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Abstract—In this work, a time-domain surface integral equa-
tion with a strongly nonlinear Resistive Boundary Condition is
formulated and approximately solved using the march on in time
scheme. The discretization of the nonlinear relation between the
surface current density and the electric field is approximated
such that the final system of equations to be solved are linear.
It is applied to solve scattering of a Gaussian plane wave by
a sphere possessing a strongly nonlinear conductivity relation.
This solver is developed to specifically model the effects due to
the region of negative differential conductivity in the conductivity
relation, which is expected in graphene superlattice structures.
Numerical results demonstrate the stability and convergence of
the method and the ability to enforce the constitutive relation
within controllable error bounds.

I. INTRODUCTION

Recent developments in solid state physics demand attention
towards solving electromagnetic scattering problem involving
nontrivial boundary condition and constitutive relation to ac-
curately model the devices utilizing the physics. Frequency
domain formulation of the integral equations along with var-
ious kind of boundary conditions have been made. However,
the frequency domain analysis is usually not sufficient to
capture the response of a strongly nonlinear system. Hence,
time-domain methods must be considered despite their high
computational requirements. Finite-Difference Time-Domain
(FDTD) [1] and Time-Domain Finite Element Method (TD-
FEM) are commonly used to solve time-domain scattering
problems and have been shown to solve nonlinear problems but
these methods suffer from the Courant-Friedrichs-Lewy (CFL)
condition which limits the time step size and the need for
discretization of domain larger than the object under consider-
ation. This warrants the furthering of Time-Domain Boundary
Element Method (TD-BEM) to allow the capability of mod-
eling the nonlinear constitutive and conductivity relations of
the scattering object. Modeling of imperfect conductors using
time-domain integral equations have been shown in [2]. In
[3], a solver for Time-Domain Electric Field Volume Inte-
gral Equation (TD-EFVIE) to consider the Kerr nonlinearity
has been built using predictor-corrector (PE(CE)m) scheme.
However, the presence of the negative differential conductance
(NDC) region in the characteristic would prevent its inversion
required by the solver [3]. In this contribution, we formulate
a method to approximately solve time-domain surface integral
equation for conductivity model featuring a NDC region and
demonstrate it using a simple case of scattering by a sphere.

II. FORMULATION

The (differentiated) time-domain electric field integral equa-
tion for an imperfect conductor reads

Ṫ j+ n̂× ∂e
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where Ṫ is the time derivative of the time-domain single layer
operator given by,
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The constitutive relation used is [4]:

j = −σ · n̂× (n̂× e) (3)

A. Discretization

We discretize the unknown surface current density j and the
tangential component of the electric field et on the surface of
the scattering object using Rao-Wilton-Glisson (RWG) basis
functions [5] and in time using the shifted Lagrange bases [6]
as following:

j(r, t) =

Ns∑
m=1

Nt−1∑
l=0

J (l)
m fm(r)T (l)(t) (4)

and

et(r, t) =

Ns∑
m=1

Nt−1∑
l=0

E(l)
m gm(r)T (l)(t) (5)

We define the test basis function in space using the same
RWG basis functions and in time using shifted delta functions.
Substituting (4) and (5) in (1) and (3) and testing with the test
basis functions, we get for each i:

i∑
j=0

Z(i−j)J(j) +

i∑
j=0

Ġ(i−j)E(j) = Ėinc(i) (6)

GJ(i) = Q(i)E(i) (7)

G is the Gram Matrix corresponding to the basis function fn,
Ġ(i−j) = ∂T (i−j)(t)

∂t |t=0 ×G and Q(i) is given by,

[Q(i)]mn =< fm(r), σ(r, ti) · fn(r) > (8)



B. MOT Scheme

In this work, we focus on an isotropic conductivity based
on [7] which is given by:

σ(r, t) = a|et(r, t)|2 + b|et(r, t)|+ c (9)

with a = 1.2, b = −1.752 and c = 0.681. The interesting
aspect of this kind of conductivity behaviour is the presence of
a region of NDC observed in graphene based tunelling diodes
and graphene superlattice structures.

When solving (6) and (7), Q(i) is not readily known as it
depends on the tangential electric field which is an unknown
itself at this stage. Assuming the time step is chosen suffi-
ciently small, the following approximation, which amounts to
a linearisation, can be used to compute the Q(i),

σ(r, ti) = σ(et(r, ti)) ≈ σ(et(r, ti−1)) (10)

and we obtain the solution for each time step i as:

J(i) =(Z(0) + Ġ(0)(Q(i))−1G)−1

(
Ėinc(i) −

i−1∑
j=1

Z(i−j)J(j) −
i−1∑
j=1

Ġ(i−j)E(j)
)

(11)

and
E(i) = (Q(i))−1GJ(i) (12)

The convolution operations in (11) is limited in number of
terms which is determined by the maximum linear dimension
of the object Dmax and the support of time basis functions
L i.e. T (0)(t) = 0 for t > L∆t. We have Z(i−j) = 0 for
(i− j) > Dmax/(c∆t)+L and Ġ(i−j) = 0 for i− j > L. In
this work, L = 3.

III. RESULTS

A sphere of radius of 1.0 m with the conductivity in (9)
is incident by a Gaussian pulse of a plane wave traveling
along ẑ and polarized along x̂ with amplitude = 1.5 V/m
and pulsewidth cT = 3.4 light meters. Fig. 1 shows that the
solution at each time step converges to the exact current-field
characteristic as the time step size is reduced. The current
density at a fixed point on the sphere against time for different
mesh parameters shown in the Fig. 2 demonstrates stability and
convergence of the method, even in the presence of strongly
nonlinear constitutive relation.

Future development is aimed at implementing excitations
that more closely resemble those used in the study of these
materials and the study of the surface charge’s spatio-temporal
behavior in 2D devices based on graphene superlattices. Of
particular interest is the modelling of charge accumulation and
propagation, a consequence of the type of nonlinear behaviour
studied here that affects the workings of these devices and is
central to their development [8].
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Fig. 1. The solved conductivity relation between the current and the electric
field compared with the exact model for various simulation time step size
shows that the solution approaches the exact model as the step size is reduced.

Fig. 2. Comparison of solution for different meshes also showing the induced
current density response of the nonlinear conducitvity of the sphere against
the incidence of a Gaussian pulse.
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