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ABSTRACT

In 2023, Listeria monocytogenes persistence remains a problem in the food business. A profound
understanding of how this pathogen persists may lead to better-aimed intervention/prevention strategies.
The lack of a uniform definition of persistence makes the comparison between studies complex.
Harbourage sites offer protection against adverse environmental conditions and form the ideal habitat
for the formation of biofilms, one of the major persistence strategies. A retarded growth rate, disinfectant
resistance/tolerance, desiccation resistance/tolerance and protozoan protection complete the list of
persistence strategies for Listeria monocytogenes and can occur on themselves or in combination with
biofilms. Based on the discussed persistence strategies, intervention strategies are proposed. By
enhancing the focus on four precaution principles (cleaning and disinfection, infrastructure/hygienic
design, technical maintenance, and work methodology) as mentioned in Regulation (EC) No. 852/2004,
the risk of persistence can be decreased. All of the intervention strategies result in obtaining and
maintaining a good general hygiene status throughout the establishment at all levels ranging from

separate equipment to the entire building.
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1. Introduction

Listeria monocytogenes is a Gram-positive, facultatively anaerobic, non-spore-forming rod, and has at
20-25°C tumbling motility. The foodborne pathogen is ubiquitous in the environment due to its broad
temperature (-2 to +45°C) and pH (4.2 to 9.5) growth range, its ability to withstand and grow in an a,, -
environment up to 0.92 and salt concentrations up to 16% (all when other conditions are optimal). The
bacteria can be found in a variety of environmental sources, e.g. soil, plants, water, silage, and animal
sources e.g. cattle, sheep and poultry), which give rise to the initial entrance into food businesses (FAO

& WHO, 2004).

Listeriosis, the disease caused by L. monocytogenes, has a whole array of possible symptoms ranging
from nausea to meningitis (EFSA, 2014). Newborns, the elderly, pregnant women and people with a
compromised immune system are most vulnerable to the disease. The importance of L. monocytogenes
is not reflected in its incidence, which is low (0.42 per 100 000 in 2020) compared to other foodborne
pathogens (e.g. 13.7 per 100 000 for Salmonella spp. in 2020), but rather in its high mortality rate (13.0%
in 2020) compared to other foodborne pathogens (e.g. 0.19% for Salmonella spp. in 2020) (EFSA, 2014,

2021).

L. monocytogenes is psychrotrophic and thus able to grow in refrigerated temperatures (< 7°C), which
makes the pathogen of upmost importance in ready-to-eat foods, smoked salmon, raw vegetables and
dairy products (EFSA, 2014; FAO & WHO, 2004). This is reflected in the number of alerts in the Rapid
Alert System for Foods and Feeds (RASFF) related to these categories. Looking over 27 years (1996-
2022) in the RASFF system, an increase is observed, not only in the number of alerts but also in the

number of food products in which the pathogen is found (Figure 1).

It is impossible to eliminate L. monocytogenes from food businesses as problems still occur despite the
efforts done by authorities, e.g. EFSA, to estimate the consumer's risk (EFSA BIOHAZ panel, 2018,
2020) and to aid in sampling and testing strategies (EFSA, 2018b). Contamination can, on the one hand,
be attributed to the continuous entrance of L. monocytogenes via the raw material, characterized by
different molecular types found over time. On the other hand, equal molecular clones, indicate that a

particular strain might be persistent and thus the likely cause for the reoccurring contamination. L.
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monocytogenes can persist for several years in meat, fish, and dairy processing companies with the
equipment being the source of contamination rather than the raw material (Maretre & Langsrud, 2004).
This review focuses on the persistence strategies relevant to L. monocytogenes. Five persistence
strategies i.e. biofilm protection, retarded growth rate, disinfectant resistance/tolerance, desiccation
resistance/tolerance and protection by protozoa will be discussed. Additionally, the interaction seen
between biofilm formation and each one of the other four persistence strategies is studied. Before
discussing the persistence strategies themselves, the relevance of the lack of a uniform definition of the
term persistence and the relevance of harbourage sites is explained. Afterwards, different intervention

strategies will be discussed that aid in the prevention of persistence.

2. The problem with defining persistence

Persistence is, although seemingly simple, a complex phenomenon. It was first described by Bigger
(1944) who mentioned a group of surviving cells towards a penicillin treatment and called them
“persisters”. The term “resisters” was avoided on purpose as it was unsure if this phenomenon was
attributed to “special” qualities. It is an ongoing debate whether persistent cells carry special qualities,
and abilities or not. This will pop up in several of the persistence strategies in this review. One of the
problems to solve this question lies in the lack of a uniform definition. In different studies, definitions
go from rather simple e.g. in Djordjevic et al. (2002) to more detailed e.g. in Rodriguez-Campos et al.,
(2019). Carpentier & Cerf (2011) analyzed different definitions given in studies and tried to distinguish
some key items that would enhance comparability. According to them, persistence should be defined as
the repeated isolation of a certain organism of a specific molecular subtype from the same location,
which can range from a whole area to a particular device, despite the frequent and correct application of
cleaning and disinfection (C&D). Accompanied by this definition, a specific (e.g. at least 2 times over
2 months with 6 sampling occasions) or imprecise (e.g. reoccurrence over 2 months) time range
mentioning the period and threshold of positive samples should be given to set the border between
persistence and non-persistence. This improved definition, provided that details on the location, the
number of samples taken within a defined period and the number of samples taken/being positive are

given, enhances the comparability between studies (Borucki et al., 2003). Following this definition,
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molecular subtyping seems crucial to determine persistence. In the field of epidemiology, molecular
subtyping is on the rise to improve multi-country outbreak studies and surveillances and speed-up cluster
detection (CDC, 2023; ECDC, 2019, 2020; Walle et al., 2018). To evaluate national public health
reference laboratories on their ability to determine serotypes and detect molecular clusters, the ECDC
established the external quality assessment (EQA) scheme reports on the typing of L. monocytogenes
on a regular basis (eight reports in the period 2014-2022)(ECDC, 2022). The enhancement of molecular
methods in epidemiology could result in a more rapid development and lower cost of these techniques
making them easier accessible for food businesses to imply them. Additionally, studying these reports
could also aid food producers to choose the appropriate methodology when executing persistence studies
or to evaluate the applied methodology against the ones used in national public health reference

laboratories.

Another problem that causes difficulties in comparing persistence studies is the group of non-persistent
cells. These may be persistent at other locations inside the production facility or become persistent over
time if the strain is only recently introduced. Therefore, it is better to call these strains presumed non-
persistent (Carpentier & Cerf, 2011; Larsen et al., 2014; Pan et al., 2006). This complexifies comparison
as the group of strains defined as presumed non-persistent may contain persistent strains which are new

or from other locations (Borucki et al., 2003).

3. Harbourage sites

Persistence may arise simply by the location where microorganisms end up during processing
(Carpentier & Cerf, 2011). Harbourage sites such as poorly designed equipment (dead spaces, welds...),
worn materials (cracks, crevices, frayed conveyor belts...), irregularities left by the degassing of freshly
deposited resins, and difficult-to-reach places inside the building are suggested to hold appropriate
conditions for microorganisms to grow, adhere and adapt (Carpentier, 2005, 2009; Carpentier & Cerf,
2011; Fagerlund et al., 2017; Lundén et al., 2002). EFSA noted that L. monocytogenes could be found
in many of these harbourage sites (EFSA, 2018b). How bacteria reach these harbourage sites (after
C&D), is still unsure with several possibilities, the first one being ‘accidental’. This can be due to an

abnormally high number of cells entering the harbourage site and/or that the previous C&D did not
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eliminate all the bacteria and thus allows these bacteria to grow (Carpentier, 2009). Another possibility
is the permanent entrance via the raw food ingredient, here the raw ingredient is the cause rather than
the factory environment and cannot be called real persistence as it will not be the same clone every time
(Carpentier, 2009; Gibson et al., 1999; Pan et al., 2006). Entrance/transmission to different areas inside
the processing environment can be via aerosols, which consist of dispersed solid and/or liquid particles
in the air, as they can go through every existing opening such as doorways, hatches, drains and occupy
nooks, crevices and other difficult-to-each areas (Burfoot, 2005; EFSA, 2018b). They may arise from
various sources including raw materials, people, packaging, transfer of equipment, C&D (an important

source of aerosols) (Holah, 1995; Reij & den Aantrekker, 2004).

Harbourage sites are ideal for biofilm development and some zones like wetting fronts contain biofilms
that are more tolerant towards mechanical stress and sanitisers. Poor hygienic design creates many of
these zones (Colagiorgi et al., 2017; EFSA BIOHAZ panel, 2020). The lower cleanability causes the
entrapment of food particles and the formation of a food-conditioning film which may boost attachment,
growth and biofilm formation (Chmielewski & Frank, 2003; Verghese et al., 2011). Floor drains and
conveyor belts are an example of poorly cleaned areas where biofilm formation occurs (Dzieciol et al.,
2016; Fagerlund et al., 2017). Conveyor belts may know surface irregularities which increase when
being used for some time e.g. edges that start to fringe out causing new harbourage sites to appear
(Fagerlund et al., 2017). The presence of food particles also enhances the effect of other persistence
strategies e.g. disinfectant resistance/tolerance and desiccation resistance/tolerance. The protection
bacteria get from the harbourage sites gives them a head start in persisting. When discussing persistence

strategies, harbourage sites are often mentioned.

4. How do bacteria become persistent in food processing facilities?

4.1 Biofilm protection

The first persistence strategy are biofilms, an assemblage of viable and non-viable microbial cells
irreversibly associated with an (a)biotic surface, embedded in a matrix of extracellular polymeric
substances (EPS) (Carpentier & Cerf, 2011; Chmielewski & Frank, 2003; Costerton et al., 1987; Donlan,

2002; EFSA, 2018b; Vasudevan, 2014). The formation of a biofilm (Figure 2) starts with
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reversible/irreversible attachment to the surface, followed by the growth of microcolonies and EPS
production. Subsequently, the biofilm matures which is characterized by the presence of an EPS matrix
and the downregulation of flagella synthesis (de Kievit, 2011). How long this process takes depends on
the microorganisms and environmental factors. When biofilms are mature, they can release cells back
into the environment (Chmielewski & Frank, 2003; Costerton et al., 1987; Donlan, 2002; Vasudevan,
2014; Wimpenny et al., 2000). Biofilms offer protection from various unfavourable environments e.g.
toxic substances, nutrient depletion, oxygen/pH fluctuations, and lead, besides food safety problems and
early spoilage, to economic losses caused by, among other things mechanical blockage, the impedance
of heat transfer, corrosion to metal surfaces, hampered filtration (Chmielewski & Frank, 2003; Meretro

& Langsrud, 2017; Xu et al., 2011).

L. monocytogenes can form biofilms on a large variety of surfaces such as stainless steel, polystyrene,
polypropylene and glass. However, these are often thin biofilms with colony counts varying between
10%-107 log CFU/cm? in contrast to thick multilayer biofilms of other bacteria where colony counts can
reach 10°-10'2 CFU/cm? (EFSA, 2018b). The ability of L. monocytogenes to form monospecies biofilms,
which is most often studied, is not a key factor in its persistence, more important is the presence of L.
monocytogenes in multispecies biofilms as most species live together in multispecies communities and
interact with each other (Annous et al., 2009; Fagerlund et al., 2021). Especially, in hard-to-reach places
where C&D is less efficient, interactions between bacteria in multi-species biofilms are important for

their survival (Meretre & Langsrud, 2017).

The relationship between L. monocytogenes and other microorganisms inside one biofilm may be
synergistic (=cooperative) (Puga et al., 2014; Xu et al., 2017), antagonistic (=competitive) (da Silva
Fernandes et al., 2015; Giaouris et al., 2015; Hossain et al., 2020; Yamakawa et al., 2018; Zhao et al.,
2004) or neutral (de Grandi et al., 2018). L. monocytogenes possesses an antagonistic relationship with
several lactic acid bacteria as studied by Hossain et al. (2020) where, on stainless steel at 30°C after 24h,
maximal inhibition of 2.2 log CFU/cm? was caused by Latilactobacillus curvatus. Several hypotheses
exist on the antagonistic action of lactic acid bacteria against L. monocytogenes e.g. the production of

bacteriocins, organic acids or hydrogen peroxide which hamper the growth of the pathogens and thus
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inhibits biofilm formation (Fagerlund et al., 2021; Gao et al., 2019; Hossain et al., 2020). A synergistic
effect was seen by Puga et al. (2014) where L. monocytogenes reached at least 1 log CFU/cm? higher
cell counts, after 24h on glass at 4 or 20°C, in combination with Pseudomonas fluorescens. The higher
cell counts would be attributed to the EPS production of Pseudomonas spp., which protects and embeds
the L. monocytogenes cells (Puga et al., 2014). The type of EPS produced in multispecies compared to
monospecies biofilms might differ and play a role in an enhanced cell count as mentioned by Xu et al.
(2017) where shorter EPS fragments were found connecting neighbouring cells in a duo-species biofilm
between Ralstonia insidiosa and L. monocytogenes. de Grandi et al. (2018) looked into a neutral
relationship of L. monocytogenes where cell counts didn’t change with the presence of E. coli. The
interaction between L. monocytogenes and the surrounding microbiota in multispecies biofilms is
affected by various environmental factors such as the food residue, nutrient availability, temperature,
humidity, pH, surface material/characteristics and C&D (Fagerlund et al., 2021). An example of this is
the influence of temperature on the growth of dual-species biofilms of L. monocytogenes and
Enterococcus faecalis and Enterococcus faecium where at 25°C higher cell counts of L. monocytogenes
were seen and on 39°C lower (da Silva Fernandes et al., 2015). Several hypotheses exist to explain the
effect of temperature i.a. L. monocytogenes flagella not being present at 39°C, nutrient competition, the
potential production of bacteriocins, and differences in growth rate depending on the applied

temperature.

The persistence of L. monocytogenes is thus likely, or at least partially, due to biofilm formation.
Consequently, questions arise: Do biofilms found in the food industry contain persistent strains or not?
And if so, does that mean that persistent strains form “better” biofilms? The latter question is difficult
to answer, as what is seen as better? First, the lack of an appropriate uniform definition of persistence
makes it difficult to make comparisons. “Better” might refer to a higher adherence rate and thus faster
biofilm formation. Lundén et al. (2000) noticed that the biomass of persistent strains was higher after 1
and 2h incubation compared to presumed non-persistent strains, while this effect disappeared when
looking at 72h-old biofilms. Thus, the adherence rate may be shorter for persistent strains, which gives

them a head start compared to presumed non-persistent strains. An explanation for this faster adherence
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might be the on average shorter lag time of persistent strains under certain stress conditions such as
exposure to 2.5%, 4% or 8% NaCl concentrations or a pH of 5 as noticed by Magalhaes et al. (2016).
This shorter lag time was subjected to strain variability and some presumed non-persistent strains

showed shorter lag times compared to some persistent strains.

“Better biofilm formers™ can also refer to higher biomass production. Some studies (Borucki et al., 2003;
Norwood & Gilmour, 2001) measured, on average, higher biomass production in persistent strains
compared to presumed non-persistent strains. The study of Norwood & Gilmour, (2001) only tested one
persistent and one presumed non-persistent strain. In the study of Borucki et al. (2003) strain variability
was noticed and some persistent strains showed lower biomass compared to some presumed non-
persistent strains. Other studies (Costa et al., 2016; Harvey & Keenan, 2007; Magalhaes et al., 2017;
Nilsson et al., 2011; Ochiai et al., 2014) attribute differences, if found, between persistent and presumed
non-persistent strains to strain variability and observed no difference in biomass production. The
enhanced biomass production is thus more likely only an adaptational difference rather than an
inheritable aspect of persistent strains. Additionally, the differences between persistent and presumed
non-persistent strains, if found, can also be material (Magalhaes et al., 2017) or temperature (Ochiai et

al., 2014) dependent which might be again prone to strain variability.

At last, “better biofilm formers” can also be seen as more resistant, meaning able to withstand
chemical/mechanical/environmental stresses better compared to presumed non-persistent strains. For
some persistence strategies e.g. disinfectant resistance or tolerance, persistent strains are compared to
presumed non-persistent strains. These parts shed a light on “better biofilm formers” in the context of

higher resistance.

4.2  Retarded growth rate

The following mechanism is not investigated for L. monocytogenes, yet worth discussing due to its
ostensible simplicity. As a result, in this part other microorganisms e.g. E. coli, Salmonella spp.,
Staphylococcus aureus than L. monocytogenes are used as examples to explain this mechanism.
Bacterial cells are most vulnerable in their exponential phase compared to the stationary phase (Salcedo-

Sora & Kell, 2020), with molecules like e.g. penicillin killing bacterial cells during cell division (Bigger,
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1944). Retarded or ceased growth rate, i.e. an inhibition in core cellular processes which cease growth
and bring the cell to a dormant state, seems thus a simple explanation for persistence, yet it proves to be
complex (Pontes & Groisman, 2019). Various explanations were found regarding the growth rate of
bacteria and persistence. Four theories of slow-growing bacteria are distinguished. The first theory is
the natural heterogeneity of bacterial populations. Within a bacterial species, small variations exist
between bacterial cells, despite being the same isolate. In bacterial populations, two states, both related
to the growth rate, can be found that withstand adverse conditions better than normal fast-growing cells.
The first of these “retarded growth” states, is growth arrest, and the second one is a slow growth rate
compared to the majority of the cells. Bacterial cells are able to switch between a normal fast-growing

rate and the two “retarded growth” states.

Retarded growth states cause a small fraction of the population to survive. After the adverse conditions
(e.g. antibiotic removal), the cells can switch back to the fast-growing state and form new populations
that are as vulnerable as before (Balaban et al., 2004). The switch between the states can be achieved by
various stochastic molecular cycles, an example of this is the buildup and energy-consuming
repurposing cycle of protein aggregation through the growth cycles which has been shown to result in

different kinetics among individual cells (Salcedo-Sora & Kell, 2020).

In a second theory, a reduced growth rate does not depend on specific genes, or molecules, but is rather
due to random errors and damage in the interior part of genetically identical cells that causes failure to
replicate. Each time when a cell is damaged and undergoes growth arrest is unique, the same counts for

the mechanisms to repair and resuscitate the cell (Kaldalu & Tenson, 2019).

A third theory relies on the existence of specific mechanisms, to decline the growth rate (Goormaghtigh
et al., 2018; Harms et al., 2017, 2018; Kaldalu & Tenson, 2019; Pontes & Groisman, 2019; Ramisetty
etal., 2016; Salcedo-Sora & Kell, 2020). Toxin-antitoxin (TA) modules were believed to play a key role
in bacterial persistence in healthcare. The antitoxin prevents the toxin from inhibiting core cellular
processes. In stressful conditions e.g. nutrient starvation, or exposure to sublethal antibiotic
concentrations (Harms et al., 2018), the antitoxin is degraded by a Lon protease activated by guanosine

(penta-)tetraphosphate and the toxin is set free. By inhibiting some core cellular processes in a subpart
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of the population, hence slowing down growth, this subpart of the population is protected from antibiotic
treatments (Goormaghtigh et al., 2018; Harms et al., 2017, 2018; Kaldalu & Tenson, 2019; Pontes &
Groisman, 2019; Ramisetty et al., 2016). This hypothesis for the medical persistence of pathogens is
currently debatable and studies no longer report a link between persistence and TA modules in certain
microorganisms e.g. E. coli and S. aureus (Goormaghtigh et al., 2018; Harms et al., 2017, 2018; Kaldalu

& Tenson, 2019; Pontes & Groisman, 2019; Ramisetty et al., 2016).

The fourth theory states that a slow growth rate is a consequence rather than the main goal. This is, for
example, seen in a study by Kim et al. (2018) where Pseudomonas aeruginosa could withstand high
concentrations (1200-1600 mg/L) of benzalkonium chloride (a well-known disinfectant). A whole range
of mechanisms was found that caused the increased MIC (minimal inhibitory concentration), among

which reduced growth (Kim et al., 2018).

Slow growth, caused in biofilms by i.a. nutrient gradients, aid in the enhanced resistance of cells of
biofilms compared to planktonic cultures (Mah & O’Toole, 2001). According to Sutherland (2001) it is
also expected that the slow growth of bacteria could potentially lead to enhanced EPS production as it

is part of the stress response and is promoted by nutrient-limiting conditions.

4.3 Disinfectant resistance or tolerance

Terminology is key when trying to understand disinfectant resistance/tolerance as persistence strategy.
Codex Alimentations, ISO and FAO defined many terms frequently used when discussing disinfectant
tolerance (Table 1). Inadequate C&D of equipment can lead to a L. monocytogenes foodborne outbreak
as was the case in 2019 in the Netherlands (VMT-Food, 2019a, 2019b). Similar, Di Ciccio et al. (2012)
found that L. monocytogenes contamination of smoked salmon happened mostly via the production
environment even when the raw material was contaminated, highlighting the importance of an adequate
C&D procedure.

An adequate C&D procedure needs to remove at least the number of cells that grow/attach during the
production period on the surface (Carpentier & Cerf, 2011; Meretrg & Langsrud, 2017). If the removal
rate is lower than the growth rate, they reside on the surface (Carpentier & Cerf, 2011). Complete

removal of bacteria from the surface is impossible (Gibson et al., 1999), bacteria that remain after an
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adequate C&D are seen as residential bacteria (Meretre & Langsrud, 2017). During environmental
monitoring, swabbing is often used to detach bacteria. However, this mainly removes bacteria with a
lower attachment strength which is only a fraction of the total bacterial load. Cells may also turn into a
viable-but-not-culturable (VBNC) state which makes them undetectable with normal culture-based

methods (Cerf et al., 2010; Noll et al., 2020; Overney et al., 2017).

A selection of studies, discussing disinfectant resistance/tolerance is given in Table 2. Studies were
included if the results were compared against the MRC (minimal recommended concentration), and an
answer was given to at least one of the following parameters for biofilms and/or planktonic cultures:
increased tolerance determination and its stability, the effect of the presence of organic matter or
variability among strains (including differences between persistent and presumed non-persistent strains).
The parameters only concern L. monocytogenes, not the other microorganisms (if others are used in the
studies). Occasionally, entire C&D cycles are evaluated on lab scale e.g. Overney et al. (2017) and Pan
et al. (2006). For example, Fagerlund, Heir, et al. (2020) evaluated different C&D L. monocytogenes
biofilm control strategies towards conventional C&D procedures using alkaline, acidic, or enzymatic
cleaning agents. These studies resemble reality more and could be used as a starting point for validation

studies for new C&D protocols.

4.3.1 Inadequate cleaning as cause of C&D failure
If the cleaning procedure fails, organic matter remains on the surface with inhibitory substances like
proteins, lipids, and carbohydrates interfering with the disinfectant and consequently decreasing the
active disinfectant concentration to sublethal levels (Cerf et al., 2010; Martinez-Suarez et al., 2016).
Besides the removal of organic matter, cleaning is also used to lower the microbial load on the surface
and is for this at least as important as the disinfection step. For example, Luyckx et al. (2014) found a
100-fold reduction in the total aerobic count for the cleaning procedure inside a broiler stable, whereas
the disinfection led to a 31-fold decrease in the total aerobic count. Table 2 provides several examples,
e.g. Aarnisalo et al. (2007), Pang et al. (2019) and Stoller et al. (2019), of how the presence of organic

matter decreases disinfectant efficiency.
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4.3.2  Inadequate disinfection as cause of C&D
failure
A failed disinfection results in a higher number of surviving cells than wanted/expected. Not considering
interference of organic matter due to insufficient cleaning, four major pathways could explain
disinfection failure. The first one is related to the disinfectant itself e.g. wrong dosage, wrong product,
wrong contact time or wrong temperature. Applying the wrong dosage might result in an insufficient
reduction/increased tolerance. Aarnisalo et al. (2007) studied the effectivity of eight disinfectants for 5
minutes on L. monocytogenes in suspension tests (both soiled and clean conditions) (Table 2). For Three
out of eight disinfectants, slightly increasing the concentration/contact time (still well below the upper
limit of the MRC, close to the lower limit of the MRC) was needed to achieve 5-6 log reduction. For
one product, a sodium hypochlorite/sodium hydroxide-based product, sufficient reductions could not be
achieved near the lower limit of the MRC. Besides the wrong dosage, one might simply use the wrong
product. A large offer of cleaning agents and disinfectants is available on the market, so it is important
to select products considering the food matrix, the targeted microorganisms and other surrounding
conditions (e.g. processing temperature, processing time) and to at least handle it conform to the
manufacturer’s instructions (Gonzalez-Fandos et al., 2005). The recommended exposure time can also
be provided by manufacturers (Boucher et al., 2021). The contact time is an important parameter in
C&D, the longer the contact time, the more bacteria might be eliminated (Griffith, 2016). The contact
time needs to be long enough as disinfectants do not work instantaneously and require some time before
coming into effect. Insufficient contact time, might be the reason of failing to achieve sufficient
reductions (Gonzalez-Fandos et al., 2012) (Table 2). The temperature might also influence the efficacy
of disinfectants. Boucher et al. (2011) noticed a significant influence of temperature mainly present on
the efficacy of benzalkonium chloride and a citric-acid based sanitizer. Lower temperatures (4°C)
resulted in lower efficacies with an optimum working efficacy at 23°C. Concentration, time and
temperature are also three out of four aspects mentioned in the Sinner’s circle (5.2 PRP Cleaning and

disinfection procedure).
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The second reason for disinfection failure when applying the correct dosage is the dilution of the
disinfectant e.g. the presence of stagnant water in drains, pipes or cracks/crevices in flooring
materials/other parts of the equipment or any other harbourage site (Cerf et al., 2010). When rinsing the
equipment with water during the cleaning phase, water might reside in some areas. This causes dilution
of the disinfectant and thus the application of insufficient concentrations in these areas, enhancing

disinfectant tolerance of bacteria.

A third reason why disinfectant procedures fail is related to the food business itself e.g. execution of the
C&D procedures (work methodology). Both cleaning and disinfection might fail due to “time is money”.
Stopping the production for C&D means losing money due to not producing sellable products.
Consequently, the frequency of the C&D might be reduced and the time taken to perform the C&D
decreased to minimize downtime. The fact that C&D is often performed during the least appealing work
hours (Bland et al., 2021) i.e. night shifts makes that a well-established procedure might fail.
Accompanied by this, companies might invoke a third-party company to perform the C&D completely
or partially, causing a higher risk for deviations in the execution of the C&D protocol. This deviation
might be attributed to the change in staff executing the C&D or the variability in the number of staff
members performing the C&D. Further, inconsistent execution might be due to the lack of training for

that particular production environment as each company uses different products, protocols, and dosages.

Studies often discuss if L. monocytogenes, but also bacteria in general, may become resistant or tolerant
towards disinfectants, this is a fourth possibility of disinfection failure. Resistance and tolerance are
terms that are submitted to various misinterpretations, especially when talking about disinfectant
resistance which causes difficulties in comparing studies (Cerf et al., 2010; Martinez-Suarez et al.,
2016). Bland et al. (2021) highlights this difference by comparing various interpretations of “resistance”
and “tolerance” found in studies. According to Bland et al. (2021), tolerance should be defined as a
decreased susceptibility towards a substance compared to sensitive isolates but with inhibition or
inactivation at the MRC. The term resistance is not that straightforward as multiple definitions can be
found in the literature (Table 3). Making it even more complicated, two types of resistance can be

distinguished, intrinsic and acquired resistance. Intrinsic resistance is comparing the susceptibility of
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two species to a substance (Cerf et al., 2010; Meyer, 2006; Meyer & Cookson, 2010). This is often the
case with disinfectants where some species/groups are less susceptible to certain concentrations than
other species (Ifiiguez-Moreno et al., 2017). Acquired resistance means that within one species some
strains show a significantly higher tolerance towards a substance at the bactericidal level (=increased
MBC) (Cerf et al., 2010; Meyer, 2006; Meyer & Cookson, 2010). For the present review, real
disinfectant resistance is defined as bacteria capable to survive, despite the application of the
recommended in-use disinfectant concentrations and exposure time provided by the manufacturer which
is tested in-house in a surrounding where there is no dilution/inhibition by organic matter in the

planktonic state, which fits with the interpretation of the term resistance given by Bland et al. (2021).

Disinfectant resistance/tolerance of L. monocytogenes is often tested by analyzing an increased MIC or
MBC (Table 2), rather than using recommended in-use concentrations to detect disinfectant resistance
as defined here (Carpentier & Cerf, 2011; Meyer, 2006). Contrary to the in-use concentration for
antibiotics which is situated near the MIC, the in-use concentration of disinfectants is much higher than
the MIC and must at least be equal to the MBC value, preferably higher (Figure 3) (Carpentier & Cerf,
2011; Holah et al., 2002; Kastbjerg & Gram, 2009; Meyer, 2006; Meyer & Cookson, 2010). A (stable)
increase in the MIC/MBC might happen due to sublethal exposure to disinfectants caused by e.g. high
organic matter content, a hiding place in the harbourage site, dilution, biofilm formation, wrong
dosage/use (Table 2) (Aase et al., 2000; Kastjerg & Gram, 2012; Lundén et al., 2003; Riazi & Mathews,

2011).

Overall, no report has been made for foodborne pathogens, among which L. monocytogenes, claiming
real disinfectant resistance as defined here (Bland et al., 2021). If resistance is claimed then this is
attributed to the presence of organic matter, biofilm formation, dilution, wrong dosage/contact time or
using the term MIC for defining resistance (Gonzalez-Fandos et al., 2005; Iniguez-Moreno et al., 2017,

2018; Stoller et al., 2019).

Considering that no foodborne pathogens, among which L. monocytogenes, were found to possess
disinfectant resistance as defined here, one may ask if persistent L. monocytogenes strains possess a

higher tolerance to disinfectants in comparison to presumed non-persistent strains which enables them
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to reside easier in food premises. Aase et al. (2000) found that persistent strains possessed more often
benzalkonium resistance genes compared to presumed non-persistent strains enabling them to withstand
higher concentrations of benzalkonium chloride. In some cases, the initial MIC of persistent strains is
higher compared to presumed non-persistent strains. However, when submitting both persistent and
presumed non-persistent strains to sublethal disinfectant concentrations, the final obtained MIC value
will approximately be the same (Table 2) (Kastbjerg & Gram, 2009; Lundén et al., 2003). The initially
higher MIC of persistent strains is most likely due to the already repeated exposure (= preadaptation) to
sublethal disinfectant concentrations in the food processing companies (Holah et al., 2002; Kastbjerg &
Gram, 2009; Magalhaes et al., 2016). Stressful environments (e.g. growth before exposure in a lower
pH environment) can also cause enhanced tolerance towards disinfectants (Dhowlaghar et al., 2019).
Preadaptation, by benzalkonium chloride, has been shown to increase the survival of cells towards
benzalkonium chloride accompanied by an increase in viable-but-non-culturable cells (Noll et al., 2020).

Regardless, strains/species show variability in tolerance towards disinfectants (Table 2).

4.3.3  Cross-adaptation in disinfectant tolerance
Disinfectant tolerance studies could be combined with testing the cross-adaptation towards other
disinfectants or even antibiotics. This phenomenon is proven to be possible by some (Kampf, 2019;
Lundén et al., 2003) but refute by others (Maertens et al., 2019; Riazi & Matthews, 2011; Roedel et al.,
2019) indicating that cross-adaptation may depend on for example species/strain, substances tested or
even the experimental setup e.g. media, temperature (Aarnisalo et al., 2007; Lundén et al., 2003; Noll et

al., 2020; Riazi & Matthews, 2011; Roedel et al., 2019; Yu et al., 2018).

4.3.4  Biofilms and disinfectant tolerance
Biofilms are known for their high tolerance towards mechanical and chemical cleaning (i.e. cleaners and
disinfectants) (Cunault et al., 2019). The enhanced resistance to chemical cleaning (=disinfectants) in
biofilms is most likely multifactorial. For example, the diffusion coefficient present inside biofilm
causes exposure to sublethal disinfectant levels in the deeper layers of the biofilm, hence protecting
bacteria (Bridier et al, 2011). Additionally, the presence of the EPS matrix (existing out of organic

matter) might decrease the efficacy of disinfectants (Bridier et al, 2011).
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Exposure to sublethal disinfectant concentrations might, besides survival, also stimulate biofilm
formation. Rodriguez-Melcon et al. (2019) looked at the biofilm formation of L. monocytogenes during
exposure to benzalkonium chloride concentrations near the MIC (0.5xMIC, 1xMIC, 1.5xMIC) and
found enhanced biomass for some strains after exposure to 0.5xMIC benzalkonium chloride, for
benzalkonium tolerant strains (Table 2). Rodriguez-Campos (2019) confirmed the stimulated biofilm
formation in sublethal levels of benzalkonium chloride, for both persistent strains and sporadic strains
(Table 2). However, it is not possible to continuously have this concentration present in the production

process when producing.

The efficacy of disinfectants on biofilms is subjected to the same parameters as biofilm formation.
Surface material dependency is seen but with contradictory results indicating that the type of disinfectant
determines if differences in removal efficiency between surface materials occur. (Aarnisalo et al., 2007;
Krysinski et al., 1992; Overney et al., 2017; Pan et al., 2006; Poimenidou et al., 2016). Further, strain
variability can be spotted (Table 2) (Luque-Sastre et al., 2018; Poimenidou et al., 2016). Some authors
state no difference between persistent and presumed non-persistent strains in disinfectant tolerance in
biofilms (Fagerlund et al., 2017; Overney et al., 2017). Rodriguez-Campos et al. (2019) found biofilms
formed by persistent strains being more susceptible towards sodium hypochlorite compared to biofilms
formed by sporadic strains. Despite this, persistent strains managed to form more biomass before the
disinfection treatment, thus even with the reductions from sodium hypochlorite, the ODsgy value

(indicating biomass) was higher for persistent strains (Table 2).

Skowron et al. (2019) noticed a higher tolerance towards disinfectants in biofilms formed under nutrient-
limiting conditions compared to nutrient-rich conditions, contrary to Kyoui et al. (2016), who noticed a
decreased resistance of biofilms formed with 0.1% glucose compared to 1 or 2% glucose. In the latter
study, an enhanced EPS matrix was found with higher glucose concentrations which contributed to the
higher resistance. It is thus possible that the presence of certain components in the growth media, such
as glucose and sodium chloride, might cause an enhanced or decreased tolerance towards disinfectants
which can be partially attributed to changes in the EPS matrix, and biofilm structure. Further, many tests

are performed under static conditions, which is less realistic as many water flows exist in food
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businesses. The temperature at which the biofilms are formed might also influence their resistance with
enhanced tolerances towards disinfectants being found at lower temperatures. This is an important
finding as many food business environments have zones that are kept at lower temperatures (Puga et al.,
2016a). Puga et al. (2016a) noticed that L. monocytogenes biofilms formed at 4°C showed higher
tolerance towards chitosan compared to biofilms formed at 20°C. Similarly, Lourengo et al. (2011)
noticed higher tolerance towards four different sanitisers (Topax 99, Topax 66, Basochlor DD, Basotop)
used in the dairy industry in biofilms formed at 12°C compared to 37°C. Boucher et al. (2021) noticed
differences in the MBC for a citric acid-based sanitiser between 4 and 23°C, with lower MBC values at
23°C but no significant influence of temperature for a conventional quaternary ammonium compound
(Table 2). On the contrast, Belessi et al. (2011) formed biofilms at 20°C and showed higher tolerance
towards 2% peracetic acid compared to biofilms formed at 5°C. Additionally, the influence of
temperature can be biofilm age-dependent (Pang et al., 2019). Pang et al. (2019) saw no influence of
temperature (4 vs 15°C) in 7-14-day-old biofilms treated with a commercial disinfectant (Whisper™ V,
quaternary ammonium compound 200ppm as the active ingredient) but noticed a higher sensitivity in
one to four-day-old biofilms at 4°C compared to 15°C (Table 2). These studies indicate that the effect
of temperature depends on other factors such as type of disinfectant, age of the biofilm, media, and
contact time among other factors. Thus, considering the environment when establishing in-house testing

is necessary to assure the most realistic/useful outcome of the verification/validation tests.

Although it is shown that the age of the biofilm might also have a significant influence on its resistance
towards disinfection, many studies use immature/young biofilms (max. 72h) to investigate the
disinfectant resistance/tolerance (Fagerlund, Heir, et al., 2020; Haubert et al., 2019; Kocot & Olszewska,
2019; Pang et al., 2019; Pan et al., 2006). Ibusquiza et al. (2011) noticed that 11-day-old L.
monocytogenes biofilms had an enhanced biofilm disinfectant resistance in comparison to 4-day-old
biofilms and planktonic cells. A 4-day-old biofilm is already mature, indicating that even when the EPS
matrix is fully developed, longer residence times can still attribute to enhanced resistance. Kocot &
Olszewska (2019) confirmed the enhanced resistance in more mature biofilms (72h biofilms) compared

to more immature/younger biofilms (24h biofilms) but this is not always the case (Ibusquiza et al., 2011;
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Pang et al., 2019; Somers & Wong, 2004). The influence of age could depend on additional factors, as
in the study of Pang et al. (2019) only an influence of age on the disinfectant tolerance was visible in
diluted TSB and not when using salmon broth (Table 2). The overall higher tolerance in mature biofilms
might be attributed to the spatial arrangement, formation of a 3-D structure with a thick EPS-matrix and
the shielding of dead cells protecting the underlying cells from adverse environmental conditions
(Ibusquiza et al., 2011; Kocot & Olszewska, 2019). Due to the possibility that mature biofilms are less
susceptible towards disinfectants and the fact that biofilms have sufficient time to reach maturation in
between C&D cycles when establishing the C&D procedure, in-house testing must take mature biofilms
into account. Factors influencing the effect of the age, e.g. media (Pang et al. (2019), on disinfectant

tolerance could be explained by possible differences in biofilm structure.

The presence of other (non-pathogenic) microorganisms in multispecies biofilms might increase the
resistance towards disinfectants even further compared to monospecies biofilms (Bridier et al., 2011;
Fagerlund et al., 2017; Giaouris et al., 2015; Lourengo et al., 2011; Olszewska & Diez-Gonzalez, 2021;
Overney et al., 2017; Pang et al., 2019; Puga et al., 2016b; van der Veen & Abee, 2011). The complexity
of multispecies makes it difficult to find an unambiguous explanation. On the one hand, the spatial
arrangement, i.e. shielding of L. monocytogenes by the other species, offers protection towards the
disinfectant concentration. On the other hand, a possible increased EPS matrix, and/or an increased EPS-
matrix viscosity hinders the diffusion of the disinfectant (Olszewska & Diez-Gonzalez, 2021). For
bacteria in general, an increase in the number/types of enzymes to degrade toxic compounds from the
environment might also attribute to the increased tolerance (Bridier et al., 2011; Fagerlund et al., 2017,
Olszewska & Diez-Gonzalez, 2021). However, increased protection towards L. monocytogenes is not
always the case and studies can be found where no difference (Overney et al., 2017) or even a decrease
(Pang et al., 2019) in the survival rate of L. monocytogenes possible in multispecies biofilms compared
to monospecies biofilms when subjected to C&D, using concentrations of disinfectants recommended

by the manufacturer (Table 2).
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4.3.5  Efficacy tests in scientific studies and
authorities
Testing the efficacy of disinfectants is in the US regulated by the United States Environmental Protection
Agency (EPA), manufacturers must test the efficacy in standardized tests against selected target
organisms. In Europe, biocide, among which disinfectants, approval is covered by ECHA (European
Chemical Agency) and several tests according to standards (ISO, CEN) need to be performed together
with the application for approval form. Modifications to these tests are often done in scientific studies
making studies between themselves more difficult to compare (Bland et al., 2021; Martinez-Suarez et
al., 2016). A modification is for instance the use of L. monocytogenes, a less vulnerable species, in pure
culture for testing disinfectant efficacy. This is in contrast with official efficacy testing studies where
both vulnerable and less vulnerable microorganisms are used. If a study is being done only with a
monoculture (planktonic or in biofilm) of a less vulnerable species, it might be possible that the lowest
recommended concentration is insufficient (Table 2), however, this does not conclude that the
manufacturer provided an insufficient range/product. Similar, higher inoculum concentrations of
pathogens are used than what one finds in real situations. Factors like bacterial overgrowth, production
of bacteriocins by accompanying microflora, nutrient depletion, space depletion, and production of
organic acids are likely to occur within multispecies biofilms with lower pathogen inoculums. The effect
of these factors is thus often missed when using high, unrealistic inoculum concentrations (Giaouris et
al., 2015). Further, studies testing disinfectant tolerance, often only test the active compound itself. This
might lead to wrong conclusions as it is the combination of multiple chemical compounds that form the

efficacy of commercial products rather than one compound on its own (Bland et al., 2021).

Official tests e.g. standards (ISO, CEN) do not incorporate biofilms, despite ECHA (ECHA, 2018) and
EPA (EPA, 2022) suggesting biofilms should be incorporated in tests, especially when products claim
antibiofilm activity. Biofilms need a higher lower limit of MRC compared to planktonic cells to achieve
wanted reductions (Table 2) (Barroso et al., 2019; Cruz & Fletcher, 2012; Fagerlund, Langsrud, et al.,
2020; Krysinski et al., 1992; Pang et al., 2019; Poimenidou et al., 2016). Studies done to test disinfectant

efficacy on biofilms are thus adaptations with the fundaments laying in official tests (Bland et al., 2021).
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In the review of Bland et al. (2021), the lack of standardization is further investigated with considerations

for designing disinfectant efficacy studies and pitfalls when comparing studies.

It is important to consider that sanitation/disinfection is not equal to sterilization and that the criteria of
sanitiser/disinfectant efficacy are set on a certain reduction that must be achieved, and not a certain
maximum cell count that is allowed to remain (Bland et al., 2021). According to the US EPA,
disinfectants need to reach a 6-log reduction, for both food-contact surfaces and non-food-contact
surfaces. For sanitisers, different criteria hold and a 5-log reduction must be achieved on food contact
surfaces and a 3-log reduction within 5 minutes on non-food contact surfaces (Bland et al., 2021). On
the European level, ECHA has passed criteria for the approval of disinfectants stating the quantity of
the reduction. For bacteria in general in the food production area, this is 4/5 log CFU depending on the
contact time (ECHA, 2018). These are, however, the criteria for planktonic cells. Theoretically, this
should be the same for biofilms, as biofilms also exist out of cells which can potentially harm the
product. Only limited studies testing L. monocytogenes biofilm disinfectant resistance reach 5 log
CFU/cm? reduction and/or see this as a boundary for effectivity (Aryal & Muriana, 2019; Boucher et
al., 2021; Fagerlund, Heir, et al., 2020; Kocot & Olszewska, 2019; Overney et al., 2017). This is mainly
due to the lack of reaching sufficient cell counts to start with, which must be high enough (at least 5 log
CFU/cm? + LOD). More often studies testing L. monocytogenes biofilm disinfectant resistance reach a
maximum of 4 log CFU/cm? reduction and see this as effective (Aarnisalo et al., 2007; da Silva
Fernandes et al., 2015; Olszewska & Diez-Gonzalez, 2021; Poimenidou et al., 2016; van der Veen &

Abee, 2011).

4.4 Desiccation resistance/tolerance

Water is essential for bacteria, in general, to survive, and low water availability affects all biological
functions negatively. The minimal amount of water needed for bacteria to grow is reflected in the water
activity (aw). At the minimal a,, required for growth, bacteria do not immediately die, they can survive
for prolonged periods and proliferate after rehydration including in food premises (Esbelin et al., 2017).

Looking at some well-known examples, linked with dry environments, such as Cronobacter sakazakii
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in powdered infant formula and Sa/monella spp. in chocolate (Beuchat et al., 2011), it is not unlikely

that L. monocytogenes might possess the ability to withstand/persist in dry environments (Table 4).

The removal of water can be done in two different environments. In osmotic systems, water is removed
from cells by the surrounding which contains high amounts of solutes (= low ay). In matric systems,
water is removed by exposure to the atmosphere (= air drying). Desiccation is caused by matric stress
and is defined as the removal of a substantial fraction of the bulk water from cells through drying stress
which can be done slowly or rapidly (Burgess et al., 2016). Air drying causes an array of damages to
cells (e.g. free radicals attacking phospholipids, and DNA) and cells might die immediately when air-
dried or remain vital for years (Potts, 1994). Bacteria are tolerant to desiccation when they can undergo
nearly absolute dehydration through the air without being killed (Billi & Potts, 2002). To survive a
period of desiccation, bacteria need to overcome three phases: an initial dehydration period, a period

with low moisture conditions and a rehydration period (Streufert et al., 2021).

In the context of persistence, desiccation occurs in periods of ceased production e.g. weekends, holidays,
and maintenance, causing a drop in relative humidity. Further, desiccation occurs due to the periodic
use of pipes, open surfaces, cutting boards, and partially filled tanks... during production itself or just

before C&D (Faille et al., 2018).

How well bacteria can adapt to desiccation determines their ability to persist (Esbelin et al., 2017) with
the adaptations coming hand in hand with altered gene expression (Burgess et al., 2016). Desiccation
tolerance knows many different mechanisms, with some being strain/species-specific such as the
formation of spores (Checinska et al., 2015) and others not such as biofilm formation, import/synthesis
of osmolytes and extracellular polysaccharides (Burgess et al., 2016; Esbelin et al., 2017; Mensink et
al., 2017; Potts, 1994). Comprehensive reviews discussing desiccation tolerance mechanisms in general
(Esbelin et al., 2017; Potts, 1994), focusing on one desiccation mechanism specifically (Laskowska &
Kuczynska-Wisnik, 2020; Mensink et al., 2017), or focusing on desiccation mechanisms specific for
foodborne pathogens (Burgess et al., 2016) are available. From these reviews, it can be concluded that
not one single mechanism or macromolecule on its own is enough to protect bacteria against desiccation.

It is rather the synergistic effect of multiple mechanisms that leads to protection and survival (Esbelin
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et al.,, 2017). The exact mechanisms of desiccation tolerance are not fully understood and further
research is necessary for each separate species of interest, the combination of multiple species (Burgess
et al., 2016) and each desiccation mechanism separately (Laskowska & Kuczynska-Wisnik, 2020;
Mensink et al., 2017). Even less clear are the mechanisms determining the rehydration efficiency as
rehydration also causes stress to microorganisms which can have detrimental consequences (Potts,

1994).

The desiccation survival of planktonic L. monocytogenes is tested by several studies of which an

overview is given in Table 3: Variability of definitions given to the term resistance in studies.

DEFINITION RESISTANCE

SOURCE

An isolate is defined as resistant when it is not inhibited by a concentration that would inhibit most
of the strains of that particular species.

Martinez-Suarez
et al. (2016)

Resistance is used to indicate that the extent of the killing of a microorganism is less than expected
at bactericidal concentrations.

Carpentier & cerf
(2011)

In the context of disinfectants, the word “resistance” is used for comparative purposes. A strain of
a species is said to be more resistant than another one if the time needed to achieve a given number
of decimal reductions of suspended cells at a given disinfectant concentration is significantly longer,
or if the concentration needed to achieve a given number of decimal reductions for a given exposure
time is significantly higher.

Cerf et al. (2010)

Resistant microorganisms could be described as a species or strain that was more able to survive
repeated C&D programs such that that species or strain dominated the environmental microbial
flora, albeit in low numbers.

Holah et al
(2002)

Bacterial resistance is the capacity of bacteria to withstand the effects of antibiotics or biocides that
are intended to kill or control them.

Glossary:
Bacterial
Resistance (n.d.)
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Table 2. For this table, only articles were used in which the relative humidity was given. Further, articles
needed at least, one of the following parameters investigated: the influence of temperature, the influence
of relative humidity, strain variability or the influence of additional microorganisms. The use of different
media, temperatures, and surfaces in desiccation tolerance studies indicates a lack of standardized tests,
making the comparison of results very complex. Some studies test desiccation tolerance without
indicating the relative humidity used in the study which causes difficulties in interpreting and comparing

the obtained conclusions (Kuda et al., 2015; Streufert et al., 2021; Takahashi et al., 2011).

The presence of food residues can result in higher survival rates of L. monocytogenes against desiccation
(Hingston et al., 2013; Lim et al., 2020; Takahashi et al., 2011; Vogel et al., 2010) which might be due
to the decrease in drying rate due to the presence of solutes in the food matrices or to preadaptation in
the salt solutions preceding desiccation (Hingston et al., 2013). The effect of food residues was seen for
both biofilm cells and non-biofilm cells. Among others, Lim et al. (2020) and Kuda et al. (2015) noticed
a protective effect of small quantities of food residues, both protein-rich as carbohydrate-rich ones, on
the survival of several pathogens, among which L. monocytogenes, on a stainless steel surface. Vogel et
al. (2010) added that food residues might also negatively impact the desiccation tolerance of L.
monocytogenes, e.g. when the food residue contains toxic compounds which are up-concentrated during
desiccation (Table 4). Additionally, differences in the impact of food residues on desiccation survival
can be influenced by the number of protective compounds available in the food matrix (Vogel et al.,

2010).

Overall, reduction rates caused by desiccation for L. monocytogenes vary between 0 and 2 log CFU/cm?
(Piercey et al., 2017; Takahashi et al., 2011). The tolerance towards desiccation of L. monocytogenes is
strain, serotype dependent with no differences between persistent and presumed non-persistent strains

(Hansen et al., 2011; Vogel et al., 2010; Zoz et al., 2017).

In food production environments, temperature differences occur which influence the survival of L.
monocytogenes. Temperature can influence the tolerance but is limited studied for L. monocytogenes

(Bremer et al., 2001; Jones & Gibson, 2022; Redfern & Verran, 2017). The influence of temperature
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can be humidity depended, on both biofilm and non-biofilm (drop inoculated) cells (Bremer et al., 2001;
Redfern & Verran, 2017). Redfern & Verran (2017) noticed that at lower temperatures, 4/10°C, a higher
percentage of attached L. monocytogenes cells could be recovered compared to 21°C for different

relative humidities (11, 50, 85% RH).

The applied relative humidity also affects the survival of desiccated L. monocytogenes cells; however,
results must be treated carefully when recovery percentages are used instead of log reductions. As an
example, Redfern & Verran (2017) studied the effect of the different relative humidities (11, 50, 85%)
on the survival of attached L. monocytogenes. At a relative humidity of 11%, no cells could be recovered
after 1h for all temperatures. At a relative humidity of 50%, a higher percentage of cells could be
recovered and even growth was observed at 4°C. At the highest relative humidity, 85%, recovery was
significantly less compared to the relative humidity of 50%. However, percentages are not an ideal way
to look at reductions and absolute numbers give more information. Indeed at 85% RH, the recovery
percentage was lower compared to 50% RH, however, the number of cells at time 0 differed and was
higher at 85% RH compared to 50% RH, resulting in higher absolute numbers at 85% RH for time 0, 1,
5 and 7 hours at 4 °C and 10°C. Further, as long as recovery percentages could be measured, reductions
stayed below 2 logs CFU/cm?. Only at 11% RH (>1h, all temperatures) and 86% RH (24h at 4°C),
recovery was not possible. Despite this, survival depending on the applied relative humidity is a well-
proven fact (Alavi & Truelstrup Hansen, 2013; Jones & Gibson, 2022; Zoz et al., 2016) and often the
lowest reductions are found at intermediate relative humidities e.g. 43/68% RH and the highest at low
relative humidities e.g. 2/11% RH. Another trend that can be seen is the reduction rate, a faster decline

is often seen at the lowest relative humidity (Alavi & Truelstrup Hansen, 2013; Zoz et al., 2016).

Different temperatures and humidities might occur in production areas indicating that this might
influence the desiccation survival very locally. For enclosed spaces such as closed production
equipment, Vogel et al. (2010) noticed a difference in desiccation survival of L. monocytogenes
depending on the location inside a drying oven, this difference was mostly levelled out after prolonged
desiccation (e.g. 91 days in the study of Vogel et al. (2010), Table 4). Locations where temperature and
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relative humidity are less hostile, e.g. niches, and hard-to-reach places, might thus form an ideal habitat

against desiccation tolerance.

To the best of our knowledge, desiccation experiments with L. monocytogenes were carried out for a
maximum of 91 days (15°C, 2 or 43% RH) (Vogel et al., 2010). Longer survival for L. monocytogenes
might be possible but is not studied so far. The decrease in viable cell counts depends on the studied
time-interval (Alavi & Truelstrup Hansen, 2013; Bremer et al., 2001; Hansen et al., 2011; Hingston et
al., 2013; Kim et al., 2019; Kuda et al., 2015; Pang & Yuk, 2019; Piercey et al., 2017; Takahashi et al.,
2011; Vogel et al., 2010; Zoz et al., 2016) as dehydration is concomitant with cell death (Zoz et al.,
2016) and longer storage periods result in a lower viable cell count. The majority of the cell death is at
the start of the desiccation period where the majority of the water evaporation takes place (Alavi &
Truelstrup Hansen, 2013; Hansen et al., 2011). At the start, differences in desiccation rate are visible
depending on e.g. strain, relative humidity, and temperature (Hansen et al., 2011; Hingston et al., 2013).
After this strong decline, the cell count remains fairly stable (Hingston et al., 2013; Vogel et al., 2010)
which indicates that if cells survive the start of the desiccation period, survival chances enhance
(Carpentier & Cerf, 2011). A Weibull fitting is often used to model the effect of desiccation (Kuda et

al., 2015; Vogel et al., 2010).

It was noticed that cells in the exponential, early stationary phase were most prone to desiccation (Kuda
et al., 2015). This corresponds to the enhanced resistance seen with retarded growth rate where also a

subpart of the population showed enhanced tolerance.

Applying a certain relative humidity might decrease the survival of bacteria and might thus serve as a
potential elimination/prevention strategy as Zoz et al. (2016) noticed with consecutive dehydration/
rehydration at 68% RH resulting in >4.5 log CFU/ml decrease of L. monocytogenes with several strains
tested (Table 4). Similarly, at 43% RH, also higher reductions (+ 1 log CFU/ml more) could be achieved
with two consecutive dehydration/rehydration cycles compared to one. Accompanied by this, many
governments suggest control of relative air humidity as a microbiological control strategy, keeping the

execution for the food processing companies themselves as each company is unique (Redfern & Verran,
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2017). However, maintaining a fixed relative humidity (and/or deliberately wetting and drying the
surface) seems not economically nor practically feasible considering small local variations. This aside,
air dehumidification processes are often applied after routine C&D procedures (Esbelin et al., 2017,
Overney et al., 2017). Applying an additional drying step (3h, 75% RH, 25°C) after daily C&D may
reduce the amount of culturable, surviving bacteria from a L. monocytogenes biofilm (Overney et al.,

2017).

The rehydration process itself can also have detrimental effects for L. monocytogenes. Zoz et al. (2016)
tested the survival of instantaneous rehydration (immersion in phosphate buffer solution) compared to
progressive rehydration (99% RH) for L. monocytogenes and found higher survival rates with the latter,
especially after a drying period of 180 min at 43% RH. No influence of the applied rehydration method
was seen after a drying period of 180 min at 68% RH for all strains tested. The exact mechanisms behind

rehydration remain unclear.

Biofilms are one of the main strategies bacteria use to cope with desiccation. Biofilms enhance the
tolerance against desiccation (Hansen et al., 2011; Hingston et al., 2013). The EPS matrix is water-rich
and protects the bacteria inside the biofilm against desiccation (Bremer et al., 2001; Burgess et al., 2016;
Esbelin et al., 2017). Besides the EPS-matrix, other factors like altered cell metabolism and cell envelope
composition could also explain the higher survival rates (Hansen et al., 2011). The desiccation resistance
of L. monocytogenes in biofilms might also be influenced by the species inhabiting the biofilm. Similar
to disinfectant resistance, some species enhance (Alavi & Truelstrup Hansen, 2013; Bremer et al., 2001;
Pang & Yuk, 2019) while others decrease the desiccation tolerance (Kim et al., 2019) (Table 4). For
example, in the study of Alavi & Truelstrup Hansen (2013) the desiccation tolerance of L.
monocytogenes in duo-species biofilms depends on the desiccation tolerance of the accompanying
species where species with a similar desiccation tolerance as L. monocytogenes cause lower survival
compared to duo-species biofilms composed of L. monocytogenes and species with lower desiccation
tolerance compared to L. monocytogenes. Besides the presence of other species, the order in which the
different species colonize the surface can influence the desiccation tolerance as Pang & Yuk (2019)
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showed (Table 4). In their study, duo-species biofilms were formed with L. monocytogenes and P.
Sfluorescens, which were subjected to 43% RH, at 15°C for up to 15 days on stainless steel. The biofilms
used were grown for 48h, at 15°C with the second culture added to a preformed monospecies biofilm
(48h, 15°C, Tryptic soy broth). The final obtained cell count did not depend on the colonization
sequence, however the highest desiccation tolerance for L. monocytogenes was seen with P. fluorescens
as the first colonizer, this enhanced the survival of L. monocytogenes with 0.8 logs CFU/cm?. This
colonization sequence also corresponded with a higher EPS production. Besides the higher EPS
production, the spatial arrangement further enhanced the survival of L. monocytogenes. The pathogen
proved to be able to invade pre-existing biofilms of P. fluorescens finding shelter and thus more

protection, in the deeper layers of the biofilm (Esbelin et al., 2017; Puga et al., 2018).

The EPS production is paired with the maturity of the biofilms, with immature biofilms having
rudimentary EPS matrices and mature biofilms with 3D structures existing out of EPS. Hingston et al.
(2013) noticed that biofilms need sufficient time at the maximum cell count to develop EPS to show
optimal desiccation tolerance. Without EPS, the immature cells showed a similar desiccation tolerance
as non-biofilm cells. Once some EPS is formed, biofilm cells were more tolerant towards desiccation

and the influence of age ceased.
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4.5 Protection by protozoa

Protozoa are ubiquitous present in the soil, air, water, and sediments and tend to be more tolerant towards
stressful conditions in comparison with free-living bacteria (Lambrecht et al., 2017; Vaerewijck et al.,
2014). Many protozoa have two life cycles: trophozoites and dormant cysts. Trophozoites are the active
multiplying, preying form. In adverse environmental conditions, e.g. food shortage, temperature,
disinfectants, and desiccation, the trophozoites convert to dormant cysts which offer higher protection
against these adverse conditions, when conditions are right again the cysts convert back to trophozoites
(Lambrecht et al., 2015). Cysts pose an immense tolerance towards procedures commonly encountered
in food processing environments such as heat and chlorine with interstrain, interspecies and
experimental setup variability (Gabriel & Panaligan, 2020). An example of this is given by Gabriel &
Panaligan (2020) who isolated an Acanthamoeba sp. from the soil surrounding a food pilot plant and
found it has a D-value of 25.06 min in 200ppm chlorine which is much more resistant compared to L.
monocytogenes which shows a D-value of 12 seconds in 100ppm hypochlorite (Erkmen, 2004).
Acanthamoeba sp. showed a D-value of 1.81 min at 91°C which shows its higher heat resistance

compared to L. monocytogenes where 2 min at 70°C results in a 6 D-reduction (Debevere et al., 2021).

Little research has been done to establish the number and species of non-pathogenic protozoan in food
processing facilities. Only limited studies have tried to determine whether typical in-house protozoa
exist in food production facilities and if so, what the persistence strategies of these organisms are.
Vaerewijck et al. (2008) studied the occurrence of free-living protozoa in meat-cutting plants and found
that free-living protozoa are widely spread in the production environment. One possible reason for this
is that they seem harmless which makes screening and detection in the context of food safety useless
(Vaerewijck et al., 2014). Despite the harmless attitude of the protozoan itself, the locations where
Vaerewijck et al. (2008) spotted these organisms were locations such as holes in plastic, the undersides
of cutting boards and conveyor belts, upper sides of rails that were inadequately cleaned and disinfected

due to ignorance or inaccessibility. This gives the pathogens, ingested by these protozoa, double
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protection against C&D, one by the protozoa itself and one by being in a harbourage site where C&D is

less efficient (Vaerewijck et al., 2008).

Various pathogens like Salmonella spp., L. monocytogenes (Fieseler et al., 2014; Lambrecht et al., 2017;
Minh et al., 1990a, 1990b; Zhou et al., 2007), Legionella spp., Yersinia enterolitica (Lambrecht et al.,
2013), pathogenic E. coli, and Campylobacter jejuni can be protected and/or obtain an increased
tolerance by protozoa like Acanthamoeba castellanii, Acanthamoeba polyphaga, and/or Tetrahymena
pyriformis towards various treatments like hydrogen peroxide, benzalkonium chloride, sodium
hypochlorite, NaCl (Lambrecht et al., 2015). More pathogen-protozoa relationships are given in Amaro
& Martin-Gonzalez (2021). Depending on which protozoan species, different survival mechanisms are
used by bacteria (Raghu Nadhanan & Thomas, 2014). Studied L. monocytogenes-protozoa relationships
are given in Table 3. Concerning the L. monocytogenes — Acanthamoeba relationship, contradictory
results can be found. Older (Minh et al., 1990a, 1990b) studies mention survival after internalization for
up to 34 days in Acanthamoeba sp. Zhou et al. (2007) suggested possible intracellular survival for at
least 72h (Table 5). More recently, Lambrecht et al. (2015, 2017) noticed survival of L. monocytogenes
in cysts, but not intra-amboebal in trophozoites with the cysts being tolerant towards several disinfectant
treatments (70% EtOH, 2.5% sodium hypochlorite, 0.3% H,O; and 10mg/l benzalkonium chloride).
Further, bacterial cells grew in the presence of the trophozoites and even possessed an increased
tolerance after this cystic passage towards these stressors (Lambrecht et al., 2017) (Table 5). Doyscher
et al. (2013) noticed that L. monocytogenes forms large aggregates at the uroid (=terminal region of
protozoa) of A. castellanii or A. polyphaga for 10-30 min after which they were lysed and digested. The
aggregates were used as transient storage for bacterial cells. Internalization in trophozoites/cysts is not
the only way pathogens can be protected. The presence of trophozoites can enhance the tolerance of
bacteria against disinfectants without the need for physical contact (Table 5). Metabolic waste and dead
protozoa may become nutrients for foodborne pathogens and in this way enhance their survival

(Vaerewijck et al., 2014).
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Similarly, the L. monocytogenes - Tetrahymena relationship is also known for some contradictions. The
review of Schuppler (2014) mentions survival in several studies, in contrast, in the study of
Meinersmann et al. (2020) 7. pyriformis is suggested as a possible prevention/elimination strategy for
L. monocytogenes by predation. This study lasted only 24h, which is a fairly short period when
comparing all protozoa-L. monocytogenes studies (Table 5). Further, Meinersmann et al. (2020) showed
that attached L. monocytogenes were less prone to predation from 7. pyriformis (10-fold) compared to

planktonic bacteria (Table 5).

Many studies (Akya et al., 2010; Doyscher et al., 2013; Lambrecht et al., 2015, 2017; Minh et al., 1990a)
studying Acanthamoeba spp./ Tetrahymena spp. — L. monocytogenes relationships see a decline of
culturable L. monocytogenes at the start of the incubation period, but still, end up with viable cells when
studying over a longer period which lasts between 96h and 34 days (Table 5). Overall, differences in
survival characteristics are seen between studies (Table 5). This can be due to different methods used or
due to the possible influence of various parameters such as media, pathogen strain, protozoa strain, time,
temperature (Akya et al., 2010), ratio bacteria/protozoa, cysts versus trophozoites (Lambrecht et al.,

2015), planktonic or attached bacteria and even motility (Fieseler et al., 2014) (Table 5).

Acanthamoeba spp. and Tetrahymena spp. are the protozoa of choice because they are easy to handle,
culturable, cheap, and well-characterized (Vaerewijck et al., 2014). Amongst many others, these
protozoans are also often found on vegetables and leafy greens (Gourabathini et al., 2008; Vaerewijck
et al., 2011) similar to L. monocytogenes (EFSA BIOHAZ panel, 2020). Besides these protozoa, other
non-pathogenic species also can be found on/inhabit products/processing environments. Some of these
might harbour L. monocytogenes and consequently might stimulate survival/offer protection against

adverse conditions (Lyashchuk et al., 2021).

Besides Acantamoeba spp. and Tetrahymena spp. one article could be found studying the Colpoda sp.
(also found in food processing environments) — L. monocytogenes relationship. Colpoda sp. secreted

viable L. monocytogenes cells in faecal pellets indicating that Colpoda sp. can serve as a protection
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organism for the pathogen. Further research is necessary to confirm this (Raghu Nadhanan & Thomas,

2014).

Finally, the studies referred to were all conducted with free-living protozoa, however, protozoa might

also occur in natural biofilms giving additional protection for pathogens (Arndt et al., 2003). Studies

concerning protozoa and L. monocytogenes cohabitating biofilms are not available yet.
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5. Intervention strategies

Prevention of L. monocytogenes persistence implicates preventing the opportunity of L. monocytogenes
to reside on/in processing equipment for extended periods. This can be achieved by the cooperation of
multiple intervention/prevention strategies already (partially) implemented in food production facilities
through European law. The proposed intervention strategies are not restricted to L. monocytogenes but

can be used to enhance overall hygiene (EFSA BIOHAZ panel, 2020; PROFEL, 2020).

5.1 Intervention strategies embedded in the food hygiene regulation

Food hygiene is defined in the European law Regulation (EC) No. 852/2004 as “the measures and
conditions necessary to control hazards and to ensure fitness for human consumption of a foodstuff
taking into account its intended use” and covers the whole food chain, from production and processing

to distribution and placing on the market (European Commission, 2020).

Food hygiene knows many regulations and directions with Regulation (EC) No. 852/2004, 853/2004,
and 2017/625 being the main ones. Based on these regulations several other regulations were constructed
to aid in the assurance of food hygiene and safety such as Regulation (EC) No. 2073/2005 on
microbiological criteria for foodstuffs. These regulations tend to harmonize, simplify, and merge
hygiene requirements to obtain a single, transparent hygiene policy. Across the intervention strategies,
some of the corresponding legal frameworks will be mentioned to highlight the already established

incorporation of these strategies in European law.

Food safety management systems (FSMS) are the result of the obligation to comply with the general
hygiene rules mentioned in Article 4 of Regulation (EC) No. 852/2004, the requirement to establish a
permanent procedure based on the hazard analysis critical control point principles (HACCP-principles)
mentioned in Article 5 of Regulation (EC) No. 852/2004 and general aspects such as the precaution
principle and traceability mentioned in the general food law (Regulation (EC) No. 178/2002. Before
HACCP principles can be implemented, the general hygiene needs to be on point. To do this prerequisite
programs (PRP) which are basic rules necessary to operate hygienically are established. The number

and type of PRPs depend on the sector but overall many of the 12 proposed PRPs in the Commission
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notice (2016/C 278/01) are applied. This list with possible PRPs was extended from 12 to 13 by the
BIOHAZ panel of EFSA and often traceability is added as a 14™ PRP (Figure 4). The PRPs provide safe
and hygienic surroundings for the production process and form the minimum level of hygiene required
and apply for the entire production facility thus not restricted to one hazard. Out of the 13 PRPs
suggested by the BIOHAZ panel of EFSA, cleaning and disinfection, infrastructure (hygienic design),
technical maintenance and work methodology are considered crucial to prevent L. monocytogenes
contamination in frozen vegetables (EFSA BIOHAZ panel, 2020). These four PRPs on their own and in
interaction with one another should result in a decrease of L. monocytogenes persistence if implemented

correctly (Figure 4).

Besides legal requirements, standards provide additional requirements. Complying with certain
standards (e.g. BRC, IFS) can be seen as a quality indicator of the company and can be obligatory for
some customers. Further, technical standards such as the ISO standards describe criteria to perform a
task and include definitions, procedures, and references towards work instructions. These international
standards are often translated towards European standards (by the FEuropean committee for
standardisation —CEN) or American standards (by the American national standards institute -ANSI).
European standards can then again be translated to national scale by the normalisation institutes of each

country e.g. NBN for Belgium, NEN for the Netherlands, AFNOR for France.

5.2 Guidance on hygiene, control measures and surveillance strategies of L. monocytogenes in
the food industry
The ongoing problems with L. monocytogenes resulted in the establishment of many guides by official
agencies and sector organisations. These can be for food products in general such as the guide of the
codex Alimentarius on the applications of the general principle of food hygiene to control L.
monocytogenes in foods (CAC/GL 61-2007). More often, guides are developed for a specific food
category, making them straightforward for implementation. Examples of official agencies are the FSIS
(Food Safety and Inspection Service, United States) for retail delicatessens (FSIS, 2015), FAO and
WHO on RTE-foods (FAO & WHO, 2022) and EFSA for frozen vegetables (EFSA, 2018b). The guides

provided by sector organisations are also food category-specific with for example PROFEL (the
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European Association of Fruit and Vegetable Processors) for quick-frozen vegetables (PROFEL, 2020)

and the Innovation Center for US Dairy for dairy products (Innovation Center for US Dairy, 2018).

The FAO & WHO mention a summary of the surveillance programs related to L. monocytogenes in
Australia and New Zealand, Canada, China, Egypt, Latin America (with details for each country),
Europe, South Africa and the United States themselves in the meeting report concerning L.
monocytogenes in RTE-foods (FAO & WHO, 2022). Guides on a national scale could thus be an
addition to international guides and could include country-specific aspects. The Federal Agency for the
Safety of the Food Chain of Belgium (FASFC) gives the option to incorporate the GM4 module in all
the (unique for Belgium) self-checking guides available for the food industry. The module is one of four
additional modules that can be incorporated into the many approved self-checking guides and is
developed by FEVIA (federation of the Belgian food industry) and Ghent University (Belgium). The
GM4 module concerns the control of environmental pathogens (no food product category specified),
among which L. monocytogenes, in the food industry (FASFC, 2019,2023; FEVIA, 2023). Even
companies develop guides to control L. monocytogenes (Christeyns, 2019). Independently if the guides
are on a national or international scale, cover food products in general or a specific food category, the
practical implementation of pre-requisite programs and/or sampling strategies to monitor hygiene is

included in the scope.

5.3  PRP Cleaning and disinfection procedure

When the C&D procedure removes the pathogens of interest, persistence is unlikely. In the persistence
strategy disinfectant resistance/tolerance, an elaborate part is attributed to the consequences of a failed
C&D procedure. The intervention strategy PRP Cleaning and disinfection focuses on the legal context

of C&D, how a C&D program should be established, and the necessity of validation/verification.

Cleaning and disinfection must comply with some legal requirements. Besides the definitions for C&D,
the Codex Alimentarius (CAC/RCP 1-1969) mentions how to store cleaning chemicals, what a cleaning
procedure needs to involve and that the cleaning equipment, utensils, and surfaces also need to be
cleaned and disinfected where necessary. Rules surrounding the products, more specifically the
disinfectants, used in C&D of the food and feed industry are laid down in the biocide regulation (EU)
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528/2012. Regulation (EU) No. 528/2012 states that disinfectants and their active components have to
undergo an authorization procedure before they can be placed on the market and used. The European
chemicals agency (ECHA) handles these authorization procedures (ECHA, n.d.). A whole document on
the procedure and testing norms are provided by ECHA to authorize a disinfectant, this procedure
contains different phases starting from simple suspension tests to field trials done as specified in
international standards (ISO, CEN) (ECHA, 2018). Meyer et al. (2010) confirmed that one of these EN-
norms (EN13697:2001, now replaced by EN13697:2015 + A12019) was a realistic worst-case scenario
of the food business industry both for the microbial load and for total organic carbon. Not always provide

efficacy tests a realistic scenario e.g. biofilms (part 4.3.5).

EHEDG (European Hygienic Engineering & Design Group) established various guidelines and books
concerning hygienic design (EHEDG, n.d.). Special rules concerning the use of cleaning and
disinfection agents in production and storage areas apply for organic products where the commission is

authorised to make a restrictive list on which substances can be used (Regulation (EC) No. 2018/848).

Developing a C&D protocol takes time and information needs to be gathered to come up with an
appropriate C&D draft preceding validation (Griffith, 2016; Holah, 2013). When anything changes in
the process, equipment or products used, revalidation must be done (EHEDG, 2016). During validation,
extra information, e.g. the location of difficult-to-clean places, the influence of the food matrix, and the
influence of the environment (e.g. humidity, water hardness) can be noticed and used to optimise the

C&D regime (Bland et al., 2021; C. Griffith, 2016).

Designing a C&D procedure is complex and only when all the practical and potential problems are
identified, a draft C&D procedure can be made (Griffith, 2016; Holah, 2013). The C&D depends on the
characteristics of the site, so a site survey must be done and used to determine an effective C&D regime.
With this site survey, aspects like construction, production flow, shift patterns, temperature/humidity

patterns and types of food residue are determined (Griffith, 2016; Holah, 2013; Perni et al., 2007).

Further, many parameters influence the applied dosing of the disinfectant and might result in the need

to apply higher concentrations than recommended by the manufacturer of the cleaning/disinfection
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product (part 4.3.2). Overall, higher processing temperatures and longer running periods before cleaning
increase the difficulty of removing the soil (Holah, 2013). Disinfectants may contain several active
compounds to obtain the most effective solution for food establishments (Debevere et al., 2021). Once
this combination is optimized and passes in-house tests, the disinfectant used can remain the same for
decades (Holah et al., 2002). As will be discussed in the intervention strategy infrastructure (part 5.3),
the material of the surfaces and the design of the equipment influence the C&D regime strongly (Holah,

2013; Perni et al., 2007).

The removal kinetics consist of different actions each having its contribution depending on the
circumstances (Bénézech & Faille, 2017). A C&D procedure is a combination of mechanical energy (=
physical removal of soils), chemical energy (= breaking down soils), thermal energy and time (=
Sinner’s circle). Each piece of equipment (or even equipment parts) may require its specific combination
and thus C&D procedure (Bénézech & Faille, 2017; Faille et al., 2018; Holah, 2013). In general,
chemical and mechanical energy is increased when applying higher temperatures and/or longer contact
times (Faille et al., 2018; Holah, 2013). Mechanical energy can be physical abrasion e.g. brushes and
scraping but also fluid abrasion (Faille et al., 2018; Holah, 2013). Fluid abrasion uses water to create
shear stress on the surface and can be done by a continuous pressure jet stream or by a pulsating stream
which tends to give better lower residual contamination due to higher shear wall stresses (Bénézech &
Faille, 2017; Blel et al., 2013; Bode et al., 2007; Gillham et al., 2000). Chemical and mechanical action
may play an important role in the removal of biofilms (Cunault et al., 2019). The main goal to remove
biofilms is the breakdown of the EPS matrix, which will be mostly achieved by mechanical action
(Bridier et al., 2011). Disrupting the EPS matrix, removes the diffusion of the products inside the biofilm
and thus enhances the exposure concentration of the cells to the products (Bridier et al., 2011). Bénézech
& Faille (2017) investigated the role of the mechanical and chemical action on the CIP removal of P.
fluorescens biofilms (48h, 20°C). The mechanical action (shear stress 0 to 20 Pa) was responsible for
the removal of biofilm chunks and single cells, and the chemical action (0.1 — 0.5 w/w% NaOH) mainly
disrupted, and destabilized biofilm clusters. The synergistic effect of both actions gave the highest

removal rates. The importance of the chemical action was confirmed by Faille et al. (2013) on Bacillus
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spores attached to a stainless steel surface and was strain-dependent. Biofilms are considered highly
resistant and harsh C&D procedures are needed to remove them sufficiently. Fagerlund, Heir, et al.
(2020) looked at the effect of commercial cleaners and enzymes removing L. monocytogenes biofilms
(seven-day-old biofilms) and noticed that only elaborative C&D protocols with higher cleaning product

concentrations were capable of reaching >5.5 logs CFU/cm? reductions.

Besides the end-production C&D procedure, several other types of C&D procedures can be done such
as in-production C&D, inter-production C&D and site decontamination. The C&D procedure itself is
more complex than just applying the product and rinsing. Food residues need to be removed as much as
possible and equipment needs to be prepared (e.g. disassembly if needed) before the C&D procedure.
The removal of soil and a pre-rinse is followed by a visual control to see if the surface is clean enough
to apply the cleaning agent. After the application of the cleaning agent and subsequent rinsing another
control is conducted to see if the surface is clean enough to apply the disinfectant. This can be done both
visually and with biochemical tests. Drying can be applied after the cleaning phase to avoid dilution of
the disinfectant. The disinfectant is rinsed off and another test is done to verify if the surface is
adequately cleaned and disinfected (de Reu et al., 2022). Drying the surface after the C&D procedure
might not only enhance the effectiveness of the procedure as proven by Overney et al. (2017) (part
4.3.2), but it may also aid in the prevention of cross-contamination as wet surfaces may enhance cross-
contamination in comparison to dry surfaces by offering circumstances for microbial growth (Griffith,
2016). The C&D procedure should end with the cleaning and disinfection of the cleaning utensils and

loose equipment.

When finishing the C&D program for the equipment, it is important to realize that the environment and
equipment inside a certain environment form a whole and thus need to be cleaned at the same time to
avoid recontamination after C&D and cross-contamination during production (Holah, 2013). Cleaning
utensils, which are a major source of cross-contamination, are rarely considered in food safety. As an
example, a UK government-funded study (Holah, 1999) found that 47% of the cleaning utensils were
contaminated with L. monocytogenes (Smith, 2019). Further, Schéfer et al. (2017) noticed that 87% of

the equipment and processing utensils used for thighs in a poultry processing plant were contaminated
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with L. monocytogenes and that after C&D, this was still 67%. To overcome this, GFSI-approved
(Global Food Safety Initiative) standards like BRC (British Retail Consortium) and IFS (International
Food Standard) incorporated the cleaning of cleaning utensils in their standards so that food business
operators pay attention to them. Cleaning utensils need to be cleaned and disinfected at least once a day,
or more if required. When using “sanitiser baths”, frequently replacing the fluid is necessary to avoid a
decrease in efficiency due to the presence of organic matter (Smith, 2019). To determine the cleaning

level, a decision tree like the one suggested by Smith (2019) can be used.

A good C&D involves monitoring (Holah, 2013). Bad cleaning might result in a failed C&D. Monitoring
the production area after the cleaning phase is thus crucial. Failure or absence of this might endanger
food safety. The same counts for disinfection, after the complete C&D procedure, monitoring based on
sampling needs to be conducted to verify the efficiency of the C&D procedure. Visual control,
disinfectant temperatures, chemical concentrations. .. are examples of monitoring measurements (Holah,

2013).

Target (the value that is supposed to be achieved with “best practices™) and tolerance (the value that is
the maximum value which is reasonably achieved with “best practices”, exceeding this value indicates
a problem) values need to be established before monitoring and verification can take place, which is
often done during validation (Uyttendaele et al., 2018). For microbiology, this means determining the
acceptable numbers of microorganisms remaining on surfaces and this depends on the food product, risk
area and sanitation procedure undertaken (Holah, 2013). A zero tolerance on microorganisms on the
surface after C&D is not realistic, and so is a tolerance value of 0 CFU/cm?. With disinfection, the aim
is to achieve a surface, where the number of microorganisms does not hamper food safety and quality
for the desired shelf life. Food producers themselves must determine what they consider appropriate,
this must be risk-based with the goal of guaranteed safety and acceptable shelf life (Meretre & Langsrud,
2017). Despite that no legal standards other than visual cleanliness exist, guidelines may suggest some
values but the reasoning behind these values is often unclear. Starting from in-house data, target and
threshold values can be set up based on what is achievable (Griffith, 2016; Meretre & Langsrud, 2017).

Studies showed that a mean level of <2.5 CFU/cm? after routine C&D is attainable (Bagge-Ravn et al.,
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2003; Griffith, 2005, 2016; Griffith et al., 2000; Moore & Griffith, 2007). Higher numbers could indicate

an inadequate C&D program of execution thereof.

Both microbiological and non-microbiological tests can be used for validation, verification and
monitoring. An example of a non-microbiological test is visual control which is a widely used method
to assess cleanliness and can be done with the unaided eye of the microscope (Griffith, 2016). Visual
controls are often used to verify if the cleaning procedure is sufficient. This is however a subjective
method and the absence of visual soil does not imply a surface free from organic matter (Griffith, 2016).
Other non-microbiological tests are ATP bioluminescence readings which pose an objective alternative
to test quickly if the surface is adequality cleaned and thus can be disinfected (Holah, 2014; Uyttendaele
et al., 2018). By using a non-microbiological test to check if the surface is adequately clean, corrective
actions like recleaning the surface can be done which is not possible with microbiological tests due to

the incubation period (Griffith, 2016).

5.4  PRP Infrastructure (hygienic design)

Paying attention to hygienic design e.g. when constructing the site, renovating the site and the purchase
of (new) equipment, aids in the prevention of persistent bacteria as it may give rise to possible hazards
concerning hygiene (Beetz et al., 2017; EHEDG, n.d.; Holah, 2008). Special attention must be paid to
second-hand equipment as food particles may harbour pathogenic organisms. Lundén et al. (2002) found
the same persistent L. monocytogenes strain contaminating three food businesses due to the resale of a
dicing machine meaning that contamination was spread from buying second-hand equipment. Poor
hygienic design leads to the existence of harbourage sites which may cause food safety/quality problems
e.g. dripping condensate from pipes and cooling systems (3M and Cornell University, 2019; EFSA
BIOHAZ panel, 2018; FDA - CFSAN, 2017). Hygienic design and engineering are defined according
to EHEDG as “the design and engineering of equipment and premises assuring the food is safe and
suitable for human consumption” (EHEDG, n.d.). This includes the physical aspects of the equipment
but also the design of the building and the surrounding itself, the flow of the raw materials, products,
and the people inside the building (Holah, 2008), the design and installation of services such as air,

water, steam, the maintenance of the equipment (EHEDG, n.d.). Considering hygienic design before the
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actual construction phase of an equipment/processing plant and considering the actual usage may give
rise to possible hazards concerning hygiene which can then be immediately solved/prevented (Beetz et

al., 2017; EHEDG, n.d.; Holah, 2008).

Construction-wise, zonation can be incorporated to avoid the spreading of contamination from one part
of the production area to another. If no zonation is applied, contamination from low-risk areas to high-
risk areas can easily be spread by the hands/shoes of the staff, and transport trolleys (Griffith, 2016).
Zonation is mentioned in different standards like BRC and GFSI and is required when handling products
that are prone to recontamination and require higher hygiene standards and sometimes restricted

entrance (BRC, 2018; Holah, 2008).

The hygienic design of equipment may avoid the existence of many harbourage sites, a major
contributing factor to persistence (part 3). Equipment must be designed in a way that cleaning or
maintenance does not introduce food safety hazards. All parts and components should be easily
accessible for actions like inspection, maintenance and troubleshooting. For this, pipes, pumps, and
large-volume heating should be located in a technical corridor to avoid disruption of the cleanliness in
the production area itself. Maintenance, lubrication and repair should be done according to the principles

of hygienic design (Moerman et al., 2013).

Paying attention to a good hygienic design is mandatory nowadays. Codex Alimentarius (CAC/RCP 1-
1969) mentions requirements to which equipment and facilities need to comply regarding the design of
equipment and facility layout. For the United States, the code of federal regulations (CRF-title 21-part
110) describes some general aspects of food premises. This is on European level Regulation (EC) No
852/2004 with further, legal requirements, like directive 2006/42/EC, to describe several general aspects

for the design of the equipment keeping in mind hygiene, cleanability, and safety.

Based on legal requirements, guidelines and standards are being developed to help equipment
manufacturers (Beetz et al., 2017). Institutes, like EHEDG, provide a practical interpretation of the
standards/laws and provide interaction/cooperation between equipment manufacturers, users and

legislators concerning hygienic design (EHEDG, n.d.). The EHEDG is linked to several other
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international standardization organizations like 3-A sanitary design (USA), NSF International (National
Sanitation Foundation), ISO, DIN (Deutsches Institut fiir Normung, Germany) ... to make it more

practical and efficient to incorporate hygienic design in the industry (EHEDG, n.d.).

Focusing more on the hygienic design itself, the geometry inside the equipment is an important factor
as it determines the flow characteristics (Faille et al., 2018). Angles, corners, and sudden, or gradual
expansion or contraction may alter the flow pattern severely and as a consequence also affect bacterial
removal (Blel et al., 2007). Several examples of geometric requirements are welds, angels, fasteners,
crevices, and slopes (EHEDG, n.d.) A well-known example of a hygienic design guideline concerning
geometric aspects is avoiding sharp 90-degree angles in the inner edges and rounding them off (Beetz

et al., 2017).

Hygienic design is not only keeping in mind the geometry but also the materials used as this may affect
the adherence of bacteria and the removal of them (Faille et al., 2018). Materials may influence the
adherence of bacteria through their physicochemical properties and topography (Faille et al., 2018).
Textured surfaces may harbour more contamination than smooth surfaces (Chasseignaux et al., 2002)
and decrease the efficiency of C&D as bacteria hide in the valleys (Fagerlund et al., 2017). Solely using
the Ra (average roughness) as a topographic parameter is insufficient to estimate the hygienic status of
a surface and other parameters about the shape of the topographic features need to be included to get a
more accurate estimation (Faille et al., 2018). Besides the microbiological reason, the chosen material
also needs to be resistant to cracking, chipping, flaking and abrasion, be inert to the food product and
disinfectants, corrosion-resistant, non-toxic, non-tainting, and mechanically stable (EHEDG, n.d.).
Adhesives, sealants, lubricants, signal transfer liquids, and thermal insulation materials are also
subjected to (legal) requirements, standards, and norms (EHEDG, n.d.; Moerman et al., 2013). For
Europe, for all food-contact materials, Regulation (EC) No. 1935/2004 is applicable, more specific
regulations for some materials are also available like Directives 78/142/EEC for vinyl chloride
monomers, 84/500/EEC for ceramics, 2004/13/EC for certain epoxy, 93/10/EEC for regenerated

cellulose film and Regulation (EU) No 10/2011 regarding plastics.
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Applying hygienic design is not only mandatory, but it also holds benefits other than the reduced risk of
contamination. Softer and shorter C&D methods can be applied which means that there is a reduction
in the use of (aggressive) chemicals and cleaning and decontamination cycles. As a result, more time
comes free for actual production, equipment may have an enhanced lifespan, enhanced sustainability,

lower operating cost, and less effluent is being produced (EHEDG, n.d.; Holah, 2013).

5.5 PRP Technical maintenance

Equipment does not have an endless lifespan and parts are susceptible to wear and break thus making
preventive maintenance regularly necessary/obliged to keep the equipment running properly and avoid
a breakdown during production (CAC/GL 61 — 2007). Preventive maintenance or pre-operational
maintenance, in case of infrequently used equipment, is also desired as maintenance during production
is discouraged (PROFEL, 2020). During maintenance, the equipment must be checked on physical and
microbiological risk factors e.g. created due to wear. Areas where food and moisture can accumulate
e.g. parts that are cracked or worn, gaskets or belts, porous welds, product contact surfaces, and worn
or frayed hoses pose microbiological risk factors (CAC/GL 61 —2007). These may have various origins
e.g. repeated heating and cooling cycles that may decrease the elasticity of seals (Moerman et al., 2013),
junction separation, corrosion and water encroachment in freezing tunnels (EFSA BIOHAZ panel, 2020)
and corrosion which increases the surface roughness (Mai et al., 2006). Parts must likely be replaced
because they form a microbiological contamination risk despite still functioning and not forming a

physical risk (Moerman et al., 2013).

The actions performed during preventive maintenance like dismantling, servicing, reassembling
equipment and the personal hygiene of the operative can form a microbiological contamination risk as
well e.g. disruption of biofilms (Moerman et al., 2013). Before installing new parts/equipment, the
equipment must be physically fine, no parts are damaged or missing and must also be cleaned and
disinfected before entering the food production area and after installation before production (Moerman

et al., 2013)(CAC/GL 61 — 2007).

Maintenance operators must follow the same hygiene measures as the other staff working in that area
when conducting maintenance and may thus vary according to the zone they work in (FDA - CFSAN,
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2017; Moerman et al., 2013)(CAC/GL/ 61). Awareness must be created that technical maintenance staff
moves from zone to zone and thus poses a higher food safety risk than operators staying in the same
area (Moerman et al., 2013). Tools and even uniforms and footwear should be provided for each zone

separately or cleaned thoroughly before use in another area (PROFEL, 2020).

5.6  PRP Work methodology

Even when the C&D protocol is effective, it is not guaranteed that it is executed correctly. Griffith
(2016) mentions work culture, training of the staff and missing documentation as reasons for failing
C&D. Documentation helps to maintain consistency and transparency associated with processes, it is
also a requirement of certification standards such as BRC and IFS (Griffith, 2016). Many different types
of documents exist such as work instructions, standard operating procedures (SOP), and registration
forms. SOPs are needed for every procedure, for the C&D itself but also the monitoring and sampling.
SOP documents are needed to make sure everybody knows how a certain process e.g. C&D needs to be
done, accompanied by these work instructions (WI) can be carried out. Registration forms offer
documented evidence that the approved C&D procedure is applied and will provide clean equipment

intended for its use (EHEDG, 2016).

Guidelines may specify certain aspects that must be present in SOPs. For instance, the guideline
Cleaning Validation in the Food Industry - General Principles, Part 1 of the EHEDG describes aspects

that should be present in the SOPs of C&D procedures (EHEDG, 2016).

Contamination can easily spread throughout one facility for example by moving equipment from one
room to another, by products that get contaminated in a particular processing step (Hoelzer et al., 2012),
through movable fomites e.g. trolley wheels (Lindsay et al., 2019) or personnel e.g. through
contaminated shoes (Lindsay et al., 2019; Morita et al., 2006), contaminated hands due to handling of

contaminated product (Chen et al., 2001), gloves (Lindsay et al., 2019; Wu & Ponder, 2018).

Not only written documents to assure good workflow, but the operative personnel must also have had
adequate training concerning their task (EHEDG, 2016) and be aware of the consequences when not

executing the job well. Protocols on their own will not be successful or correctly implemented without
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an appropriate compliance culture (Griffith, 2016). Food safety culture must be present and encouraged
in the facilities to obtain the best result (De Boeck, 2018). As an example, neatness is mentioned by
PROFEL as important to avoid L. monocytogenes in the quick-frozen vegetable industry. Paying
attention to neatness can be seen as part of the food safety culture, indicating that the staff knows the

importance of a neat working space.

6. Conclusion

Much research has been done concerning the persistence of L. monocytogenes, however, information is
still lacking. First, defining persistence in each study (what the authors define as persistence) would
enhance comparability between studies. Second, a retarded growth rate is here proposed as a possible
persistence strategy, however, no data is available yet to support this for L. monocytogenes. Likewise,
the presence of other protozoa than Acanthamoeba spp. and Tetrahymena spp. in food production areas
and their relationship with L. monocytogenes needs to be investigated as many more protozoa could
provide shelter. Further, standard tests should be developed for the approval of disinfectants towards
biofilms as this is lacking. Additionally, studies with realistic scenarios (including biofilms with in-

house flora, using the MRC) are lacking and could provide essential information.

The proposed intervention strategies had all one thing in common, improving the hygiene status of the
surroundings as the presence of organic matter proved key e.g. biofilm formation, enhanced tolerance
towards desiccation, and disinfectants. Limited interventions could prove big differences. By optimizing
the C&D procedure, and the execution thereof in both work methodology and hygienic design, the
remaining organic matter decreases. Adding to that, a visual check-up of the infrastructure during
technical maintenance to prevent additional harbourage sites and optimizing work instructions should

result in the prevention of the persistence of L. monocytogenes.
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1880 Tables

1881  Table 1: Definitions of some terms commonly used when talking about disinfection resistance.

TERM DEFINITION SOURCE
Antimicrobial The ability of a microorganism to multiply or persist in the presence of an
. increased level of an antimicrobial agent relative to the susceptible CAC/GL 77- 2011
resistance :
counterpart of the same species.
The reduction, through chemical agents and/or physical methods, of the
Disinfection number of microorganisms in the environment, to a level that does not CAC/RCP 1-1969
compromise food safety or suitability.
Cleaning The removal of soil, food residue, dirt, grease or other objectionable CAC/RCP 1-1969

matter.

Cross-resistance

The ability of a microorganism to multiply or persist in the presence of
other members of a particular class of antimicrobial agents or across
different classes due to a shared mechanism of resistance.

CAC/GL 77- 2011

Cross-
adaptation

Cross-adaptation occurs when exposure to one stressor induces
physiological and behavioural protection to a novel stressor, without prior
exposure to the novel stressor.

Lee et al. (2019); Riazi &

Matthews (2011)

Co-resistance

The ability of a microorganism to multiply or persist in the presence of
different classes of antimicrobial agents due to the possession of various
resistance mechanisms.

CAC/GL 77- 2011

The Minimal Inhibitory Concentration is the lowest concentration of

Mic antimicrobial at which cell growth is visibly inhibited. FAO & WHO (2019)
MSC Mlnlmum Sel.ectlve C(.)ncent?atlon is the 1gwest concentration FAO & WHO (2019)
of antimicrobial at which resistance is positively selected.
Minimum Effective Concentration is the lowest concentration of a
. . . . . ISO 11139:2018
chemical or product, used in a specified process, that achieves a claimed
MEC activity.
The concentration where 99.9% or more of the initial inoculum is killed. Bland et al. (2021)
The Minimal Bactericidal Concentration is the concentration at which ~ Meyer (2009); Meyer &
bacteria are killed off (an increased MBC can be seen as acquired Cookson (2010)
MBC resistance).
The concentration where 99.9% or more of the initial inoculum is killed. Bland et al. (2021)
MRC The rr_nmmal recommend.ed concentration is the lowest concentration of a 1SO 111392018
chemical or product specified for use in a process.
Sterilization The vahdat.ed process is used to render the product free from viable 1SO 11139:2018
microorganisms.
Used to reduce, but not necessarily eliminate, microorganisms from the
inanimate environment to levels considered safe as determined by public
health codes or regulations. EPA (n.d.)
Sanitation Process of reducing microbiological contamination on an effectively
cleaned surface using a bactericidal treatment such as heat or chemicals,
to a level that is acceptable to local health regulations. For effectiveness, GFSI

this must be preceded by cleaning (a mix of detergent and disinfectant or
a disinfectant).
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1883  Table 2: Selection of articles investigating disinfectant resistance/tolerance of planktonic/attached Listeria monocytogenes. To be included in the table the studies
1884  had to compare results against the MRC (=minimal recommended concentration), and give an answer to at least two of the following parameters for biofilms
1885  and/or planktonic cultures separately: increased tolerance determination and its stability, the effectiveness of the MRC, the effect of the presence of organic
1886  matter, variability among strains (includes differences between persistent and presumed non-persistent strains) and, cross adaptation. The parameters only
1887  concern Listeria monocytogenes, not the other microorganisms (if others are used in the studies).
PLANKTONI INCREASED
ATTACH(;E)ﬁ/ “ TOLERANCE EFFECT OF VARIABILITY
BIOFILM DISINFECTANT/CLEANERS USED + TEST PERFORMED/ C&D SIMULATED DETECTED MRC SUFFICIENT? ORGANIC AMONG STRAINS?
CELLS USED AND ITS MATTER
STABILITY
Planktonic, Prod. 1: Disinfect CL (hypochlorite) Yes, 4-8-fold only Yes / /
3 (S Prod. 2: Incimaxx DES (peracetic acid and hydrogen peroxide) for prod. 3, this
%D 8 Prod. 3: Triquart SUPER (QAC) increase was stable
g g MRC: 1-5%. for 6 transfers.
v (_% Test 1: MIC was determined before and after adaptation in BHI.
Test 2: For Triquart SUPER (QAC), killing assay with 0.0031%; 0.0063% and 0.0125%.
Planktonic Prod. 1: 2 QAC (alkyl-benzyl-dimethyl ammonium chloride and n-alkyl dimethyl ethyl benzyl Yes, max. 3-fold Yes / Initial MIC differed
P~ ammonium chloride); MIC= 0.63-5mg/1 increase in the between persistent and
§ Prod. 2: Tertiary alkylamine (1,3-propane diamine-N-(3-aminopropyl) N-dodecyl); MIC=0.63-  MIC, for QAC and presumed non-
= 2.5mg/1 tertiary alkylamine persistent strains, but
g Prod. 3: Sodium hypochlorite; MIC=2500mg/1 this effect was after adaptation, all
g Prod. 4: Potassium persulphate; MIC=2500mg/1 stable for up to 28 strains reached similar
g days. MIC values.
— Test 1: MIC tests (all products), serial 2-fold dilutions were made.
Test 2: Submit the strains to 1XMIC, 2xMIC and 3xMIC.
Planktonic Prod. 1: BAC (>95%); test range: 10 to 0.08 mg/1 / Yes / Yes, but the majority
— Prod. 2: Glutaraldehyde (50%); test range: 5,650 to 44 mg/1 of the strains
g Prod. 3: Isopropanol (>99.9%); test range: 249,600 to 3,900 mg/1 possessed similar
Q/'_ Prod. 4: Sodium hypochlorite (12%); test range: 8,000 to 62.5 mg/1 MIC/MBC values.
E Prod. 5: Peracetic acid (36-40%); test range: 2,875 to 22 mg/1
% Prod. 6: Biocidal product containing bis(3-aminopropyl) dodecylamine (7.5wt/wt%); test range:
T‘g 48 t0 0.7 mg/l
~
Test: Determine MIC/MBC values for each product according to the given test range.
Biofilm Test: Whisper™ (3.00% alkyl dimethyl benzyl ammonium chloride, 2.25% octyl decyl / No, 4 log CFU/cm? Yes, a higher Older biofilms showed

Pang et al.
(2019)

dimethyl ammonium chloride, 1.35% dodecyl dimethyl ammonium chloride, 0.90% dioctyl
dimethyl ammonium chloride) MRC: 200ppm for 1 minute. Clean (diluted TSB) and soiled
(salmon broth) conditions were tested. Besides mono-species Listeria monocytogenes biofilms
also multi-species (cultivatable indigenous microorganisms of salmon) biofilms were used.

reductions were not always

achieved.

resistance in salmon
broth compared to
diluted TSB.

higher resistance.
Mixed species showed
varying effects on
resistance (decreased/
no difference)
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meat extract, egg yolk and whole milk (30s contact time).

1888  Table 2 continued
PLANKTONI INCREASED
ATTACH(I:E)g/ “ TOLERANCE EFFECT OF VARIABILITY
BIOFILM DISINFECTANT/CLEANERS USED + TEST PERFORMED/ C&D SIMULATED DETECTED MRC SUFFICIENT? ORGANIC AMONG STRAINS?
AND ITS MATTER
CELLS USED STABILITY
Planktonic Prod. 1: Citric acid; MRC: 0.660% (w/v); adaptation in 0.04% of citric acid)) Yes, this at 4, 15, 23, and Yes, variability was
E Prod. 2: Conventlor}al quate@ary ammonium compound; MRC: 200ppm; adaptation in 1.6ppm 30 °C (temperature did seen mainly for prod.
S Prod. 3: Benzalkonium chloride; MRC: 200ppm influence efficacy) 1
g Biofilm Test 1: MBC tests (all products), serial 2-fold dilutions were made / /
5 Test 2: Determination of growth rates in the presence of sublethal concentrations of prod. 1 or No, prod. 1 had an Yes, mainly on
5 5 efficieny at 4°C of 87%, ]
E : . ) ) ] ) ) rod. 2 of 50% stainless steel
m Test 3: Use of prod. 1 and 2 in MRC concentrations on biofilms on stainless steel and high- p
density polyethylene.
Planktonic Prod. 1: Benzalkonium chloride; MRC: 500-1000 pg/mL No Yes Yes, the MBC was Yes
= Prod. 2: Peracetic acid; MRC: 0.5-1% above the MRC in
SN BHI, but well below
g I Test 1: MIC determination: growth BHI agar plates supplemented with prod. 1 the MRC in tap water.
% e Test 2: Determine MIC/MBC values for each product according to the given test range of prod.
2 in BHI and tap water.
a Planktonic Prod. 1: Tertiary alkylamine (+ sequestrant, antifoaming); MRC: 0.25-1% / Yes, but the lowest Yes, effectiveness /
= Prod. 2: QAC (+non-ionic surfactants, polyphosphates, potassium hydroxide, alkaline salts); recommended could be affected by
S MRC: 1-8% concentrations were not the presence of
= Prod. 3: Formaldehyde + glutaraldehyde + glyoxal + dodecyl dimethyl ammonium chloride always capable of reaching  organic matter and no
% (QAC) (+ionic surfactants); MRC: 0.4-1% sufficient reduction. The 5 log/ml reduction
g Prod. 4: Chlorhexidine (+glycerine); MRC: 7-10% same counts for 5 minutes could be achieved for
“&- Prod. 5: Peracetic acid + hydrogen peroxide; MRC: 0.05-0.5% exposure time. some products.
[
g Test: Test effectiveness using the highest and the lowest recommended concentration (5 or 10
&) minutes exposure time), this with or without the presence of 2.5% organic matter.
) Planktonic Prod. 1: SANICIP Q5 (QAC); MRC: 400mg/ / Yes, without organic Yes, organic matter Between species (only
E Prod. 2: SANICIP PLUS (iodine-based); MRC: 25mg/I matter always 5 log/ml decreased efficiency 1 Listeria
e Prod. 3: SANICIP PAA (peracetic acid + hydrogen peroxide + acetic acid); MRC: 200mg/1 reduction. (effect varied monocytogenes strain
g § Prod. 4: SANICIP OSA (disinfectant detergent acid anionic grease, Mix of anionic surfactant depending on product was used)
S and phosphoric, succinic and octanoic acids); MRC: 200mg/I and type of organic
§ ~ matter).
}%D Test: Test the effectiveness of the products against the MRC concentrations in the presence of
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1889  Table 2 continued
PLANKTONI INCREASED
ATTiCH(]:E)D/ “ TOLERANCE EFFECT OF VARIABILITY
BIOFILM DISINFECTANT/CLEANERS USED + TEST PERFORMED/ C&D SIMULATED DETECTED MRC SUFFICIENT? ORGANIC AMONG STRAINS?
CELLS USED AND ITS MATTER
STABILITY
Planktonic Prod. 1: Peracetic acid (<5%), hydrogen peroxide (15-30%), acetic acid (5-15%), phosphonic / Maybe, in both clean and Yes, soiled conditions Yes, MIC values
acid (<1%); MRC: 0.05-3% soiled conditions some showed lower differed.
Prod. 2: Peracetic acid (<5%), hydrogen peroxide (15-30%), acetic acid (5-15%), phosphonic products (prod. 1, 3, 8) reductions compared
acid (<1%), non-ionic tensides (<5%); MRC: 1-3% needed higher to clean conditions.
Prod. 3: Peracetic acid (<5%), hydrogen peroxide (15-30%), acetic acid (5-15%), phosphonic concentrations than the
acid (<1%), anionic tensides (<5%); MRC: 0.05-1% lowest MRC boundary or a
Prod. 4: Ethanol (<70%); MRC: 100% longer incubation time. For
Prod. 5: Sodium hypochlorite (>60%, active chlorine 13%), sodium hydroxide (<5%); MRC: prod. 5 this still was not
0.05-2% enough.
Prod. 6: Alkyl dimethyl benzyl ammonium chloride (>30%), synthetic tensides; MRC: 0.1-
0.5%
- Prod. 7: Isopropanol (15-30%), 1-propanol (>30%); MRC: 100%
[é Prod. 8: Peracetic acid (<5%), hydrogen peroxide (15-30%), acetic acid (5-15%); MRC: 0.1-
g 4%
§ Biofilm Prod. 9: Sodium hydroxide (5-15%), sodium hypochlorite (<35%, active chlorine 13%); MRC: / Maybe, complete Yes, soiled Yes, not all strains
g 1-5% ineffectiveness cannot conditions could be
E Prod. 10: Potassium hydroxide (5-15%), sodium hypochlorite (<38%, active chlorine 13%), be determined as occasionally give sufficiently reduced
g non-ionic tensides (>5%), phosphonates (<5%); MRC: 1-5% insufficient reductions less reduction. by prod. 6 and 7 at
< Prod. 11: Sodium hydroxide (5-15%), sodium hypochlorite (<5%), non-ionic tensides (<5%), were achieved for prod. the initial tested
phosphonates (<5%); MRC: 2-10% 6 and 7 and no concentration.
Prod. 12: Potassium hydroxide (5-15%), sodium hypochlorite (<5%), anionic tensides (<5%); concentrations near the
MRC: 2-5% upper bound of the
MRC were tested.
Planktonic:
Test 1: Suspension test (product 1-8), lowest recommended concentration was used to start and
increased if proved ineffective. Different concentration of bovine albumin indicated clean
(1.5%) or soiled(10%) conditions.
Test 2: MIC tests (all products), serial 2-fold dilutions were made.
Biofilm: Test 1: Suspension test with the lowest recommended concentration.
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1891 Table 2 continued

INCREASED
ZE?IZIC(ITI;);;} “ TOLERANCE EFFECT OF VARIABILITY
DISINFECTANT/CLEANERS USED + TEST PERFORMED/ C&D SIMULATED DETECTED MRC SUFFICIENT? ORGANIC
BIOFILM AMONG STRAINS?
CELLS USED AND ITS MATTER
STABILITY
Planktonic Disinfectant solutions: Yes. but the lower limit of
< Prod. 1: P3-oxysan (peracetic acid with a MRC of 800-2500ppm at 4-20°C for 5-30 min) i
2 . . . the MRC was not always Yes
S Proq. 2: P3-triquart (quaternary arTlmomum compound with a MRC of 2000-5000ppm at sufficient.
= ambient temperature for 20-120 min)
g Biofilm Test 1: MIC determination of planktonic strains in TSB. / Test 2: Yes, BEC values did TSB used
2 Test 2: Biofilm eradication concentration (BEC) only on polystyrene (contact of 5 min at not exceed MRC
72 20°C). concentration at which no growth of the biofilm is observed.
g Test 3: Comparative resistance to disinfectants: Exposing 72h old biofilms to disinfectants Test 3: No, some strains Test 2: Yes
;35_ (2000ppm prod. 1 and 500ppm prod. 2) and enumerated afterwards. Both polystyrene and failed to reach 4 log
stainless steel. CFU/cm? reduction.
Biofilm: Prod. 1: Topax 66 (chlorinated alkaline cleaner, MRC: 3v%)
Prod 2: Triquart MS (quaternary ammonium compound, MRC: 2 v%).
Products were diluted to model what happens in the retention zones which are difficult to reach
& for C&D
@ Test 1: Daily C&D (4 days): prod. 1 at 0.3 v% for 15 min at room temperature, rinsing step No, at the MRC both
E; with water of 55°C for 2 min, prod. 2 at 0.2v% for 30 min at room temperature, soiling with / Yes soiling conditions No difference between
‘; salmon juice or meat exudate and re-incubation. Before enumeration, neutralization was applied resulted in <LOD mono-and dual species
“E’ after C&D. results.
4 Test 2: Drying step (at 25 °C with high relative humidity (75%)): a daily drying step without
© C&D is tested, a daily C&D with only the last day a drying step is tested and daily C&D with
daily drying is tested.
Mono-and dual species (with Pseudomonas fluorescens) were used.
Planktonic Prod. 1: triclosan (MRC: 0.3% (V/V)) Yes
e Prod. 2: Triquart MS (10-20% (V/V) EDTA, 7-10% BC, 1-3% alcohol ethoxylates, 1-3%
g didecyldimethylammonium chloride) MRC; 1%
a Prod. 3: 70% (V/V) ethanol
= —-——— Prod. 4: Undiluted P3- alcodes (ethanol 50-100%) : .
E Biofilm Prod. 5: Undiluted P3-manodes (ethanol 30-50%; propan-2-ol, 25-30%) / T\(Ijo, mzst products d id not BHI used Yfes 1o hlgher Val-ues
% Prod. 6: Benzalkonium chloride (MRC: 10 v/v?%) reduce biomass, an increase or persistent strains
@ was sometimes even seen.
§ Test 1: MIC/MBC determination in BHI.
— Test 2: Biofilm susceptibility tested at the recommended in-use concentration (18h exposure at
37°C).
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1893 Table 2 continued
INCREASED
iﬁ?ilé;gﬁ/l “ TOLERANCE EFFECT OF VARIABILITY
DISINFECTANT/CLEANERS USED + TEST PERFORMED/ C&D SIMULATED DETECTED MRC SUFFICIENT? ORGANIC
BIOFILM AMONG STRAINS?
CELLS USED AND ITS MATTER
STABILITY
Planktonic Prod. 1: Benzalkonium chloride (MCR: 2000-5000mg/1 for 20-120 min) / Yes / Yes, especially for
= Prod. 2: Peracetic acid (MCR: 800-2500mg/1, 4-20°C, 5-30min) prod. 1.
E § Biofilm o Yes, but the concentrations Yes, biofilms grown
S a Test 1: MIC determmat‘lo‘n-. _ _ _ needed are higher than the in soiled conditions v
= Test 2: Biofilm susceptibility tested on 2-days old biofilms (grown in low (diluted TSB-YE) or lower boundary of the required occasionally cs
high (TSB-YE) nutrient concentration). MRC. higher concentrations.
Biofilm Prod. 1: QAC based sanitizer Pursept-AF (12.5 g didecyl-dimethylammonium chloride, 1.5 g / Yes, not always could >4 / Yes
= N-(3-aminopropyl)-N-dodecylopropane-1,3-diamine); MCR: 2% logs CFU/cm? reductions
% Prod. 2: Tertiary alkyl amine-based sanitizer-Barren (<5% anionic surfactants, <5% EDTA + be achieved, 72h biofilms
2 § salts); MCR: 2% showed higher resistance
g a Prod. 3: Chlorine based-sanitizer-Medicarine (99% sodium dichloroisocyanurate); MCR: compared to 24h biofilms.
3 0.18% (1000ppm)
S
Test 1: Biofilm susceptibility tested on 1- and 3-days old biofilms.
- Biofilm Prod. 1: Sodium hypochlorite (10% active chlorine) Adapted strains  Yes, biofilm formation was / /
g Prod. 2: benzalkonium chloride to prod. 2 inhibited when cells were
g g showed in the exposed to IxMIC or 1.5x
5 IS Test 1: MIC determination in TSB presence of MIC
gn = Test 2: Biofilm formation in presence of disinfectant (0.5xMIC, 1xMIC, 1.5x MIC) 0.5xMIC
g5 higher biofilm
& formation
1894

84



1895  Table 2 continued
PLANKTONI INCREASED
ATTACH(;E)g/ “ TOLERANCE EFFECT OF VARIABILITY
BIOFILM DISINFECTANT/CLEANERS USED + TEST PERFORMED/ C&D SIMULATED DETECTED MRC SUFFICIENT? ORGANIC AMONG STRAINS?
CELLS USED AND ITS MATTER
STABILITY
Biofilm Products used in recommended in-use concentrations. / No, the obtained reduction / No difference in
Prod. 1: Matrixx (6.9% hydrogen peroxide, 4.4% peroxyacetic acid, 3.4% octanoic acid) was followed by an susceptibility was seen
Prod. 2: Multi-Quat (3.0% dimethyl benzyl ammonium chloride, 2.3% octyl decyl dimethy] increase, probably due to between detached cells
ammonium chloride, 1.1% dodecyl dimethyl ammonium chloride, 1.1% di octyl dimethyl adaptation to the sublethal and fresh planktonic
ammonium chloride) concentrations cells
Prod. 3: Chlorine solution (4-6% NaOCl)
g Test 1: 24h-cycle applied for 3 weeks:
IS - Sanitation by Matrixx (100ppm) for 60 seconds
%-/ - Storage without liquid medium for 15h at 22.5°C (only 0.5ml water to maintain relative
k3] humidity)
8 - Incubation in TSB-YE/10 for 8h at 22.5°C
Test 2: Susceptibility of biofilms towards sanitizers: biofilms on different days before the
sanitation procedure were removed and exposed to Matrixx (100ppm) or Multi-Quat (150ppm)
or chlorine solution (200ppm) for 60s.
Test 3: Susceptibility of detached cells towards sanitizers: cells swabbed from biofilms were
exposed to: Matrixx (50ppm, 60s) or chlorine solution (0.2 ppm of Free Available Chlorine,
60s).
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1897

1898

Table 3: Variability of definitions given to the term resistance in studies.

DEFINITION RESISTANCE

SOURCE

An isolate is defined as resistant when it is not inhibited by a concentration that would inhibit most
of the strains of that particular species.

Martinez-Suarez
et al. (2016)

Resistance is used to indicate that the extent of the killing of a microorganism is less than expected
at bactericidal concentrations.

Carpentier & cerf
(2011)

In the context of disinfectants, the word “resistance” is used for comparative purposes. A strain of
a species is said to be more resistant than another one if the time needed to achieve a given number
of decimal reductions of suspended cells at a given disinfectant concentration is significantly longer,
or if the concentration needed to achieve a given number of decimal reductions for a given exposure
time is significantly higher.

Cerf et al. (2010)

Resistant microorganisms could be described as a species or strain that was more able to survive
repeated C&D programs such that that species or strain dominated the environmental microbial
flora, albeit in low numbers.

Holah et al
(2002)

Bacterial resistance is the capacity of bacteria to withstand the effects of antibiotics or biocides that
are intended to kill or control them.

Glossary:
Bacterial
Resistance (n.d.)
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1899  Table 2: Examples of desiccation studies carried out on Listeria monocytogenes.
BIOFILM/DROP DESICCATION TREATMENT INFLUENCE OF INFLUENCE OF INFLUENCE OF INFLUENCE OF
INOCULATION TEMPERATURE RH STRAIN ADDITIONAL
MICROORGANISM
- Humidity: 11, 43, 68, 73% RH
s - Time 30-180 min
. 0,
§ - Temperature: 25°C
~ 3 0,
= Drop inoculation Rehydration: / .Fs'slt‘tt:r df(irease EIH Mostly pror;gﬁnced at 68% /
k> - Progressively: 99% RH for 60 min, only tested for 43/68% RH viability at fower RE. )
E - Instantaneously: a drop of phosphate buffer saline on dried cells
Test: Testing dehydration/rehydration cycles with dehydration periods of
180 min.
- Humidity: 43% RH
3 - Time 0 to 21 days - . Lower reductions in duo-
) Biofilm duo-species - Temperature: 15°C Similar reductions reached species, lowest reduction
< = 1ol p p : / / (>3 log CFU/em?) for pecies,
@d ) o ' monospecies. when P. ﬂuorescgns was
g Test: Different colonization sequences tested with Pseudomonas the first colonizer.
fluorescens.
- Humidity: 43% RH
E’ = Biofilm: Monospecies or : ¥g§;2;i?§ 250C A S-strain cocktail of Higher reductions with
E § inoculating Streptomyces / / Listeria monocytogenes Streptomyces (to below
g - biofilm was used. the detection limit).
- Humidity: 23% RH
- Temperature: 15°C Strains showed no
Biofilm - Time: 7 days / / reduction, intermediate /

Piercey et al.
(2001) (2017)

Bremer et al.

Vogel et al. (2010)

1900

Biofilm mono and duo-
species with
Flavobacterium spp.

Drop inoculation

- Temperature 4/15 °C
- Humidity: 75% RH
- Time: 10 days

- Humidity: 2, 43, 75% RH
- Temperature: 15°C
- Time 21 or 91 days

Test: Influence organic material + salt: physiological salt solution/ TSB
+ glucose with 0.5/5% NaCl

Influence of salmon juice from fresh (0.5% NaCl) or cold-smoked (5%
NaCl) salmon.

Faster decline at 15°C
compared to 4°C in
monospecies, opposite
for duo-species.

An increasing
number of injured
cells at 75% RH.

Slower reductions at
higher RH compared
to 2% RH. The effect
of a high salt
concentration gets
lower as RH
increases.

reduction or high
reductions.

No difference between
persistent and presumed
non-persistent strains
after 91 days of
desiccation.

Higher resistance in duo-
species compared to
monospecies.
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1901  Table 3:Examples of protozoa-bacteria relationships.
ENCYSTMENT TROPHOZOITE
PROTOZOA BACTERIA TESTED OTHER ASPECTS
SURVIVAL INGESTION SURVIVAL
5 = Acanthamoeba, No
<= = Listeria monocytogenes Yes, lysis of the protozoa /
= ) Tetr a.hyme‘na (1 strain) Not applicable happened after 8 days.
~ pyriformis
g Acanthamoeba
2_.a& castellanii, Listeria monocviogenes Acanthamoeba carries Listeria monocytogenes at the uriod in densely
28z . yiog / No packed aggregates in phagolysosomes and were rapidly lysed and
26 4 wild-type strains .
g oqQ ( YP! )
]~ Acanthamoeba digested.
polyphaga
5 Increased tolerance towards several disinfectants and other chemical
=2 Salmonella enterica Serovar Typhimurium, stressors.
8 § Acanthamoeba Yersinia enterocolitica, Listeria monocytogenes, Yes. up to 14 davs Yes, in co-culture after After excystment, Listeria monocytogenes showed lower reductions
—g ~ castellanii and E. coli 0:26 - up YS: excystment. towards sodium hypochlorite (2.5%), H,O, (0.3%) and 70% EtOH.
= < (1 strain of each) Some treatments were cysticidal, indicating that sheltering alone
enhances Listeria monocytogenes survival.
=5 isteri
2= o Acanthamoeba Listeria monocytogenes R .
< a castellanii (12 different strains) / Yes, up to 96h Variability among strains.
S =2 § Acanthamoeba Listeria monocytogenes (3 strains) Yes at 15°C still counta‘ple
22 . . . / results after 96h, no survival /
<3Q polyphaga Salmonella enterica serovar Typhimurium after 3h at 22 or 37°C
?3 o Llste;jza moyovcytogenes, .S"qlmonella enterica, E. Yes, up to 14 days survival
=2 Acanthamoeba coli, Yersinia enterocolitica, Campylobacter . X . . . . .
S 2o .. o in cysts with growth after / The invasion time is longer than 30 min.
ETQ castellanii jejuni excystment
5 (2 strains of each) 4 )
g~
=5
o L
2 Tetrahymena Listeria monocytogenes . . . .
E = pyriformis (20 different strains) / No, barely survival after 24h Attached Listeria monocytogenes was a 10-fold less prone to predation.
S 3
. Listeria monocytogenes, Listeria grayii, Listeria
= innocua, Listeria seeligeri, Listeria ivanovii,
a Lzst?rza we] Shlmef’l’ Bagllus Subnhs’. The presence of the Acanthamoeba alone proved to enhance Listeria
— Brevibacterium epidermis, Brochothrix . ) . . i
< Acanthamoeba thermonshacta.. Corvnebacterium Cyst formation not Only co-culture is possible, not monocytogenes growth.
© castellanii . P " b . . observed. ingestion. The absence of motility protects Listeria monocytogenes from
5 ammoniagenes, Cronobacter sakazakii, E. coli, predation/ aggregate formation at the uroid
2 Pseudomonas aeruginosa, Staphylococcus ’
‘& aureus, Staphylococcus carnosus,
Staphylococcus epidermidis
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1905
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= milk and milk products T others (not common)
mm prepared dishes and snacks = poultry meat and poultry meat products
s other mixed food mmmm meat and meat products (other than poultry)
== fruits and vegetables mmm fish and fish products

ee0o0l crustaceans and products thereof == bivalve molluscs and products thereof

—e— number of food categories

Figure 1:Number of RASFF (Rapid Alert System for Food and Feed) alerts in the period 1996-2022.
Left y-axis: The bars represent the number of notifications of the (possible) presence of Listeria
monocytogenes from 1996-2022. The contribution of different food categories is represented by the
different colors/patterns. Food products that contained less than or equal to 5 notifications in total for
the whole period collected in the food category others (not common). Right y-axis; the line represents
the number of different food categories for each year from 1996-2022 with the food categories belonging
to “others (not common)” counted separately. X-axis is the year ranging from 1996-2022 (EU
Commission, 2023).
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1915

1916
1917

1918

Planktonic cells start to Monolayer is formed and Micro colonies grow and the cells

adhere to the surface, first production of extracellular are stacked together, also
reversible then irreversible polymeric substances starts recruitment of new planktonic
*® cells in the biofilm takes place

Cells are able to detach from Mature biofilm with the distinctive

the mature biofilM and return mushroom/tulip shape. The
to the planktonic stage ready microorganisms are embedded in
to colonize new surfaces @@ * a EPS matrix
® o L4
@

Figure 2: Development stages of biofilms based on Chmielewski & Frank, 2003; Costerton et al.,
1987; Donlan, 2002; Kim & Frank, 1994; Vasudevan, 2014; Wimpenny et al., 2000
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1920
1921
1922
1923
1924

1925

Concentratlon of disinfectant

A e ——
| |
| |
| I
|

o p——— - ][]

MRC
Value without sublethal Value without sublethal exposure with organic
exposure matter/biofilm/dosage failure/dilution
— — = Possible increase due Possible increase due to sublethal exposure with organic
to sublethal exposure matter/biofilm/dosage failure/dilution

Figure 3: Overview of the diverse terminologies (minimal inhibitory concentration (MIC), minimal
bactericidal concentration (MBC), minimum effective concentration (MEC), minimal recommended
concentration (MRC), minimum selective concentration (MSC)) used in disinfectant efficacy testing.
Original values are given with the possible increase due to sublethal exposure. The effect of disinfectant
failure is included as well (Bland et al., 2021; FAO & WHO, 2019; ISO, 2018).
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1926

1927
1928
1929

1930

1931

Other aspects of

FSMS layed down in

Regulation EC No.

178/2002:

e Precaution
principle

| e transparancy +

| communitation

3 ® Primary

|

|

|

|

|

PRP: GMP, GHP

responsibility FBO
o tranceability

Personnel (hygiene, health status)
Raw materials (supplier selection,
specifications)

Technical maintenance and calibration e Temperature control

Physical and chemical contamination e Working methodology

Product information and consumer

e |nfrastructure (building equipment)
e Cleaning and disinfection

e Pest control: focus on prevention

L]

L

from production environment !
o Allergens !
e Waste management
e Water and air control

awareness
Tracebalility (extra PRP often included in
view of Regulation (EC) No. 178/2002)

-

PRP CLEANING AND DISINFECTION

PRP INFRASTRUCTURE

PRP TECHNICAL MAINTENANCE AND

PRP WORK METHODOLOGY CALIBRATION

I Preparedness refers to measures in place such as traceability provisions, communication tools, recall systems allowing the
FBO to directly and efficiently take necessary measures to protect and inform the consumer in case of non-compliance
Il not applicable for tisteria monocytogenes

Own-check
system

Precaution and
preparedness
(basis)'

13 categories of
PRPs
established by
the BIOHAZ
panel of EFSA

Highest impact
on contamination
and/or growth of

Listeria
monocytogenes

Figure 4: Situation of the proposed solutions for persistent microorganisms within the food safety
management system based on Figure 1 of the Commission Notice (EC) No 2016/C 278/01, (EFSA

BIOHAZ panel, 2017, 2020)
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