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Abstract 

Visible and near infrared spectroscopy (vis-NIRS) has shown potential to predict soil phosphorous 

(P) with reasonable accuracy. However, spectra pre-treatment is essential in chemometric modelling. 

One of the most popular algorithms for spectral smoothing and differentiation is the integer-order 

Savitzky–Golay filter (IOSGF), which operates on a localised linear regression of several 

neighbouring points over a moving window. Herein, a modified Riemann–Liouville (RL) fractional-

order Savitzky–Golay filter (MRLFOSGF) is presented based on the RL operators, as an extension 

of the conventional IOSGF. This filter was quantitatively analysed using power functions and 

Gaussian-type bands and were subsequently used to establish a partial least squares regression (PLSR) 

model for predicting P in soil. The results revealed that the MRLFOSGF offers significant flexibility 

with transition dynamics between integer-order SG derivatives and reduces baseline offsets and tilts. 

The PLSR model using the MRLFOSGF had a higher prediction accuracy than the corresponding 

PLSR model using the conventional IOSGF. This work demonstrates that the MRLFOSGF offers the 

advantage of wider applicability and better performance for predicting soil P than the conventional 

IOSGF. 

 

Keywords: online vis-NIR spectroscopy; spectral pretreatments; soil phosphorous; fractional order 

calculus; Savitzky–Golay filter 

 

1. Introduction 

Nitrogen (N), phosphorus (P) and potassium (K) are three of the most essential nutrients for cereal 

crops production. They do not only significantly determine the growth rate of crops and thereby their 

final grain yield, but their relative contribution to grain dry matter also significantly determines grain 

quality. Despite being of a depletion source, P has accumulated in soils because of several decades 

of fertilising agricultural lands with larger doses of mineral P fertilisers or manure than the crops 

require, particularly in regions with intensive livestock production [1]. Although adding P to soils has 
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a positive impact on crop production, it has a negative impact on the environment. The accumulation 

of P in soils increases its potential to be in a soluble form, making it prone to losses via leaching and 

runoff, particularly in top soils with high P surpluses. This causes environmental pollution such as 

the eutrophication of freshwaters and algal bloom, which causes hypoxia and results in the 

deterioration of the water quality of fisheries and public health [2]. Therefore, knowledge of the soil 

P stock and budget in fields can help increase the efficiency of mineral fertilisers and manure while 

preventing environmental risks. 

Soil P fractions can be measured with different laboratory methods. Traditionally, the extractable P 

(hereafter referred to as P) content in soils can be measured chemically by employing the Egner–

Riehm–Domingo method to extract P with acid ammonium lactate (P-AL) at pH 3.75 in a laboratory. 

Although this wet chemical method is highly accurate, it is relatively expensive and time-consuming, 

requires an experienced technical expert and exposes chemicals into the environment. These 

shortcomings associated with the laboratory methods of chemical analyses in general prevent the 

analyses on large number of samples necessary for precision agricultural related variable rate 

applications. Therefore, innovative in situ soil sensors have been developed using advanced spectral 

technologies to achieve rapid, quantitative and non-invasive measurements. Visible–near-infrared 

(vis–NIR) spectroscopy is one of the most adopted spectral techniques for in situ soil scanning 

because it is fast, cost-effective and robust and allows for the quantification of several key soil fertility 

attributes, simultaneously [3-5]. Its sampling scale is very fine (e.g. >500 samples per ha), which 

enables precision agricultural solutions, e.g., variable rate (VR) fertilisation [6], VR manure 

application [7] and VR seeding [8], few to mention among others. However, multivariate calibration 

models are crucial for constructing calibration models that can predict the target soil properties from 

spectroscopic signals accurately. The workflow for generating the calibration consists of spectral pre-

treatment and multivariate regression analyses, followed by independent validation of the resulting 

models. The objective of spectra pre-treatment is to enhance multivariable regression by removing 

sources of uninformative variance from the raw spectrum, hence, improve the prediction accuracy of 

the target soil property. This step is important for soil properties having indirect spectral responses in 

the NIR range, e.g., P, as prediction is attributed to covariation P has with other soil properties having 

direct spectral responses in NIR, e.g., moisture, minerology, and organic carbon [3], [9]. 

The most widely used pre-treatment methods in vis–NIR spectroscopy (in both reflectance and 

transmittance modes) can be classified into two categories: scatter correction methods and spectral 

derivatives [10]. The first group includes multiplicative scatter correction, standard normal variate 

and normalisation. There are three typical techniques for estimating spectral derivatives: finite 

differences, Savitzky-Golay (SG) filters and Norris–Williams (NW) derivatives. Despite the finite 
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differences are the simplest to calculate because they use the difference between adjacent points as 

the first-order derivative, they are not frequently used in practice because of noise inflation. The NW 

derivatives apply a moving average (MA) over the original data and calculate a finite difference after 

a previous smoothing step. Although the NW derivatives may provide similar estimates to SG filters, 

the latter is more frequently used because they were reported to provide better results [10]. The SG 

filter operates based on a local least-squares polynomial approximation to a specific set of input pixels 

in a symmetric window. It results in SG smoothing when the derivative order is set as zero and 

produces an integer-order derivative by performing differentiation on the fitted polynomial [11]. In 

particular, MAs are popular pre-treatment tools that are mathematically identical to SG smoothing 

with zero-degree polynomials (constant functions). Traditionally, SG filters are of integer orders (e.g., 

zero, first, and second orders). From a frequency domain perspective, SG filters can be regarded as a 

combination of a low-pass filter and an ideal derivative filter. They can be used to reduce high-

frequency noise in spectra because of their smoothing feature (zero order) and reduce low-frequency 

signals using differentiation (non-zero integer order), thereby improving the contrast of relevant 

spectral features.  

Non-integer-order differentiation, also known as a fractional-order derivative (FOD), is a 

generalisation wherein integer-order derivatives are only a subset of fractional orders that allow 

significant flexibility. Although there are numerous calculi related to non-integer orders, there is still 

no global consensus for their mathematical definition. The widely applicable fractional calculus can 

be mainly incorporated into the definitions of Riemann–Liouville (RL), Caputo and Grunwald–

Letnikov (GL). Among all FOD definitions, the RLFOD is the most important and basic extension of 

ordinary differential calculi. Almost all other FOD definitions represent a special case of the RLFOD 

[12]. The Caputo FOD reformulates the RLFOD definition by exchanging the order of the ordinary 

derivative with the fractional integral. A common discretisation version known as the GL operator 

provides the most straightforward definition by constructing a finite difference similar to that of the 

NW derivative. However, additional parameters such as step size and memory length must be set in 

advance. Since the GL formula is one of the simplest FOD calculi, several studies have evaluated its 

potential in vis–NIR spectral pre-treatment by employing a GLFOD to directly process the entire 

spectrum [13]-[16]. It is not an SG-type filter because its filtering configuration does not require a 

moving window across the spectrum. An RL fractional-order SG filter has also been proposed for the 

treatment of noisy signals [17] and vis–NIR spectra [18]. However, such a filter would cause a 

counter-intuitive result in that the derivative of the constant term in polynomials would be non-zero 

when the derivative order is greater than 1. In light of this, we developed a modified RL fractional-

order SG filter (MRLFOSGF) and evaluated its potential for improving the accuracy of P prediction 

in manure [19]. To the best of our knowledge, there is no study in the literature that explored the 
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potential application of any fractional-order SG filter (FOSGF) on on-line collected Vis–NIR soil 

spectra to improve the prediction of soil P.  

The aim of this work is to evaluate the influence of MRLFOSGF in pre-treating on-line collected vis-

NIR spectra for improving the prediction accuracy of soil P using partial least squares regression 

(PLSR), in comparison with the conventional IOSGF based PLSR model. In this study, a 

mathematical analysis was performed to demonstrate why MRLFOSGF can improve the performance 

of conventional IOSGF in spectral pre-treatment. Then, the influence of MRLFOSGF on accuracy of 

P prediction using PLSR is evaluated. 

2. Materials and methods 

2.1  Modified RL fractional order SG filter 

In this section, the mathematical description of modified RL fraction order SG filter is introduced. 

An αth-order RLFOD of a power function  𝑥𝑝 (𝑝 ≥ 0) is calculated as follows [17]: 

 

𝐷𝑥
𝛼

0
𝑅𝐿 (𝑥𝑝) =

𝛤(𝑝+1)

𝛤(𝑝+1−𝛼)
𝑥𝑝−𝛼,         (1) 

 

where Γ(𝑧) = ∫ 𝑣𝑧−1𝑒−𝑣𝑑𝑣
∞

0
 is a gamma function. 

A 𝑑th-order (𝑑 is an integer) SG filter using an 𝑛-degree polynomial to fit the 2𝑘 +1 point in the 𝑗 

window can be represented using the following formula: 

 

𝑌𝑗
�̂� = 𝑀𝑑(𝐵

𝑇B)
 −1
𝐵𝑇𝑌𝑗,          (2) 

 

where B=[

1 1 ⋯ 1
1 2 ⋯ 2𝑛

⋮ ⋮ ⋱ ⋮
1 (2𝑘 + 1) ⋯ (2𝑘 + 1)𝑛

], 𝑦𝑗
�̂�  in 𝑌𝑗

�̂� = [⋯ , 𝑦𝑗
�̂�, ⋯ ]

𝑇
 is the estimated 𝑑th-order (𝑑 ≥ 0) 

differential value at point 𝑗, and 𝑀𝑑 is denoted as 

𝑀𝑑 =

[
 
 
 
 
 
0, ⋯ , 0,
0, ⋯ , 0,
⋮ ⋮ ⋮
0, ⋯ , 0,

⏞      
𝑑 𝑐𝑜𝑙𝑢𝑚𝑛𝑠

⋯ ,
⋯ ,
⋯ ,
⋯ ,

𝛤(𝑖)

𝛤(𝑖−𝑑)
, ⋯ ,

𝛤(𝑛+1)

𝛤(𝑛−𝑑+1)

𝛤(𝑖)

𝛤(𝑖−𝑑)
2𝑖−1−𝑑 , ⋯ ,

𝛤(𝑛+1)

𝛤(𝑛−𝑑+1)
2𝑛−𝑑

⋮ ⋮ ⋮
𝛤(𝑖)

𝛤(𝑖−𝑑)
(2𝑘 + 1)𝑖−1−𝑑, ⋯ ,

𝛤(𝑛+1)

𝛤(𝑛−𝑑+1)
(2𝑘 + 1)𝑛−𝑑]

 
 
 
 
 

  𝑑 + 1 ≤ 𝑖 ≤ 𝑛 + 1. (3) 
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By combining the definition of the RL calculus presented in formula (1) with formulas (2) and (3), 

the MRLFOSGF is obtained using the following formula:  

 

𝑌𝑗
�̂� = 𝑀𝛼(𝐵

𝑇B)
 −1
𝐵𝑇𝑌𝑗 ,          (4) 

 

where 𝑦𝑗
�̂�  in 𝑌𝑗

�̂� = [⋯ , 𝑦𝑗
�̂�, ⋯ ]

𝑇
 is the estimated 𝛼 th-order SG differential value at point 𝑗 , and 

𝑀𝛼
𝑀𝑅𝐿𝐹𝑂𝑆𝐺𝐹  is an (2𝑘 + 1) × (𝑛 + 1) parameter matrix written as follows: 

 

𝑀𝛼
𝑀𝑅𝐿𝐹𝑂𝑆𝐺𝐹 =

[
 
 
 
 
 
0, ⋯ , 0,
0, ⋯ , 0,
⋮ ⋮ ⋮
0, ⋯ , 0,

⏞      
⌊𝛼⌋ 𝑐𝑜𝑙𝑢𝑚𝑛𝑠

⋯ ,
⋯ ,
⋯ ,
⋯ ,

𝛤(𝑖)

𝛤(𝑖−α)
, ⋯ ,

𝛤(𝑛+1)

𝛤(𝑛+1−α)

𝛤(𝑖)

𝛤(𝑖−α)
∙ 2𝑖−1−𝛼 , ⋯ ,

𝛤(𝑛+1)

𝛤(𝑛+1−α)
∙ 2𝑛−𝛼

⋮ ⋮ ⋮
𝛤(𝑖)

𝛤(𝑖−α)
∙ (2𝑘 + 1)𝑖−1−𝛼 , ⋯ ,

𝛤(𝑛+1)

𝛤(𝑛+1−α)
∙ (2𝑘 + 1)𝑛−𝛼]

 
 
 
 
 

 ⌊𝛼⌋+ 1 ≤ 𝑖 ≤ 𝑛+ 1,     (5) 

 

where ⌊∙⌋ denotes the rounding down to the next lower integer of 𝛼. 

Since the RLFOD exhibits a feature, in which FOD (α is not an integer) of a constant is non-zero, it 

results in a counter-intuitive result wherein the α th derivative of the constant term in a fitted 

polynomial is non-zero when α > 1. MRLFOSGF using formula (5) would have zero values in the 

first column corresponding to the constant terms in an  polynomial if the derivative order is greater 

than 1. Similarly, when using a non-integer-order derivative that is larger than the second order, both 

the constant and first term of the fitted polynomial would be zero since the first two columns of 

𝑀𝛼
𝑀𝑅𝐿𝐹𝑂𝑆𝐺𝐹 are zero. This is intuitively consistent with integer-order derivatives.  

On the other hand, since 
𝛤(𝑖)

𝛤(𝑖−𝛼)
∙ (2𝑘 + 1)𝑖−1−𝛼 =

𝛤(𝑖)

𝛤(𝑖−𝑑)
(2𝑘 + 1)𝑖−1−𝑑 when 𝛼 = 𝑑, the formula (5) 

covers the conventional IOSGFs in formula (3), such as the SG smoothing filter (𝛼 = 𝑑 = 0), the 

first-order SG derivative (𝛼 = 𝑑 = 1) and the second-order SG derivative (α = 𝑑 = 2). This means 

that the integer orders can be considered special cases of formulas (4) and (5) when 𝛼 is of an integer 

order. Formulas (4)-(5) were incorporated into a code package developed for implementing 

MRLFOSGF using MATLAB. 

2.2 On-line Vis-NIR spectra acquisition 

A multi-sensor platform developed by Mouazen (2006) was used to collect on-line vis–NIR spectra 

of soils (Fig. 1) [20]. The platform is equipped with a subsoiler that penetrates the soil, creating a 

ditch with a depth range of 15–25 cm. The soil spectra were collected in the reflectance mode using 
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an optical probe connected to a vis–NIR sensor (tec5 AG, Germany) with a measurement range of 

305–1700 nm. A 100% ceramic disc was used as the white reference to correct the on-line soil spectra 

every 30 min. A differential global positioning system (DGPS, CFX-750, Trimble, USA) with a data 

logger (Compact Rio 9082, National Instruments, USA) was used to synchronically log and record 

DGPS positions and reflectance spectra at a frequency of 1 Hz. This was done using multi-sensor 

data logging and acquisition software developed using the LabVIEW programming environment. 

During the field scan, the platform was driven by a tractor along parallel scanning transects (12 m 

apart) at an average travel speed of about 3.6 km/h. 

              

Fig. 1. Multiple-sensor platform used for on-line sensing of soil spectra using visible and near 

infrared spectroscopy (vis-NIRS) of Mouazen (2006) and study area 

 

On-line measurements were conducted after harvesting of previous crops on six fields in Belgium 

and France between 2018 and 2020. Altogether, 165 samples were randomly collected from the 

smooth bottom of the trench formed by the subsoiler during the on-line measurement. Each soil 

sample was mixed well and cleaned by removing plant residues, stones or roots in the laboratory. The 

samples were then reduced to sub-samples of 150 g using the quartering method. These sub-samples 

were subjected to chemical analysis using the traditional laboratory methods of the Soil Survey of 

Belgium (BDB, Heverlee, Belgium). The extractable P content in the soil was measured by extracting 

P using ammonium lactate at a pH of 3.75 using the Egner–Riehm–Domingo method [21]. 

2.3 Spectral pre-treatment and soil P modelling 

The on-line collected spectra were subjected to several pre-treatment steps before the calibration-

validation stage. First, the vis–NIR spectra were pre-treated by removing the spectral jump at 1045 

nm, where the two vis and NIR detectors join. Thereafter, the noisy parts of the spectra at the two 

ends were removed. Then, the neighbouring wavelengths were averaged using the MA algorithm (SG 

smoothing with the zero-degree polynomial), followed by normalisation to a range of −1 to 1. Spectra 

derivatives were calculated using the MRLFOSGF and IOSGF respectively, which was followed by 
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SG smoothing. The window size of the MA and the normalisation range were set to the same values 

when comparing the performances of the MRLFOSGF and IOSGF. 

PLSR cross-validation and independent validation were performed by dividing the entire dataset into 

calibration (70%) and validation (30%) sets. PLSR was performed on the calibration set using a leave-

one-out cross-validation method to develop the calibration model. The developed calibration models 

were validated using the independent validation set. The prediction performance of the developed 

models was evaluated using the coefficient of determination (R2), root mean square error (RMSE), 

ratio of performance to inter-quartile distance (RPIQ) and residual prediction deviation (RPD). 

3. Results and discussion 

3.1 Effects of MRLFOSGF on polynomial fitting 

SG derivatives are the differentiation of a least-squares polynomial used for SG smoothing to fit an 

array 𝑥 of 2𝑘 + 1 points 𝑥1⋯𝑥2𝑘+1 to the sum of several power functions over a moving window: 

𝑓(𝑥) = 𝑐0 + 𝑐1𝑥
1 +⋯𝑐𝑛𝑥

𝑛 = ∑ 𝑐𝑝𝑥
𝑝𝑛

𝑝=0         (6) 

Since the first-order and second-order SG derivatives of quadratic and cubic polynomials are 

commonly used in the literature, the effects of fractional-order SG derivatives on polynomial fitting 

are evaluated when the polynomial order 𝑛 = 3. Table 1 shows the FODs of power functions that can 

be calculated analytically from the zeroth to second order using formula (1). 
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Table 1. Examples of zero- to second- order modified Riemann–Liouville (RL) fractional-order 

Savitzky–Golay filter (MRLFOSGFs) of zero- to three- degree power functions, and different filter 

order α  

 𝑥0 𝑥1 𝑥2 𝑥3 

α = 0.2 
1

Γ(0.8)
𝑥−0.2 

Γ(2)

Γ(1.8)
𝑥0.8 

Γ(3)

Γ(2.8)
𝑥1.8 

Γ(4)

Γ(3.8)
𝑥2.8 

α = 0.4 
1

Γ(0.6)
𝑥−0.4 

Γ(2)

Γ(1.6)
𝑥0.6 

Γ(3)

Γ(2.6)
𝑥1.6 

Γ(4)

Γ(3.6)
𝑥2.6 

α = 0.6 
1

Γ(0.4)
𝑥−0.6 

Γ(2)

Γ(1.4)
𝑥0.4 

Γ(3)

Γ(2.4)
𝑥1.4 

Γ(4)

Γ(3.4)
𝑥2.4 

α = 0.8 
1

Γ(0.2)
𝑥−0.8 

Γ(2)

Γ(1.2)
𝑥0.2 

Γ(3)

Γ(2.2)
𝑥1.2 

Γ(4)

Γ(3.2)
𝑥2.2 

α = 1 0 1 2𝑥 3𝑥2 

α = 1.2 0 
Γ(2)

Γ(0.8)
𝑥−0.2 

Γ(3)

Γ(1.8)
𝑥0.8 

Γ(4)

Γ(2.8)
𝑥1.8 

α = 1.4 0 
Γ(2)

Γ(0.6)
𝑥−0.4 

Γ(3)

Γ(1.6)
𝑥0.6 

Γ(4)

Γ(2.6)
𝑥1.6 

α = 1.6 0 
Γ(2)

Γ(0.4)
𝑥−0.6 

Γ(3)

Γ(1.4)
𝑥0.4 

Γ(4)

Γ(2.4)
𝑥1.4 

α = 1.8 0 
Γ(2)

Γ(0.2)
𝑥−0.8 

Γ(3)

Γ(1.2)
𝑥0.2 

Γ(4)

Γ(2.2)
𝑥1.2 

α = 2 0 0 2 6𝑥 

 

Since the MRLFOSGF is a linear operator, i.e. 

 

𝐷𝑥
𝛼

0
𝑅𝐿 (𝜆𝑓(𝑥)+𝛾𝑔(𝑥))=𝜆( 𝐷𝑥

𝛼

0

𝑅𝐿 𝑓(𝑥))+ 𝛾( 𝐷𝑥
𝛼

0

𝑅𝐿 𝑔(𝑥)),        (7) 

 

the fractional-order SG derivatives of a fitted polynomial can be written as a linear combination of 

the derivatives of the power functions listed in Table 1. Figure 2 illustrates the behaviour of fractional-

order SG derivatives of power functions over a moving window of size 9 based on the information 

presented in Table 1. 
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  (a)                                                                  (b) 

          

                                               (c)                                                                (d)  

     

Fig. 2. Fractional-order Savitzky–Golay (SG) derivatives of different power functions x0, x1, x2 and 

x3 and different filter order α 

 

When the order increases by 0.2, the MRLFOSGF exhibits the ‘interpolation’ characteristic, which 

is one of the main points for understanding why FODs provide more flexible outcomes than the IODs. 

Even for constant terms, decimal derivatives have transition behaviours between the first order and 

the zero order derivatives. Since the derivative curves are continuously transitioned with respect to 

the order of derivatives, both 0.8th-order and 1.8th-order derivatives exhibit more similarity to the 

first-order and second-order derivatives, respectively, for the power functions  𝑝 = 1,2,3. Although 

the second-order SG derivative can eliminate a sloping baseline and enhance spectral resolution, it 

amplifies undesired noise and corrupt spectral signals when compared to the first-order SG derivative. 

Therefore, working with a practical spectrum requires a compromise between the benefits of the 

different orders of SG filters. However, the conventional IOSGF used in NIR spectral pre-treatment 

has almost only a few options, such as first or second order, whereas the MRLFOSGF offers much 

more options. 
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Curve fitting techniques are invaluable resources for approximating NIR spectra because they 

sometimes allow for both the mathematical description of band shapes and the qualitative and 

quantitative estimations of absorption components [22]. It implies that the absorption bands, when 

analysed as log reflectance versus photon energy (wavelength), can be fitted numerically to illustrate 

the basic features using Gaussian, modified Gaussian, Lorentz or combined Gaussian–Lorentz 

(Voight) functions [23]-[24]. To evaluate the potential of MRLFOSGF, simulated reflectance bands 

with shoulder peaks were generated by employing the 10-based exponential function of negative 

absorbance expressed as follows: 

 

𝑅 = 10−𝐴,         (8) 

 

where the absorbance bands with a shoulder peak and white noise were derived from the following 

analytical function, which represents the Gaussian-type profile on a sloping baseline: 

 

 𝐴(𝜔) = ℎ ∙ (
𝜔

𝜔0
)
𝑚

∙ (𝑒
−
(𝜔−𝜔0)

2

𝜎2 + 0.05 𝑒
(𝜔−𝜔𝑠)

2

𝜎𝑠
2

+ 𝐷),  (9) 

 

where ℎ denotes the band strength, 𝜔0  and 𝜔𝑠  are the centres of the major and shoulder peaks, 

respectively, σ  and 𝜎𝑠  are the widths of both peaks, and 𝑚  and 𝐷  are the power-law slope and 

constant offset of the baseline, respectively. The function (
𝜔

𝜔0
)
𝑚

 was used to represent the 

wavelength dependence of the baseline stems from owing to the observation that the spectral 

baselines of a wide variety of particulate media can be fitted well by power curve [25].  

Figure 3(a) depicts the simulated spectra based on formulas (8) and (9) in the range of 1250–1650 nm 

without (red curve) and with (blue curve) noise. It can be observed that the major dip occurs at 1450 

nm, whereas a small shoulder dip occurs at 1550 nm. Since white noise is present in almost all 

analytical measurements and is often attributed to the photometric noise in detection instruments, 

white noise equal to 1% of the noisy signal in terms of root mean square (RMS) was added to 

investigate the benefits of the MRLFOSGF. 
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Figure 3. Simulated reflectance bands with both major and shoulder dips after applying modified 

Riemann–Liouville (RL) fractional-order Savitzky–Golay filter (MRLFOSGF), shown for different 

filter order α  

 

The developed program can be used to calculate the different orders of derivative under a moving 

window size of 25 with a fitting cubic polynomial. Figures 3(b)–(i) depict typical curves for 0 ≤ α ≤

2. The conventional SG filter and MRLFOSGF coincide with each other at integer orders (α = 0, 1 

and 2). The MRLFOSGF smoothly and gradually transforms the differentiated major noise-free dip 

at 1450 nm from its original shape (Fig. 3 [b]) into a bipolar shape at α = 1 (Fig. 3 [g]) and finally 

into a peak with two smaller side lobes at α = 2 [Fig. 3 (i)]. Moreover, the small shoulder dip at 1550 

nm can be observed when the derivative order increases from 0.8 [Fig. 3 (d)] to 2 [Fig. 3 (i)], and it 

increases in size as the derivative order increases until it transforms into an evident peak and a sharp 

peak in the first-order and second-order derivative spectra, respectively. These results demonstrate 

that the MRLFOSGF can interpolate between IODs, as described in Table 1. Figure 3 also shows that 

the offset and slope of the baseline progressively diminish as the αth order of the FOD increases from 

0 to 2. They are all approximately reduced to 0 when α = 2.  

Although the second-order derivative can better identify the shoulder dip in Fig. 3 (a) than the first-

order derivative, it greatly amplifies the white noise involved in the spectrum. As shown in Table 2, 

the variations in the noise-to-signal ratio (NSR) were calculated with respect to the derivative order 

to evaluate the performance of MRLFOSGF that can be offered to noisy spectra, where NSR is 

defined in terms of RMS, i.e. NSR is equal to the RMS of the noise divided by the RMS of the full 
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signal. It can be observed that the MRLFOSGF reduces the NSR of the noisy spectrum when α is in 

the range of 0 – 0.4, demonstrating more smoothing effects that are very similar to the effect of the 

SG smoothing filter (α = 0). However, the derivative spectrum is almost drowned in the noise when 

α ≥ 1.8 to the extent that it is impossible to separate the useful information from the derivative 

results. Mathematically, this can be explained by the fact that the MRLFOSGF with high derivative 

orders amplifies noise when α > 1. Therefore, smooth filtering should be conducted before using 

derivatives since noise will be inevitably produced by NIR instruments, the experimental environment 

and operational errors. 

Table 2. NSR* calculated for different αth-orders between 0 and 2 

  α order 

 Raw 0 0.4 0.8 1 1.2 1.5 1.8 2 

MRLFOSGF 1%  0.3%   0.7%   3% 13.7%  21.1% 35.7% 47.5% 46.8% 

* NSR = (root mean square of noise after processing by MRLFOSGF) / (root mean square of full signal after processing 

by MRLFOSGF), MRLFOSGF is modified Riemann–Liouville (RL) fractional-order Savitzky–Golay filter. 

 

3.2 Soil spectra variation with pre-treatments 

Figures 4 (a) depict the on-line collected soil raw reflectance spectra. Figures 4 (b)–4 (i) present the 

derivative spectra at different αth orders. Soils darken as their organic matter (OM) and moisture 

contents increase, resulting in an increase in absorbance and an equivalent decrease in their ability to 

reflect light. This is consistent with the spectral shape shown in Fig. 4 (a), whose reflection is low at 

the visible range due to the blue absorption band at 450 nm related to OM. The distinct reflectance 

valley at around 1450 nm is caused by the strong absorbance of radiation by water molecules of the 

fresh soils (Fig. 4), which is attributed to the second overtone of the fundamental vibration of the O–

H molecule bond [26]. Weak bands located near 1130 nm are due to vibrations caused by the O–H 

and C–H bonds of free water as well as water present in the lattice of various clay minerals or water 

adsorbed on the particle surfaces [27]. Additionally, free water occupies soil pores with additional 

weak reflectance bands related to the stretching vibration of the O–H groups near 980 nm [28]. Soil 

OM is a mixture of dead plant and animal tissues as well as substances secreted by organic organisms 

during various degradation stages. Therefore, it is one of the most important properties of agricultural 

soils. The group of absorption bands at around 630 nm may be attributed to pigment residuals of plant 

debris, such as chlorophyll [29]. Only weak absorption features could be observed because 

chlorophyll pigments are thought to decompose rapidly with time. Other potential absorption at this 
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band is attributed to absorption of iron oxides, related to the red colour absorption band at 650 nm 

[30]. 

Fig. 4. Fractional-integer order derivative spectra of on-line spectra of 165 soil samples used in this 

study, shown for different derivative orders from 0.3 to 2. Cyan areas represent the standard 

deviations of the spectra and the black curves are the mean of spectra of the soil samples 

 

The reflectance profiles made by the MRLFOSGF exhibited continuous variations when the 

derivative order increased from 0 to 2 (Fig. 4). The baseline offset effects gradually decreased as the 

derivative order increased. Although the 0.6th-order derivative sharpened the valleys and peaks, a 

relatively large offset and slope were observed; however, the magnitude of the high-frequency noise 

in the derivative spectrum remained low. The 0.9th-order derivative decreased the offset and slope 

substantially without increasing the noise effect. The peaks and valleys sharpened further as the order 

increased from 0.9 to 2. The features of the 1.9th-order derivative spectra were overwhelmed by the 

noise, and a few small peaks appeared, indicating that the higher-order derivative spectra were more 

susceptible to interferences from spectral noises. This observation is consistent with results presented 

in Figure3 and Table 2, which indicate that the fractional order derivative spectra produced by 

MRLFOSGF can capture changes in spectral details and improve spectral curve resolution. However, 

an aggressive derivative with a high order of 1.8 or more must be used cautiously to prevent noise 

introduction. These results suggest that the MRLFOSGF derivative spectra have advantages over the 

conventional integer order derivative spectra because they allow users to optimise the performance 

of regression model by adjusting the derivative order with small intervals. Furthermore, the IOSGFs 
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can be considered as special cases of presented algorithm. Therefore, the performance of the proposed 

MRLFOSGF would not be worse than that of the conventional. 

 

3.3 PLSR model prediction performance  

After pre-treatment based on different derivative orders, PLSR models were developed to evaluate 

the influence of the MRLFOSGF on the prediction performance of the P model. Table 3 shows the 

prediction results indicated as R2, RMSE, RPD and RPIQ. Overall, the 1.3rd-order derivative spectral-

based model by the MRLFSGF outperformed the other models, with R2 values of 0.75 and 0.70, 

which were an increase of 0.03 and 0.06 for the calibration and validation set, respectively, when 

compared to that of the first order. These results prove that the MRLFSGF algorithm has a positive 

effect on model performance. The 1.6th-order derivative performed similarly to the first-order 

derivative for the validation set. Contrarily, the second-order derivative exhibited the worst prediction 

performance for the validation set.  

Table 3 shows that there is no linear dependency or qualitative relationship between the derivative 

order and model performance. Increasing or decreasing the derivative order does not necessarily 

increase or decrease the model prediction performance, and this appears to be true for the same dataset. 

Perhaps it is dataset-specific, material-specific and parameter-specific, implying that an optimal 

derivative order may be dependent on the dataset itself. Since the MRLFOSGF algorithm can be 

implemented simply, order tuning can be optimised by repeated trial and error, and the best order can 

be chosen as the order that produces the largest R2, RPD and RPIQ values and the smallest RMSE 

values. It does not require detailed knowledge of the separate effects of interfering substances, 

background scattering or high-frequency noise. For example, the optimal order in this study was 1.3, 

but the optimal order may be 0.9, 1.2, 1.4 or other values in other application cases. This trend is 

similar to that of other pre-treatment algorithms, such as the MA. For highly variable datasets, a small 

window size of the MA may be crucial for increasing sensitivity to changes; contrarily, for noisy 

datasets, a large window size should be considered to decrease noise. However, there is also no 

theoretical argument that permits the determination or calculation of the optimal moving window 

width. 
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Table 3. Predictive results for phosphorous (P) estimation in soil using partial least squares 

regression (PLSR) established with eight derivative orders. Results are shown for calibration and 

validation sets. 

 

 

Coefficient of determination (R2), root means square error (RMSE), ratio of performance to inter-quartile distance (RPIQ), 

and residual prediction deviation (RPD). Very poor: RPD < 1.0, Poor: RPD = 1.0-1.4, Fair: RPD = 1.4-1.8, Good: RPD 

= 1.8-2.0, Very good: RPD = 2.0-2.5, Excellent: RPD>2.5, Very poor: RPIQ < 1.4, Fair: RPIQ = 1.4-1.7, Good: RPIQ = 

1.7-2.0, Very good: RPIQ = 2.0-2.5, Excellent: RPIQ > 2.5. 

 

Figure 5 shows the scatterplots of the measured P content in comparison to the P content predicted 

by the PLSR model based on the best performing 1.3rd-order derivative spectra. The points were 

grouped along the 1:1 line. This distribution indicates a linear relationship between the measured P 

and the predicted P. Compared to conventional first-order SG derivative spectra, the 1.3rd -order 

derivative spectra improved the model accuracy by (0.03, 0.13, 0.15) and (0.06, 0.17, 0.20), as 

measured by the R2, RPD and RPIQ values for the calibration and validation sets. Therefore, the 

MRLFOSGF exhibits good potential in spectral pre-treatment for predicting P in soil under field 

conditions using on-line collected soil spectra. 

                   

Order 
Calibration Validation 

R2 RPD RMSE (mg/100g) RPIQ R2 RPD RMSE (mg/100g) RPIQ 

0.3 0.54 1.48 5.84 1.63 0.36 1.27 5.87 1.58 

0.6 0.58 1.55 5.55 1.71 0.40 1.31 5.69 1.63 

0.9 0.66 1.72 5.01 1.90 0.50 1.42 5.22 1.77 

1 0.72 1.89 4.56 2.08 0.64 1.67 4.45 2.08 

1.3 0.75 2.02 4.27 2.23 0.70 1.84 4.04 2.28 

1.6 0.81 2.31 3.74 2.54 0.64 1.70 4.38 2.11 

1.9 0.80 2.26 3.82 2.49 0.45 1.36 5.45 1.70 

2 0.79 2.17 3.98 2.39 0.39 1.29 5.76 1.61 
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                                                         (a) Calibration                                                                                            (b) Validation 

Fig. 5. Scatter plots of the measured phosphorous (P) content vs. P content predicted using the best 

performing 1.3-order derivative spectra-based partial least squares (PLSR) model 

 

Mouazen et al. [31] stated that even though P in soil is not spectrally active in the NIR range, its 

successful prediction in the literature may be attributed to covariation with other properties that have 

direct spectral responses in the NIR spectrometry. The variation of vis–NIR spectra of soils are due 

to the radiation absorbed by various chemical bonds (e.g. C–H, N–H, O–H, C–O, C–N and N–O) in 

soil organic constituents, as well as Ca–O, Fe–O and Al–O in minerals [9]. P availability is directly 

affected by soil organic matter (OM) content, paedogenic oxides, carbonates and clay minerals. It 

depends on the relative loading of P onto the available reactive clay and paedogenic oxide surfaces; 

the soil pH, which partly depends on the CaCO3 content; and the soil organic P content, which is a 

direct function of the soil OM content [32]. A vis–NIR spectroscopy has indeed been successfully 

used to predict these P-availability determinants including soil texture attributes, particularly the clay 

content, mineralogy, OM and moisture content. The estimates of these attributes have also been 

shown to be robust [3]. Moreover, NIR spectroscopy has frequently been used to accurately predict 

other soil attributes that are spectrally inactive in the NIR range, such as pH, potassium, manganese, 

zinc and copper. In light of these, successful prediction of P using NIR has been reported for fresh 

soil samples [33]. However, these same authors used soil spectra collected under laboratory 

conditions. Later, the same authors developed a PLSR calibration model for soil P prediction using 

on-line collected spectra from several fields in Belgium and Northern France, using the tradition SG 

spectra derivation [34]. The PLSR model provided accurate estimation of P but with a larger RMSE 

of 11.523 mg/100g, than that of the current work (4.04 mg/100g for the filter order of 1.3 [Table 3]. 

Mouazen et al. (2016) developed a calibration model for soil P using on-line collected spectra of 383 
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samples collected from several fields in the UK [35]. Despite the RMSE of 0.6 mg/100g was much 

smaller than the that of current work (Table 3), both RPD (1.5) and R2 values of the prediction set 

(0.6) were also lower. These mixed accuracies reported so far, using the same on-line spectroscopy 

sensor [20] may well be attributed to the indirect response soil P has with soil attributes having direct 

spectral responses in the NIR spectral range. Despite the variable prediction accuracy the on-line 

system enables high sampling resolution data necessary for variable rate P fertilisation and manure 

application [36]. Thanks to the on-line vis-NIR sensing system enabling the collection of high quality 

soil spectra resulting in reasonable prediction accuracy for P over small distance intervals. The 

MRLFOSGF contributes to the accurate estimation of P, for improved site-specific management of 

manure and P fertilisers. 

 

4. Conclusions 

The MRLFOSGF is proposed for calculating FOSGF with an arbitrary order. The developed program 

was used to investigate the effects of FOSGF filters on vis–NIR spectral pre-treatment. The filters 

were further applied to on-line soil spectra before they were then used as input for PLSR modelling 

to estimate soil P. The results led to the following conclusions: 

1) The MRLFOSGF offers better flexibility than conventional IOSGFs because it can interpolate the 

power functions between integer-order SG derivatives and decrease baseline offsets and tilts by finely 

adjusting the derivative order. 

2) The MRLFOSGF produces a better model for predicting the P content in soil in terms of R2, RMSE, 

RPD and RPIQ than traditional first-order and second-order SG filters. 

3) The differential order of MRLFOSGFs must be tuned through trial and error, and the best order 

can be selected as the order that provides the highest accuracy.  

In future studies, the MRLFOSGF will be combined with other advanced pre-treatment algorithms 

and modelling methods, such as the weighted MA and nonlinear machine learning methods, to further 

improve the prediction of P in soils in a mathematically interpretable sense. 
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