and 1) for Valence, Arousal, and
Dominance.

• Emotional Lexicon (EMOLEX) (14,182 words) lexicon [91] – each word
has ten scores (0 or 1), one per emotion: anger, anticipation, disgust, fear,
joy, negative, positive, sadness, surprise, and trust.

• Affect Intensity (AI) lexicon (nearly 6,000 terms) [92] – each word has four
scores (float number from 0 to 1), one per emotion: anger, fear, sadness,
and joy.

• Affective norms for English words (ANEW) lexicon (1034 words) [16] –
each word has six scores (float number between 0 and 10): Mean and SD
for Valence, Arousal and Dominance.

• Warriner’s lexicon (13,915 lemmas) [131] – each word has 63 scores (float
number between 0 and 1000), reflecting different statistical characteristics
of Valence, Arousal, and Dominance.

We considered the following two methods of combining word embeddings
with lexicon vocabulary scores:

• For each word during the embedding process, lexicon scores were appended
to the end of the tweet vector. The size of the obtained vector is the word
embedding size plus the number of lexicon scores.

• We construct a separate feature for each lexicon. These models are then
combined with the embedding vectors in an ensemble classifier, as de-
scribed in Section 4.4.

14https://spacy.io/models

27

https://spacy.io/models

Chapter 3. Data and resources

As will be shown further in Chapter 5, lexicons did not significantly improve
the prediction results. For this reason, we performed experiments for only the
emotion datasets (Anger, Joy, Sadness, Fear) with one or several lexicons for
each.

28

Chapter 4

Prediction methods

In this chapter, we discuss all methods that we use for label prediction. Firstly, in
Section 4.1, we describe which similarity relation is used for our methods. Then,
Sections 4.2 and 4.3 provide an overview of the corresponding classification and
regression models we used. In Section 4.4, we discuss an ensemble approach that
we applied to the prediction models. Finally, Section 4.5 considers the evaluation
metrics that we used to compare the obtained results.

4.1 Similarity relation
Before describing the classification methods we researched, it is important to
discuss the similarity metric we used to measure how similar the considered
vectors (in other words, tweet embeddings) are.

In [55], the authors compared different metrics for related NLP tasks: Eu-
clidean distance, Jaccard coefficient, PCC, averaged Kullback-Leibler diver-
gence, and cosine similarity. In the end, Euclidean distance performed the worst,
whereas cosine and Jaccard coefficient were the most efficient ones. Cosine sim-
ilarity also showed the best results for the imbalanced datasets.

Cosine similarity also has an additional interesting characteristic for our
setup. Particularly, the cosine applies to the angle between two embedding
vectors, which is advantageous for textual data since it considers the orientation
of the vectors rather than magnitudes. It allows the comparison of texts based
on their semantic similarity regardless of length.

Based on these arguments, we chose the cosine metric for our experiments.
The cosine distance can be defined by Eq.(4.1):

cos(A,B) = A · B

||A|| × ||B||
(4.1)

In Eq.(4.1), A and B correspond to elements from the same vector space (text
embeddings), A · B denotes their scalar product, and ||x|| is the vector norm of
x.

29

Chapter 4. Prediction methods

To fit NN-based methods, we need a similarity relation that provides values
between 0 (vectors are totally different) and 1 (vectors are identical). In contrast,
the cosine distance’s outputs are between -1 (perfectly dissimilar vectors) and
1 (perfectly similar vectors). Hence, we apply the following transformation to
make similarity out of distance:

cos_similarity(A,B) = 1 + cos(A,B)
2 . (4.2)

Finally, we should note that we also examined Hausdorff’s distance [51, 39],
which measures how far two subsets are from each other in a metric space. We
used it for comparing texts, considering that each text can be seen as a set of
individual words. Hausdorff’s metric is a meta-metric based on another distance
metric that, in our case, was cosine. We decided to investigate this metric since it
differs from cosine similarity and others suggested in [55] by using sets of vectors.
However, this approach did not provide satisfactory results, so we dismissed it.

4.2 Classification models
This section presents the nearest neighbour-based classification methods that we
investigated for our experiments.

4.2.1 Weighted kNN
The weighted k Nearest Neighbours (wkNN) classification method [40] is a re-
finement of the regular kNN [29].

The kNN algorithm is a commonly used non-parametric classification and
regression technique for ML tasks. It can be applied to both supervised and
unsupervised learning problems. kNN is a lazy learning algorithm, which means
that during the training phase, no model is built; instead, the full training
dataset is stored in memory. This method categorizes new instances based on
their proximity to the k nearest neighbours from the training dataset. A new
instance’s class label is chosen by a majority vote or by averaging the labels of
its k closest neighbours.

The primary distinction between wkNN and kNN is how neighbours are taken
into account while making predictions. Each of the k nearest neighbours partici-
pates equally in the decision-making process in the conventional kNN algorithm.
However, with wkNN, each neighbour’s impact is assessed by allocating weights
based on how close they are to the query instance. For this method, weights are
typically determined based on distance, with closer neighbours having higher
weights and having a greater impact on the prediction. In other words, the
wkNN approach aims to assign a more significant weight to the closest instances
and a smaller weight to the ones that are further away. The class label of the
new test instance is decided by a weighted total of the labels of the k nearest
neighbours rather than by a simple majority vote or average.

30

Chapter 4. Prediction methods

wkNN has two main parameters: the used metric or similarity relation and
the number k of considered neighbours. The choice of distance metric has a big
influence on measuring the similarity between instances. For our experiments,
we use the previously described cosine similarity as a relation function.

Regarding the parameter k, it determines the number of neighbours to take
into account while classifying a new instance. In order to prevent either overfit-
ting or underfitting, it must be properly chosen. However, there is no one-fits-all
rule to determine it. To examine the impact of k, we will use various numbers
of neighbours for each emotion dataset for the best-performing methods in our
experiments.

We use wKNN both as a standalone method as well as inside of an ensemble
of methods (Section 4.4).

4.2.2 FRNN-OWA
Our work considers methods based on FRS theory, mainly the Fuzzy-Rough
Nearest Neighbour (FRNN) classification model proposed in [61].

FRNN is an instance-based algorithm that performs classification using lower
(L) and upper (U) approximations from FRS theory. The authors of [61] showed
that the method outperformed classical NN approaches and that it is competitive
with the leading classification algorithms.

To make the approach more robust and noise-tolerant, [129] proposed an
FRNN extension with Ordered Weighted Average (OWA) operators. The au-
thors used OWA operators to determine membership to the lower and upper ap-
proximation by means of an aggregation process. In [76], the authors presented
an approximate FRNN-OWA solution, which modifies the approximations’ cal-
culation process. They managed to keep the accuracy of the original approach
while improving the execution speed. They also developed a Python package1

for these methods in [75], which will be used in our experiments.
We will denote the OWA aggregation of value set V (v(i) is the ith largest

element in V) with weight vector −→
W = ⟨w1,w2, ...,w|V |⟩, where (∀i)(wi ∈ [0,1])

and
∑|V |

i=1 wi = 1, with:

OWA−→
W

(V) =
|V |∑
i=1

(wiv(i)) (4.3)

We experimented with several types of OWA operators and concluded that
the additive weight type [129] clearly performed best for our data.

Additive weights are linearly increasing for lower approximation (For-
mula (4.4), where p (p > 1) denotes the vector’s length) and decreasing for
upper approximation (Formula (4.5)).

−→
W add

L = ⟨ 2
p(p + 1) ,

4
p(p + 1) , ...,

2(p − 1)
p(p + 1) ,

2
p + 1 ⟩ (4.4)

1https://github.com/oulenz/fuzzy-rough-learn

31

https://github.com/oulenz/fuzzy-rough-learn

Chapter 4. Prediction methods

−→
W add

U = ⟨ 2
p + 1 ,

2(p − 1)
p(p + 1) , ...,

4
p(p + 1) ,

2
p(p + 1) ⟩ (4.5)

Next, during the classification of a test vector y, the FRNN-OWA method
calculates the membership degree of y to the lower (Formula (4.6)) and upper
(Formula (4.7)) approximation of each decision class C. In those formulas, by
R(x,y), we refer to the similarity relation, which in our case is cosine similarity
described in Section 4.1.

C(y) = OWA−→
W add

L

{1 − R(x,y) | x ∈ X \ C}) (4.6)

C(y) = OWA−→
W add

U

{R(x,y) | x ∈ C}) (4.7)

Then, the method assigns y to the class C that has the highest sum C(y) +
C(y). For efficiency purposes, calculations are limited by a parameter k (amount
of nearest neighbours of test instance y used to construct the approximations).
In Eq. (4.6), k refers to the number of neighbours of y from classes other than C
and in Eq. (4.7) to the number of neighbours of y from C. There are no general
rules on how to set k. Hence, we will tune this parameter for each dataset in
our experiments.

After deeper inspection of both methods, we can highlight an important dif-
ference between wkNN and FRNN, which motivated us to consider the latter one
for the NLP-related tasks. In general, while the wkNN method can only intro-
duce the concept of “similarity”, FRNN also provides a “dissimilarity” relation.
In this way, we can define how a particular instance is similar to all suggested
classes and, at the same time, how it differs from each of them.

Confidence scores

FRNN-OWA also provides a natural way to derive confidence scores for its pre-
dictions. In particular, for each class, C and test instance y, the confidence score
can be calculated as

Conf(C,y) = C(y) + C(y)∑
C′∈C

C ′(y) + C ′(y)
, (4.8)

where C represents the set of all classes.
An analysis of the confidence scores we obtained in our experiments (Section

5) revealed that they are often close to each other (Figure 4.1). Particularly,
when we apply the wkNN model with different embedding methods to the same
dataset, we can see that all scores are between 0.1 and 0.4, with a median of
0.2 (Figure 4.1a). Meanwhile, for the FRNN-OWA method, confidence scores
have an even smaller range from roughly 0.47 to 0.51 with a median of around
0.49. The BERT embedding provides the smallest range of confidence scores for
both classification models (Figure 4.1b). In general, we hypothesize that this

32

Chapter 4. Prediction methods

(a) For wkNN. (b) For FRNN-OWA.

Figure 4.1: Confidence scores sensitivity (before rescaling) for two classification
methods and different embeddings on the Anger dataset.

may be due to the high dimensionality of text embeddings, causing the upper
approximation memberships to be close to 1 and the lower ones to 0.

To mend the described issue, we propose rescaling the original confidence
scores in order to amplify their differences. To use these scores in ensembles
(Section 4.4), we proceed as follows. Denote by Confi(Cj ,y) the confidence
score of the i-th member of the ensemble for test instance y to belong to class
Cj , calculated as in Eq. (4.8). We subtract 0.5 from Confi(Cj ,y) and divide
the result by a small value α (0 < α < 1). Next, we compute the sum of the
scores for each class. Since the obtained values may be negative, we use the
softmax transformation to turn them into values between 0 and 1. The steps of
this rescaling process are summarized as follows:

wi =
exp(

∑
j(Confi(Cj ,y) − 0.5)/α)∑

k exp(
∑

j(Confk(Cj ,y) − 0.5)/α) , (4.9)

4.2.3 FROVOCO
Fuzzy Rough One-Versus-One COmbination (FROVOCO) is also an instance-
based algorithm, introduced in [128]. FROVOCO is developed for multi-class
classification and especially for imbalanced tasks, which could be suitable for
our purposes given the imbalance present in our data. It decomposes several
classes into separate One-Vs.-One (OVO) and One-Vs.-All (OVA) tasks. In our
experiments, we used a weighted average of three components: OVA (as was
performed in FRNN, where it represents a mean of lower and upper components),
OVO (in this case, we perform FRNN for each pair of classes and then aggregate
results for each class), and negative affinity (it compares whether the target
instance is similar to the other classes in the same way as the predicted class).

FROVOCO considers the constructed classes’ Imbalance Ratio (IR) for

33

Chapter 4. Prediction methods

each pair to use specific weights. To determine these weights, FROVOCO
uses the Imbalanced Fuzzy RoughOrdered Weighted Average Nearest Neigh-
bour (IFROWANN) scheme described in [110]. This technique computes the
approximations by considering all samples belonging to the opposite class, not
only the closest ones, and by giving each sample a decreasing weight based on
how similar it is to the test sample. IFROWANN consists of two steps, the first
of which involves comparing the weight vectors for the majority and minority
classes while taking into consideration the fact that the former includes far fewer
items than the latter. In the second stage, we use the OWA model to combine
the contributions of the training data. Such a solution allows us to work with
imbalanced datasets.

For FROVOCO, we also used the cosine similarity metric and additive
weights. Additive weights represent a vector with a length corresponding to the
number of neighbours with linearly increasing and decreasing weights, Formulas
(4.4) and (4.5). We used the FROVOCO implementation from [75].

4.3 Regression models
As an alternative to classification approaches for the emotion detection issue,
which can be considered as an ordinal classification task, we also investigated
FRNN regression [61].

For the test instance y, this algorithm predicts a value based on the classes
of the k nearest neighbours of instance y, similar to kNN regression. The main
feature of FRNN regression is that it calculates the output for y as a weighted
mean, where the weights are represented with the upper and lower approxima-
tion membership degrees of the k neighbours’ output values. We fine-tuned the
parameter k for each emotion dataset in our experiments.

The FRNN regression algorithm returns a float number for each test instance.
We use standard rounding for each output value to adjust this algorithm to
obtain a class prediction for our classification task.

4.4 Ensembles
Apart from performing our experiments for standalone classification methods,
we will also consider their combination in an ensemble, where each model will
be based on a separate embedding method. We followed standard practices of
combining different classifiers (in our case, they are based on different embed-
ding methods) into an ensemble. The motivation behind this is to combine the
advantages of different embedding methods in one approach.

To this aim, we tune parameters for each combination of a dataset and an
embedding method to identify optimal setups. To obtain the final output, a
voting function is needed. After experiments with various options (median,
majority, maximum, etc.), the best-performing voting function was the average.
For FRNN-OWA, we also used a weighted average, where the found to be weights

34

Chapter 4. Prediction methods

are derived from the confidence scores that each model generates. Meanwhile,
we used the classical average as a voting function for FRNN regression, which
does not generate any confidence scores.

Figure 4.2: Scheme of our approach with an ensemble of prediction models.

Noteworthy is that the mean function can provide a float value between 0 and
3 instead of the required intensity labels 0, 1, 2, or 3. This was not a problem
during training because our labels are not different classes but ordinal intensity
labels. For the test datasets, the obtained values were rounded to submit our
predictions.

The full architecture of our approach is shown in Fig. 4.2, where n is the
number of embedding methods, ki is the number of neighbours (parameter k)
for the i-th ensemble model, and wi is the weight for the i-th model’s output in
the voting function.

4.5 Evaluation
To measure and compare the obtained prediction results, we first applied them to
the training data using 5-fold CV. This technique divides the training dataset
into five subsets, utilizing four for training and one for testing in each of its
five iterations to ensure a more robust evaluation. For datasets where both
training and development datasets were provided, we merged them. Also, to
allow repeatability of our results, we fixed the random seed value as 3 (for the
function that generates random instances’ index numbers to create a training
dataset for each fold of CV). We also noticed that differences between folds are
minor for all datasets and methods, so we will not discuss it further.

We used several metrics for the evaluation of the results. Some of them were
proposed by the organisers of the respective SemEval competitions, whereas oth-
ers were added to obtain a more complete picture of our methods’ performance.

4.5.1 Pearson Correlation Coefficient
PCC was used in the SemEval competition on emotion detection. Let y be the
vector of predicted values and x that of correct values, with xi and yi as the ith

35

Chapter 4. Prediction methods

elements of x and y, and denote their means by x̄ and ȳ. The PCC is given by
Formula (4.10).

PCC =
∑

i (xi − x̄)(yi − ȳ)√∑
i (xi − x̄)2 ∑

i (yi − ȳ)2
. (4.10)

PCC scores vary between -1 (a total negative linear correlation) and 1 (a total
positive linear correlation), where 0 corresponds to no linear correlation. As a
consequence, during model comparison, we will seek the model with the highest
PCC.

4.5.2 Mean Absolute Error
An additional metric that we consider for the emotion detection task is Mean
Absolute Error (MAE) (4.11). This choice of metric is inspired by the fact that
for the emotion intensity task, we are dealing with an ordinal classification. The
MAE formula is:

MAE =
∑

i |yi − x̄i|
n

, (4.11)

where n is the size of vectors x and y. Lower MAE values mean better prediction.

4.5.3 F1-score
Another metric is the F1-score (4.12) that was used for the binary classification
tasks. The formula for the F1-score is as follows:

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
, (4.12)

where Precision is the fraction of correctly predicted instances out of all pre-
dicted labels, and Recall is the fraction of correctly predicted labels out of all
ground-truth labels. For the F1-score, we are looking for the highest value to
choose the best model.

For the Offensive Language, Hate Speech, and Irony detection datasets, we
used the macro-averaged F1-score, which is calculated by averaging the F1-scores
for each class. By doing this, it is ensured that the classifier’s performance for
each class contributes equally to the final result. Meanwhile, for the Sarcasm
dataset, we considered the F1-score calculated for the sarcastic class. These met-
rics were used by corresponding SemEval competitions to compare participants’
results.

For the ABSA task experiments, we calculated the weighted F1-score. It
computes F1-score for each class, but unlike the macro-averaged version, the
weighted F1-score assign bigger weights to the classes with a larger number of
instances. In other words, the weighted F1-score represents the average of F1-
scores for all classes, where each such score is weighted by the number of samples
in the corresponding class. We used F1-score from Scikit-Learn library2.

2https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.
html

36

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

Chapter 4. Prediction methods

4.5.4 Accuracy and CCA
Another evaluation metric that we use in our ABSA experiments is accuracy. It
corresponds to the number of correctly predicted instances out of all instances
in the dataset. It is not the most suitable metric for imbalanced datasets. Still,
in our case, it reflects how many data instances are actually left after all the
steps of the considered pipelines, described further in Section 6.3.

As an alternative to accuracy, we also calculated the Cost Corrected Accuracy
(CCA) metric, introduced by [33]. This metric applies to ordinal classification
tasks only and is similar to accuracy. However, CCA takes into account the
cost of prediction. In other words, for ordinal classes, the prediction of a class
close to the actual one (i.e., to the gold label) should have a lower cost than
a prediction of a class which is further removed. As a simple example, we can
consider a polarity classification task with ordered labels “positive”, “neutral”,
and “negative”. Then, we can set up costs in a way that, for instance, with a gold
label “positive”, a correctly predicted label will have a cost of 0; a prediction
of “neutral” has an associated cost of 1/2, while predicting the “negative” label
will correspond to the full cost of 1. Based on this information, we can construct
a cost matrix, which is symmetrical with classes on the rows and columns, 0 on
the diagonal and the cost of each “prediction mistake” on other positions.

Then, having the confusion matrix Cf (a performance evaluation tool that
displays the counts of true positive, true negative, false positive, and false neg-
ative predictions of the model while summarizing the classification results) and
a cost matrix Ct, we can calculate CCA with Formula (4.13):

CCA = 1 − Cf · Ct (4.13)

In this way, higher CCA scores will correspond to better methods in the same
way as accuracy, which can be observed as its special case with the cost of each
prediction mistake equal to 1.

In our experiments, we can apply CCA to emotion detection tasks because
it is an ordinal classification. All four emotion detection datasets from [93] have
the same emotion intensity classes, for which we suggested our option for the
cost matrices. It is provided in Table 4.1, where in labels by “emotion” we
mean one of the following: anger, joy, sadness, and fear - for each one out of
four corresponding datasets, where rows and columns decode the same emotion
intensity levels.

Table 4.1: Emotion intensity cost matrix for the emotion classification task [93].

0 1 2 3
0: no emotion can be inferred 0 0.33 0.66 1
1: low amount of emotion can be inferred 0.33 0 0.33 0.66
2: moderate amount of emotion can be inferred 0.66 0.33 0 0.33
3: high amount of emotion can be inferred 1 0.66 0.33 0

37

Chapter 4. Prediction methods

We can also use the CCA score for the ABSA task, but only for the sentiment
and emotion classification since, for aspects, we do not have ordered classes. For
both those tasks, we provided the cost matrices based on the ones suggested in
[35] for the same tasks with the Dutch version of the considered dataset. We
present our cost matrices for sentiment and emotion classification in Table 4.2
(with “very_neg” corresponding to “very_negative” class and “very_pos” - to
“very_positive”) and Table 4.3, respectively.

Table 4.2: Sentiment cost matrix for the ABSA task.

Negative Neutral Positive Very_Neg Very_Pos
Negative 0 0.5 1 0.5 1
Neutral 0.5 0 0.5 0.5 0.5
Positive 1 0.5 0 1 0.5
Very_Neg 0.5 0.5 1 0 1
Very_Pos 1 0.5 0.5 1 0

Table 4.3: Emotion cost matrix for the ABSA task.

A
ng

er

A
nt

ic
ip

at
io

n

D
isg

us
t

D
iss

at
isf

ac
tio

n
D

ist
ru

st

Fe
ar

Jo
y

N
eu

tr
al

Sa
dn

es
s

Sa
tis

fa
ct

io
n

Su
rp

ri
se

Tr
us

t

Anger 0 1 0.25 0.5 0.25 0.25 1 0.75 0.25 1 0.25 1
Anticipation 1 0 1 1 1 1 0.25 0.75 1 0.5 0.25 0.25
Disgust 0.25 1 0 0.5 0.25 0.25 1 0.75 0.25 1 0.25 1
Dissatisfaction 0.5 1 0.5 0 0.5 0.5 1 0.5 0.5 1 0.25 1
Distrust 0.25 1 0.25 0.5 0 0.25 1 0.75 0.25 1 0.25 1
Fear 0.25 1 0.25 0.5 0.25 0 1 0.75 0.25 1 0.25 1
Joy 1 0.25 1 1 1 1 0 0.75 1 0.5 0.25 0.25
Neutral 0.75 0.75 0.75 0.5 0.75 0.75 0.75 0 0.75 0.5 0.75 0.75
Sadness 0.25 1 0.25 0.5 0.25 0.25 1 0.75 0 1 0.25 1
Satisfaction 1 0.5 1 1 1 1 0.5 0.5 1 0 0.25 0.5
Surprise 0.25 0.25 0.25 0.5 0.25 0.25 0.25 0.75 0.25 0.5 0 0.25
Trust 1 0.25 1 1 1 1 0.25 0.75 1 0.5 0.25 0

38

Chapter 5

Application 1: emotion
recognition

In this chapter, we present the results of the methods described in Chapter
4 on the datasets mentioned in Section 2.1. Section 5.1 considers the task of
recognising emotion intensity, which we split into three parts. Firstly, we detect
the best setup for each dataset and each embedding method on the training
dataset. Secondly, we tune ensembles of models to obtain the most efficient
approach per dataset. Finally, we apply the best setup on the test datasets.
In Section 5.2, we perform the same steps on binary classification tasks - hate
speech, irony, and sarcasm detection.

5.1 Emotion intensity detection
In this section, we provide more details about the structure of the emotion
detection datasets and the outcomes of our experiments. Particularly, we show
results for several embedding methods and three prediction models. For each
model, we tune the parameters to detect the best setup for each dataset. In the
end, we compare all considered models and define the most suitable one based
on test datasets.

5.1.1 Datasets and task
As was mentioned in Section 2.1.1, we used SemEval 2018 Task 1: Affect in
Tweets for English by [93] as an example of an emotion detection task. The data
for this competition was collected using the Twitter API with a vocabulary of
keyword hashtags related to different emotions (for example, “annoyed”, “panic”,
“happy”, etc.).

We considered subtask EI-oc, which represents an emotion intensity ordinal
classification problem for English. Tweets for this task are labelled with four

39

Chapter 5. Application 1: emotion recognition

emotion intensity scores for four different emotions: anger, sadness, joy, and
fear. Each intensity score (or simply a class) represents a level of emotional
intensity: 0 stands for “no emotion can be inferred”, 1 corresponds to “low
amount of emotion can be inferred”, 2 means “moderate amount of emotion can
be inferred”, and 3 - “high amount of emotion can be inferred”. For each emotion,
the training, development, and test datasets were provided in the framework of
the SemEval 2018 competition. As was mentioned in Section 4.5, we merged the
training and development datasets to train our model with 5-fold CV.

We also explored some characteristics of the datasets and presented them in
Table 5.1. One of the characteristics is the class imbalance. It is quantified by
the IR, which is equal to the ratio of the sizes of the largest and the smallest
classes in the dataset.

Table 5.1: Characteristics of the training data for the four emotion datasets.

Characteristic Anger Joy Sadness Fear
IR 1.677 1.47 2.2 8.04
Total number of instances 2,089 1,906 1,930 2,641

Table 5.1 shows that the Fear dataset is the biggest and the most imbalanced.
Meanwhile, the three other datasets (Anger, Joy, and Sadness) have similar sizes
and IR scores, with Joy being the most balanced dataset among them.

5.1.2 The baseline
Before proceeding with more advanced embedding methods and FRNN-based
methods, we first conducted baseline experiments in which we used BOW and
Bag of N-grams with weighted kNN for each dataset.

From our experiments with tuning such a baseline, we can draw several con-
clusions. First of all, as we discussed in Section 3.2.1, for each dataset, we obtain
a huge corpus of unique words and unique N-grams, which leads to a sparse
embedding vector representation for each instance, takes a lot of the system’s
memory, and slows down the experiments. As we saw from our calculation, there
is no sense to go deeper than 3-grams, which already provides pretty low scores.
Hence, we will consider 1-gram (all unique words), 2-grams (unique collocation
of two words), and 3-grams (unique collocation of three words).

Another observation is that the considered setups provided such low scores,
that fine-tuning of the text preprocessing technique or the number of neighbours
k did not change the situation. Because of that, we will provide scores for the
same setup for each dataset, where the number of neighbours k is equal to 23,
and the standard text cleaning (Section 3.1) with lower-casing was performed.
Our results for the emotion datasets are presented in Table 5.2. To calculate the
Bag of N-grams, we used the function CountVectorizer from the Scikit-Learn1.

1https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.
text.CountVectorizer.html

40

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

Chapter 5. Application 1: emotion recognition

Table 5.2: PCC scores for a Bag of N-grams (with N=1,2,3) and the wkNN
model applied to the four emotion datasets.

N-gram size Anger Joy Sadness Fear

1 0.0230 0.1826 0.1482 0.1258
2 -0.0106 -0.0187 0.0677 0.0677
3 -0.0091 -0.0047 0.0239 0.0239

As we can see from Table 5.2, such approach provides very weak results for
each dataset. As a pattern for all of them, we can notice that the 1-gram solution,
in other words, BOW, performed better than any Bag of N-grams. Hence, we
will consider it as our baseline.

5.1.3 Model tuning
First, we select the best text preprocessing approach for each dataset-embedding
combination by performing 5-fold CV on the training data with the same k
values for each preprocessing option (raw, cleaned, and without stop words),
using the PCC metric. We also investigate how lexicons perform on their own
and in combination with embedding models. As RoBERTa-based model, we used
Twitter-RoBERTa-base for Emotion Recognition2 (further “RoBERTa”) by [11].

Before we dive into each model, let us take a look at the time performance
for each embedding method. As an example, we take the Anger dataset and
apply each embedding approach to its original tweets without spending time on
preprocessing. As we mentioned in Table 5.1, the size of the Anger dataset is
2,089 instances. In Table 5.3, we show how much time in seconds it takes for
each embedding method to encode this amount of tweets. We also provide the
average time performance for one tweet and the size of the produced embedding
vector for each instance. We ran our experiments in Jupyter Notebook with
the Python 3 environment. For time measurements, we used the time3 Python
package.

In Table 5.3, we listed the embedding approaches by the size of the out-
put vector for one tweet, from the biggest to the smallest one. As we can see,
the three BERT-based methods (RoBERTa, BERT-Base, and SBERT) have the
same output size, with DeepMoji being the biggest and Word2Vec the smallest.
Meanwhile, Word2Vec is also the fastest embedding approach; however, we can-
not see the same pattern of time-size connection for other methods. Particularly,
BERT-based methods have quite different speeds, while DeepMoji has a vector
size three times bigger and is much faster than any of them. Hence, we can
suggest that the real reason behind the performance speed is the size and nature
of the embedding model itself.

2https://huggingface.co/cardiffnlp/twitter-roberta-base-emotion
3https://docs.python.org/3/library/time.html

41

https://huggingface.co/cardiffnlp/twitter-roberta-base-emotion
https://docs.python.org/3/library/time.html

Chapter 5. Application 1: emotion recognition

For example, while the fastest method, Word2Vec, is basically a pre-loaded
dictionary of words and their encodings, the slowest model RoBERTa is a fine-
tuned transformer, which we run and intercept to extract encoding vectors.

Table 5.3: Time of Anger dataset encoding with various embedding methods.

Embedding
Time (sec),

dataset
Avg time (sec),

instance
Size of

embedding
DeepMoji 38.53 0.018 2304
RoBERTa 1285.63 0.615 768
BERT 149.05 0.071 768
SBERT 80.48 0.038 768
USE 232.52 0.111 512
Word2Vec 8.37 0.004 300

Regarding the data preprocessing techniques that we will apply to the
datasets in the next step, it actually takes a minor amount of time. Particu-
larly, applying our basic text cleaning function (Figure 3.1.b) to the whole Anger
dataset will take approximately 0.001 seconds. In case we add a stop-words re-
moval step (Figure 3.1.c), this process will take 0.0015 seconds. Compared to
the time needed for each embedding to encode the whole dataset, the difference
is huge.

In general, we observe the same pattern for all datasets. Hence, we will not
provide analogous measurements for the datasets in Section 5.2 and Section 6.

Classification models: the weighted kNN

For the wkNN, at the first step, we calculated the PCC for different preprocessing
versions for each emotion dataset and each embedding with different amounts
of neighbours. These values and the resulting PCC for the optimal setup are
shown in Table 5.4.

We can observe that stop word cleaning only improved results for the
Word2Vec embedding and that for the RoBERTa-based model, it mostly makes
sense to use the raw tweets. Also, among the different embeddings, RoBERTa
obtains the highest results for all four datasets. DeepMoji provides the second-
best results for all datasets as well. This can be explained by the fact that both
RoBERTa-based and DeepMoji embeddings are explicitly trained on emotion
datasets. The next best results are provided by SBERT and USE models, while
the two remaining embeddings (basic BERT and Word2Vec) lag considerably.
We also can notice that Fear received the lowest scores for all models, which we
conjecture is related to the imbalanced nature of this dataset.

In the second step, we discuss our experiments of joining the previously iden-
tified best setups of the embedding methods with emotion lexicons, using the
different combination strategies outlined in Section 3.3. Initially, we evaluated
models based purely on lexicons. The goal here is to check the intrinsic classifi-
cation strength of each lexicon and of the lexicon-based approach as a whole.

42

Chapter 5. Application 1: emotion recognition

Table 5.4: PCC scores for the best setup for each emotion dataset for different
embeddings with the wkNN model.

Setup Anger Joy Sadness Fear
Twitter-RoBERTa-base

Tweet preprocessing No No No Yes
Stop word cleaning No No No No
Number of neighbours 19 13 9 11
PCC 0.6544 0.6855 0.6966 0.5811

DeepMoji
Tweet preprocessing Yes Yes Yes Yes
Stop word cleaning No No No No
Number of neighbours 11 21 13 13
PCC 0.5605 0.6157 0.6456 0.5492

BERT
Tweet preprocessing No Yes Yes Yes
Stop word cleaning No No No Yes
Number of neighbours 25 21 21 9
PCC 0.4011 0.4861 0.4269 0.2842

SBERT
Tweet preprocessing Yes Yes Yes Yes
Stop word cleaning Yes No No No
Number of neighbours 19 9 21 13
PCC 0.5046 0.5218 0.5201 0.4396

USE
Tweet preprocessing No Yes Yes No
Stop word cleaning No No No No
Number of neighbours 23 21 19 11
PCC 0.5028 0.5421 0.5929 0.5236

Word2Vec
Tweet preprocessing Yes Yes Yes Yes
Stop word cleaning Yes Yes Yes Yes
The number of neighbours 13 23 21 13
PCC 0.3311 0.3550 0.3764 0.3805

It is important to note that we use lexicons without handling negation or
intensifier techniques. While those methods are meaningful for polarity predic-
tion, they do not make much sense for our experiments since, for the target word,
each considered lexicon presents a scalar value in different ranges for multiple
emotions, so the negation or intensifiers process is not clear for this case. As
was mentioned before, each lexicon works as a dictionary: if a word is present
in the lexicon, it receives a particular score; in the other case, it is assigned a
zero. For lexicons with several scores per word, we take all of them.

To obtain the lexicon score for a full tweet, we compute the mean of its
words’ scores. For each of the five lexicons, the output is saved as a separate
vector. The sixth vector is constructed by combining all lexicons’ scores. For
each vector, we applied a wkNN classification model, with initially the same

43

Chapter 5. Application 1: emotion recognition

number of neighbours for all datasets k=23. Results are presented in Table 5.5.

Table 5.5: PCC scored for the lexicon-based features for the wkNN.

Lexicon Anger Joy Sadness Fear

NRC VAD 0.1172 0.1626 0.0646 0.0650
EMOLEX 0.1142 0.1314 0.1221 0.1116
AI 0.0946 0.1587 0.2081 0.0938
ANEW 0.0701 0.0907 0.1021 0.0051
Warriner’s 0.0460 0.1306 0.0885 0.0804
Combined 0.0789 0.1302 0.0844 0.0684

We can observe that the NRC VAD lexicon is the best-performing lexicon for
two out of the four datasets. Also, in general, the scores obtained by the wkNN
model using lexicon-based features are much lower than the ones obtained with
embedding models. That could be predictable since the vector produced by a
lexicon is rather short and contains less information, which is based on particular
words, than an embedding method that takes into account the full text.

Next, for each emotion dataset and its best-performing lexicon, the best k
value was detected. Results are presented in Table 5.6. As we can see, for
different datasets, different values of k perform better and obtained scores are
lower than the ones obtained by embedding models.

Table 5.6: PCC scores for the best setup for each emotion dataset for different
lexicon-based feature vectors with the wkNN model.

Dataset Lexicon k value PCC

Anger NRC VAD 29 0.1412
Joy NRC VAD 31 0.1815
Sadness AI 27 0.2178
Fear EMOLEX 9 0.1732

In the third step, we combine embedding and lexicon features by merging
their vectors into one. The embedding and lexicon scores are normalized to
values between 0 and 1 to account for ranges differences. To obtain the vector
of a tweet, we take the average of all vectors of its words. Table 5.7 presents
obtained results, and the previous ones using none of the lexicons to check the
appending strategy’s added value.

As can be seen, for half of the experiments, the use of lexicons does not im-
prove the PCC value. In the cases where scores were improved, we can notice
that the difference with the standalone embedding score is minor. We also can
notice that one of the weakest models (BERT) benefited most from the added
lexicon information, although the improvement is still marginal. In general,

44

Chapter 5. Application 1: emotion recognition

Table 5.7: PCC scores for the lexicon combination approach with wkNN.

Lexicon Anger Joy Sadness Fear
Twitter-RoBERTa-base

NRC VAD 0.6559 0.6879 0.6969 0.5444
EMOLEX 0.6555 0.6864 0.6971 0.5475
AI 0.6556 0.6854 0.6966 0.5483
ANEW 0.6539 0.6851 0.6963 0.5459
Warriner 0.6552 0.6855 0.6968 0.5471
None 0.6544 0.6855 0.6966 0.5811

DeepMoji
NRC VAD 0.5514 0.6018 0.5286 0.4409
EMOLEX 0.5586 0.6086 0.5467 0.4519
AI 0.5562 0.6169 0.5364 0.4586
ANEW 0.5533 0.6187 0.5418 0.4562
Warriner 0.5520 0.6178 0.5335 0.4526
None 0.5605 0.6157 0.6456 0.5492

BERT
NRC VAD 0.4007 0.5044 0.4292 0.3780
EMOLEX 0.4033 0.5038 0.4243 0.3785
AI 0.3993 0.5069 0.4346 0.3797
ANEW 0.4061 0.5043 0.4255 0.3825
Warriner 0.4011 0.5041 0.4281 0.3843
None 0.4011 0.4861 0.4269 0.2842

SBERT
NRC VAD 0.4738 0.5197 0.5352 0.4005
EMOLEX 0.4736 0.5178 0.5331 0.4013
AI 0.4741 0.5203 0.5373 0.3996
ANEW 0.4728 0.5215 0.5373 0.3997
Warriner 0.4736 0.5217 0.5386 0.3994
None 0.5046 0.5218 0.5201 0.4396

USE
NRC VAD 0.5178 0.5306 0.6074 0.5052
EMOLEX 0.5141 0.5175 0.6043 0.5238
AI 0.5125 0.5284 0.6185 0.5319
ANEW 0.5063 0.5300 0.6065 0.5131
Warriner 0.5042 0.5331 0.6075 0.5234
None 0.5028 0.5421 0.5929 0.5236

Word2Vec
NRC VAD 0.2135 0.3214 0.2109 0.3284
EMOLEX 0.2152 0.3443 0.2345 0.3233
AI 0.2038 0.3556 0.2182 0.3379
ANEW 0.1799 0.3232 0.2020 0.3353
Warriner 0.1823 0.3378 0.2040 0.3315
None 0.3311 0.3550 0.3764 0.3805

when some lexicons improved results, they were different for different datasets,
with no noticeable pattern to detect the best lexicon for all models. Our hy-
pothesis why adding the emotion lexicon information to the embedding vectors
does not improve the classification performance is that the overlap of the lexicon
dictionary and the tweets dataset is too small, which leads to a sparse lexicon

45

Chapter 5. Application 1: emotion recognition

embedding representation. If we compare the best lexicons from Table 5.7 with
the best ones from Table 5.6, we can see that they are different.

Hence, we can say that role of lexicons, in this case, is rather weak, and the
main contribution to the scores is made by embedding models.

Classification models: FRNN-OWA

For the FRNN-OWA approach, we perform the same steps as for the wkNN.

Table 5.8: Optimal FRNN-OWA classification setup (preprocessing, number of
neighbours k) and corresponding PCC score per embedding for the emotion
datasets.

Setup Anger Joy Sadness Fear
Twitter-RoBERTa-base

Tweet preprocessing Yes Yes Yes Yes
Stop word cleaning No No No No
k value 19 9 23 9
PCC 0.6749 0.6845 0.6917 0.6037

DeepMoji
Tweet preprocessing No No Yes Yes
Stop word cleaning No No No No
k value 23 19 23 21
PCC 0.5701 0.6342 0.6699 0.6005

BERT
Tweet preprocessing No No No No
Stop word cleaning No No No No
k value 19 17 23 7
PCC 0.4405 0.5243 0.4563 0.4306

SBERT
Tweet preprocessing Yes Yes Yes Yes
Stop word cleaning No No No No
k value 19 15 23 11
PCC 0.5124 0.5530 0.5372 0.5095

USE
Tweet preprocessing Yes Yes Yes Yes
Stop word cleaning No No No No
k value 23 23 23 21
PCC 0.4973 0.5573 0.5988 0.5531

Word2Vec
Tweet preprocessing Yes Yes Yes Yes
Stop word cleaning Yes Yes Yes Yes
k value 27 23 23 7
PCC 0.4093 0.4497 0.4601 0.4073

First, we evaluate the best setup for each embedding-dataset combination
and provide results in Table 5.8, where we can immediately observe that the
RoBERTa-based embedding method provides superior results to the others on
all datasets. DeepMoji, again is the second-best embedding for all datasets,
followed by SBERT and USE. The lowest scores are obtained for Word2Vec and
BERT. Also, PCC scores for Fear are often the lowest among the emotions,

46

Chapter 5. Application 1: emotion recognition

which, as in the previous approach, may be due to the fact that this dataset
is the most imbalanced. We should note that some embeddings mostly do not
require any preprocessing, like DeepMoji and BERT. For the other methods,
tweet cleaning generally performed better, while only Word2Vec benefits from
stop word removal. The optimal value of k varies between methods and datasets,
while for Fear, lower values of k are more often an optimal choice, which may
again be linked to the imbalance of this dataset. In other words, when for a Fear
test instance we take too many neighbours from the training data to make a
prediction, at some point, we will receive too many instances from the dominant
class. However, this is not because those samples are really close to the target
test instance, but rather because there will not be enough proper neighbours
from other classes. In this way, the small number k keeps only the most relevant
neighbours for the final prediction making. In general, scores of FRNN-OWA
and wkNN seem close; however, FRNN-OWA obtained higher results for the
most imbalanced dataset - Fear.

Next, for each dataset, we performed an evaluation on the single lexicons
(Table 5.9) and with a fine-tuned k for the best one (Table 5.10).

Table 5.9: PCC scored for the lexicon-based features for the FRNN-OWA.

Lexicon Anger Joy Sadness Fear

NRC VAD 0.1595 0.1657 0.1513 0.0859
EMOLEX 0.1357 0.1155 0.1113 0.1594
AI 0.1411 0.1686 0.2073 0.0404
ANEW 0.1093 0.1421 0.1136 0.1105
Warriner’s 0.1896 0.2092 0.1708 0.1170
Combined 0.1914 0.2387 0.1830 0.0995

Table 5.10: PCC scores for the best setup for each emotion dataset for different
lexicon-based feature vectors with the FRNN-OWA model.

Dataset Lexicon k value PCC

Anger Combined 9 0.2317
Joy Combined 25 0.2387
Sadness AI 23 0.2073
Fear EMOLEX 7 0.1948

The combined vector performed better for the two datasets. These scores
are lower than those obtained with standalone embeddings. Comparing with
the setups obtained with wkNN (Table 5.6), we can see that we received higher
scores for Anger, Joy, and Fear with FRNN-OWA. Also, for Sadness and Fear,
the same lexicon became the best one.

47

Chapter 5. Application 1: emotion recognition

Table 5.11: PCC scores for the lexicon combination with FRNN-OWA.

Lexicon Anger Joy Sadness Fear
Twitter-RoBERTa-base

NRC VAD 0.6618 0.6826 0.6989 0.5718
EMOLEX 0.6631 0.6830 0.6986 0.5701
AI 0.6627 0.6831 0.6986 0.5698
ANEW 0.6627 0.6831 0.6983 0.5715
Warriner 0.6627 0.6831 0.6986 0.5701
None 0.6749 0.6845 0.6917 0.6037

DeepMoji
NRC VAD 0.5473 0.6185 0.5434 0.4872
EMOLEX 0.5468 0.6061 0.5473 0.4916
AI 0.5585 0.6123 0.5392 0.4782
ANEW 0.5544 0.6119 0.5422 0.4792
Warriner 0.5495 0.6143 0.5466 0.4764
None 0.5701 0.6342 0.6699 0.6005

BERT
NRC VAD 0.4159 0.5104 0.4326 0.4313
EMOLEX 0.4163 0.5106 0.4353 0.4373
AI 0.4169 0.5115 0.4325 0.4340
ANEW 0.4178 0.5108 0.4292 0.4344
Warriner 0.4168 0.5099 0.4302 0.4340
None 0.4405 0.5243 0.4563 0.4306

SBERT
NRC VAD 0.4806 0.5474 0.5148 0.4792
EMOLEX 0.4814 0.5484 0.5167 0.4792
AI 0.4814 0.5484 0.5163 0.4769
ANEW 0.4822 0.5485 0.5159 0.4746
Warriner 0.4821 0.5484 0.5166 0.4746
None 0.5124 0.5530 0.5372 0.5095

USE
NRC VAD 0.4740 0.5102 0.5441 0.5118
EMOLEX 0.4798 0.5237 0.5617 0.5282
AI 0.4859 0.5138 0.5608 0.5251
ANEW 0.4862 0.5280 0.5532 0.5146
Warriner 0.4876 0.5094 0.5476 0.5218
None 0.4973 0.5573 0.5988 0.5531

Word2Vec
NRC VAD 0.2887 0.4232 0.2735 0.3343
EMOLEX 0.3015 0.4467 0.2873 0.3409
AI 0.2956 0.4479 0.2923 0.3452
ANEW 0.2654 0.4330 0.2614 0.3375
Warriner 0.2822 0.4288 0.2714 0.3319
None 0.4093 0.4497 0.4601 0.4073

In the next step, we combined embeddings with lexicons and presented these
results in Table 5.11. We can see that for the majority of cases, lexicons did not
improve the PCC scores, especially for one of the best embeddings, DeepMoji,
which does not have a single setup that was improved. This conclusion is also
true for SBERT, USE, and Word2Vec.

48

Chapter 5. Application 1: emotion recognition

In a couple of cases that benefited from lexicons, the scores’ increases were
minor.

Regression models

For the FRNN regression, we perform the same steps. Firstly, we evaluate the
best setup for each dataset and each embedding (Table 5.12).

Table 5.12: Optimal FRNN regression setup (preprocessing, number of neigh-
bours k) and corresponding PCC score per embedding for the emotion datasets.

Setup Anger Joy Sadness Fear
Twitter-RoBERTa-base

Tweet preprocessing Yes Yes No Yes
Stop word cleaning No No No No
k value 23 15 19 7
PCC 0.6945 0.7059 0.7207 0.6179

DeepMoji
Tweet preprocessing Yes Yes Yes Yes
Stop word cleaning No No No No
k value 27 23 23 17
PCC 0.6280 0.6369 0.6582 0.6134

BERT
Tweet preprocessing Yes Yes Yes Yes
Stop word cleaning No No No No
k value 13 19 19 5
PCC 0.4468 0.5228 0.4640 0.4321

SBERT
Tweet preprocessing Yes No Yes Yes
Stop word cleaning Yes No No No
k value 11 17 7 19
PCC 0.5058 0.5356 0.5332 0.4773

USE
Tweet preprocessing No Yes No Yes
Stop word cleaning No No No No
k value 29 13 29 11
PCC 0.5367 0.5749 0.6378 0.5633

Word2Vec
Tweet preprocessing Yes Yes Yes Yes
Stop word cleaning Yes No Yes Yes
k value 21 9 29 5
PCC 0.4155 0.4589 0.4650 0.4207

We can notice that for most embeddings, the results slightly improve those
obtained with wkNN and FRNN-OWA methods. Concerning the differences
between embeddings, we observe similar trends as for wkNN and FRNN-OWA
classifications: the best results are obtained for RoBERTa, with DeepMoji as
the second, followed by SBERT and USE. BERT and Word2Vec are again
underperforming by comparison. The optimal preprocessing options also vary a
bit, with tweet cleaning now proving beneficial in the majority of cases.

49

Chapter 5. Application 1: emotion recognition

We also evaluated the lexicons’ performance on their own (Table 5.13) to
define the best lexicon and its best parameter k for each dataset (Table 5.14).

Table 5.13: PCC scored for the lexicon-based features for the FRNN regression.

Lexicon Anger Joy Sadness Fear

NRC VAD 0.0949 0.1971 0.1112 0.0972
EMOLEX 0.1217 0.1296 0.0851 0.0979
AI 0.0819 0.1443 0.1778 0.1437
ANEW 0.0375 0.1321 0.1040 0.0410
Warriner’s 0.1221 0.2107 0.1401 0.0600
Combined 0.1478 0.1724 0.1169 0.0336

We can observe that the AI lexicon is the best for two datasets out of four,
with no other significant pattern to notice. If we compare the scores from Table
5.14 with similar ones from Tables 5.6 and 5.10, we can see that the regression
approach mostly performs worse than both classification methods. Another ob-
servation is that for the Sadness dataset, for all three models, the best-performing
lexicon was the same, particularly, the AI lexicon.

Table 5.14: PCC scores for the best setup for each emotion dataset for different
lexicon-based feature vectors with the FRNN regression model.

Dataset Lexicon k value PCC

Anger Combined 21 0.1494
Joy Warriner’s 5 0.2492
Sadness AI 19 0.1861
Fear AI 15 0.1644

Finally, we combined embeddings with lexicons for each dataset (Table 5.15).
Lexicons improve PCC scores only for one dataset-embedding pair out of twenty-
four; even there, the increase is minor.

The biggest drop in scores for lexicon usage was observed for the Word2Vec
and DeepMoji embeddings, while for others, the difference is not significant.
Regarding the comparison with wkNN and FRNN-OWA classification results,
we can see that theFRNN regression best scores for each dataset-embedding pair
from Table 5.15 are a bit better than the corresponding scores from Tables 5.7
and 5.15 for the majority of cases.

As we can see from the presented results, so far, lexicons have provided quite
low results for all classification and regression approaches.

50

Chapter 5. Application 1: emotion recognition

Table 5.15: PCC for the lexicon combination with FRNN regression.

Lexicon Anger Joy Sadness Fear
Twitter-RoBERTa-base

NRC VAD 0.6801 0.6939 0.7191 0.5881
EMOLEX 0.6802 0.6951 0.7197 0.5885
AI 0.6805 0.6952 0.7187 0.5886
ANEW 0.6798 0.6953 0.7185 0.5888
Warriner 0.6801 0.6952 0.7181 0.5876
None 0.6945 0.7059 0.7207 0.6179

DeepMoji
NRC VAD 0.5556 0.5921 0.5513 0.5032
EMOLEX 0.5687 0.5964 0.5471 0.4975
AI 0.5648 0.5947 0.5513 0.4928
ANEW 0.5636 0.5996 0.5440 0.4886
Warriner 0.5623 0.5948 0.5473 0.4889
None 0.6280 0.6369 0.6582 0.6134

BERT
NRC VAD 0.3897 0.5169 0.4275 0.4363
EMOLEX 0.3958 0.5182 0.4316 0.4390
AI 0.3969 0.5193 0.4332 0.4405
ANEW 0.3964 0.5208 0.4310 0.4386
Warriner 0.3925 0.5216 0.4328 0.4409
None 0.4468 0.5228 0.4640 0.4321

SBERT
NRC VAD 0.4606 0.5230 0.5195 0.4679
EMOLEX 0.4596 0.5236 0.5172 0.4709
AI 0.4578 0.5213 0.5184 0.4715
ANEW 0.4577 0.5217 0.5187 0.4714
Warriner 0.4577 0.5204 0.5185 0.4708
None 0.5058 0.5356 0.5332 0.4773

USE
NRC VAD 0.4988 0.5210 0.6220 0.5239
EMOLEX 0.4966 0.5314 0.6194 0.5415
AI 0.5104 0.5382 0.6339 0.5394
ANEW 0.5023 0.5088 0.6210 0.5337
Warriner 0.5109 0.5235 0.6278 0.5395
None 0.5367 0.5749 0.6378 0.5633

Word2Vec
NRC VAD 0.1909 0.3314 0.2663 0.2265
EMOLEX 0.1984 0.3493 0.2302 0.2584
AI 0.2002 0.3615 0.2474 0.2564
ANEW 0.1800 0.3285 0.2318 0.2555
Warriner 0.1832 0.3605 0.2334 0.2607
None 0.4155 0.4589 0.4650 0.4207

Sensitivity of parameter k

It is interesting to examine the sensitivity of parameter k, which represents the
number of neighbours that will be considered in the similarity relationship, as
there is no universal rule for choosing the best value.

51

Chapter 5. Application 1: emotion recognition

Hence, we performed such exploration for the RoBERTa embedding for three
prediction models we consider and all four emotion datasets (Figure 5.1).

(a) For wkNN. (b) For FRNN-OWA.

(c) For FRNN regression.

Figure 5.1: Sensitivity analysis of k parameter for three different models and
four datasets with RoBERTa embedding.

From Figure 5.1, we can see that tuning of the parameter k can improve
PCC scores for all suggested cases but not drastically. We also notice that
there is no significant difference among predicting methods. However, for the
Fear dataset, a smaller amount of k usually performs better, as was observed
previously. Meanwhile, for the Anger dataset, it is often the opposite case.

5.1.4 Ensemble of models
In the next step, we consider an ensemble of several best models tuned in the
previous step. To define the best ensemble for each prediction model, we evaluate
the usefulness of confidence scores, the best subset of embeddings to use, and
whether lexicons can improve these results.

Classification models: weighted kNN

The first ensemble that we tried for the wkNN model combines all classifiers
based on embedding methods that we considered in Table 5.4. We trained
a model for each vector separately with the best k value and the best tweet

52

Chapter 5. Application 1: emotion recognition

preprocessing pipeline described in Table 5.4. Table 5.16 shows the results,
using first the standard mean as a voting function (in other words, attributing
equal importance to each classifier) and then the weighted average involving
rescaled confidence scores as defined in Eq. (4.9). For the latter approach, the
α parameter was tuned by a grid search and its optimal values for each data set
are also included in the table.

Table 5.16: PCC scores for an ensemble of six wkNN methods with different
embeddings, using two different voting functions.

Setup Anger Joy Sadness Fear
Standard 0.6574 0.6968 0.7187 0.6329
mean
Conf. scores 0.6293 0.6716 0.7018 0.5341
tuned α α = 0.9 α = 0.9 α = 0.9 α = 0.1

We can see that a regular label-based solution with the standard mean voting
function works best for all datasets. Next, we aim to improve this ensemble of
all six embeddings with the standard mean that appears to be the best setup
(marked as #1) by combining it with lexicon vectors in Table 5.17. In this table,
we list the setup of each ensemble (all models that are included), its size (number
of models that we are using), and PCC scores for all four emotion datasets. In
the first setup, for each dataset, we took the best-performing lexicon from Table
5.6 and added it as a separate classifier to the baseline ensemble (#2). For
comparison, we also consider a setup where all five lexicons and their combination
are added as six more classifiers to check how each of them influences the output
scores (#3). The obtained results, shown in the second and third lines of Table
5.17, illustrate that, in general, the lexicons are unable to improve the baseline
and that adding all lexicons takes the scores down.

Given that the RoBERTa-based method performs the best among all embed-
dings (Table 5.4) and that it benefits from the lexicon appending strategy for
two datasets out of four (Table 5.7), we also consider two additional setups. One
extends the baseline (#1) with the lexicon-appended RoBERTa classifier (#4).
Another one adds the best lexicon to the previous ensemble (#5).

These approaches’ results are presented in the fourth and fifth lines of Table
5.17. We can see that these adjustments improve the scores noticeably. For all
emotion datasets, the #4 setup performs best, where we combine all embeddings
with RoBERTa merged with the best lexicon (different for each dataset).

To explore the success of the setup #4, we aimed to perform analogical
experiments for each dataset. In setup #6, we keep all embedding models but
replace the last model, which is based on the RoBERTa vector merged with the
best lexicon, with the regular RoBERTa model. Basically, in this setup, we are
considering the RoBERTa model twice and all other embeddings one time and
do not consider any lexicon at all. All discussed results are provided in Table
5.18.

53

Chapter 5. Application 1: emotion recognition

Table 5.17: PCC scores for the ensemble approach with different feature combi-
nations for all emotion datasets with wkNN method.

Setup of ensemble Size Anger Joy Sadness Fear
1 All embedding vectors 6 0.6574 0.6968 0.7187 0.6329
2 #1 plus the best lexicon 7 0.6353 0.6817 0.7055 0.6203

3
#1 plus all five lexicons
and their combination 12 0.5432 0.6099 0.6165 0.5333

4

#1 plus the best
embedding merged

with the best lexicon 7 0.6811 0.7171 0.7252 0.6521

5

#1 plus the best
lexicon and the best
embedding merged

with the best lexicon 8 0.6483 0.7046 0.7213 0.6425

From Table 5.18 we can see that for all datasets, setup #4 outperformed
#6, but the difference is imperceptible. Meanwhile, for the Anger and Sadness
datasets, the compared scores are basically the same.

Table 5.18: PCC scores for the best wkNN setup and its modification without
the usage of lexicons.

Setup of ensemble Anger Joy Sadness Fear

#4
#1 plus roBERTa merged

with the best lexicon 0.6811 0.7171 0.7252 0.6521

#6
#1 plus roBERTa

with the same setup 0.6811 0.7146 0.7252 0.6514

For these results, we can conclude that setup #4 outperforms all other so-
lutions for wkNN that includes lexicons from Table 5.17 because it uses the
RoBERTa model twice (one regular and a second one in combination with lexi-
cons). Those outcomes confirm one more time that lexicons do not seem to bring
any additional information to the information already present in the embedding
vectors and that RoBERTa remains the strongest embedding model. We will
not use triple or more weights to the results of the RoBERTa model to avoid
overfitting.

We also used grid search to identify the best subset of embeddings, with the
hypothesis that by reducing the amount of weaker embeddings in the ensemble,
we can improve its outcomes. We calculate the PCC score for all combinations
of embeddings with the size of each subset between two and five models. The
results for the best subsets for each emotion dataset are provided in Table 5.19.
As we can see, each best subset includes RoBERTa and DeepMoji models.

54

Chapter 5. Application 1: emotion recognition

The obtained for the best subsets scores are higher than for ensembles of all
six embeddings (setup #1 from Table 5.17), but also they are lower than setup
#4.

Table 5.19: PCC scores of the best subsets of embedding models for wkNN
classification ensemble for the emotion datasets.

Dataset Setup PCC
Anger RoBERTa, DeepMoji, SBERT, USE 0.6808
Joy RoBERTa, DeepMoji, SBERT 0.7167
Sadness RoBERTa, DeepMoji, BERT, USE, Word2Vec 0.7051
Fear RoBERTa, DeepMoji, BERT, USE 0.6246

Therefore, we consider setup #4 from Table 5.17 the best solution for each
emotion dataset for the wkNN classification model, which will later be applied
to the test dataset.

Classification models: FRNN-OWA

Similarly to wkNN, we used six FRNN-OWA classifiers corresponding to the six
embedding methods outlined before with the best setups in Table 5.8. Table
5.20 shows the results, where we performed an evaluation for both label-based
(marked as “standard mean”) and confidence scores-based (with corresponding
α parameter) approaches.

Table 5.20: PCC scores for an ensemble of six FRNN-OWA methods with dif-
ferent embeddings using two different voting functions.

Setup Anger Joy Sadness Fear
Standard mean 0.6475 0.7126 0.7152 0.6448
Conf. scores 0.6381 0.6823 0.6931 0.5776
tuned α α = 0.3 α = 0.1 α = 0.1 α = 0.3

From Table 5.20, we can see that for all datasets, similarly to the wkNN, the
weighted average voting function with confident scores performed worse than
the standard mean. We also notice for all emotion datasets, the ensemble out-
performs the use of a single classifier.

To improve the ensemble of all six embedding models (#1), we again consid-
ered the usage of lexicons. Results are provided in Table 5.21. Similarly to the
wkNN, in Table 5.21 we tried to expand the baseline ensemble of six embeddings
(#1) with the best lexicon vector from Table 5.10 (#2), with all lexicons and
their combination (#3), with the best embedding merged with the best lexicon
(#4), and with a combination of #2 and #4 (#5). We can see that approaches
#1 and #2 are very close, showing another time that the addition of the single
best lexicon does not influence the score much. However, it did help Sadness

55

Chapter 5. Application 1: emotion recognition

Table 5.21: PCC scores for the ensemble approach with different feature combi-
nations for all emotion datasets with FRNN-OWA method.

Setup of ensemble Size Anger Joy Sadness Fear
1 All embedding vectors 6 0.6475 0.7126 0.7152 0.6448
2 #1 plus the best lexicon 7 0.6415 0.7118 0.7214 0.6307

3
#1 plus all five lexicons
and their combination 12 0.6079 0.6724 0.6569 0.6333

4

#1 plus the best
embedding merged

with the best lexicon 7 0.7088 0.7685 0.7515 0.6467

5

#1 plus the best lexicon
and the best embedding

merged with the best lexicon 8 0.6938 0.7603 0.7516 0.6623

and Fear datasets obtain slightly better results with the #5 approach, compared
with the #4 method, which was the best for Anger and Joy.

To improve these results, we also consider ensembles constructed with a
subset of embeddings, using a grid search to identify the optimal setup. In
contrast to the results of wkNN, for the FRNN-OWA, we received higher scores
with some subsets than for the full ensembles for each dataset, and we provide
the best subsets in Table 5.22. Noticeably, RoBERTa, DeepMoji, and USE
are common embeddings for each dataset’s best setup, while the other one-two
embeddings left can vary.

Table 5.22: PCC scores of the best subsets of embedding models for FRNN-
OWA classification ensemble for the emotion datasets.

Dataset Setup PCC
Anger RoBERTa, DeepMoji, BERT, USE, Word2Vec 0.7241
Joy RoBERTa, DeepMoji, USE, SBERT, BERT 0.7788
Sadness RoBERTa, DeepMoji, USE, SBERT 0.7719
Fear RoBERTa, DeepMoji, USE, Word2Vec, SBERT 0.6930

We can see that subsets’ scores in Table 5.22 are higher than the best setups
#4 and #5 from Table 5.21. To evaluate how the addition of lexicons can or
cannot improve the subset-based setups, we performed experiments similar to
the ones done for wkNN in Table 5.18, as well as those in Table 5.19, i.e., trying
to remove some of the weakest performing embeddings. Hence, for each ensemble
in Table 5.22, we considered the analogous setup, where RoBERTa was replaced
by RoBERTa merged the best lexicon. The obtained scores were very close to
the original ones, with the same minimal difference as was presented in Table
5.18. Hence, for the FRNN-OWA method, lexicons did not improve the best

56

Chapter 5. Application 1: emotion recognition

setups.
We can conclude that the best setups for the emotions datasets with FRNN-

OWA require four to five embeddings to provide the best results and that the
usage of lexicons does not improve it.

Regression models

Since we do not have confidence scores for the regression models, we skip the
step with α parameter tuning and proceed directly to the combination of an
ensemble of all embedding with lexicon vectors.

We use here the same four improvements of the baseline approach (#1) as
we did for the wkNN and FRNN-OWA methods: with the best lexicon (#2),
with all lexicons (#3), with the best embedding merged with the best lexicon
alone (#4) or with the additional best lexicon vector (#5). The obtained results
are listed in Table 5.23.

Table 5.23: PCC scores of the best subsets of embedding models for FRNN
regression ensemble for the emotion datasets.

Setup of ensemble Size Anger Joy Sadness Fear
1 All embedding vectors 6 0.6318 0.6814 0.6940 0.5743
2 #1 plus the best lexicon 7 0.6188 0.6853 0.6853 0.5572

3
#1 plus all five lexicons
and their combination 12 0.6061 0.6222 0.6295 0.3804

4

#1 plus the best
embedding merged

with the best lexicon 7 0.6425 0.6826 0.7033 0.6002

5

#1 plus the best
lexicon and the best
embedding merged

with the best lexicon 8 0.6394 0.6871 0.6920 0.5815

Here we can see a similar pattern to the wkNN and FRNN-OWA classification
models, where approaches #1 and #2 perform almost equally, solution #3 shows
the worst results and the best scores are obtained with approach #4 (for Anger,
Sadness, and Fear datasets) or #5 (Joy dataset). However, in comparison with
the PCC scores from Table 5.12, we can see that RoBERTa provides better
results than the discussed solutions for all datasets.

We also include the grid search of the best embedding setup, with results
for each emotion dataset provided in Table 5.24. We can see that RoBERTa
and DeepMoji models are common for all best subsets. Also, these subsets
provided higher scores than the ensembles of all embedding methods (#1 setup
from Table 5.23). However, in comparison with standalone RoBERTa scores
for Anger, Joy, and Sadness datasets from Table 5.12, the subsets’ scores from
Table 5.24 are lower, except for the Fear dataset. Hence, we will consider the

57

Chapter 5. Application 1: emotion recognition

standalone RoBERTa model for Anger, Joy, and Sadness as the best setup with
the FRNN regression model, while for the Fear dataset, we use the setup from
Table 5.12 with the ensemble of four embeddings.

Table 5.24: Optimal FRNN regression ensemble setup and corresponding PCC
score for the emotion datasets.

Dataset Setup PCC

Anger RoBERTa, DeepMoji, SBERT, USE 0.6615
Joy RoBERTa, DeepMoji, BERT, SBERT 0.6983
Sadness RoBERTa, DeepMoji, USE 0.7134
Fear RoBERTa, DeepMoji, SBERT, USE 0.6565

For the FRNN regression model, in the same way, as we did for wkNN and
FRNN-OWA methods, we questioned if lexicons can improve the best setup
for each dataset, by replacing the RoBERTa embedding with RoBERTa vector
merged with the best lexicon’s scores.

The described results were analogous to those for the classification models,
showing from none to minor changes in the scores, proving our suggestion that
lexicons, in our case, are not that useful to improve the results.

Sensitivity of parameter α

In a similar way as for the value of k, we want to explore the sensitivity of the
α parameter, which we use to rescale confidence scores for classification models.
Figure 5.2 illustrates its behaviour for both wkNN and FRNN-OWA models for
all four emotion datasets.

(a) For wkNN. (b) For FRNN-OWA.

Figure 5.2: Sensitivity analysis of α parameter for two classification models and
four datasets with RoBERTa embedding.

As we can see from Figure 5.2, tuning of the α parameter does improve
the PCC score but not dramatically. For the Fear dataset, it shows the best
performance with a small α value for both classification models, which could be
explained by its imbalanced nature.

58

Chapter 5. Application 1: emotion recognition

Meanwhile, for the three other datasets, a small α fits only the FRNN-OWA
model, while wkNN requires the maximum value of the parameter.

5.1.5 Test data results
In this section, we provide and discuss the results of the best settings described
in the previous section (Tables 5.18, 5.22, and 5.24) applied to the test datasets.
Since our main approaches clearly outperformed the suggested baseline, we will
not include it in the final table with results.

To determine the strength of the obtained best approaches and compare the
results of the wkNN, FRNN-OWA classification, and FRNN regression methods,
we combined their averaged scores on four emotion test datasets. Evaluation
scores were calculated for each emotion dataset and obtained results were aver-
aged. Apart from the PCC used by the competition organisers, we also included
MAE and CCA scores.

Test results for each evaluation metric, together with the CV and averaged
scores for all four datasets, are provided in a separate table for each metric. We
calculated the mean scores of all four datasets because the averaged score is used
in the original SemEval competition [93] to compare the solutions.

The PCC scores are shown in Table 5.25, where, on average, PCC scores for
the test data drop several points compared to the training data (the biggest dif-
ference is for the FRNN-OWA approach), but, in general, our approach appears
to generalize well to new data.

Table 5.25: PCC scores of the best approach for the wkNN, FRNN-OWA, and
FRNN regression on the cross-validation and test data for the emotion datasets.

Dataset wkNN FRNN-OWA FRNN reg
CV Test CV Test CV Test

Anger 0.6811 0.6753 0.7241 0.6388 0.6945 0.6671
Joy 0.7171 0.6978 0.7788 0.7115 0.7059 0.6738
Sadness 0.7252 0.6756 0.7719 0.6967 0.7207 0.6865
Fear 0.6521 0.5620 0.6930 0.5705 0.6565 0.5724
Averaged 0.7120 0.6526 0.7419 0.6544 0.6957 0.6499
SemEval place 3rd 2nd 3rd

Winners

TOP-1: 0.695 - Random Forest & XGBoost [41]
TOP-2: 0.653 - LSTM & transfer learning [44]

TOP-3: 0.646 - GRU & CNN [116]

We also included the results of the competition’s top-3 solutions, which were
discussed in Section 2.1, where we showed that they are primarily based on
state-of-the-art methods such as XGBoost, LSTM, and CNN. By considering
these PCC scores, we can compare the performance of our approach with DL-

59

Chapter 5. Application 1: emotion recognition

based methods and determine our place on the leaderboard for the English EI-oc
subtask4. As we can see from Table 5.25, the FRNN-OWA method performs
better for both the CV and test data, leading us to the second place in the
leaderboard, while wkNN and FRNN regression performs not much worse on
the test data, but still reach only the third place. Noticeably, for all methods,
for the test data, we received the lowest scores for the Fear dataset.

The MAE scores are provided in Table 5.26. Unlike PCC and CCA, for MAE,
lower scores identify a better solution. Here, FRNN regression provides the best
scores for CV data and the wkNN - for the test data, with the second-best score
for CV.

Table 5.26: MAE scores of the best approach for the wkNN, FRNN-OWA, and
FRNN regression on the cross-validation and test data for the emotion datasets.

Dataset wkNN FRNN-OWA FRNN reg
CV Test CV Test CV Test

Anger 0.6299 0.6786 0.6282 0.7305 0.5615 0.7327
Joy 0.5440 0.5466 0.5727 0.4914 0.5755 0.6321
Sadness 0.5435 0.5630 0.5571 0.5671 0.5476 0.6440
Fear 0.4354 0.4949 0.4228 0.5375 0.4498 0.5818
Averaged 0.5382 0.5707 0.5452 0.5816 0.5336 0.6476

From the CCA scores listed in Table 5.27, we can see that all scores are quite
similar and close to the value of 0.8. However, FRNN-OWA provides the highest
score for CV data and the lowest for the test data, for which the best solution
with a minor margin is FRNN regression.

Table 5.27: CCA scores of the best approach for the wkNN, FRNN-OWA, and
FRNN regression on the cross-validation and test data for the emotion datasets.

Dataset wkNN FRNN-OWA FRNN reg
CV Test CV Test CV Test

Anger 0.7907 0.7759 0.8050 0.7589 0.8104 0.8036
Joy 0.8193 0.8195 0.8346 0.8378 0.8065 0.8097
Sadness 0.8243 0.8141 0.8229 0.8128 0.8188 0.8080
Fear 0.8542 0.8365 0.8592 0.8225 0.8396 0.8318
Averaged 0.8221 0.8115 0.8304 0.8080 0.8188 0.8132

As we can notice, the FRNN-OWA model is not the best one for all evaluation
metrics and all datasets. It has the best CV scores for PCC and CCA, however,

4https://competitions.codalab.org/competitions/17751#results

60

https://competitions.codalab.org/competitions/17751#results

Chapter 5. Application 1: emotion recognition

the FRNN-OWA got the last place for MAE CV value. We can assume that the
reason for such a difference is the CV process itself, where we were tuning several
model hyperparameters (text preprocessing, number of neighbours, and so on)
based on the PCC metric. In this way, solutions presented in this section are
based on setups that work the best for the PCC evaluation metric; meanwhile,
for MAE, it could be not the most optimal choice.

In other words, models are fitted to receive the best setup for PCC score,
which could result in a weaker MAE result. In order to receive a better test
set MAE score, hyperparameters of FRNN-OWA model should be tuned on CV
with MAE as an evaluation metric.

From another point of view, we can mention that MAE is less sensitive to
outliers compared to PCC. Meanwhile, PCC, being a correlation measure, can
be influenced by a few extreme data points. Taking into account this statement
and confidence scores’ values for both classification models, we can assume that
kNN produces more outliers than FRNN-OWA.

Finally, we want to take a look at the performance time for each prediction
model. We will measure it in the same way as we did for embedding methods’
time measurement, again for the Anger dataset (Figure 5.3).

(a) DeepMoji (b) RoBERTa (c) BERT

(d) SBERT (e) USE (f) Word2vec

Figure 5.3: Time performance for wkNN, FRNN OWA, and FRNN regression
models on the Anger dataset for different embedding methods.

As we can see from Figure 5.3, for all embeddings, the wkNN model takes the

61

Chapter 5. Application 1: emotion recognition

longest time to compute. Also, for four cases out of six, FRNN-OWA was a bit
slower than FRNN regression, but in general, their performance is quite close.
Probably the only case where we can see some difference is the performance
of DeepMoji (Figure 5.3a). This embedding is also the only one where we can
see some fluctuation of time for different sizes of neighbours k for each method.
Meanwhile, for other embedding methods and prediction models, variations of
k are not that visible.

Another observation that we can make is a comparison of different embedding
methods’ performance times among each other. For this purpose, we presented
all plots in the same time range (from zero to thirty seconds). As we can see,
DeepMoji (Figure 5.3a) is definitely the slowest one for any prediction model.
Then we have RoBERTa, BERT, and SBERT, which have almost the same
performance time for all models. The USE embedding is a bit faster for the
wkNN and FRNN-OWA models, and finally, the Word2Vec is the fastest for any
prediction model.

We can also compare those observations from Figure 5.3 with the sizes of
vectors produced by these embeddings (Table 5.3). We can see a logical pattern
where bigger embeddings take more time to perform for any prediction model
and also where embeddings with the same size take nearly the same time.

5.1.6 Summary
To sum up, we can conclude that based on the best PCC scores as a key evalua-
tion metric, for this emotion intensity task, the best solution was achieved with
an ensemble of FRNN-OWA classification models using four to five different text
embedding techniques for each emotion dataset.

However, in each case, the RoBERTa-based model was the best embedding.
This makes sense, given that it was tuned on data related to the considered
dataset. We can also refer to the work of [34], where a fine-tuned RoBERTa-
based model was the best solution for the Dutch emotion detection task (com-
pared to a fine-tuned BERT-based model). It did not benefit from the usage of
lexicons, as was shown in our results as well.

Also, we can mention that the FRNN-OWA classification model used in our
final best approach for each emotion dataset appears to be one of the fastest
considered prediction models. It makes our solution more efficient than it could
be with the analogous wkNN-based approach.

Regarding the publication of results, the majority of them were published
in four different studies. The first experiments with the wkNN model for the
emotional datasets were provided in [68], while the current chapter has improved
results. The main results for the FRNN-OWA model for the same datasets were
published in [66], while they were extended with FRNN regression in [65].

62

Chapter 5. Application 1: emotion recognition

5.2 Hate speech and irony recognition
In this section, we investigate our methods’ performance for the Hate Speech,
Offensive Language, Irony, and Sarcasm datasets.

5.2.1 Dataset and task
As we described in Section 2.1.2, we considered SemEval 2019 Task 5 by [12]
(“Hate Speech”) and SemEval 2019 Task 6 by [142] (“Offens”) as a source of
data for our hate speech detection experiments. Also, as mentioned in Section
2.1.3, we used data from two competitions related to irony detection - SemEval
2018 Task 3 by [126] (“Irony”) and SemEval 2022 Task 6 by [2] (“Sarcasm”). For
all four competitions, we considered binary classification tasks, where we should
determine whether a provided text fragment is hateful (ironic) or not.

Regarding data collection, the Hate Speech dataset is based on Twitter data
gathered with different techniques. It includes the monitoring of accounts of
potential hate speech targets and identified haters, as well as filtering all tweets
with specific keywords [12]. Meanwhile, the offensive speech detection task is
presented by the OLID dataset [141], where a specific hierarchical three-level
annotation system that considers both the aim and the sort of offensive content
was used for annotation [142]. Regarding the Irony dataset, it was created by
browsing the hashtags #irony, #not, and #sarcasm on Twitter. These hashtags
were deleted from the dataset later, with manual labelling of all instances [126].
Finally, for the Sarcasm dataset (English version), the authors were working
via the Prolific Academic platform5 space with users of Twitter who are native
English speakers. They provided sarcastic and non-sarcastic tweets together
with the labels created by themselves to exclude subjective labelling [2].

We explored some characteristics (such as the IR) of all four datasets and
listed them in Table 5.28. Notably, for each dataset, the size of the non-hateful
(non-ironic) class is bigger than the hateful (ironic) one.

Table 5.28: Characteristics of the training data for Hate Speech, Offensive Lan-
guage, Irony, and Sarcasm datasets.

Characteristic Hate Speech Offens Irony Sarcasm
IR 1.37 2.009 1.007 3
Total number of instances 10,000 13,240 3,817 3,468

From Table 5.28, we can see that for the Sarcasm dataset, the size of the non-
ironic class is three times bigger than the size of the ironic class, which makes it
the most imbalanced dataset. Meanwhile, for Irony, the IR score is close to 1,
so it is the most balanced dataset considered in this work. Also, Hate Speech
and Offensive datasets have similar sizes and are almost three times bigger than
Irony and Sarcasm.

5https://prolific.co

63

https://prolific.co

Chapter 5. Application 1: emotion recognition

5.2.2 The baseline
In the same way as for the emotional datasets, for the hate speech and irony-
based datasets, we start with a baseline. We again consider the usage of BOW
and Bag of N-grams with weighted kNN classification for each dataset. Similarly
to Section 5.1.2, we will provide scores for all dataset-N-gram combinations,
since the scores are quite low and tuning does not make much difference. So, we
will again consider 1-gram, 2-grams, and 3-grams (unique collocation of three
words), and the same parameters (k equals 23, and preprocessing is the standard
text cleaning with lower-casing). The results for the hate speech and irony-
based datasets are presented in Table 5.29. For the Hate Speech, Offensive, and
Irony datasets, we calculated macro-averaged F1-score, while for the Sarcasm
dataset – F1-score for sarcastic class was calculated, as was requested by SemEval
organisers.

Table 5.29: F1-scores for a Bag of N-grams (with N=1,2,3) and the wkNN model
applied to Hate Speech, Offensive, Irony, and Sarcasm datasets.

N-gram size Hate Speech Offens Irony Sarcasm
1 0.6462 0.4627 0.4537 0.0244
2 0.3814 0.4099 0.3341 0.0
3 0.3665 0.4005 0.3324 0.0

From Table 5.29, we can see that 1-gram (BOW) was the best for each
dataset, so it remains the main baseline. The Sarcasm dataset receives the
lowest scores according to the specific F1-score it uses, with results for 2-gram
and 3-gram so insignificant that they are almost equal to zero.

5.2.3 Model tuning
In the same way as we did for emotion datasets, in the beginning, we tuned
the parameters for each embedding model for the hate speech and irony-based
datasets. Since these tasks are binary classification challenges, we did not apply
regression methods to them, investigating only classification models. As an eval-
uation metric, we used the F1-score (macro-averaged for Hate Speech, Offensive,
and Irony datasets and “sarcastic” for the Sarcasm dataset).

Regarding RoBERTa-based models, we used a separate model from [11] for
each dataset. Each model was trained on nearly 58M tweets and fine-tuned
on the specific dataset. Particularly, for the Hate Speech dataset, we used
Twitter-RoBERTa-base for Hate Speech Detection6, for the offensive dataset
- Twitter-RoBERTa-base for Offensive Language Identification7, meanwhile, for
both Irony and Sarcasm datasets we considered Twitter-RoBERTa-base for Irony
Detection8. Further on, we will refer to these models simply as "RoBERTa".

6https://huggingface.co/cardiffnlp/twitter-roberta-base-hate
7https://huggingface.co/cardiffnlp/twitter-roberta-base-offensive
8https://huggingface.co/cardiffnlp/twitter-roberta-base-irony

64

https://huggingface.co/cardiffnlp/twitter-roberta-base-hate
https://huggingface.co/cardiffnlp/twitter-roberta-base-offensive
https://huggingface.co/cardiffnlp/twitter-roberta-base-irony

Chapter 5. Application 1: emotion recognition

Classification models: the weighted kNN

At first, we considered the weighted kNN classification model and tuned the best
setup for each pair dataset-embedding (Table 5.30).

Table 5.30: F1-scores for optimal weighted kNN classification setup (preprocess-
ing, number of neighbours k) for all embeddings for the Hate Speech, Offensive,
Irony, and Sarcasm datasets.

Setup Hate Speech Offens Irony Sarcasm
Twitter-RoBERTa-base

Tweet preprocessing No No No No
Stop word cleaning No No No No
k value 29 23 11 5
F1 score 0.8829 0.8343 0.9373 0.3553

DeepMoji
Tweet preprocessing Yes No No Yes
Stop word cleaning Yes No No No
k value 19 11 25 5
F1 score 0.7019 0.6422 0.6546 0.2571

BERT
Tweet preprocessing Yes No No Yes
Stop word cleaning No No No Yes
k value 15 27 25 5
F1 score 0.7406 0.6797 0.6582 0.2134

SBERT
Tweet preprocessing No No No No
Stop word cleaning No No No No
k value 15 27 29 7
F1 score 0.7400 0.6946 0.6284 0.1257

USE
Tweet preprocessing Yes No No No
Stop word cleaning No No No No
k value 13 25 25 5
F1 score 0.7333 0.6823 0.6439 0.2496

Word2Vec
Tweet preprocessing Yes Yes Yes Yes
Stop word cleaning Yes Yes Yes Yes
k value 13 29 25 5
F1 score 0.6648 0.6778 0.5297 0.1803

We can see that the RoBERTa embedding by far outperforms other methods.
This was more or less expected since the used RoBERTa models were tuned on
the related datasets for three out of four of the considered tasks out (except the
Sarcasm dataset). Meanwhile, the lowest results for the Hate Speech and Offen-
sive datasets were obtained by the DeepMoji embedding, for Irony by Word2Vec,
and for Sarcasm - by SBERT.

The results also indicate that for most of the embedding methods, prepro-
cessing is not helpful (with Word2Vec as the only exception). We can also notice
that for the Sarcasm dataset, the lower amount of neighbours is more beneficial.
The Sarcasm dataset is the most imbalanced compared to others, so this obser-

65

Chapter 5. Application 1: emotion recognition

vation is analogical to the one we did for the emotional datasets, where the Fear
dataset was the most imbalanced and required the lowest k as well.

We also can notice that results for sarcasm are lower than for other datasets,
but it actually uses a slightly different metric - F1-score calculated for the sar-
castic class and not a macro-averaged value like for the other datasets. As was
mentioned in Section 4.5.3, we used different metrics for the Sarcasm dataset
since it was the metric suggested by the competition’s organisers.

Classification models: FRNN-OWA

Results of FRNN-OWA model tuned for each embedding for all four datasets are
presented in Table 5.31, which reveals that for all datasets, the obtained results
are very close to the ones obtained by the wkNN method in Table 5.30.

Table 5.31: F1-scores for optimal FRNN-OWA classification setup (preprocess-
ing, number of neighbours k) for all embeddings for the Hate Speech, Offensive,
Irony, and Sarcasm datasets.

Setup Hate Speech Offens Irony Sarcasm
Twitter-RoBERTa-base

Tweet preprocessing No No No No
Stop word cleaning No No No No
k value 25 45 27 5
F1 score 0.8765 0.8377 0.9365 0.3722

DeepMoji
Tweet preprocessing No No No Yes
Stop word cleaning No No No No
k value 19 39 15 5
F1 score 0.6223 0.6567 0.6774 0.3157

BERT
Tweet preprocessing Yes No No Yes
Stop word cleaning No No No Yes
k value 15 47 23 5
F1 score 0.7172 0.6847 0.6563 0.2351

SBERT
Tweet preprocessing No No No No
Stop word cleaning No No No No
k value 15 47 29 7
F1 score 0.7063 0.7063 0.6504 0.1618

USE
Tweet preprocessing Yes No No No
Stop word cleaning No No No No
k value 13 35 25 5
F1 score 0.7037 0.6898 0.6650 0.2808

Word2Vec
Tweet preprocessing Yes Yes Yes Yes
Stop word cleaning Yes Yes Yes Yes
k value 13 39 27 5
F1 score 0.6700 0.6622 0.5966 0.2050

66

Chapter 5. Application 1: emotion recognition

For the majority of embedding methods, wkNN performed better for the
Hate Speech dataset; meanwhile, FRNN-OWA was better for all other datasets.
We can also observe similar patterns - the strongest model being RoBERTa and
Sarcasm requiring the lowest k value.

5.2.4 Ensemble of models
After obtaining the best setup for each embedding, we combine them all in an
ensemble setup for each dataset.

Classification models: the weighted kNN

Scores for the wkNN model are presented in Table 5.32, where it is clear that
usage of confidence scores outperforms the standard mean. Also, that ensemble
provides quite low results for the Sarcasm dataset, in the same way as single
embeddings for this dataset performed worse than for others. However, using
the standalone RoBERTa-based embedding for all datasets is still better than
any of the ensemble strategies. We also performed a grid search of a subset of
embeddings which could outperform obtained scores, but it did not work for any
of the datasets.

Table 5.32: F1-score values for an ensemble of six weighted kNN methods with
different embeddings, using two different voting functions.

Setup Hate Speech Offens Irony Sarcasm
Standard mean 0.8072 0.7183 0.7158 0.0509
Conf. scores 0.8341 0.7732 0.8627 0.0966
tuned α α = 0.1 α = 0.8 α = 0.5 α = 0.8

Classification models: FRNN-OWA

Results for the FRNN-OWA are presented in Table 5.33 with F1-scores for two
voting functions.

Table 5.33: F1-score values for an ensemble of six FRNN-OWA methods with
different embeddings, using two different voting functions.

Setup Hate Speech Offens Irony Sarcasm
Standard mean 0.7500 0.6796 0.7331 0.0995
Conf. scores 0.8116 0.7119 0.8350 0.1754
tuned α α = 0.1 α = 0.8 α = 0.5 α = 0.8

From Table 5.33, we again can see similar patterns as in Table 5.32, where for
the same best α scores, the second function performed better than the first, which

67

Chapter 5. Application 1: emotion recognition

is a standard mean. If we compare the best scores from those tables, we can see
that FRNN-OWA performs best for the Sarcasm dataset, while wkNN is better
for others. But the standalone RoBERTa performs better than any embedding
combination for FRNN-OWA. Hence, for both classification methods and all
datasets, we will consider single RoBERTa-based as the best setup.

5.2.5 Test data results
Similarly as for the emotion intensity datasets, we will not include the baseline
in the final results, since our main approaches significantly outperformed it. For
all hate speech and irony-based datasets, we applied the best wkNN and FRNN-
OWA models (with a standalone RoBERTa) to the test data (Table 5.34).

Table 5.34: Test F1-scores for the best wkNN and FRNN-OWA setups with
RoBERTa embedding for Hate Speech, Offensive, Irony, and Sarcasm datasets.

Dataset

Test
F1-score
wkNN

Test
F1-score

FRNN-OWA

SemEval
place

FRNN-OWA
SemEval
winners

Hate 0.5273 0.5351 5th

#1: 0.651
SVM & USE [58]

#2: 0.571 [-]
#3: 0.546

BiGRUs & FastText [38]

Offens 0.7893 0.8109 4th

#1: 0.829
tuned BERT [81]

#2: 0.815
BERT-Large [97]

#3: 0.814
tuned BERT [150]

Irony 0.5911 0.6515 3rd

#1: 0.705
LSTM [134]
#2: 0.672

BiLSTM [13]
#3: 0.650

SVM & LR [114]

Sarcasm 0.3295 0.4242 9th

#1: 0.605
DeBERTa &

XML-RoBERTa [139]
#2: 0.569

DeBERTa & ERNIEM [50]
#3: 0.530

tuned BERT-Base [6]

68

Chapter 5. Application 1: emotion recognition

Although the leaderboard is private for the Hate Speech and Offensive Lan-
guage competition (we requested them separately), it is available for the Irony9

and Sarcasm [2] competitions. Hence, we added the results of the top-3 teams
for each SemEval competition, which are mainly based on DL and transformer
methods (BERT, RoBERTa, BiGRUs, LSTM, BiLSTM), to Table 5.34.

As can be observed from Table 5.34, test scores for the FRNN-OWA method
outperformed wkNN for each dataset. Hence, we would provide our SemEval
positions for the FRNN-OWA results as the best ones. We can see that we
obtained top-9 positions for all these competitions.10 Compared to Table 5.31,
we can also notice that for the Hate Speech, Irony, and Sarcasm datasets, the
gap between CV and test scores is much bigger than for the offensive language
detection task. Also, the test F1-score for sarcasm is even higher than its CV F1-
score. After some additional experiments for those datasets, we can assume that
it was caused neither by the RoBERTa embedding method nor by the number of
neighbours. We suggest that probably the reason is that training and test data
came from different distributions.

We also want to mention that we didn’t measure the time performance of the
different embedding methods and prediction models for the datasets considered
in this section, since we used the same ones as in the previous Section 5.1, where
we already measured their implementation.

5.2.6 Summary
To sum up, we can conclude that a proper fine-tuned embedding method, in
our case, RoBERTa, is able to provide strong results. Also, the FRNN-OWA
classifier, implemented without an ensemble approach, was better than the cor-
responding wkNN model. It is worth highlighting once again, that the Sarcasm
dataset was the only one that used the RoBERTa model fine-tuned on a different
dataset and that performance on the Sarcasm dataset was F1-score calculated
for the sarcastic class. It is also the most imbalanced dataset, compared to the
other three, which altogether might explain the lower scores for this dataset.

The results for Hate Speech, Offensive Language, and Irony datasets with
FRNN-OWA model were published in [65]. Meanwhile, for the Sarcasm dataset
for the same prediction model presented results are provided in [67]. The baseline
and wkNN results, were not published before.

9https://competitions.codalab.org/competitions/17468#results
10Due to CodaLab restrictions, it was not possible to submit our labels for Hate Speech,

Offense, and Irony leaderboards, so we calculated our places on our own with the provided
validation scripts.

69

https://competitions.codalab.org/competitions/17468#results

Chapter 6

Application 2: Aspect Based
Sentiment Analysis

In this chapter, we demonstrate that our interpretable approach using FRS also
obtains promising results for the ABSA, correctly predicting all three classifica-
tion tasks (category, sentiment, and emotions) for the majority of test instances.

6.1 Dataset and task description
As data for the experiments, we used FMCG reviews which were collected and
manually labelled in the framework of the multilingual SentEMO project1 [35].
The dataset consists of product reviews, i.e., almost 900 reviews in the training
set and nearly 400 in the test set. Each review comprises one or more sentences,
while each may contain several or no “aspect terms”, which are words or colloca-
tions which have been assigned three labels, namely an category class, sentiment
class and emotion class (we will refer to them as “gold labels”).

This annotation is exemplified in Figure 6.1 for the term “breakfast”, which
is assigned the category class “Food&Drinks_general”, and for which a positive
sentiment is expressed, as well as the emotion, “joy”.

Figure 6.1: Annotation example of the user review with a demonstration of the
defined term’s category, sentiment, and emotion classes.

Each of these annotations results in a set of classification labels, which we
will consider as three separate tasks in the classification experiments:

1http://sentemo.org

71

http://sentemo.org

Chapter 6. Application 2: Aspect Based Sentiment Analysis

(a) Categories classes distribution. (b) Categories main classes distribution
*

(c) Sentiment classes distribution.
(d) Emotion classes distribution.

Figure 6.2: Histograms depicting class distribution for training data for each
classification task.

• For the aspect’s category classification, we consider six main categories
(“product”, “personnel”, “company”, “marcom”, “delivery”, and “packag-
ing”; Figure 6.2b), and each category is further divided into subcategories
(“product_quality”, “product_general”, etc.; Figure 6.2a), which results
in a total of 29 classes.

• For sentiment classification, we distinguish five ordinal labels: “very posi-
tive”, “positive”, “neutral”, “negative”, and “very negative” (Figure 6.2c).

• For emotions, there are 12 associated labels: “anger”, “neutral”, “disgust”,
“surprise”, “trust”, “distrust”, “dissatisfaction”, “fear”, “joy”, “satisfac-
tion”, “anticipation”, and “sadness” (Figure 6.2d).

72

Chapter 6. Application 2: Aspect Based Sentiment Analysis

For each of the three tasks, the class distribution is skewed, as is also clearly
visualised in Figure 6.2. While the large majority of instances fall within the
“product” category, the sentiment and emotion annotations are also primarily
situated in 2 out of the available 5 (sentiment) or 12 (emotion) classes. The
main statistical characteristics of the ABSA dataset for all three tasks are listed
in Table 6.1, where we can see how big the imbalances for each task are.

Table 6.1: Characteristics of the training data for the different ABSA tasks.

Characteristic Category Category_main Sentiment Emotions
IR 163.6 52.3 22.9 196.6
Total number
of instances 3,253 3,253 3,253 3,253

For our experiments, we selected each term as a separate data instance with
all corresponding information, such as the ordinal number of the review, the
original full sentence, and the individual classification task labels. We decided
not to use any additional text preprocessing to the text before its usage in the
embedding methods in order not to dismiss any potentially helpful information.

On the other hand, we tried to provide different text spans to the embedding
method (described in Section 3.2) and, more specifically, considered four options:

1. The target term (it can be one word or a collocation).

2. The sentence that contains our target term (this could be repeated for
different instances because one sentence can contain several terms).

3. The combination of the previous two vectors, or the so-called “merged”
vector of term and sentence vectors (in this way, this embedding vector’s
length will be double the previous one).

4. A window of terms, which means that we take into account the words
around the target term. We considered windows with sizes of three and
five; if a sentence has fewer words before or after the target term, we take
as much as it has. We also tried two approaches to apply the embedding:
for the first approach, we compute the vector embedding for each word in
the window separately and then calculate its mean, while for the second
approach, we take the embedding of the whole piece of text.

6.2 The baseline
Before describing our pipeline approach and FRS-based models, we want to
introduce a baseline solution. Similarly to Sections 5.1.2 and 5.2.2, we applied
to the ABSA dataset a wkNN model, based on BOW and Bag of N-grams. We
will again use 1-gram, 2-grams, and 3-grams, with the k parameter equal to
23 and standard text cleaning with lower-casing. Regarding the three subtasks

73

Chapter 6. Application 2: Aspect Based Sentiment Analysis

of the ABSA challenge, we treat category, sentiment, and emotion detection
separately to assess the efficiency of different N-grams. We also consider three
evaluation metrics: weighted F1-scores, accuracy, and cost-corrected accuracy
(which can not be calculated for the category classification task, since it is not
ordinal). Our results are presented in Table 6.2.

Table 6.2: The weighted F1-scores, accuracy, and cost-corrected accuracy for all
classification tasks for the baseline, based on the wkNN and Bag of N-grams.

N Category Sentiment Emotion

F1 Acc CCA F1 Acc CCA F1 Acc CCA
1 0.0453 0.3107 - 0.2408 0.5554 0.6095 0.0897 0.5069 0.5815
2 0.0137 0.1789 - 0.1675 0.5109 0.5673 0.0963 0.5059 0.5709
3 0.0099 0.1690 - 0.1437 0.5032 0.5591 0.0744 0.4949 0.5591

From Table 6.2, we can observe that a bigger size of N-gram leads to worse
scores for all tasks and all evaluation metrics. Hence, we considered the 1-gram
or BOW setup as our baseline.

6.3 Three pipeline approaches
While others have already investigated tackling some of the ABSA subtasks
jointly [20, 85, 130], the predominant methodology in ABSA is still a pipeline
approach in which first aspect categorisation is performed, and afterwards, the
sentiment and emotion labels are predicted for the predicted categories. These
pipeline approaches are known to be sensitive to error propagation, which might
be even more the case for the imbalanced datasets we are working with. In
our experiments, we want to investigate different pipelines and their errors.
More precisely, we want to study how fuzzy rough-set-based methods such as
FRNN-OWA and FROVOCO (which is specifically designed to handle imbal-
anced datasets) behave in the suggested pipeline setup.

It is worth noting that we use gold labels at the first step for tuning the
best models setups for each subtask; further, we use these subtasks in a pipeline
structure, where one task is based on the output of the previous one. The only
step that we omit from the classical ABSA pipeline is the first one of term
recognition.

6.3.1 Methodology description
Before describing the actual pipeline for the ABSA task, we should mention some
preparatory steps that we performed. First of all, we aimed to detect the best
classification model setup for each task separately (i.e., category, sentiment, and

74

Chapter 6. Application 2: Aspect Based Sentiment Analysis

emotion classification) based on gold labels and CV evaluation. For this purpose,
for each task, we computed predictions using various classification models and
different text spans for the text embeddings and tuned each model’s parameters.
Through this, using CV, we were able to define the best approach for each
classification task.

These best models were then applied one by one, forming the “pipeline” for
the ABSA task. First, the best “category model” was applied to predict aspects’
categories classes for all test set instances. Then, the best “sentiment model”
was evaluated on the instances with correctly predicted category labels, after
which the “emotion model” was applied to the instances which were correctly
predicted in the previous step. Contrary to a normal test scenario, in which we
evidently do not have access to gold standard annotations, this approach of only
taking into account the correctly predicted instances for the next step primarily
enabled us to assess the error propagation throughout the classification pipeline.

We improved this baseline approach with two modifications. First of all, as
was showcased in Figure 6.2a, the class distribution of the aspects’ categories
is highly imbalanced. Since there was simply too little training data for the
large majority of categories, we generalised the 29 category classes into 6 main
categories as discussed in Section 6.1. A second modification we considered is
splitting the emotion models into positive and negative ones. We thus divided
the gold emotion labels into two groups; some of them we joined into one emotion
class due to the similar nature of the emotions and the small size of their classes:

1. Three positive emotions: joy combined with anticipation and “positive”
surprise (instances that have emotion gold label “surprise” and sentiment
gold labels “positive” or “very positive”); satisfaction; and trust.

2. Five negative emotions: anger; disgust; dissatisfaction; distrust merged
with fear; and sadness combined with “negative” surprise (instances that
have emotion gold label “surprise” and sentiment gold labels “negative” or
“very negative”).

For the model tuning on the gold standard, we divided the training instances
into two groups based on their gold emotion labels (positive and negative). How-
ever, for the pipeline approach, the approach had to be different. Since we base
our emotion prediction step on sentiment classification results, we use the pre-
dicted sentiment labels to divide instances into three groups. We combine all
instances with “positive” and “very positive” sentiment labels and apply a pos-
itive emotion model setup. A similar procedure is conducted for the “negative”
and “very negative” sentiment labels. The remaining instances have a “neutral”
sentiment label and are automatically assigned the “neutral” emotion. We call
the described pipeline “System 1”, which is shown in Figure 6.3.

To illustrate how System 1 works, we can take a look at the example:

Example 6.3.1. The staff was very friendly, but the breakfast could have been
better.

75

Chapter 6. Application 2: Aspect Based Sentiment Analysis

In Example 6.3.1, the term “staff” has the gold labels “personnel” as an
aspect’s category, “positive” as sentiment and “joy” as emotion. Let us assume
that System 1 predicts “staff” as the “personnel” category on the first step,
so it can continue to the second one. But then it predicts sentiment as “very
positive”, which is wrong, and because of that, this instance will not be taken
into account anymore for emotion prediction.

Figure 6.3: System 1: pipeline of three classification tasks in sequence with
modifications in the form of aspects’ main categories prediction and two emotion
models.

We also considered a more relaxed pipeline. For “System 2” (Figure 6.4), we
perform data reduction with the cost matrices described in Section 4.5. Since
the first step (category classification) is not an ordinal task, and we do not have
a cost matrix for it, this approach is only relevant for the latter two tasks. While
in System 1, we only kept instances for further processing when they had a cost
of 0, we now also keep instances with a cost of 0.5. This modification allows us
to bring more instances to the emotion detection step. However, the scores for
category and sentiment detection evidently will remain the same.

Figure 6.4: System 2: a modification of System 1, where after the sentiment
prediction step, data reduction is performed based on misclassification cost.

To illustrate the work of System 2, we can consider the same Example 6.3.1.
In the same way, as it was done by System 1, System 2 will successfully predict
“staff” as the “personnel” class. In the following step, a “very positive” prediction
for the sentiment in the case of System 2 is acceptable since it has a cost of 0.5,
compared to the gold label “positive”, so it can move on. In the third step, the
system gives its prediction for the emotion, which can be correctly equal to the

76

Chapter 6. Application 2: Aspect Based Sentiment Analysis

gold label “joy” and will influence the final score.
Finally, in “System 3”, we make our three classification steps independent

(Figure 6.5) of each other, giving us an idea of the performance of each of the
classifiers on the complete test data. In fact, this third system can be observed as
the upper bound for the previous two pipeline systems, in which a test instance
is only counted correctly if all three classification predictions are correct.

In the case of Example 6.3.1, all three predictions (“personnel”, “very posi-
tive”, and “joy”) will be calculated without depending on each other, and each
of them will influence their own evaluation score (for category, sentiment, and
emotion detection) separately.

Figure 6.5: System 3: three independent classification tasks on the full test set
with no data reduction.

To sum up, we can conclude that with described setups, aspects’ categories
scores will be the same for all three systems; System 1 and System 2 will have
the same sentiment scores, while for System 3, it will differ; and for emotion
detection, all three systems will have nonidentical results.

6.3.2 Model tuning
To achieve the highest possible scores in the pipeline, we should be sure that
we receive the best results on each classification step. With this idea, we tuned
the best model for each task of the three classification steps: aspect’s category,
sentiment, and emotion classification.

In Section 3.2.5, we described three transformer-based embedding models
that we considered for this task: BERT and ALBERT from TA and DistilBERT
Yelp Review Sentiment model (DBERT YRS or DistilBERT further), all fine-
tuned on the YELP dataset. As we mentioned before, this particular DistilBERT
model outperformed both BERT TA and ALBERT TA models. To illustrate this
claim, we provide the results of our experiments involving TextAttack models.

Particularly, in Table 6.3, we show the weighted F1-scores for sentiment
classification, which is the second step of our ABSA task, based on the gold
labels. We illustrate the performance of all three embedding methods for both
classification methods (FRNN-OWA and FROVOCO) for different text spans
(where “sent” stands for “sentence”, “merged” is the merged vector of term and
sentence, and “w5” - a window of text size 5 that was chosen as it was the
best window option). To make a fair comparison, we used the same amount of
neighbours, k equal to 7, as a default value that usually showed good results.

77

Chapter 6. Application 2: Aspect Based Sentiment Analysis

Table 6.3: The weighted F1-scores of sentiment classification task for three
BERT-based embedding methods (BERT AT, ALBERT AT, and DBERT YRS)
with four text spans and number of neighbours k=7.

Method FRNN-OWA FROVOCO

term sent merged w5 term sent merged w5
BERT 0.5540 0.6690 0.6582 0.6656 0.5389 0.6665 0.6601 0.6537
ALBERT 0.5523 0.6804 0.6680 0.6576 0.5643 0.6794 0.6780 0.6474
DBERT 0.5742 0.6979 0.7171 0.7233 0.5807 0.7060 0.7103 0.7142

We highlighted with bold text the best score for each embedding-text span
pair, and as we can see from Table 6.3, DistilBERT indeed outperformed both
BERT TA and ALBERT TA embedding models for each setup. We can also
notice that FRNN-OWA and FROVOCO have similar performances, and that
term is usually the weakest text span.

We also compared the time performance for those embedding methods. We
applied them to the standalone sentences of each instance and measured the
time for the whole dataset and the average time for one instance, given 3,253
instances in this dataset in total. Results are provided in Table 6.4.

Table 6.4: Time of ABSA dataset encoding with various embedding methods.

Embedding
Time (sec),

dataset
Avg time (sec),

instance
Size of

embedding
BERT 241.25 0.074 768
ALBERT 285.68 0.087 768
DBERT 997.09 0.306 768

From Table 6.4, we can see that all considered embeddings provide vectors of
the same length for each instance (since they all are BERT-based). Regarding
their performance time, we can see that it is almost identical for BERT and
ALBERT models and almost four times bigger for DBERT. A possible explana-
tion for this observation could be given by the data types in which the vectors
we extract are encoded. Particularly, the BERT and ALBERT models work
using the PyTorch2 package, while DBERT uses TensorFlow3, which apparently
takes more time to process. Despite their speed, in the following experiments,
we provide the results only for the DistilBERT model as the best embedding
method.

To detect the best setup for each task that we have (category, sentiment, and
emotion classification separated into positive and negative emotions), we com-

2https://pytorch.org/
3https://www.tensorflow.org/

78

https://pytorch.org/
https://www.tensorflow.org/

Chapter 6. Application 2: Aspect Based Sentiment Analysis

pared two classification models (FRNN-OWA and FROVOCO), four text spans
(term, sentence, window of words and combined vectors of term and sentence)
with DistilBERT embedding model, and finally tuned the model parameter k
(the number of neighbours). We used the weighted F1-score and the 5-fold CV
to evaluate the results based on gold labels. The results for all tasks with their
best setups and corresponding F1-scores are provided in Table 6.5.

Table 6.5: The weighted F1-scores for best setups for each individual classifica-
tion task: category, sentiment and emotion prediction with DistilBERT embed-
ding.

Task Model k Text Span F1 CV

Aspect Main Categories FRNN-OWA 3 merged 0.9036
Sentiment FROVOCO 9 w5 whole 0.7289
Positive Emotions FRNN-OWA 9 merged 0.8273
Negative Emotions FROVOCO 5 merged 0.7025

In Table 6.5, “Aspect Main Categories” corresponds to the category clas-
sification task with six main classes, while “Positive Emotions” and “Negative
Emotions” stand for the positive and negative emotion models explained in Sec-
tion 6.3.1. When we consider the text spans, “merged” means the merged vector
of term and sentence, and “w5 whole” stands for the usage of an embedding vec-
tor generated for the text span obtained with a window size of five around the
target term.

From Table 6.5, we can observe that we obtained the highest F1-score for the
category classification task and the lowest for the negative emotion prediction.
Regarding the classification model of choice, FRNN-OWA and FROVOCO are
both selected as the best classifiers for two of the four classification tasks. During
the experiments, we noticed that both classification methods provided quite
close results without the clear dominance of one of them. Notably, FRNN-
OWA was the best model for the category classification task, which is the most
imbalanced one. Meanwhile, FROVOCO performs the best for the sentiment
classification, which is represented by a more balanced dataset. Due to the
nature of FROVOCO, we would expect opposite results; however, it is hard
to make conclusions from these observations since the performances of both
methods were quite close.

As for the text spans, we can say that the option of the “merged” vector
was always better than the terms and the sentence vectors. A window-of-terms
approach only outperformed the merged vector setup once, namely for the senti-
ment classification task. A window with size five and an embedding taking into
account the whole text span was always the strongest approach compared to the
other windows’ setups.

If we compare the obtained results with baseline scores for wkNN and BOW
from Table 6.2, we can see that the F1-scores from Table 6.5 are much better.

79

Chapter 6. Application 2: Aspect Based Sentiment Analysis

Hence, we will not consider the baseline in the pipeline format.

6.3.3 Systems’ results
Once we obtained the best setup for each classification task, we combined them
in the three systems described in Section 6.3.1. For each system, we measured
the F1-score, accuracy, and CCA for each of the three classification tasks: cate-
gory, sentiment and emotion classification. The results for all three systems are
provided in Table 6.6, where # corresponds to the number of the System (1,
2, or 3). Notably, we do not have the results of CCA scores for the category
detection task since it is not an ordinal classification task, and we can form a
corresponding cost matrix.

Table 6.6: The weighted F1-scores, accuracy, and cost-corrected accuracy for all
classification tasks for the three pipeline systems, based on the best individual-
task performances.

Category Sentiment Emotion

F1 Acc CCA F1 Acc CCA F1 Acc CCA
1 0.8406 0.8627 - 0.7147 0.6756 0.7268 0.5647 0.4872 0.5697
2 0.8406 0.8627 - 0.7147 0.6756 0.7268 0.6155 0.5598 0.6564
3 0.8406 0.8627 - 0.7740 0.7846 0.8458 0.6851 0.7012 0.8142

As we can observe from Table 6.6, we received the same scores for category
detection for all systems and the same metrics for System 1 and System 2, just
like we expected. We can see that System 3, with the separate systems ap-
proach, provided the best scores and yielded performances of 86.3% for aspects’
categorisation (accuracy), 84.6% for sentiment analysis (CCA) and 81.4% for
emotion detection (CCA). When we consider the first two pipeline systems, the
results evidently drop because an error in the previous step negatively impacts
the following step. Furthermore, the cost-driven filtering of the instances seems
to pay off.

We do not compare the obtained results directly with the alternative solution
provided in [35] since their scores were provided for the Dutch version of the
dataset, which makes direct comparison inaccurate.

There is one important note regarding the statistical significance between
the obtained scores. Normally, we would use statistical tests for experiments
performed with the same setup on a number of different datasets. However, in
our experiments, we deal with one particular dataset, where such tests will not
make much sense.

Finally, we wanted to measure the performance time for both considered
classification models, FRNN-OWA and FROVOCO. We compared their per-
formance separately for each classification subtask (category, sentiment, and

80

Chapter 6. Application 2: Aspect Based Sentiment Analysis

emotions) since they all have different amounts of classes, with various numbers
of neighbours k (Figure 6.6).

(a) Category (b) Sentiment (c) Emotions

Figure 6.6: Time performance for FRNN OWA and FROVOCO models on
ABSA dataset for three classification subtasks.

As we can see from Figure 6.6, FROVOCO is nearly five times slower
than FRNN-OWA for any classification task. It makes sense, considering how
FROVOCO works, performing one-vs.-one splitting of the multiclassification
tasks. Both prediction methods take more time for challenges with a larger
amount of classes; correspondingly, category classification is the slowest, and
sentiment is the fastest task. Also, we again can notice that fluctuations of
parameter k do not influence performance speed much.

6.4 Summary
Taking a closer look at Table 6.6, we can confirm our expectations of obtaining
higher scores for category prediction, lower for sentiment, and the lowest for
emotion detection for System 1 and System 2, since both of them include data
reduction steps. With each such step, we eliminate more instances that will
allow us to make correct predictions for less amount of data that will reduce
our scores. From this perspective, we also can notice that all metrics increase
from System 1 to System 3 because each next model keeps more instances for
the next step, so the last system provides the highest scores for all tasks.

However, even for System 3, emotion detection performs worse than senti-
ment and category. It still makes sense because, for categories, we use only
the main ones, reducing the number of classes to six. These classes are also
very imbalanced, with one huge class “product” dominating all others, so we
can assume that predicting this label for the majority of instances will lead to
a high score. The dividing of the other five small classes is still a challenge and
an area for future work. As for the sentiment classification, we were working
with five classes, where two of them have close sizes (“positive” and “negative”)
and are much bigger than the three others. It gives us a high score, but it is

81

Chapter 6. Application 2: Aspect Based Sentiment Analysis

still lower than for categories. Finally, for emotions, we are dealing with twelve
classes with the biggest “satisfaction”, twice smaller “dissatisfaction”, and ten
more tiny classes. It provides the lower scores, but with System 3, we would say
results for emotion detection are sufficient.

Due to the absence of publications at this moment, we can not compare our
results with other models on the same dataset yet. However, we can estimate our
performance in comparison with scores obtained in [35] for the Dutch version of
the dataset. The authors use the same configuration of the F1-score for the test
data, particularly the FMCG dataset that we considered. For the main aspect
categories classification, where our system achieved an F1-score of 0.8406, Table
2 from [35] provides lower results of 0.798. For sentiment classification, Table
3 from [35] shows an F1-score equal to 0.809, when we received a lower score
of 0.7740 with the best setup with System 3. Finally, our system achieves an
F1-score of 0.6851 and CCA equal to 0.8142 for emotion detection when Table
4 from [35] - lower F1-score of 0.612 and higher CCA score of 0.848. As we can
see, even since these results are provided for the different versions of the same
dataset, we still can say that our results were in line (classification of sentiment
and emotions) or even slightly higher (classification of main categories).

All provided results were published in [64].

82

Chapter 7

Interpretability and error
analysis

To examine the performance of our proposed approach in more detail and to
illustrate the solution’s explainability of a fuzzy-rough-based kNN approach, we
explore correct and wrong samples of test instances. To detect neighbouring
training tweets for the test instance, we, in some sense, went back into our
pipeline.

We calculated the cosine similarity between the test tweet and all training
tweets for each embedding separately since they provide different locations of
instances in the multi-dimensional space. We took into account all embedding
approaches used in models of the best ensemble and took the top k closest
neighbours for each. The parameter k was previously tuned for each classifi-
cation model based on a particular embedding method. In this way, we find k
neighbours for each of the best embedding methods so that we can check their
intersection.

Below, when we present “training neighbours of the test instance”, we mean
tweets in the intersection of the selected top-k neighbourhoods.

7.1 Emotion datasets
First of all, we computed the confusion matrices for all test datasets (Table
7.1). These scores are the results of the best-selected setups for each dataset
from Section 5.1. Particularly as was described in Section 5.1.5, for all emotion
datasets, we used the FRNN-OWA model, which provided the highest PCC
scores compared to the wkNN and FRNN regression models. The best solutions
for all four emotion datasets are presented as the ensemble of four or five models
based on embeddings, where RoBERTa, DeepMoji, and USE are used for all
datasets, BERT for Anger and Joy, SBERT for Joy, Sadness, and Fear, and
Word2Vec - for Anger and Fear (Table 5.22).

83

Chapter 7. Interpretability and error analysis

Table 7.1: Confusion matrices for emotion test datasets.

True class Predicted class
0 1 2 3 0 1 2 3

Anger Joy
0 94 267 104 0 87 86 21 0
1 1 50 96 1 26 142 157 8
2 0 40 193 10 1 49 241 69
3 0 4 100 42 0 3 90 125

Sadness Fear
0 178 176 44 0 398 230 5 0
1 13 80 93 7 24 94 6 0
2 4 53 172 26 20 112 20 6
3 0 5 72 52 4 27 36 4

In Table 7.1, classes correspond to the original labels from [93] dataset, where
‘0’ means no emotion can be inferred, ‘1’ means that a low amount of emotion
can be inferred, ‘2’ means a moderate amount of emotion can be inferred, and ‘3’
- high amount of emotion can be inferred (by emotion we mean one of the four
emotions: anger, joy, sadness, or fear). As we can see from obtained confusion
matrices, the true class is confused with one of the neighbouring classes in most
of the erroneous predictions. For example, in the Anger dataset, the real class
‘2’ is mainly predicted as ‘2’, with minor cases predicted as adjacent classes ‘1’
or ‘3’ and never as ‘0’.

Remarkably, opposite classes ‘0’ and ‘3’ are rarely confused. The only excep-
tion to this pattern is the Fear dataset, where four test samples with true class
‘3’ are labelled as ‘0’. We examined these four mislabelled samples to understand
the nature of the mistake. One of these test tweets, provided at Example 7.1.1,
has the majority of closest neighbours from training tweets with topics related
to social media and the label ‘0’.

Example 7.1.1. Things that terrify me: remembering my bf follows me on Twit-
ter.

For example, a neighbour of Example 7.1.1: “The way I’m always on Twitter
at work is a little alarming :woman_facepalming:” has class ‘0’ (no fear was
detected).

Another wrongly predicted Fear test example illustrated at Example 7.1.2
with class ‘3’ was classified with class ‘0’.

Example 7.1.2. @USER My dad ordered my tickets for the show in Hamburg,
his name is now printed on the tickets, is the same surname enough? #panic

Neighbours of Example 7.1.2 are about entertainment-related topics, like
tickets: “@USER why does the ticket website never work? Trying to buy Palace
tickets and it’s impossible and says there’s an error #awful” (class ‘0’) or the

84

Chapter 7. Interpretability and error analysis

name: “thank you for your concern, computer, but my last name isn’t misspelled,
it’s just weird” (class ‘0’).

For comparison, we also take a closer look at one of the four correctly pre-
dicted Fear test samples Example 7.1.3 with the highest level of Fear (class ‘3’).
Example 7.1.3. Ugh going to college tm, so nervous. #college #life #collegelife
#newyearnewme.

The closest training neighbours for this sample are mainly related to school
and often consist of the word “nervous”, for example, “I have another test tonight
#nervous” with class ‘3’. For the other three correctly predicted cases with class
‘3’, the situation is similar, where the majority of neighbours share the same word
“nervous” or “anxiety”.

As we can see from the presented samples, having a common topic is a
strong feature for neighbour detection. To get a broader picture, we explore
more datasets. As a sample of correctly predicted tweets from the Joy dataset
with class ‘3’, we can consider the test instance Example 7.1.4.
Example 7.1.4. @USER Happy #blissful birthday.

The majority of Example 7.1.4 neighbours are about birthdays as well, for
example, “@USER happy birthday :) have a blessed day, love from Toronto :)
#bday” with class ‘3’. In this case, we can consider “birthday” not only as a
common topic but also as a strong keyword for neighbour detection.

A similar situation we can see for the wrongly predicted Joy test tweet Ex-
ample 7.1.5 with correct class ‘1’ that was predicted as ‘3’.
Example 7.1.5. Good Night everyone... #goodnight #sleep #nice #great
#night #music #day

Neighbours of Example 7.1.5 are mainly about good night-morning-afternoon
wishes, with classes ‘3’ or ‘2’, such as “Good night, Twitter world! Wish you all
good sleep / productive jovial days! :)” with class ‘3’.

Another interesting example from the Anger dataset, where the specific key-
word plays a bigger role than the common topic, is Example 7.1.6.
Example 7.1.6. @USER I know you mean well but I’m offended. Prick.

It has true class ‘2’, which our system predicted correctly. If we take a look
at its neighbours, we can observe an interesting pattern, where the majority of
them have the word “offended”, such as “@USER, I’m honestly offended” (class
‘2’) or “@USER1 @USER2 @USER3 no! Kinda offended that you had to ask”
(class ‘1’). The word “offended” is emotionally coloured, which, as we can see,
is a strong keyword, which leads to neighbours with proper classes.

So far, we can notice that similar topics have a big influence on neighbours’
selection results. This makes sense, taking into account the logic behind the
text embedding methods that we are using. Besides a lot of examples being
topic-based, we also observed some based on the emotional keyword, which is
rare. However, if we take into account related words, such as [125], we can see
that these topics (e.g. a topic about "dentists") were an important key to irony
recognition.

85

Chapter 7. Interpretability and error analysis

7.2 Hate speech and irony-based datasets
For the Hate Speech, Offensive Language, Irony, and Sarcasm datasets, the
confusion matrices are shown in Table 7.2, where ‘0’ corresponds to the non-
hateful (non-ironic) class and ‘1’ - to the hateful (ironic) one. Provided results
are based on the solutions described in Section 5.2. Specifically, as was shown
in Section 5.2.5, for each of Hate Speech and Irony datasets, the best setup is
the FRNN-OWA method based on a standalone RoBERTa embedding.

Table 7.2: Confusion matrices for Hate Speech, Offensive Language, and Irony
test datasets.

Hate Speech Offensive Irony Sarcasm
True classes Predicted classes

0 1 0 1 0 1 0 1
0 486 1254 574 46 455 18 1036 164
1 62 1198 77 163 202 109 102 98

This case looks different because of binary classification. It also seems easier
to define and analyze mistakes.

Particularly, the Offensive Language dataset is the only one where the num-
ber of correct predictions for both classes is higher than the false positive and
false negative predictions. However, the amount of false negative predictions is
bigger than false positive. Hence we will take a look at a test instance with gold
class ‘1’ and predicted class ‘0’. Let us consider Example 7.2.1, which is marked
as offensive.

Example 7.2.1. #Antifa: Take note of how to protest with civility. This is why
socialism (aka communism) will never win. It is inherently evil and unsustain-
able. URL

We considered the closest neighbours of this instance from the training
dataset to find some patterns. We noticed that almost all of them are about pol-
itics and movements, using terms such as “authoritarianism”, “liberal ideology”,
“capitalist”, “conservatives”, and others. Meanwhile, the majority of neighbours
are marked as non-offensive, even if they contain some criticism. From this per-
spective, we also can assume that the fixed test example is rather a criticism
than a direct offence, but labellers decided otherwise. This illustrates another
time that the hate speech topic is complicated to label due to its subjectivity.

As an example of correctly predicted offensive test instances, we can take a
look at Example 7.2.2, which is labelled as non-offensive.

Example 7.2.2. 5 Tips to Enhance Audience Connection on Facebook URL
@USER #socialmedia #smm URL

Almost all its neighbours, which were considered by our approach, are non-
offensive, so it led to the correct prediction. Although, the pattern that connects

86

Chapter 7. Interpretability and error analysis

them is not that obvious. We saw a lot of tweets about media, news, and the
tech sector, alongside politics. However, almost every neighbour has the tag
“URL”, when it was not the case for other examples that we saw.

Taking a look at the Hate Speech dataset, we can notice that many tweets
are similar and concern hate speech towards immigrants or women, as mentioned
in the dataset’s description. For example, Example 7.2.3 is a correctly classified
hateful test tweet with class ‘1’.

Example 7.2.3. WAKE UP AMERICA. We cannot continue to allow illegal aliens
to stay in County. They are a real and present danger to LEGAL AMERICAN
CITIZENS. #BuildThatWall #EndCatchAndReleash #DefundSantuaryCities

The majority of its neighbours are hateful (class ‘1’) and share the hashtag
“#BuildThatWall”, such as “Illegal Criminals EVERYWHERE #BuildThatWall
!!”. Hence, this hashtag can be considered a strong keyword.

A possible reason for wrong classifications could be the use of similar topics
or words in a different context. For example, the test instance Example 7.2.4
from the Hate Speech dataset has class ‘1’ but was predicted as ‘0’.

Example 7.2.4. The Last Refuge has a fantastic collection of reports on a busi-
ness model that profits from illegal immigration. #UniParty #RobbingUsBlind
#EndChainMigration #tcot #ccot #pjnet #qanon

The majority of training neighbours of Example 7.2.4 have class ‘0’ and con-
tain words like “migration” or “immigration”, which are used in an informative
rather than hateful sense, such as “The Truth about #Immigration LINK” with
class ‘0’.

For the Irony dataset, we can take a look at Example 7.2.5 with true class
‘1’.

Example 7.2.5. Christmas alone :smiling_face_with_smiling_eyes: how nice
#not

Its neighbours are mainly about Christmas, gifts, or winter and are not ironic
(class ‘0’). A sample: “Yay for days off. #coffee #HarryPotter #christmasbreak
#morning LINK” with class ‘0’. Hence, we can see that the classifier is misled by
Christmas as a strong topic or even a keyword. On the other hand, the hashtag
“#not”, which for humans is considered a strong indicator of ironic speech, was
probably not taken into account because of its generic content.

For the Sarcasm dataset, we first traced back several correctly predicted test
tweets. For example, for the sarcastic test tweet Example 7.2.6, we got four
sarcastic training neighbours out of five.

Example 7.2.6. So the Scottish Government want people to get their booster
shots so badly that the website doesn’t even work

These four neighbours were connected to the health topic and contained
collocations such as “mental health", “health insurance”, “covid vaccine”, and
“healthcare”. The fifth neighbour was about emails that could be connected to

87

Chapter 7. Interpretability and error analysis

the word “website” from the test tweet. From this sample, we could conclude
that having a common topic is an important feature for neighbours detection,
and our model deals well with it, as we also noticed from exploring other test
samples.

As for wrong predictions, we also found an illustrative example for the sar-
castic test tweet Example 7.2.7 that was predicted as non-sarcastic.

Example 7.2.7. Sometimes I lay in bed and think about how today will be the
day I make my life better. Exercise, drinking water, eating healthy. Then I wake
up.

It has four training neighbours about daily routine and lifestyle with mostly
non-sarcastic labels, leading to the wrong prediction. For example, the closest
training neighbour “me: I’m gonna wash my hair and shave my legs! Me instead:
I’m gonna dissociate in the shower for 45 minutes” looks pretty similar to the
test sample but has a non-sarcastic label. Here, we could highlight again the
difficulty of Sarcasm dataset labelling and how subjective it could be.

In conclusion, similar topics and common keywords are strong neighbour de-
tection features on which our approach is based. A similar pattern was observed
in related works, such as [125], where similar topics were key to irony recognition.
However, we can observe errors with similar words used in a different context.
This can also be a result of incorrect annotations or general uncertainty in the
author’s message.

7.3 ABSA dataset
In order to gain more insights in the errors for the ABSA task, we can take a
look at the confusion matrix that we receive at the last step of the first pipeline
approach, where we filter out all wrong predictions. We thus consider the confu-
sion matrix for emotion prediction subtask of the ABSA challenge using system
#1 from Table 6.6, for which we received an accuracy near 0.49. The described
confusion matrix is provided in Table 7.3, where the columns (predicted classes)
and rows (true classes) have names that correspond to 12 emotions, None rep-
resents all incorrectly classified instances from the previous two steps (category
and sentiment prediction), and the diagonal consists of a number of correctly
predicted instances for each class.

As we can see in Table 7.3, we obtain a lot of correct predictions, mostly for
satisfaction (the biggest class). There is also a number of instances predicted
wrongly during the previous steps (column None). Regarding wrongly predicted
emotions, besides the None column, we can see that the biggest number of
mistakes were made for dissatisfaction predicted as satisfaction (18 instances).
If we check the cost of such a mistake in the cost matrix for emotion in Table
4.3, it is 1, which is the highest cost, and that makes sense. Another mistake
is anger, classified as dissatisfaction, where we have 13 instances. This cost is
0.5 and, in theory, can be reduced to 0.25, since anger and dissatisfaction could
be perceived as close emotions. The same amount of wrong predictions were

88

Chapter 7. Interpretability and error analysis

Table 7.3: Confusion matrices for emotion detection task of ABSA datasets with
the system #1, where we filter out all wrong predictions.

Emotion 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.
1. Anger 9 0 1 13 4 0 0 0 1 1 0 0 10
2. Anticipation 0 0 0 0 0 0 1 0 0 0 0 0 1
3. Disgust 0 0 3 2 0 0 0 1 0 0 0 0 1
4. Dissatisfaction 8 0 3 72 2 1 0 1 1 18 0 0 57
5. Distrust 3 0 0 9 31 0 0 0 1 0 0 0 19
6. Fear 0 0 0 2 2 1 0 0 0 0 0 0 0
7. Joy 0 0 0 1 0 0 14 0 0 12 0 3 23
8. Neutral 0 0 0 0 0 0 0 0 0 0 0 0 14
9. Sadness 3 0 0 4 1 0 0 0 4 1 0 0 3
10. Satisfaction 0 0 0 7 0 0 9 3 0 223 0 0 98
11. Surprise 0 0 1 0 0 0 0 0 0 3 0 0 1
12. Trust 0 0 0 1 0 0 3 0 0 13 0 5 14
13. None 0 0 0 0 0 0 0 0 0 0 0 0 0

made for trust classified as satisfaction, which are both positive emotions with
the same cost of 0.5. Fewer mistakes (12 instances) were made for joy, classified
as satisfaction. Those emotions are even closer but still have a cost of 0.5. To
sum up, our mistakes mostly occur for similar emotions. For some of them,
we can reduce the cost from 0.5 to 0.25 due to their similarity to improve the
cost-corrected accuracy value.

We also took a closer look at particular test instances. First, we considered
a test sample that obtained the wrong sentiment prediction for all systems:

Example 7.3.1. In fact, I will likely buy a second.

From here on, for each example, we will label a term with an underline. For
Example 7.3.1, its gold aspect main label “product” was correctly predicted by
all three systems. However, the gold sentiment label “positive” was misclassified
by all systems as “negative”. It leads to no emotion prediction for Systems 1
and 2, while System 3 predicted “dissatisfaction”, which is the opposite of the
gold label “trust”, but was in line with the predicted negative sentiment.

Looking at the training neighbours for the sentiment task (Table 7.4), we
can observe that most of them represent negative feedback. These examples
demonstrate that they all have a common topic - the impression of the product
that influences the user’s decision to repurchase it or to recommend this product
to others. We can suggest that due to the high number of examples where users
were dissatisfied with their products, we can have a lot of negative neighbours
for our test example, leading to a wrong prediction. Hence, the same topic can
be a substantial similarity feature for our approach.

Second, we take a look at a test sample, where the sentiment was wrong with
a low cost:

Example 7.3.2. We use these in our bathrooms and kitchen and believe they
work very well.

89

Chapter 7. Interpretability and error analysis

Table 7.4: Training neighbour instances for Example 7.3.1.

The full sentence Sentiment
I plan to return this item and look

for a higher quality air purifier. Negative

I will probably not choose
Cottonelle Ultra next time around. Negative

I would recommend it for sure,
but now I do not have this equipment. Positive

I would HIGHLY suggest you choose
another fan, as this one seems to be nothing

but one disaster after another.
Very negative

All systems predicted the aspect class “product” correctly, while the gold
sentiment label “very positive” was predicted as “positive”. Because of that,

Table 7.5: Training neighbour instances for Example 7.3.2.

The full sentence Sentiment

I have worked with them and I think they work well. Positive

They are very responsive, very professional
and very present when we need them. Very positive

We are very happy with the product,
the machines are reliable and perform. Very positive

They work well and the one we have
mounted in our small bathroom helps cut down on

the heat in that room, which really builds up as it does
not receive air conditioning like the rest of our home.

Positive

System 1 cannot predict any emotion; however, System 2 can because the cost
of this mistake is 0.5, and we allowed it. Due to this, System 2 predicts the
“satisfaction” emotion, which corresponds to the prediction of System 3 and the
gold label.

If we take a look at some of the neighbouring training instances (Table 7.5),
we can observe that all neighbours are either “positive” or “very positive”, so
it is easy to confuse. Meanwhile, we can also notice an interesting pattern –
the common thing among those neighbours is not a topic but rather positive
words, such as “work well” (the same collocation as in the test example), “very
professional”, “very happy”, and others. We can conclude that words with high

90

Chapter 7. Interpretability and error analysis

emotional colouring could be a trigger for our similarity algorithm.
Third, we considered a test example where all systems guessed the sentiment

correctly:
Example 7.3.3. It has NO SENSOR for odor detection, therefore, it will not
automatically change the fan setting if unwelcomed odors were to invade the
space.

Table 7.6: Training neighbour instances for Example 7.3.3.

The full sentence Emotion
Unfortunately, upon installing and turning on

the air purifier, the output air had a chemical odor
smell that is similar to what other reviewers

have been describing since 2018.

Satisfaction

The error messages with calibrators are annoying
though, because they always show up,
and it does not say which error it is.

Dissatisfaction

Due to the characteristics of immunoassay designs,
especially in the free ideas in the measurement of

two-step methods, interference and transport
disturbances of thyroid hormones are reduced.

Dissatisfaction

Your AB and screen choice can be set to activate when
you raise your arm, but there is an irritating delay,
even when set to the arm raise’s sensitive setting.

Anger

While the gold aspect main label “product” and gold sentiment label “neg-
ative” were correctly predicted by all three systems, for the emotion label, all
systems made a mistake, as instead of the gold emotion label “anger”, for each
system “dissatisfaction” was predicted. To investigate that, we can take a look
at the neighbouring training instances to the corresponding test one in Table
7.6.

While the majority of neighbours have the label “dissatisfaction” (or
“anger”), actually, the closest sentence by meaning is the first sentence that
is labelled with “satisfaction”. However, the content of the first neighbour seems
rather disappointing and negatively toned. In this way, we can confirm our pre-
liminary conclusions that the common topic seems to be a strong feature that
marks the neighbours. Moreover, we can notice that some training instances
can have confusing or even unsuitable labels. We cannot dismiss the fact that
similar emotions, such as anger and dissatisfaction, could be easily confused due
to the subjectivity of emotions, which again shows the usefulness of the CCA
metric.

Finally, we take a look at some test examples that were predicted with a
wrong aspect label (gold aspect classes are provided between brackets):

91

Chapter 7. Interpretability and error analysis

Example 7.3.4. 1. This shampoo did not come spilled, packaged to perfec-
tion. (“packaging”)

2. There are good sales people. (“personnel”)

3. Dishonest company and seller. (“company”)

All these texts were predicted as “product”, which can be expected due to
the huge imbalance of the data. For this reason, we have no predictions for
the sentiment and emotion labels from Systems 1 and 2; meanwhile, System
3 predicted them correctly for each sample (“positive” and “satisfaction” for
Example 7.3.4(1) and Example 7.3.4(2), and “negative” and “distrust” for Ex-
ample 7.3.4(3)). What is curious about these examples is that they all are
quite short and still have some emotionally strong words that can appear in
their neighbours: “perfect” for the first, “good” for the second, and “dishonest”
(“horrible”, “awful”) for the third.

To conclude, we can say that human emotions are very subjective concepts
that can lead to contradictory instance labelling and unexpected patterns chosen
by the system. By a manual analysis of the output and the nearest neighbours of
both the FRNN-OWA and FROVOCO systems, we can inspect which instances
lead to a given classification decision, gaining more insights into the underly-
ing data. This not only enables us to find some explanations for classification
decisions but can also aid us in pinpointing errors, shortcomings or even biases
in the underlying data as a basis for improving our future work. As another
potential direction, we can consider giving more weight to the keywords of each
tweet, instead of reducing their size. Also, we can check dependencies between
specific keywords and correct or incorrect predictions we receive, to construct
a rule for usage in rule-based systems. In any case, the first step of keyword
extraction should be automatized with, for example, BERT-based models, such
as topic-BERT or tBERT [101].

92

Chapter 8

Conclusion

In this chapter, we will provide a summary of our thesis (Section 8.1) alongside
thoughts on how it can be extended in future (Section 8.2). For future work, we
consider several main directions of our study, including additional data manip-
ulations (Section 8.2.1) and exploration of explainability (Section 8.2.2).

8.1 Summary
In this manuscript, we have evaluated the potential of interpretable ML methods
based on FRS for different subjective language classification tasks and demon-
strated that they are competitive with more complex state-of-the-art NN-based
approaches. We also dedicated part of our study to the exploration of the inter-
pretability of our FRS-based approach.

In the four introductory chapters, we discussed the development of the emo-
tion detection task in the NLP field alongside related works (Chapters 1 and
2) and the theoretical background of the thesis (Chapters 3 and 4), to lay the
foundation for our experimental work from Chapter 5 onwards. The main con-
tributions of our dissertation are the following:

• In Chapter 5, we tuned and optimized weighted ensembles of wkNN mod-
els, FRNN-OWA classification and FRNN regression for emotion intensity,
hate speech and irony detection tasks. Our solution uses feature vectors
obtained from different word embeddings, which are mostly sentiment-
oriented and applied at the sentence level. For all these tasks, FRNN-
OWA showed the highest results, providing us with the second place for
the emotion intensity task and TOP-9 places for the hate speech and irony
detection competitions. These leaderboards also gave us an opportunity
to compare our performance with the best solution to these challenges.

• In Chapter 6, we have considered FRS based techniques for the task of
ABSA, which in our setup consists of three subtasks: aspect, sentiment and

93

Chapter 8. Conclusion

emotion classification. We tackled them using a pipeline approach, where
for each of these subtasks, we implemented the FRS based methods FRNN-
OWA and FROVOCO using transformers-based text embeddings, where
our solution obtained good results on the test data. To compare our results,
we considered the paper [35], where the authors used the Dutch version of
the same dataset. We used the same evaluation metrics, such as F1-score
and CCA, so we could observe that our results are in line (for sentiment
and emotions) or even slightly higher (main aspects classification).

• In Chapter 7, we dived into the topic of the interpretability of our method.
Our approach is explainable in a way that we can trace back the test
instance and find the training instances that determined the predicted class
to explore some patterns. The error analysis revealed that our methods are
capable of identifying useful patterns that can explain their predictions.
For example, we observed the significance of the tweet topic and even of
particular keywords.

To highlight the motivation of our study, we can take another look at the
explainable solutions discussed in Section 2.3, all of them having their weak-
nesses. Particularly, the post-hoc approaches that typically detect relations be-
tween changes in the model’s inputs and outputs may also ignore non-obvious
interactions among the first ones. The self-explanatory methods that develop
explanations in the process of model training also need prior expert knowledge
or at least annotated data that will be used to guide the learning procedure.
Taking into account described disadvantages of these explainable approaches,
we can conclude that there is room for improvement and simplification of such
methods. The fuzzy rough based methodology proposed in this thesis aims to
fill this gap with a simple and explainable solution.

To summarize, our main contribution consists in the investigation of inter-
pretable instance-based fuzzy rough methods to NLP-related tasks, and more
particularly to emotion, hate speech, irony detection and ABSA. This area, as
well as the usage of DL and BERT embedding techniques with the fuzzy-rough
approaches, were not investigated much before.

8.2 Future work
The results described in this thesis still offer room for improvement, and below
we will highlight several aspects that can be investigated and boosted to obtain
better results.

8.2.1 Data manipulations
As an initial idea, we can assume that the provided solution may be improved
by additional text preprocessing techniques. In our experiments, we saw how
text cleaning and stop word removal helped to improve the score of models in
some setups. It naturally leads to the assumption that more advanced text

94

Chapter 8. Conclusion

preprocessing techniques can improve model performance even more. For future
work, we can suggest the following text preprocessing approaches:

• Part-Of-Speech (POS) tagging (see e.g. [36]), which consists of an iden-
tification for each token in a sentence of its grammatical structure (noun,
verb, adverb, and so on). For example, we can identify adjectives in the
text and give them more weight during the vectorization process, with the
assumption that they will highlight the mood hidden in it.

• NER (for example, used in [148]), which classifies nouns in text into one
of several categories, such as organizations, person names, or locations.
Similarly to POS tagging, with NER, we can identify and highlight the
more important terms in the text, which in this case happen to be nouns
that could be useful for, in particular, aspect categorization in the ABSA
task.

• Chunking (see e.g. [59]), is assembling in a text all the consecutive words
that make a meaningful phrase, for example, “good breakfast”. This tech-
nique could be especially useful for the ABSA challenge to group an aspect
term with an adjective that corresponds to the hidden sentiment or emo-
tion.

• Synonym replacement (as was done in [132]), which represents a process of
replacing some words in the text with their synonyms. Usually, it is per-
formed to improve the coherence of text and reduce the sparsity of data
in general. In our case, we can use it to generate better-representing em-
bedding vectors. For example, to replace adjectives with more emotional-
coloured synonyms to highlight the mood of the text. Additionally, we can
replace verbs and nouns with their synonyms as well.

In the next step, we can take a closer look at the embedding methods we
explored. Particularly, for all emotion detection tasks, pre-trained RoBERTa
showed outstanding results, as well as DistilBERT for the ABSA task. We
can assume that fine-tuning some BERT-based model, for example, variants of
RoBERTa, can provide us with a new strong text vectorization method to use.
Fine-tuning (see e.g. [100]) can be done on training samples from the datasets
considered in this thesis, or also include the usage of additional datasets. In the
latter case, for better results, they should be close to the ones we used.

One more aspect that can be considered during the model training is the
boundary region of predicted classes. This region is one of the areas defined
by rough set theory, and it contains objects whose membership in the class
is vague and has the greatest degree of uncertainty. In general, we can say
that a close lower and upper approximation membership for some instances
shows that the model is confident about their belonging to the particular class
and vice versa. There could be some tweets in this boundary region whose
classification is unclear, so we can suggest a special way to treat them differently.
For example, we can check membership degrees of training tweets neighbours of
targeted test text to see how far they are and how sure our prediction is. Those

95

Chapter 8. Conclusion

scores for training tweets can be calculated during the training process and
saved to be inspected afterwards. For test instances with wrong predictions,
such information could contribute to the explainability process significantly.

Another important dataset characteristic that influences our results is its
imbalance. We were able to observe it for the Fear dataset, which is the most
imbalanced one among all emotion intensity detection datasets. One more no-
ticeable example is aspect categorization for the ABSA challenge, where one class
dominates all others. In our work, we considered the FROVOCO method, which
was designed for multi-class imbalanced datasets, to tackle the imbalance issue.
As we observed in Section 6.3.2, FROVOCO performed on a similar level with
FRNN-OWA for the ABSA task. However, the subtasks where FROVOCO was
dominant were the most imbalanced ones. It leads us to the idea of FROVOCO
model tuning and improvement in future work to use its imbalance-related char-
acteristic on the full scale.

For more experiments with imbalanced datasets, we can consider the usage
of imbalanced ML classification methods such as:

• Oversampling (as, for example, was done in [69]), which is the generation
of more training instances for the smaller class. It can be performed on
the vector level by adding various linear combinations of already existing
text representation vectors. Alternatively, and preferably, we can change
not the vectors but text and generate new tweets. To modify the original
tweets, we can, for example, replace several words with their synonyms
or use a rephrasing tool, including ones based on the GPT model. In
this way, by changing the text itself, we can manually check the quality
of transformation on the intrinsic level (is the meaning saved) and on the
extrinsic level (is the performance of the model improved). Hence, the new
text will make sense during error analysis since we can always refer to the
original tweet on which it was based.

• Anomaly detection (see e.g. [10]), which entails employing unsupervised
learning techniques to identify the minority class as an abnormality or
outlier and treating it as such.

• Cost-sensitive learning (for example, performed in [77]), which includes
altering the cost function of the classification method to punish minority
class misclassification mistakes more severely than majority class classifi-
cation errors.

In general, dealing with imbalanced data is a challenging task that was not solved
yet for the emotion detection and sentiment analysis domain and has a lot of
room for improvement.

8.2.2 Further exploration of explainability
As one of the main future challenges, we consider a more systematic study of
our approach’s explainability. For example, the authors of [32] provide several
hints on how to do this:

96

Chapter 8. Conclusion

• First-derivative saliency (see e.g. [7]), which works with gradient-based ex-
planations. It calculates the partial derivative of the acquired output with
respect to the input to determine the contribution of each input instance
to the final prediction. This approach can be utilized to provide feature
importance explainability, particularly on word- and token-level features.

• Input perturbations (for example, in [5]), suggested along with LIME in
[112]. By creating random input perturbations and training an explainable
model (often a linear one), this method may explain the output given an
input example.

• Attention mechanisms (see e.g. [83]), which can be added to most NN
designs and, because of their appeal to human intuition, can assist in
revealing on what the model is “focusing” by acting less as an operation
and more as a technique to enable the NN to explain predictions. In our
case, we can consider this solution for embedding models, especially if we
will fine-tune a new one.

Moreover, we can examine the application of fuzzy rule-based methods [25, 73]
on top of the set of nearest neighbours using high-level features. For example, the
Fuzzy Rule-Based k Nearest Neighbours (FRKNN) classifier from [73] contains a
set of fuzzy rules that generates particular output for each input instance with a
magnitude that determines the class membership of the targeted instance. The
authors provide thoughts regarding the main questions that should be addressed
for rule-based systems: the number of rules, their source, and usage of rules for
the class decision. In general, such methods may further enhance explainability
and provide us with new insights from the introduced rules.

It is important to say that neither global nor local methods outperform each
other since they both have different strengths. In future, such methods can be
combined to supplement each other. For example, the kNN-based local method
could discern some pattern in the data, which could be confirmed or rejected
with some global method.

Another approach we consider for future work is an application of the ex-
tracted patterns from our models to improve the next ones. As was shown in
Section 7, for a majority of provided test samples, the neighbouring training
texts contain similar keywords or belong to the same topic. However, such char-
acteristics of neighbours cannot guarantee the correct prediction since they can
belong to the same topic but have different intensities of the emotion (or be
part of another class). This observation made us think about the importance of
correct weights for all neighbours considered for the final prediction.

To investigate this direction, we decided to concentrate on the emotion de-
tection task and considered one of the test instances (Example 8.2.1) from the
Anger dataset.

Example 8.2.1. Shitty is the worst feeling ever #depressed #anxiety

This instance has the label ‘3’ (a high amount of anger can be inferred);
meanwhile, our solution for the Anger dataset (based on FRNN-OWA and dis-

97

Chapter 8. Conclusion

cussed in Section 5.1.5) predicted the label ‘0’. Considering the number of nearest
neighbours k equal to five, we take a closer look at neighbours of Example 8.2.1
from the training dataset provided in Table 8.1. The first neighbours in the
table are the closest ones to the targeted test sample Example 8.2.1.

We can notice that all provided examples are about the intense emotions
of users or about expressing these emotions. Their classes are below the gold
class ‘3’, although we have two neighbours with class ‘2’, which, preferably,
should be given larger weights in the prediction process. In other words, the
instances with class ‘2’ should be assigned the highest weight for Example 8.2.1
and the instances with class ‘0’ should receive the lowest weight. But with our
current approach, the first neighbour with class ‘0’ receives the highest weight.
The weights produced by our model and provided in Table 8.1 are based on
normalized cosine similarity scores, which, as we can notice, are quite similar.
Our idea is to use the discovered patterns, in this case, the emotions of users,
to transform the weights for the original training neighbours to obtain a more
accurate prediction for the test instance.

Table 8.1: Training neighbour instances for Example 8.2.1.

The full sentence Weights Class

@USER > huff louder 0.2306 0

I miss doing nothing someone I care about
and attacking their face with kisses
#foreveralone #bitter :weary_face:

0.1968 2

Yay bmth canceled Melbourne show
fanfuckingtastic just lost a days pay
and hotel fees not happy atm #sad

0.1937 2

When you burst out crying alone and u realize
that no one truly knows how unhappy you

really are because you don’t want anyone to know
0.1934 1

@USER No idea, just exhausted and I was
tidying my room and just burst out crying ... fs

0.1853 0

To apply the common topic concept, we want to see how the updated neigh-
bours’ texts can improve their weights for a prediction. Our idea is to shorten the
original text of the training instance by keeping the collocations of tokens with
more relevant words to the topic. In Table 8.2, we provide a reduced version of
the same neighbours from Table 8.1, where for each instance, we manually select
from two to four words that, in our opinion, express the key idea of the text -
the emotional state of the author, which is the common topic we are aiming for.
Further, we will discuss how this text reduction procedure can be automated.

After the reduction of the text, we update our embeddings for these new

98

Chapter 8. Conclusion

texts to obtain new vectors and recalculate the distances between neighbours
and the target test instance Example 8.2.1. The updated neighbours’ texts and
weights are listed in Table 8.2, ranked by the normalized similarity score to the
test instance. As we can see, now we have neighbours with classes ‘2’ at the top
and instances with class ‘0’ at the bottom of the list that makes sense regarding
the gold label ‘3’ of the test instance.

Table 8.2: Updated training neighbour instances for Example 8.2.1.

The full sentence Weights Class

not happy atm #sad 0.2469 2

#foreveralone #bitter :weary_face: 0.2465 2

crying alone unhappy 0.2448 1

exhausted burst out crying 0.1909 0

huff louder 0.0709 0

When we use updated distances to calculate a new prediction for Example
8.2.1, we receive a class ‘1’. This result is still incorrect if we compare it with a
gold class ‘3’; however, given the closest neighbours that we have in this case, it
would be quite difficult or even impossible to receive a correct prediction. Also,
we should have in mind the subjectivity of emotion dataset labelling. From
this perspective, the new prediction of class ‘1’ is closer to the truth than the
previous prediction of class ‘0’. Such an update, especially for not one but for a
bunch of incorrectly predicted instances, can improve the evaluation score of our
model. This difference can be clearly visible when using CCA as an evaluation
metric, where the cost of misclassification of gold class ‘3’ with predicted class
‘0’ is equal to 1 while such cost for predicted class ‘1’ is lower - 0.66 (Table 4.1).

To conclude this example, we can say that usage of the patterns discovered
between neighbouring training instances and the test instance can be useful on
the local level. Specifically, when we are able to determine the common topic
among them and filtrate neighbours’ texts to keep only the most important
for this topic words. This procedure can influence the vector representation of
neighbours, their distance to the targeted test text, their weights in the predic-
tion model, and so - it can change the prediction and improve it. Meanwhile,
to take this improvement from the local level to the global and update predic-
tion to the larger part of incorrectly predicted instances, this solution should
be scaled. Particularly, the process of neighbours’ text reduction should be au-
tomated, which could be a challenging task. Also, the strongest embedding
methods considered in our experiments did not require much text preprocessing.
For example, the standalone RoBERTa model did not use any preprocessing for

99

Chapter 8. Conclusion

the emotion detection with wkNN classification method (Table 5.4) and only the
basic text preprocessing for FRNN-OWA (Table 5.8) and FRNN regression (Ta-
ble 4.3) methods. Still, the suggested technique of text reduction can be seen not
as preprocessing but rather as a highlight of the most relevant to the detected
topic words in the tweet. Since such models as RoBERTa are context-based, we
can perceive text reduction as removing the irrelevant to the main context parts
and focusing on the key ideas. However, this suggestion should be verified on a
larger amount of examples.

In future work, we can consider for automated text reduction the usage
of topic modelling techniques, for example, transformer-based models such as
BERTopic [47] or tBERT [101] or keyword extraction (see e.g. [124]) for the
test instance and its neighbours. Once keywords will be defined, we can keep
them with some window of tokens around from the original neighbouring text
and neglect the rest of the words. As was mentioned before, this idea should be
experimentally validated as part of our future work.

100

Appendices

101

Appendix A

Software overview

In this appendix, we describe the software that was used to generate experiments
for this thesis. Since this work is based on five papers published in conferences
and journals, we have GitHub repositories for each of them. Three papers out of
five, particularly [66], [67], and [65], are located on the same GitHub repository
but on different branches. It was done in this way because they all investigate
similar datasets using variations of the FRNN-OWA techniques. Meanwhile, [68]
and [64] have separate repositories, where the first describes the wkNN approach
and the second - the ABSA task, which is different from others.

The purpose of these repositories is to show how exactly our experiments
were performed and give readers the opportunity to repeat the proposed setup.
In the following Sections, we present an overview of each repository separately.

A.1 wknn_emotion_detection
This repository1 contains the code for the paper “Nearest neighbour approaches
for Emotion Detection in Tweets” [68].

This repository contains the following parts:

• The code folder contains .py files with different functions:

– preprocessing.py - functions for data uploading and preparation;
– embeddings_and_lexicons.py - functions for tweets embeddings with

different methods and lexicons;
– wknn_eval.py - functions for wkNN approach and cross-validation

evaluation.

• The data folder contains README_data_download.md file with instruc-
tions on uploading necessary dataset files that should be saved in the data
folder.

1https://github.com/olha-kaminska/wknn_emotion_detection

103

https://github.com/olha-kaminska/wknn_emotion_detection

Chapter A. Software overview

• The lexica folder contains README_lexicons_download.md file with in-
structions on uploading necessary lexicons files that should be saved in the
lexica folder.

• The model directory contains README_model_download.md file with
instructions on uploading necessary models that should be saved in the
model folder.

• The file Example.ipynb provides an overview of all functions and their usage
on the example of the Anger dataset. It is built as a pipeline described in
the paper with corresponding results.

• The file requirements.txt contains the list of all necessary packages and
versions used with the Python 3.7.4 environment.

• The file WASSA2021_poster_Olha_Kaminska.pdf contains a poster that
was presented for this paper at WASSA 2021.

A.2 frnn_emotion_detection
This repository2 contains three branches with the code for three papers:

• The main branch3: "Fuzzy-Rough Nearest Neighbour Approaches for Emo-
tion Detection in Tweets" [66];

• The iSarcasmEval branch4: "LT3 at SemEval-2022 Task 6: Fuzzy-Rough
Nearest neighbour Classification for Sarcasm Detection" [67];

• The emotions_irony_hatespeech branch5: "Fuzzy Rough Nearest Neigh-
bour Methods for Detecting Emotions, Hate Speech and Irony" [65].

The main branch contains the following parts:

• The code folder contains .py files with different functions:

– data_preprocessing.py - functions for data uploading and data preper-
ation;

– frnn_owa_eval.py - functions for FRNN-OWA approach and cross-
validation;

– tweets_embedding.py - functions for tweets embeddings with different
methods.

• The data folder contains README_data_download.md file with instruc-
tions on uploading necessary datasets.

2https://github.com/olha-kaminska/frnn_emotion_detection
3https://github.com/olha-kaminska/frnn_emotion_detection/tree/main
4https://github.com/olha-kaminska/frnn_emotion_detection/tree/iSarcasmEval
5https://github.com/olha-kaminska/frnn_emotion_detection/tree/emotions_irony_

hatespeech

104

https://github.com/olha-kaminska/frnn_emotion_detection
https://github.com/olha-kaminska/frnn_emotion_detection/tree/main
https://github.com/olha-kaminska/frnn_emotion_detection/tree/iSarcasmEval
https://github.com/olha-kaminska/frnn_emotion_detection/tree/emotions_irony_hatespeech
https://github.com/olha-kaminska/frnn_emotion_detection/tree/emotions_irony_hatespeech

Chapter A. Software overview

• The model directory contains README_model_download.md file with
instructions on uploading necessary models that should be saved in the
model folder.

• The file Test.ipynb provides an overview of all function and their usage. It
is built as a pipeline described in the paper with corresponding results.

• The file requirements.txt contains the list of all necessary packages and
versions used with the Python 3.7.4 environment.

The iSarcasmEval branch contains the following parts:

• The code folder contains .py files with different functions:

– data_preprocessing.py - functions for data uploading and data preper-
ation;

– frnn_owa_eval.py - functions for FRNN-OWA approach and cross-
validation;

– tweets_embedding.py - functions for tweets embeddings with different
methods.

• The data folder contains README_data_download.md file with instruc-
tions on uploading necessary datasets.

• The model directory contains README_model_download.md file with
instructions on uploading necessary models that should be saved in the
model folder.

• The file iSarcasmEval.ipynb provides an overview of our pipeline during
problem-solving.

• The file test_labels.txt is the final file with test labels that we provided to
the organisers.

• The file requirements.txt contains the list of all necessary packages and
versions used with the Python 3.7.4 environment.

The emotions_irony_hatespeech branch contains the following parts:

• The code folder contains .py files with different functions:

– data_preprocessing.py - functions for data uploading and data preper-
ation;

– frnn_owa_eval.py - functions for FRNN-OWA approach and cross-
validation;

– tweets_embedding.py - functions for tweets embeddings with different
methods.

• The data folder contains README_data_download.md file with instruc-
tions on uploading necessary datasets.

105

Chapter A. Software overview

• The model directory contains README_model_download.md file with
instructions on uploading necessary models that should be saved in the
model folder.

• The file Example.ipynb provides an overview of all function and their usage.
It is built as a pipeline described in the paper with corresponding results.
As an example, it uses one out of seven datasets that we considered the
Hate Speech dataset.

• The file requirements.txt contains the list of all necessary packages and
versions used with the Python 3.7.4 environment.

A.3 frnn_absa
This repositoryh6 contains the code for the paper “Fuzzy Rough Nearest Neigh-
bour Methods for Aspect-Based Sentiment Analysis” [64].

The following components make up this repository:

• The code directory contains .py files with different functions:

– preprocessing.py - functions for data uploading and data preparation
and for tweets embeddings;

– fuzzy_eval.py - functions for fuzzy-rough-based approach and cross-
validation evaluation;

– systems.py - function to perform pipeline-based solutions.

• The data directory contains:

– README_data_download.md file with instructions on uploading
necessary dataset files;

– sentiment_cost.json file with cost matrix for the sentiment dataset;
– emotion_cost.json file with cost matrix for the emotion dataset.

• The file Example.ipynb provides an overview of all functions and their
usage on the example of our dataset. It is built as a pipeline described in
the paper with corresponding results.

• The file requirements.txt contains the list of all necessary packages and
versions used with the Python 3.7.4 environment.

6https://github.com/olha-kaminska/frnn_absa

106

https://github.com/olha-kaminska/frnn_absa

Appendix B

List of publications

Papers in international journals listed in the Science
Citation Index

• Olha Kaminska, Chris Cornelis, and Veronique Hoste. “Fuzzy Rough Near-
est Neighbour Methods for Aspect-Based Sentiment Analysis”. In: Elec-
tronics 12.5 (2023). issn: 2079-9292. doi: 10.3390/electronics12051088.
url: https://www.mdpi.com/2079-9292/12/5/1088.

• Olha Kaminska, Chris Cornelis, and Veronique Hoste. “Fuzzy rough
nearest neighbour methods for detecting emotions, hate speech and
irony”. In: Information Sciences 625 (2023), pp. 521–535. issn: 0020-
0255. doi: https://doi.org/10.1016/j.ins.2023.01.054. url: https://www.
sciencedirect.com/science/article/pii/S0020025523000543.

Conference proceedings
• Olha Kaminska, Chris Cornelis, and Veronique Hoste. “Fuzzy-Rough

Nearest Neighbour Approaches for Emotion Detection in Tweets”. In: In-
ternational Joint Conference on Rough Sets. Springer. 2021, pp. 231–246

• Olha Kaminska, Chris Cornelis, and Veronique Hoste. “LT3 at SemEval-
2022 Task 6: Fuzzy-Rough Nearest Neighbor Classification for Sarcasm
Detection”. In: Proceedings of the 16th International Workshop on Se-
mantic Evaluation (SemEval-2022). 2022, pp. 987–992

• Olha Kaminska, Chris Cornelis, and Veronique Hoste. “Nearest neighbour
approaches for Emotion Detection in Tweets”. In: Proc. 11th Workshop
on Computational Approaches to Subjectivity, Sentiment and Social Media
Analysis. 2021, pp. 203–212

107

https://www.mdpi.com/2079-9292/12/5/1088
https://www.sciencedirect.com/science/article/pii/S0020025523000543
https://www.sciencedirect.com/science/article/pii/S0020025523000543

Chapter 8. List of publications

108

Bibliography

[1] Ibrahim Abu Farha et al. “SemEval 2022: iSarcasmEval - Intended Sar-
casm Detection in English and Arabic”. In: Proceedings of the 16th Inter-
national Workshop on Semantic Evaluation (SemEval-2022). July 2022.

[2] Ibrahim Abu Farha et al. “SemEval-2022 Task 6: iSarcasmEval, Intended
Sarcasm Detection in English and Arabic”. In: Proceedings of the 16th
International Workshop on Semantic Evaluation (SemEval-2022). Seat-
tle, United States: Association for Computational Linguistics, July 2022,
pp. 802–814. doi: 10.18653/v1/2022.semeval- 1.111. url: https:
//aclanthology.org/2022.semeval-1.111.

[3] Amina Adadi and Mohammed Berrada. “Peeking inside the black-box:
a survey on explainable artificial intelligence (XAI)”. In: IEEE access 6
(2018), pp. 52138–52160.

[4] Ramya Akula and Ivan Garibay. “Explainable Detection of Sarcasm in
Social Media”. In: Proceedings of the Eleventh Workshop on Computa-
tional Approaches to Subjectivity, Sentiment and Social Media Analysis.
Apr. 2021, pp. 34–39.

[5] David Alvarez-Melis and Tommi S Jaakkola. “A causal framework for
explaining the predictions of black-box sequence-to-sequence models”. In:
arXiv preprint arXiv:1707.01943 (2017).

[6] Jason Angel, Segun Aroyehun, and Alexander Gelbukh. “TUG-CIC at
SemEval-2021 Task 6: Two-stage Fine-tuning for Intended Sarcasm De-
tection”. In: Proceedings of the 16th International Workshop on Semantic
Evaluation (SemEval-2022). 2022, pp. 951–955.

[7] Malika Aubakirova and Mohit Bansal. “Interpreting neural networks to
improve politeness comprehension”. In: arXiv preprint arXiv:1610.02683
(2016).

[8] Muhammad Awais et al. “LSTM-based emotion detection using phys-
iological signals: IoT framework for healthcare and distance learning in
COVID-19”. In: IEEE Internet of Things Journal 8.23 (2020), pp. 16863–
16871.

109

https://doi.org/10.18653/v1/2022.semeval-1.111
https://aclanthology.org/2022.semeval-1.111
https://aclanthology.org/2022.semeval-1.111

Chapter 8. BIBLIOGRAPHY

[9] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. “Neural ma-
chine translation by jointly learning to align and translate”. In: 3rd In-
ternational Conference on Learning Representations, ICLR 2015. 2015.

[10] VS Bakkialakshmi and T Sudalaimuthu. “Anomaly Detection in Social
Media Using Text-Mining and Emotion Classification with Emotion De-
tection”. In: Cognition and Recognition: 8th International Conference,
ICCR 2021, Mandya, India, December 30–31, 2021, Revised Selected Pa-
pers. Springer. 2023, pp. 67–78.

[11] Francesco Barbieri et al. “TweetEval: Unified Benchmark and Compara-
tive Evaluation for Tweet Classification”. In: Findings of the Association
for Computational Linguistics: EMNLP 2020. Nov. 2020, pp. 1644–1650.

[12] Valerio Basile et al. “Semeval-2019 task 5: Multilingual detection of hate
speech against immigrants and women in twitter”. In: 13th International
Workshop on Semantic Evaluation. 2019, pp. 54–63.

[13] Christos Baziotis et al. “NTUA-SLP at SemEval-2018 Task 3: Tracking
Ironic Tweets using Ensembles of Word and Character Level Attentive
RNNs”. In: Proc. 12th International Workshop on Semantic Evaluation.
June 2018, pp. 613–621.

[14] Dario Bertero and Pascale Fung. “A first look into a convolutional neu-
ral network for speech emotion detection”. In: 2017 IEEE international
conference on acoustics, speech and signal processing (ICASSP). IEEE.
2017, pp. 5115–5119.

[15] Susann Boy, Dana Ruiter, and Dietrich Klakow. “Emoji-Based Transfer
Learning for Sentiment Tasks”. In: Proceedings of the 16th Conference of
the European Chapter of the Association for Computational Linguistics:
Student Research Workshop. Apr. 2021, pp. 103–110.

[16] Margaret M Bradley and Peter J Lang. Affective norms for English words
(ANEW): Instruction manual and affective ratings. Tech. rep. Technical
report C-1, the center for research in psychophysiology, 1999.

[17] Tom Brown et al. “Language models are few-shot learners”. In: Advances
in neural information processing systems 33 (2020), pp. 1877–1901.

[18] Daniel Cer et al. “Universal Sentence Encoder for English”. In: Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. Nov. 2018, pp. 169–174. doi: 10.
18653/v1/D18-2029. url: https://www.aclweb.org/anthology/D18-
2029.

[19] Daniel Chandler and Rod Munday. A dictionary of media and communi-
cation. OUP Oxford, 2011.

110

https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://www.aclweb.org/anthology/D18-2029
https://www.aclweb.org/anthology/D18-2029

Chapter 8. BIBLIOGRAPHY

[20] Guimin Chen, Yuanhe Tian, and Yan Song. “Joint Aspect Extraction and
Sentiment Analysis with Directional Graph Convolutional Networks”. In:
Proceedings of the 28th International Conference on Computational Lin-
guistics. Barcelona, Spain (Online): International Committee on Compu-
tational Linguistics, Dec. 2020, pp. 272–279. doi: 10.18653/v1/2020.
coling- main.24. url: https://aclanthology.org/2020.coling-
main.24.

[21] Hanjie Chen and Yangfeng Ji. “Learning variational word masks to im-
prove the interpretability of neural text classifiers”. In: arXiv preprint
arXiv:2010.00667 (2020).

[22] Anandan Chinnalagu and Ashok Kumar Durairaj. “Context-based senti-
ment analysis on customer reviews using machine learning linear models”.
In: PeerJ Computer Science 7 (2021), e813.

[23] Andrea Chiorrini et al. “Emotion and sentiment analysis of tweets using
BERT”. In: EDBT/ICDT Workshops. 2021.

[24] Kyunghyun Cho et al. “Learning Phrase Representations using RNN
Encoder–Decoder for Statistical Machine Translation”. In: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP). 2014, pp. 1724–1734. doi: 10.3115/v1/D14-1179.

[25] TeckWee Chua and WoeiWan Tan. “A new fuzzy rule-based initialization
method for K-Nearest neighbor classifier”. In: 2009 IEEE International
Conference on Fuzzy Systems. 2009, pp. 415–420. doi: 10.1109/FUZZY.
2009.5277215.

[26] Kevin Clark et al. “Electra: Pre-training text encoders as discriminators
rather than generators”. In: arXiv preprint arXiv:2003.10555 (2020).

[27] Alexis Conneau et al. “Supervised Learning of Universal Sentence Repre-
sentations from Natural Language Inference Data”. In: Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing.
Copenhagen, Denmark: Association for Computational Linguistics, 2017,
pp. 670–680. url: https://www.aclweb.org/anthology/D17-1070.

[28] Alexis Conneau et al. “Unsupervised cross-lingual representation learning
at scale”. In: arXiv preprint arXiv:1911.02116 (2019).

[29] Thomas Cover and Peter Hart. “Nearest neighbor pattern classification”.
In: IEEE transactions on information theory 13.1 (1967), pp. 21–27.

[30] Danilo Croce, Daniele Rossini, and Roberto Basili. “Auditing deep learn-
ing processes through kernel-based explanatory models”. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). 2019, pp. 4037–4046.

[31] W Daelemans. “Van den Bosch. 2005. Memory-Based Language Process-
ing”. In: Cambridge: Cambndge UniversityPress (85).

111

https://doi.org/10.18653/v1/2020.coling-main.24
https://doi.org/10.18653/v1/2020.coling-main.24
https://aclanthology.org/2020.coling-main.24
https://aclanthology.org/2020.coling-main.24
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1109/FUZZY.2009.5277215
https://doi.org/10.1109/FUZZY.2009.5277215
https://www.aclweb.org/anthology/D17-1070

Chapter 8. BIBLIOGRAPHY

[32] Marina Danilevsky et al. “A Survey of the State of Explainable AI for Nat-
ural Language Processing”. In: Proc. 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics and the 10th In-
ternational Joint Conference on Natural Language Processing. Dec. 2020,
pp. 447–459.

[33] Luna De Bruyne and Orphée De Clercq. “Prospects for Dutch Emotion
Detection: Insights from the New EmotioNL Dataset”. In: Computational
Linguistics in the Netherlands Journal 11 (2022), pp. 231–255.

[34] Luna De Bruyne, Orphée De Clercq, and Véronique Hoste. “Emotional
RobBERT and insensitive BERTje: combining transformers and affect
lexica for Dutch emotion detection”. In: Workshop on Computational Ap-
proaches to Subjectivity and Sentiment Analysis (WASSA), held in con-
junction with EACL 2021. Association for Computational Linguistics.
2021, pp. 257–263.

[35] Ellen De Geyndt et al. “SentEMO: A Multilingual Adaptive Platform
for Aspect-based Sentiment and Emotion Analysis”. In: 12th Workshop
on Computational Approaches to Subjectivity, Sentiment & Social Me-
dia Analysis, collocated with ACL 2022. Association for Computational
Linguistics. 2022, pp. 51–61.

[36] Bart Desmet and Véronique Hoste. “Emotion detection in suicide notes”.
In: Expert Systems with Applications 40.16 (2013), pp. 6351–6358.

[37] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding”. In: Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 2019, pp. 4171–4186.

[38] Yunxia Ding, Xiaobing Zhou, and Xuejie Zhang. “YNU_DYX at
SemEval-2019 Task 5: A Stacked BiGRU Model Based on Capsule Net-
work in Detection of Hate”. In: Proc. 13th International Workshop on
Semantic Evaluation. June 2019, pp. 535–539.

[39] MP Dubuisson and AK Jain. “A modified Hausdorff distance for object
matching”. In: International Conference on Pattern Recognition. Vol. 1.
IEEE. Jerusalem, Israel, 1994, pp. 566–568.

[40] Sahibsingh A Dudani. “The distance-weighted k-nearest-neighbor rule”.
In: IEEE Transactions on Systems, Man, and Cybernetics 4 (1976),
pp. 325–327.

[41] Venkatesh Duppada, Royal Jain, and Sushant Hiray. “SeerNet at
SemEval-2018 Task 1: Domain Adaptation for Affect in Tweets”. In: Proc.
12th International Workshop on Semantic Evaluation. June 2018, pp. 18–
23.

[42] Paul Ekman. “Biological and cultural contributions to body and facial
movement”. In: The anthropology of the body (1977), pp. 39–84.

112

Chapter 8. BIBLIOGRAPHY

[43] Bjarke Felbo et al. “Using millions of emoji occurrences to learn any-
domain representations for detecting sentiment, emotion and sarcasm”.
In: Proc. 2017 Conference on Empirical Methods in Natural Language
Processing (2017).

[44] Grace Gee and Eugene Wang. “psyML at SemEval-2018 Task 1: Transfer
learning for sentiment and emotion analysis”. In: Proc. 12th International
Workshop on Semantic Evaluation. 2018, pp. 369–376.

[45] Bilal Ghanem et al. “Irony detection in a multilingual context”. In: Ad-
vances in Information Retrieval 12036 (2020), pp. 141–149.

[46] José Ángel González, Lluís-F. Hurtado, and Ferran Pla. “Transformer
based contextualization of pre-trained word embeddings for irony detec-
tion in Twitter”. In: Information Processing & Management 57.4 (2020),
p. 102262. issn: 0306-4573.

[47] Maarten Grootendorst. “BERTopic: Neural topic modeling with a class-
based TF-IDF procedure”. In: arXiv preprint arXiv:2203.05794 (2022).

[48] Riccardo Guidotti et al. “A survey of methods for explaining black box
models”. In: ACM computing surveys (CSUR) 51.5 (2018), pp. 1–42.

[49] Raj Kumar Gupta, Ajay Vishwanath, and Yinping Yang. “COVID-19
Twitter dataset with latent topics, sentiments and emotions attributes”.
In: (2021). doi: https://doi.org/10.3886/E120321V11.

[50] Yaqian Han et al. “X-pudu at semeval-2022 task 6: Multilingual learn-
ing for english and arabic sarcasm detection”. In: arXiv preprint
arXiv:2211.16883 (2022).

[51] Felix Hausdorff. Grundzüge der Mengenlehre. German. Leipzig: Veit &
Comp, 1914.

[52] Pengcheng He et al. “Deberta: Decoding-enhanced bert with disentangled
attention”. In: arXiv preprint arXiv:2006.03654 (2020).

[53] Matthew Honnibal and Ines Montani. “spaCy 2: Natural language un-
derstanding with Bloom embeddings, convolutional neural networks and
incremental parsing”. In: To appear 7.1 (2017), pp. 411–420.

[54] Minqing Hu and Bing Liu. “Mining and summarizing customer reviews”.
In: Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining. 2004, pp. 168–177.

[55] Anna Huang. “Similarity measures for text document clustering”. In:
Proc. 6th New Zealand computer science research student conference
(NZCSRSC2008). Vol. 4. 2008, pp. 9–56.

[56] Ali Shariq Imran et al. “Cross-cultural polarity and emotion detection
using sentiment analysis and deep learning on COVID-19 related tweets”.
In: Ieee Access 8 (2020), pp. 181074–181090.

[57] Nitin Indurkhya and Fred J Damerau. Handbook of natural language pro-
cessing. Vol. 2. CRC Press, 2010.

113

https://doi.org/https://doi.org/10.3886/E120321V11

Chapter 8. BIBLIOGRAPHY

[58] Vijayasaradhi Indurthi et al. “FERMI at SemEval-2019 Task 5: Using
Sentence embeddings to Identify Hate Speech Against Immigrants and
Women in Twitter”. In: Proc. 13th International Workshop on Semantic
Evaluation. June 2019, pp. 70–74.

[59] Hayeon Jang and Hyopil Shin. “Language-specific sentiment analysis in
morphologically rich languages”. In: Coling 2010: Posters. 2010, pp. 498–
506.

[60] Hamed Jelodar et al. “Deep Sentiment Classification and Topic Discov-
ery on Novel Coronavirus or COVID-19 Online Discussions: NLP Us-
ing LSTM Recurrent Neural Network Approach”. In: IEEE Journal of
Biomedical and Health Informatics 24.10 (2020), pp. 2733–2742.

[61] Richard Jensen and Chris Cornelis. “Fuzzy-rough nearest neighbour
classification and prediction”. In: Theoretical Computer Science 412.42
(2011), pp. 5871–5884.

[62] Yichen Jiang et al. “Explore, Propose, and Assemble: An Interpretable
Model for Multi-Hop Reading Comprehension”. In: Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics.
2019, pp. 2714–2725.

[63] Armand Joulin et al. “Bag of Tricks for Efficient Text Classification”.
In: Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short Papers. 2017,
pp. 427–431.

[64] Olha Kaminska, Chris Cornelis, and Veronique Hoste. “Fuzzy Rough
Nearest Neighbour Methods for Aspect-Based Sentiment Analysis”.
In: Electronics 12.5 (2023). issn: 2079-9292. doi: 10 . 3390 /
electronics12051088. url: https : / / www . mdpi . com / 2079 - 9292 /
12/5/1088.

[65] Olha Kaminska, Chris Cornelis, and Veronique Hoste. “Fuzzy rough near-
est neighbour methods for detecting emotions, hate speech and irony”.
In: Information Sciences 625 (2023), pp. 521–535. issn: 0020-0255. doi:
https://doi.org/10.1016/j.ins.2023.01.054. url: https://www.
sciencedirect.com/science/article/pii/S0020025523000543.

[66] Olha Kaminska, Chris Cornelis, and Veronique Hoste. “Fuzzy-Rough
Nearest Neighbour Approaches for Emotion Detection in Tweets”. In:
International Joint Conference on Rough Sets. Springer. 2021, pp. 231–
246.

[67] Olha Kaminska, Chris Cornelis, and Veronique Hoste. “LT3 at SemEval-
2022 Task 6: Fuzzy-Rough Nearest Neighbor Classification for Sarcasm
Detection”. In: Proceedings of the 16th International Workshop on Se-
mantic Evaluation (SemEval-2022). 2022, pp. 987–992.

114

https://doi.org/10.3390/electronics12051088
https://doi.org/10.3390/electronics12051088
https://www.mdpi.com/2079-9292/12/5/1088
https://www.mdpi.com/2079-9292/12/5/1088
https://doi.org/https://doi.org/10.1016/j.ins.2023.01.054
https://www.sciencedirect.com/science/article/pii/S0020025523000543
https://www.sciencedirect.com/science/article/pii/S0020025523000543

Chapter 8. BIBLIOGRAPHY

[68] Olha Kaminska, Chris Cornelis, and Veronique Hoste. “Nearest neighbour
approaches for Emotion Detection in Tweets”. In: Proc. 11th Workshop on
Computational Approaches to Subjectivity, Sentiment and Social Media
Analysis. 2021, pp. 203–212.

[69] Aditya Kane et al. “Transformer based ensemble for emotion detection”.
In: arXiv preprint arXiv:2203.11899 (2022).

[70] Akbar Karimi, Leonardo Rossi, and Andrea Prati. “Adversarial training
for aspect-based sentiment analysis with bert”. In: 2020 25th Interna-
tional Conference on Pattern Recognition (ICPR). IEEE. 2021, pp. 8797–
8803.

[71] Dilek Küçük and Fazli Can. “Stance detection: A survey”. In: ACM Com-
puting Surveys (CSUR) 53.1 (2020), pp. 1–37.

[72] Fang-Fei Kuo et al. “Emotion-based music recommendation by associa-
tion discovery from film music”. In: Proceedings of the 13th annual ACM
international conference on Multimedia. 2005, pp. 507–510.

[73] Arijit Laha. “Building contextual classifiers by integrating fuzzy rule
based classification technique and k-nn method for credit scoring”. In:
Advanced Engineering Informatics 21.3 (2007). Applications Eligible for
Data Mining, pp. 281–291. issn: 1474-0346. doi: https://doi.org/10.
1016/j.aei.2006.12.004.

[74] Zhenzhong Lan et al. “Albert: A lite bert for self-supervised learning of
language representations”. In: arXiv preprint arXiv:1909.11942 (2019).

[75] Oliver Urs Lenz, Daniel Peralta, and Chris Cornelis. “fuzzy-rough-learn
0.1: a Python library for machine learning with fuzzy rough sets”.
In: IJCRS 2020: Proc. International Joint Conference on Rough Sets.
Vol. 12179. Lecture Notes in Artificial Intelligence. 2020, pp. 491–499.

[76] Oliver Urs Lenz, Daniel Peralta, and Chris Cornelis. “Scalable approxi-
mate FRNN-OWA classification”. In: IEEE Transactions on Fuzzy Sys-
tems 28.5 (2019), pp. 929–938.

[77] Dongdong Li, Yingchun Yang, and Weihui Dai. “Cost-sensitive learning
for emotion robust speaker recognition”. In: The Scientific World Journal
2014 (2014).

[78] Jiwei Li et al. “Visualizing and Understanding Neural Models in NLP”.
In: Proceedings of NAACL-HLT. 2016, pp. 681–691.

[79] Xin Li et al. Exploiting BERT for End-to-End Aspect-based Sentiment
Analysis. 2019.

[80] Bing Liu. “Sentiment analysis and opinion mining”. In: Synthesis lectures
on human language technologies 5.1 (2012), pp. 1–167.

[81] Ping Liu, Wen Li, and Liang Zou. “NULI at SemEval-2019 task 6: Trans-
fer learning for offensive language detection using bidirectional transform-
ers”. In: Proc. 13th international workshop on semantic evaluation. 2019,
pp. 87–91.

115

https://doi.org/https://doi.org/10.1016/j.aei.2006.12.004
https://doi.org/https://doi.org/10.1016/j.aei.2006.12.004

Chapter 8. BIBLIOGRAPHY

[82] Yinhan Liu et al. “Roberta: A robustly optimized bert pretraining ap-
proach”. In: arXiv preprint arXiv:1907.11692 (2019).

[83] Ling Luo et al. “Beyond Polarity: Interpretable Financial Sentiment
Analysis with Hierarchical Query-driven Attention.” In: IJCAI. 2018,
pp. 4244–4250.

[84] Zafer Al-Makhadmeh and Amr Tolba. “Automatic hate speech detection
using killer natural language processing optimizing ensemble deep learn-
ing approach”. In: Computing 102.2 (2020), pp. 501–522.

[85] Yue Mao et al. “A joint training dual-mrc framework for aspect based
sentiment analysis”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 35. 2021, pp. 13543–13551.

[86] Ilia Markov et al. “Exploring Stylometric and Emotion-Based Features
for Multilingual Cross-Domain Hate Speech Detection”. In: Proc. 11th
Workshop on Computational Approaches to Subjectivity, Sentiment and
Social Media Analysis. Apr. 2021.

[87] Tomas Mikolov et al. “Advances in Pre-Training Distributed Word Rep-
resentations”. In: Proc. International Conference on Language Resources
and Evaluation (LREC 2018). 2018.

[88] Tomas Mikolov et al. “Distributed Representations of Words and Phrases
and Their Compositionality”. In: Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 2.
NIPS’13. 2013, pp. 3111–3119.

[89] Tomas Mikolov et al. “Efficient Estimation of Word Representations in
Vector Space”. In: CoRR abs/1301.3781 (2013).

[90] Saif Mohammad. “Obtaining Reliable Human Ratings of Valence,
Arousal, and Dominance for 20,000 English Words”. In: Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Melbourne, Australia: Association for Compu-
tational Linguistics, July 2018, pp. 174–184. doi: 10.18653/v1/P18-
1017. url: https://www.aclweb.org/anthology/P18-1017.

[91] Saif M Mohammad and Peter D Turney. “Crowdsourcing a word–emotion
association lexicon”. In: Computational intelligence 29.3 (2013), pp. 436–
465.

[92] Saif M. Mohammad. “Word Affect Intensities”. In: Proceedings of the 11th
Edition of the Language Resources and Evaluation Conference (LREC-
2018). Miyazaki, Japan, 2018.

[93] Saif M. Mohammad et al. “SemEval-2018 Task 1: Affect in Tweets”.
In: Proceedings of International Workshop on Semantic Evaluation
(SemEval-2018). New Orleans, LA, USA, 2018.

116

https://doi.org/10.18653/v1/P18-1017
https://doi.org/10.18653/v1/P18-1017
https://www.aclweb.org/anthology/P18-1017

Chapter 8. BIBLIOGRAPHY

[94] John Morris et al. “TextAttack: A Framework for Adversarial Attacks,
Data Augmentation, and Adversarial Training in NLP”. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations. 2020, pp. 119–126.

[95] Marzieh Mozafari, Reza Farahbakhsh, and Noel Crespi. “A BERT-based
transfer learning approach for hate speech detection in online social me-
dia”. In: International Conference on Complex Networks and Their Ap-
plications. Springer. 2019, pp. 928–940.

[96] Dat Quoc Nguyen, Thanh Vu, and Anh Tuan Nguyen. “BERTweet: A
pre-trained language model for English Tweets”. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. 2020, pp. 9–14. doi: 10.18653/v1/2020.emnlp-
demos.2.

[97] Alex Nikolov and Victor Radivchev. “Nikolov-Radivchev at SemEval-2019
Task 6: Offensive Tweet Classification with BERT and Ensembles”. In:
Proc. 13th International Workshop on Semantic Evaluation. June 2019,
pp. 691–695.

[98] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].
[99] Xuan Ouyang et al. “ERNIE-M: Enhanced multilingual representation

by aligning cross-lingual semantics with monolingual corpora”. In: arXiv
preprint arXiv:2012.15674 (2020).

[100] Sungjoon Park et al. “Dimensional emotion detection from categorical
emotion”. In: arXiv preprint arXiv:1911.02499 (2019).

[101] Nicole Peinelt, Dong Nguyen, and Maria Liakata. “tBERT: Topic mod-
els and BERT joining forces for semantic similarity detection”. In: Pro-
ceedings of the 58th annual meeting of the association for computational
linguistics. 2020, pp. 7047–7055.

[102] Rosalind W Picard. “Affective computing MIT press”. In: Cambridge,
Massachsusetts (1997), p. 2.

[103] Yolande Piris and Anne-Cécile Gay. “Customer satisfaction and natu-
ral language processing”. In: Journal of Business Research 124 (2021),
pp. 264–271. issn: 0148-2963.

[104] Maria Pontiki et al. “SemEval-2014 Task 4: Aspect Based Sentiment
Analysis”. In: Proceedings of the 8th International Workshop on Semantic
Evaluation (SemEval 2014). Dublin, Ireland: Association for Computa-
tional Linguistics, Aug. 2014, pp. 27–35. doi: 10.3115/v1/S14-2004.
url: https://aclanthology.org/S14-2004.

[105] Maria Pontiki et al. “SemEval-2015 Task 12: Aspect Based Sentiment
Analysis”. In: Proceedings of the 9th International Workshop on Semantic
Evaluation (SemEval 2015). Denver, Colorado: Association for Computa-
tional Linguistics, June 2015, pp. 486–495. doi: 10.18653/v1/S15-2082.
url: https://aclanthology.org/S15-2082.

117

https://doi.org/10.18653/v1/2020.emnlp-demos.2
https://doi.org/10.18653/v1/2020.emnlp-demos.2
https://arxiv.org/abs/2303.08774
https://doi.org/10.3115/v1/S14-2004
https://aclanthology.org/S14-2004
https://doi.org/10.18653/v1/S15-2082
https://aclanthology.org/S15-2082

Chapter 8. BIBLIOGRAPHY

[106] Maria Pontiki et al. “SemEval-2015 task 12: Aspect based sentiment anal-
ysis”. In: Proceedings of the 9th international workshop on semantic eval-
uation (SemEval 2015). 2015, pp. 486–495.

[107] Maria Pontiki et al. “SemEval-2016 Task 5: Aspect Based Sentiment
Analysis”. In: Proceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016). San Diego, California: Association
for Computational Linguistics, June 2016, pp. 19–30. doi: 10.18653/v1/
S16-1002. url: https://aclanthology.org/S16-1002.

[108] Rolandos Alexandros Potamias, Georgios Siolas, and Andreas-Georgios
Stafylopatis. “A transformer-based approach to irony and sarcasm detec-
tion”. In: Neural Computing and Applications 32.23 (2020), pp. 17309–
17320.

[109] Colin Raffel et al. “Exploring the limits of transfer learning with a unified
text-to-text transformer”. In: The Journal of Machine Learning Research
21.1 (2020), pp. 5485–5551.

[110] Enislay Ramentol et al. “IFROWANN: imbalanced fuzzy-rough ordered
weighted average nearest neighbor classification”. In: IEEE Transactions
on Fuzzy Systems 23.5 (2014), pp. 1622–1637.

[111] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embed-
dings using Siamese BERT-Networks”. In: Proc. 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
Nov. 2019, pp. 3982–3992.

[112] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ““Why should I
trust you?” Explaining the predictions of any classifier”. In: Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining. 2016, pp. 1135–1144.

[113] M Alfa Riza and Novrido Charibaldi. “Emotion Detection in Twitter
Social Media Using Long Short-Term Memory (LSTM) and Fast Text”.
In: International Journal of Artificial Intelligence & Robotics (IJAIR) 3.1
(2021), pp. 15–26.

[114] Omid Rohanian et al. “WLV at SemEval-2018 Task 3: Dissecting Tweets
in Search of Irony”. In: Proc. 12th International Workshop on Semantic
Evaluation. June 2018, pp. 553–559.

[115] Sara Rosenthal, Preslav Nakov, and Svetlana Kiritchenko. “SemEval-2017
Task 4: Sentiment analysis in Twitter”. In: Proceedings of the 11th Inter-
national Workshop on Semantic Evaluation (SemEval-2017). Association
for Computational Linguistics. Vancouver, Canada, 2017, pp. 502–518.

[116] Alon Rozental and Daniel Fleischer. “Amobee at SemEval-2018 Task 1:
GRU Neural Network with a CNN Attention Mechanism for Sentiment
Classification”. In: Proc. 12th International Workshop on Semantic Eval-
uation. June 2018, pp. 218–225.

118

https://doi.org/10.18653/v1/S16-1002
https://doi.org/10.18653/v1/S16-1002
https://aclanthology.org/S16-1002

Chapter 8. BIBLIOGRAPHY

[117] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. “Dynamic routing
between capsules”. In: Proceeding of 31st Conference on Neural Informa-
tion Processing Systems (NIPS 2017). 2017.

[118] Mehmet Umut Salur and Ilhan Aydin. “A Novel Hybrid Deep Learning
Model for Sentiment Classification”. In: IEEE Access 8 (2020), pp. 58080–
58093.

[119] Victor Sanh et al. DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter. 2019. doi: 10.48550/ARXIV.1910.01108.
url: https://arxiv.org/abs/1910.01108.

[120] Boaz Shmueli, Lun-Wei Ku, and Soumya Ray. “Reactive Supervision:
A New Method for Collecting Sarcasm Data”. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Online: Association for Computational Linguistics, Nov. 2020,
pp. 2553–2559. doi: 10.18653/v1/2020.emnlp-main.201.

[121] Kush Shrivastava, Shishir Kumar, and Deepak Kumar Jain. “An effective
approach for emotion detection in multimedia text data using sequence
based convolutional neural network”. In: Multimedia tools and applica-
tions 78 (2019), pp. 29607–29639.

[122] Carlo Strapparava and Rada Mihalcea. “Learning to identify emotions in
text”. In: Proceedings of the 2008 ACM symposium on Applied computing.
2008, pp. 1556–1560.

[123] Erik Strumbelj and Igor Kononenko. “An efficient explanation of indi-
vidual classifications using game theory”. In: The Journal of Machine
Learning Research 11 (2010), pp. 1–18.

[124] Matthew Tang et al. “Progress notes classification and keyword extrac-
tion using attention-based deep learning models with BERT”. In: arXiv
preprint arXiv:1910.05786 (2019).

[125] Cynthia Van Hee. “Can machines sense irony?: exploring automatic irony
detection on social media”. PhD thesis. Ghent University, 2017.

[126] Cynthia Van Hee, Els Lefever, and Véronique Hoste. “SemEval-2018 Task
3: Irony Detection in English Tweets”. In: Proc. 12th International Work-
shop on Semantic Evaluation. June 2018, pp. 39–50.

[127] Sarah Vluymans et al. “Applications of fuzzy rough set theory in machine
learning: a survey”. In: Fundamenta Informaticae 142.1-4 (2015), pp. 53–
86.

[128] Sarah Vluymans et al. “Dynamic affinity-based classification of multi-
class imbalanced data with one-versus-one decomposition: a fuzzy rough
set approach”. In: Knowledge and Information Systems 56.1 (2018),
pp. 55–84.

[129] Sarah Vluymans et al. “Weight selection strategies for ordered weighted
average based fuzzy rough sets”. In: Information Sciences 501 (2019),
pp. 155–171.

119

https://doi.org/10.48550/ARXIV.1910.01108
https://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/2020.emnlp-main.201

Chapter 8. BIBLIOGRAPHY

[130] Hai Wan et al. “Target-aspect-sentiment joint detection for aspect-based
sentiment analysis”. In: Proceedings of the AAAI conference on artificial
intelligence. Vol. 34. 2020, pp. 9122–9129.

[131] Amy Beth Warriner, Victor Kuperman, and Marc Brysbaert. “Norms of
valence, arousal, and dominance for 13,915 English lemmas”. In: Behavior
research methods 45.4 (2013), pp. 1191–1207.

[132] Jason Wei and Kai Zou. “Eda: Easy data augmentation techniques for
boosting performance on text classification tasks”. In: arXiv preprint
arXiv:1901.11196 (2019).

[133] Michael Wiegand and Josef Ruppenhofer. “Exploiting Emojis for Abusive
Language Detection”. In: Proc. 16th Conference of the European Chap-
ter of the Association for Computational Linguistics: Main Volume. Apr.
2021, pp. 369–380.

[134] Chuhan Wu et al. “THU_NGN at SemEval-2018 Task 3: Tweet Irony
Detection with Densely connected LSTM and Multi-task Learning”. In:
Proc. 12th International Workshop on Semantic Evaluation. June 2018,
pp. 51–56.

[135] Zhiyong Wu et al. “Perturbed masking: Parameter-free probing for an-
alyzing and interpreting BERT”. In: arXiv preprint arXiv:2004.14786
(2020).

[136] Tong Xiang et al. “ToxCCIn: Toxic Content Classification with Inter-
pretability”. In: Proceedings of the Eleventh Workshop on Computational
Approaches to Subjectivity, Sentiment and Social Media Analysis. Apr.
2021, pp. 1–12.

[137] Li Yang, Jin-Cheon Na, and Jianfei Yu. “Cross-modal multitask trans-
former for end-to-end multimodal aspect-based sentiment analysis”. In:
Information Processing & Management 59.5 (2022), p. 103038.

[138] Zichao Yang et al. “Hierarchical attention networks for document classi-
fication”. In: Proceedings of the 2016 conference of the North American
chapter of the association for computational linguistics: human language
technologies. 2016, pp. 1480–1489.

[139] Mengfei Yuan et al. “stce at semeval-2022 task 6: Sarcasm detection in
english tweets”. In: Proceedings of the 16th International Workshop on
Semantic Evaluation (SemEval-2022). 2022, pp. 820–826.

[140] Lotfi A Zadeh. “Fuzzy sets”. In: Information and control 8.3 (1965),
pp. 338–353.

[141] Marcos Zampieri et al. “Predicting the Type and Target of Offensive
Posts in Social Media”. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers).
2019, pp. 1415–1420. doi: 10.18653/v1/N19-1144.

120

https://doi.org/10.18653/v1/N19-1144

Chapter 8. BIBLIOGRAPHY

[142] Marcos Zampieri et al. “SemEval-2019 Task 6: Identifying and Catego-
rizing Offensive Language in Social Media (OffensEval)”. In: Proc. 13th
International Workshop on Semantic Evaluation. June 2019, pp. 75–86.

[143] Jun-hai Zhai. “Fuzzy decision tree based on fuzzy-rough technique”. In:
Soft Computing 15.6 (2011), pp. 1087–1096.

[144] Xiang Zhang, Junbo Zhao, and Yann LeCun. “Character-Level Convolu-
tional Networks for Text Classification”. In: arXiv:1509.01626 [cs] (Sept.
2015). arXiv: 1509.01626 [cs].

[145] Anping Zhao and Yu Yu. “Knowledge-enabled BERT for aspect-based
sentiment analysis”. In: Knowledge-Based Systems 227 (2021), p. 107220.

[146] Hong Zhao et al. “Fuzzy Rough Set Based Feature Selection for Large-
Scale Hierarchical Classification”. In: IEEE Transactions on Fuzzy Sys-
tems 27.10 (2019), pp. 1891–1903.

[147] Jun Y. Zhao and Zhi L. Zhang. “Fuzzy rough neural network and its
application to feature selection”. In: Proc. 4th International Workshop
on Advanced Computational Intelligence. 2011, pp. 684–687.

[148] Lingyun Zhao et al. “A BERT based sentiment analysis and key entity
detection approach for online financial texts”. In: 2021 IEEE 24th Inter-
national Conference on Computer Supported Cooperative Work in Design
(CSCWD). IEEE. 2021, pp. 1233–1238.

[149] Suyun Zhao et al. “Building a Rule-Based Classifier—A Fuzzy-Rough Set
Approach”. In: IEEE Transactions on Knowledge and Data Engineering
22.5 (2010), pp. 624–638. doi: 10.1109/TKDE.2009.118.

[150] Jian Zhu, Zuoyu Tian, and Sandra Kübler. “UM-IU@LING at SemEval-
2019 Task 6: Identifying Offensive Tweets Using BERT and SVMs”. In:
Proc. 13th International Workshop on Semantic Evaluation. June 2019,
pp. 788–795.

[151] John Jianjun Zhu et al. “Online critical review classification in response
strategy and service provider rating: Algorithms from heuristic process-
ing, sentiment analysis to deep learning”. In: Journal of Business Re-
search 129 (2021), pp. 860–877. issn: 0148-2963.

121

https://arxiv.org/abs/1509.01626
https://doi.org/10.1109/TKDE.2009.118

	Contents
	List of Tables
	List of Figures
	List of Acronyms
	Summary
	Nederlandstalige samenvatting
	Acknowledgements
	Introduction
	Emotion detection challenges in Natural Language Processing
	Overview of emotion detection tasks
	Emotion detection tasks and datasets presented in our work

	Machine learning and fuzzy rough set based methods for emotion detection
	State-of-the-art methods
	Fuzzy rough set based methods

	Overview of the dissertation

	Related work
	SemEval competitions: tasks and winning solutions
	Emotion intensity
	Hate speech detection
	Irony and sarcasm detection
	Summary

	Aspect-Based Sentiment Analysis
	ABSA studies summary
	ABSA as a SemEval task
	SentEMO project

	Interpretability in text analysis
	Post-hoc methods
	Self-explanatory methods
	Main explainability techniques
	Our choice for a local, self-explaining example-driven method

	Data and resources
	Text cleaning techniques
	Emojis
	Hashtags
	Non-textual parts of text
	Stop words cleaning

	Text vectorization with embedding methods
	Bag of Words and N-grams
	Word2Vec and its variants
	DeepMoji
	Universal Sentence Encoder
	Transformer-based encoders
	Other embedding methods

	Lexicons

	Prediction methods
	Similarity relation
	Classification models
	Weighted kNN
	FRNN-OWA
	FROVOCO

	Regression models
	Ensembles
	Evaluation
	Pearson Correlation Coefficient
	Mean Absolute Error
	F1-score
	Accuracy and CCA

	Application 1: emotion recognition
	Emotion intensity detection
	Datasets and task
	The baseline
	Model tuning
	Ensemble of models
	Test data results
	Summary

	Hate speech and irony recognition
	Dataset and task
	The baseline
	Model tuning
	Ensemble of models
	Test data results
	Summary

	Application 2: Aspect Based Sentiment Analysis
	Dataset and task description
	The baseline
	Three pipeline approaches
	Methodology description
	Model tuning
	Systems' results

	Summary

	Interpretability and error analysis
	Emotion datasets
	Hate speech and irony-based datasets
	ABSA dataset

	Conclusion
	Summary
	Future work
	Data manipulations
	Further exploration of explainability

	Appendices
	Software overview
	wknn_emotion_detection
	frnn_emotion_detection
	frnn_absa

	List of publications

