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Abstract 17 

As part of the circular bio-economy paradigm shift, waste management and valorisation 18 

practices have moved away from sanitation and towards the production of added-value 19 

compounds. Recently, the development of mixed culture bioprocess for the conversion of 20 

waste(water) to platform chemicals, such as medium chain carboxylic acids, has attracted 21 

significant interest. Often, the microbiology of these novel bioprocesses is less diverse and 22 

more prone to disturbances, which can lead to process failure. This issue can be tackled by 23 

implementing an advanced monitoring strategy based on the microbiology of the process. In 24 

this study, flow cytometry was used to monitor the microbiology of lactic acid chain elongation 25 

for the production of caproic acid, and assess its performance both qualitatively and 26 

quantitatively. Two continuous stirred tank reactors for chain elongation were monitored flow 27 

cytometrically for over 336 days. Through community typing, four specific community types 28 

could be identified and correlated to both a specific functionality and genotypic diversity. 29 

Additionally, the machine-learning algorithms trained in this study demonstrated the ability to 30 

predict production rates of, amongst others, caproic acid with high accuracy in the present (R² 31 

> 0.87) and intermediate accuracy in the near future (R² > 0.63). The identification of specific 32 

community types and the development of predictive algorithms form the basis of advanced 33 

bioprocess monitoring based on flow cytometry, and have the potential to improve bioprocess 34 

control and optimization, leading to better product quality and yields. 35 

Keywords: Caproic acid, machine learning, mixed culture fermentation, monitoring, resource 36 

recovery  37 

Highlights: 38 

- Flow cytometry enables real-time and near-future bioprocess performance assessment 39 

- Chain elongation community was translated into unique cytometric fingerprints 40 

- Based on cytometric fingerprints, several community types could be identified 41 

- Each community type reflects a specific reactor performance and community 42 

composition 43 

- Machine learning algorithms predict production rates of key fermentation products  44 



1 Introduction  45 

The valorisation of organic waste into added-value bioproducts is key to enable a circular bio-46 

economy (Crognale et al., 2021; Stegmann et al., 2020). Currently, organic waste is mainly 47 

valorised as a green energy alternative (i.e. biogas) and/or as a soil conditioner (i.e. compost) 48 

(De Buck et al., 2020; De Groof et al., 2019). However, these products have a rather low 49 

economic value (€ 2/tonne food waste as compost, and € 76/tonne organic fraction of 50 

municipal solid waste (OFMSW) as biogas), while biogas production through classical anaerobic 51 

digestion is a heavily subsidized technology and is becoming less economically sustainable due 52 

to decreasing governmental support (De Groof et al., 2019; Kleerebezem et al., 2015; Spirito et 53 

al., 2014). Novel bioprocesses for organic carbon recovery are being developed to broaden the 54 

spectrum of products that can be generated from waste, as well as the economic revenue 55 

derived from them.  56 

Microbial chain elongation for the production of medium-chain carboxylic acids (MCCA) is one 57 

of these bioprocesses under development (Angenent et al., 2016; Kang et al., 2022; 58 

Kleerebezem et al., 2015; Nzeteu et al., 2022). Compared to the use of biogas, which only finds 59 

applications in energy production, MCCA can be used in a myriad of applications. For instance 60 

caproic acid (CA), a six-carbon organic acid, can be used as a building block in the chemical 61 

industry, as a precursor of bio-fuels, as bio-plasticizer, in flavourings, pharmaceuticals, and as 62 

feed and food additive (Angenent et al., 2016; Cavalcante et al., 2017; Spirito et al., 2014). In 63 

chain elongation, an electron donor (e.g. lactic acid (LA), ethanol, glucose) is oxidized to acetyl-64 

CoA, which can be combined with an electron acceptor (e.g. acetic acid (AA), butyric acid (BA)) 65 

via the reverse beta-oxidation pathway, elongating the carbon chain of the electron acceptor 66 

with two carbon atoms (Brodowski et al., 2022; O-Thong et al., 2020; Spirito et al., 2014). 67 

Initially, most studies mainly focused on the use of ethanol as electron donor for chain 68 

elongation (Grootscholten et al., 2014, 2013; Roghair et al., 2018; Steinbusch et al., 2011). It 69 



has been shown, however, that ethanol supplementation is economically and environmentally 70 

unsustainable (Carvajal-Arroyo et al., 2019; Chen et al., 2017b). Therefore, there has been an 71 

increased interest in the use of LA as electron donor. LA can easily be produced from 72 

carbohydrate-rich waste, such as OFMSW, making it an ideal feedstock for producing MCCA 73 

through LA chain elongation (Kucek et al., 2016; Nzeteu et al., 2018).  74 

Most well-established open-culture bioprocesses like anaerobic digestion are quite resilient 75 

against disturbances. Bioprocesses like chain elongation, however, often have a less diverse, 76 

niche microbiome with a specific functionality that can make these processes more vulnerable 77 

to process failure (Agler et al., 2012; Andersen et al., 2017; Brodowski et al., 2022; De Groof et 78 

al., 2020; Joshi et al., 2021; Spirito et al., 2018; Steinbusch et al., 2011). Currently, most 79 

bioproduction processes are monitored by measuring physicochemical parameters such as pH, 80 

product spectra and concentration, biomass concentrations, etc. However, the process 81 

microbiome is the catalyst that determines the process output. The microbial community of 82 

mixed culture bioprocesses is not often monitored at full scale, and most information on how 83 

certain operational conditions and feedstocks affect the microbial community and its 84 

performance is derived from DNA sequencing to monitor changes in the genotypic 85 

composition of the microbiome and link them to its performance. For instance, Liu et al. (2022) 86 

adopted a machine learning approach for predicting chain elongation performance based on 87 

sequencing data and Wilson et al. (2021) identified recurrent marine community types (CTs). 88 

However, sequencing is still a rather expensive and time-consuming technique that requires 89 

weeks to obtain and interpret the results, and fast phenotypic changes of the microbiology 90 

cannot be detected at relevant time-scales for mixed-culture bioprocess control (García et al., 91 

2015; Heyse et al., 2021).  92 



Flow cytometry (FC) is a fast and cheap optical single-cell analysis technique for the 93 

assessment of the phenotypic diversity of a microbiome within a minutes to hours time-frame 94 

(Heyse et al., 2021; Park et al., 2005; Props et al., 2016). It has, furthermore, the potential to 95 

be implemented in-line for real-time monitoring (Abu-Absi et al., 2003; Favere et al., 2021, 96 

2020; Hammes et al., 2012). Until now, it has mainly been implemented for monitoring 97 

aqueous environments that contain a low microbial abundance and nutrients, such as drinking 98 

water facilities (Favere et al., 2021, 2020; Hammes et al., 2012; Prest et al., 2013; Props et al., 99 

2018). More recently, the use of FC is emerging for the detection of disturbances through FC 100 

fingerprinting (Props et al., 2018; Rubbens et al., 2021). The application potential of FC has 101 

been demonstrated in fermentation processes as well. In pure culture fermentations, for 102 

example, FC has been applied to quantify cell densities and to study the morphology and 103 

integrity of Lactobacillus acidophilus in wine (Narayana et al., 2020; Salma et al., 2013). The 104 

application of FC for open fermentation processes and the interpretation of the data can be 105 

more challenging due to the high diversity and complexity of the matrix. For monitoring biogas 106 

production and waste water treatment, phenotypic sub-communities could be correlated with 107 

functionality (Günther et al., 2018, 2012; Koch et al., 2013). In the field of chain elongation, 108 

Duber et al. (2018) used FC to assess the metabolic activity of the microbiome based on the 109 

cellular redox potential by distinguishing between active, mid-active, and inactive cells. 110 

When dealing with complex data from complex environments, community typing has been 111 

proposed as an approach to differentiate between microbiomes with a specific composition 112 

and link it with a certain functionality or event. CTs can be based on either the taxonomic 113 

composition of the microbiome (e.g. enterotypes in the gut microbiome, in environmental 114 

samples, etc.) or the phenotypic composition of the microbiome (e.g. event detection in 115 

drinking water systems) (Arumugam et al., 2011; Gabrielli et al., 2021; Props et al., 2018; 116 

Wilson et al., 2021). Additionally, flow cytometric fingerprints as a whole (be it in the grid or 117 



Gaussian mixture model (GMM) counts matrix or abstracted metrics thereof, such as Hill-118 

number diversity) could be potentially correlated with specific process parameters to link 119 

changes in community structure with process performance. It has been shown that the 120 

microbial diversity derived from flow cytometric data correlates well with diversity determined 121 

through 16S rRNA sequencing, and that the fingerprint can be used for the predictive 122 

modelling of the presence and abundance of certain bacterial taxa via a machine learning 123 

approach (Heyse et al., 2021; Props et al., 2016).  124 

In this study we present the use of FC as a tool to monitor LA chain elongation performance 125 

and aim to show that: i) FC can be applied as tool for early event detection in a mixed-culture 126 

fermentation process via phenotypic community typing; and ii) FC fingerprinting data can be 127 

used for the predictive modelling of main process performance indicators (e.g. production 128 

rates). 129 

2 Materials and methods 130 

2.1 Reactor operation and sampling 131 

Two continuous stirred tank reactors (CSTR), R1 and R2, were inoculated with a pre-adapted 132 

LA chain elongating culture coming from previous experiments (Candry et al., 2020). A 133 

synthetic medium was used throughout the entire course of the experiment. The medium 134 

composition was based on the medium used by Candry et al. (2020) (Table A.1) but the organic 135 

carbon sources were adjusted to 231 mM LA, 58.7 mM AA, 7.46 mM propionic acid (PA), 8.93 136 

mM BA and 38.2 mM ethanol, to mimic the carboxylic acid spectrum of the OFMSW. Two 137 

multi-port reactors (OCHS Glasgerätebau, Bovenden, Germany) with a working volume of 1000 138 

mL were operated continuously with magnetic stirring. The reactors were operated in a 139 

temperature-controlled room at 34 °C at a hydraulic retention time (HRT) of 4 days, except for 140 

the start-up phases and the experimental periods where the HRT was temporarily decreased 141 



to 2 days. Since there was no biomass retention, the sludge retention time (SRT) equalled the 142 

HRT. The reactors were operated at pH 5.5, controlled with in-line pH controllers (Prominent, 143 

Belgium) dosing 2 M HCl. The reactors were sampled every 2 to 3 days for monitoring the 144 

biomass concentration and phenotypic composition though FC, along with the concentrations 145 

of the organic acids. Sample preparation for flow cytometric measurements was performed 146 

immediately after reactor sampling. Besides these unfiltered samples, additional samples were 147 

filtered (0.22 µm) and stored at -20 °C for the analysis of the concentration of substrates and 148 

products in the reactors. Additionally, samples for 16S rRNA gene amplicon sequencing were 149 

prepared by transferring 1 mL of unfiltered reactor sample to 2 mL Micrewtubes® (Simport, 150 

Canada) in duplicate. The samples were centrifuged for 5 min at 20.817 g, the supernatant was 151 

removed, and the remaining pellets were stored at -20 °C until DNA extraction. At each 152 

sampling point, acid consumption and gas production rate were monitored, and the reactor 153 

headspace was sampled for the determination of the headspace composition. Throughout the 154 

reactor operation, several events occurred, and operational changes were applied that can be 155 

considered as disturbances. An overview of these events is shown in Table 1. 156 

Table 1: Overview of the operational periods with the events/disturbances 157 

 Day Event 

Period 1 

 

 

Period 2 

 

 

 

Period 3 

0 

49 

65 

79 

180 

189 

205 

224 

229 

257 

273 

336 

Start up 

Increase LA in feed from 12.5 to 20.8 g/L 

R1 acidified (malfunctioning stirrer) 

Reinoculate R1 with R2 

Lower HRT of R1 from 4 to 2 days 

Increased HRT of R1 from 2 to 4 days 

R2 acidified (malfunctioning stirrer) 

Mixed R1 and R2 

Lowered HRT of both reactors from 4 to 2 days 

Increased HRT of both reactors from 2 to 4 days 

Reinoculation of R2 

End of experiment 

  158 



2.2 Flow cytometric measurements 159 

Cell concentrations and characteristics were determined via FC. To remove potential 160 

aggregates and allow single-cell analysis, 1 mL of the undiluted, unfiltered reactor samples 161 

were filtered with 20 µm syringe filters (Filcon, BD Biosciences, Belgium). Subsequently, 1000× 162 

dilutions were prepared in phosphate-buffered saline (PBS) in triplicates in 96-well plates, with 163 

dilution steps of 10-fold and a final volume of 200 µL. The technical replicates were stained 164 

with 1 v/v% SYBR Green I (SG) (100× concentrate in 0.22-µm-filtered dimethyl sulfoxide). After 165 

staining, the samples were incubated in the dark at 37 °C for 20 minutes (Props et al., 2016). 166 

After incubation, the samples were analysed for 60 seconds or until a total of 50 000 events 167 

were measured (ca. 50 µL) with a FACSVerse flow cytometer (BD Biosciences, Belgium) 168 

equipped with eight fluorescence detectors (527/32, 783/56, 586/42, 700/54, 660/10, 783/56, 169 

528/45, and 488/45 nm), two scatter detectors, and a blue 20-mW 488-nm laser, a red 40-mW 170 

640-nm laser, and a violet 40-mW 405-nm laser. The flow cytometer was operated with 171 

FACSFlow solution (BD Biosciences) as sheath fluid. Instrument performance was verified daily 172 

using FACSuite CS&T beads (BD Biosciences). 173 

2.3 Flow cytometry data analysis 174 

2.3.1 Fingerprinting via Gaussian Mixture Modelling and diversity analysis 175 

FC diversity analysis and statistical analysis were performed in RStudio using R (v4.1.0). Flow 176 

data was imported via the flowCore package (v2.4.0) and transformed via the arcsine 177 

hyperbolic function (Prest et al., 2013). Gates were manually defined on the green (FITC-A) and 178 

red (PerCP-Cy5.5-A) fluorescent channels to distinguish background events from the other 179 

events. The flow data was cleaned via the FCS_clean() function from the Phenoflow package 180 

(v1.1.2), that denoises the flowset using the flowAI package (v1.22.0) by removing 181 

events/outliers from the flow data that do not meet the criteria for flow rate, signal acquisition 182 



and dynamic range (Monaco et al., 2016; Props et al., 2016). The data was normalized by 183 

dividing the value of the used channels by the maximal value of the green fluorescence signal. 184 

GMMs were generated with the PhenoGMM() function of the Phenoflow package (v1.2.2). The 185 

models were generated from the normalized flowdata, downsampled to a sample size of 2000 186 

events. By using the auto_nG argument of the PhenoGMM() function, series of models were 187 

generated with an increasing number of mixtures. Based on the Bayesian information criterion 188 

(BIC), the models with the optimal number of mixtures were retained (Rubbens et al., 2021). 189 

The GMM models of the individual reactors were generated with the determination of the 190 

optimal number of mixtures between 5 and 100 with increments of 5, based on the FITC-A, 191 

PerCP-Cy5.5-A, SCA-A and FSC-A channels, and were applied to the flowdata with the 192 

PhenoMaskGMM() function of Phenoflow (v1.2.2) to determine the events per mixture for 193 

each sample. The average number of events of the technical replicates was calculated for each 194 

mixture. The Bray-Curtis dissimilarities between samples was determined with the vegdist() 195 

function of the vegan package (v2.5.7) and a principle coordinate analysis (PCoA) was 196 

performed via the cmdscale() function of the R Stats package (v4.1.1) (Oksanen et al., 2022). 197 

2.3.2 Community typing 198 

Based on the ordination of the samples in a PCoA, samples were clustered. In order to identify 199 

CTs based on the phenotypic structure of the microbiome, samples were clustered through k-200 

medoids clustering (Props et al., 2018; Reynolds et al., 2006). Clustering was repeated for 100 201 

bootstrap samples. With each bootstrap, flow cytometric samples were resampled with 202 

replacement and rarefying (FCS_resample(), Phenoflow (v1.2.2)). The BC-dissimilarity matrix 203 

was obtained and a PCoA analysis performed as described in 3.3.1. The eigenvectors of the 204 

PCoA analysis explaining minimal 90% of the variance were determined and retained for 205 

further analysis, and k-Medoids clustering was performed with the pam() function (cluster 206 



package, v2.1.2) for k clusters ranging between 2 to n-1, where n is the number of samples. For 207 

each k, the average silhouette index was determined, and the number of clusters where the 208 

average silhouette index was maximal, was retained. Samples were assigned to the most 209 

frequent cluster (= CT) that it was assigned to. With the anosim() function of the vegan 210 

package (v2.5.7), the ANOSIM statistic “R” was calculated to test whether there was a 211 

significant difference between different CTs (Oksanen et al., 2022). Differences between CTs in 212 

terms of production rates were assessed via the Kruskal-Wallis rank sum test (stats package, 213 

v4.2.1), and pairwise comparisons between the CTs were assessed with the Dunn-test (FSA 214 

package, v0.9.3). 215 

2.3.3 Training Predictive algorithm: Fingerprint as measure for productivity prediction 216 

Since the production rates of the different intermediates are directly correlated to the activity 217 

of the microbiology, a model was trained for the prediction of production rates of the different 218 

organic acids based on the relative average cell abundance for each GMM mixture for each 219 

timepoint. The data set containing the abundances and calculated production rates was 220 

resampled via 5-fold nested cross-validation. The folds were created via the createFolds() 221 

function of the caret package (v6.0.90) (Kuhn, 2022). In each fold, 20% of the data was set 222 

aside as test set for model validation, whereas the other 80% of the data was used to train the 223 

model. Each data point was included in the test set of only one of the five folds. For each fold, 224 

a random forest model was trained with the training set through 3 repeats of a 5-fold cross-225 

validation (trainControl() and train() functions of caret package (v6.0.90)). Finally, the models 226 

were validated by predicting the production rate of the test set (predict() function of caret 227 

package). The model performances were evaluated using the R² statistic, which is a value 228 

between 0 and 1 that explains the proportion of the variance in the production rate that can 229 

be predicted from FC data, and the mean average error (MAE), which is the average deviation 230 

between the true and the predicted production rates. 231 



2.4 Amplicon sequencing and 16S rRNA data analysis 232 

The genotypic diversity of the reactor microbiome was assessed using samples stored at -20 °C 233 

for DNA analysis. The DNA extraction and quality control involving amplification of the 16S 234 

rRNA gene V3-V4 hypervariable regions was performed following the protocol described by 235 

Van Landuyt et al. (2022). Library preparation and sequencing was performed at LGC genomics 236 

GmbH (Berlin, Germany) on an Illumina Miseq platform with V3 chemistry. Bacterial 237 

sequencing data was analysed using R (version 4.0.3) with the methodology described by Van 238 

Landuyt et al. (2022). 239 

2.5 Analytical methods 240 

LA, formic acid (FA) and AA were analysed through ion chromatography. Prior to analysis, 241 

filtered (0.22 µm) samples were diluted appropriately with distilled water. The ion 242 

chromatograph (930 Compact IC Flex, Metrohm, Switzerland) was equipped with a Metrosep 243 

organic acids 250/7.8 column, a Metrosep organic acids guard column/4.6 and an 850 IC 244 

conductivity detector (Metrohm, Switzerland). The anions were eluted with 1 mM H2SO4 at a 245 

flow rate of 0.5 mL·min-1. Carboxylic acids (C3-C8, including isoforms of C4-C6) were analysed 246 

through gas chromatography. Prior to analysis, filtered (0.22 µm) samples were diluted 247 

appropriately with distilled water. 2 mL diluted sample was conditioned with 0.5 mL H2SO4 248 

(50%), 400 mg sodium chloride, and 2-methyl hexanoic acids as internal standard for 249 

quantification, prior to extraction with 2 mL diethyl ether. The gas chromatograph (GC-2014, 250 

Shimadzu®, the Netherlands) was equipped with a flame ionization detector (FID), and a DB-251 

FFAP 123-3232 column (30m x 0.32 mm x 0.25 μm, Agilent, Belgium). The sample (1 µL) was 252 

injected at 200 °C, with a split ration of 60 and a purge flow of 3 mL·min-1. The temperature in 253 

the column increased from 110 to 165 °C by 6 °C·min-1 where it was kept for 2 minutes. The 254 

FID had a temperature of 220 °C. Nitrogen was used as carrier gas at a flow rate of 2.49 255 

mL·min-1. The headspace gas sample composition was analysed with a Compact GC4.0 (Global 256 



Analyser Solutions, Breda, The Netherlands), equipped with a Molsieve 5A pre-column and 257 

Porabond Q column (CH4, O2, H2 and N2) and a Rt-Q-bond pre-column and column (CO2, N2O 258 

and H2S). Concentrations of gases were determined by means of a thermal conductivity 259 

detector. 260 

2.6 Calculations 261 

The selectivity of the different carboxylic acids that were produced, was calculated by dividing 262 

the net produced concentration of the specific carboxylic acid COD, by the sum of all net 263 

produced carboxylic acid COD (eq. ( 1)) 264 

𝐶𝑎𝑟𝑏𝑜𝑥𝑦𝑙𝑖𝑐 𝑎𝑐𝑖𝑑 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (% 𝐶𝑂𝐷) =  
𝑁𝑒𝑡 𝑐𝑎𝑟𝑏𝑜𝑥𝑦𝑙𝑖𝑐 𝑎𝑐𝑖𝑑 (𝑔 𝐶𝑂𝐷·𝐿−1)

∑ 𝑁𝑒𝑡 𝑐𝑎𝑟𝑏𝑜𝑥𝑦𝑙𝑖𝑐 𝑎𝑐𝑖𝑑𝑠 (𝑔 𝐶𝑂𝐷·𝐿−1) 
× 100     ( 1 ) 

3 Results 265 

3.1 Chain elongation performance 266 

Two LA chain elongating CSTRs, i.e., R1 and R2 respectively, were operated simultaneously for 267 

336 days at an HRT of 4 days, except for the start-up phases and the experimental periods 268 

where HRT was temporarily decreased. During the start-up phase (Period 1, days 0-79), the 269 

product spectrum (Figure 1) and headspace composition (Figure A.1) were showing constant 270 

variation. From days 0-49, both reactors were fed with a synthetic medium with a reduced LA 271 

concentration of 13.30 g COD·L-1. During that period, both reactors produced mostly BA (R1: 272 

8.70 ± 5.50 g COD·L-1, R2: 4.25 ± 1.32 g COD·L-1) and AA (R1: 4.45 ± 2.40 g COD·L-1, R2: 7.64 ± 273 

3.33 g COD·L-1), but a gradual increase of the iso-butyric acid (IBA) concentration was observed 274 

over time (max. 5.41 g COD·L-1 on day 28 for R1, and 6.55 g COD·L-1 on day 47 for R2). From day 275 

49 on, synthetic medium as described in Table A.1 was used, with a LA concentration in the 276 

feed to 22.23 g COD·L-1, which led to a decrease in the IBA concentration of both reactors. CA 277 

became the dominant product in R2 with concentrations of up to 18.56 g COD·L-1. A similar 278 

initial increase in CA was observed in R1, but unfortunately on day 65, the stirring of R1 279 



malfunctioned, causing an overdosage of HCl. No further LA consumption was observed, 280 

indicating the loss of activity of R1. 281 

 282 
Figure 1: Product concentrations (A) and selectivity (B) of R1 and R2 over time. The black lines indicate the different 283 
periods, the blue dashed line indicates the increase in LA in the feed, the red dashed lines indicate a change of the 284 
HRT. The ‘Others’ group encompasses formic, propionic, iso-valeric, iso-caproic, heptanoic and octanoic acid. 285 

Upon reinoculation of R1 with the culture from R2 at the start of Period 2 (days 79-224), 286 

activity resumed immediately and from that point on both reactors showed a stable 287 

performance from days 89 until 205. During this period, the product spectrum was mainly 288 

dominated by CA, BA, and AA in both R1 (CA: 15.23 ± 2.27 g COD·L-1; BA: 9.00 ± 1.72 g COD·L-1 ; 289 

AA: 1.60 ± 0.57 g COD·L-1) and R2 (CA: 15.42 ± 1.94 g COD·L-1, BA: 7.97 ± 1.55 g COD·L-1, AA: 290 

1.81 ± 0.63 g COD·L-1). From the produced organic acids COD, there was a high selectivity for 291 

CA (R1: 61% ± 7%; R2: 64% ± 6%) and the even chain elongation intermediates in general (R1: 292 

92% ± 1%; R2: 92% ± 1%) (Figure 1). Along with the consumption of LA, there was also a co-293 

consumption of AA in both reactors at LA:AA COD ratios of 100:10 ± 3 and 100:7 ± 4 in R1 and 294 

R2 respectively, and the fraction of H2 in the headspace was 27.78% ± 5.95% and 23.02% ± 295 

6.47% respectively. During Period 2, the HRT of R1 was lowered between days 180 to 189 to 2 296 

days to assess the effect of the shorter HRT on the reactor performance, but no significant 297 

change in the product spectrum was observed. On day 205, the stirring of R2 malfunctioned, 298 



causing overdosage of HCl. Chain elongation stopped and LA accumulated up to 15.13 g COD·L-299 

1 until the process recovered and full LA consumption was observed after 12 days. 300 

On day 224, at the start of Period 3 (days 224-336) the content of both reactors was mixed to 301 

obtain two identical microbial communities after the disturbance of R2 and between days 229 302 

and 264 the HRT of both reactors was decreased to 1.90 ± 0.05 and 1.99 ± 0.04 days in R1 and 303 

R2, respectively. This resulted in a decrease of the CA production rate to 1.48 ± 1.07 g COD·L-1 304 

in R1 and 1.19 ± 0.87 g COD·L-1 in R2, and an increase of the IBA concentration to a maximum 305 

of 4.35 g COD·L-1 in R1 and 9.34 g COD·L-1 in R2. Just as in Period 1, a decrease in the H2 fraction 306 

in the headspace was observed (Figure A.1). After increasing the HRT back to 4 days, the CA 307 

production gradually restored in R1 to a concentration of 15.87 ± 0.37 g COD·L-1. Since the IBA 308 

concentration in R2 did not decrease after increasing the HRT, the reactor was reinoculated on 309 

day 273 with stored effluent from R2 and operated in batch mode for 9 days. Although CA was 310 

dominant for the two first weeks after the operation in batch mode (15.50 ± 0.80 g COD·L-1), a 311 

gradual shift towards BA (20.37 g COD·L-1) and IBA (3.40 g COD·L-1) was observed until the end 312 

of the reactor operation. 313 

3.2 Determining phenotypic community types 314 

For each reactor, a GMM model was generated from the FC-data for fingerprinting, which 315 

resulted in a model with 40 mixtures for R1 and a model with 45 mixtures for R2. Via PCoA 316 

analysis based on the Bray-Curtis dissimilarity, followed by k-medoids clustering, CTs were 317 

determined in both reactors independently. Four CTs were determined in R1 (ANOSIM R: 318 

0.8485) and three CTs in R2 (ANOSIM R: 0.7976). To assess whether the different CTs in each 319 

reactor are showing different functionalities, the CT dynamics were compared in terms of the 320 

production rates of CA (qCA), BA (qBA) and IBA (qIBA). Since the conditions for a 1-way ANOVA 321 

were not met, the differences between the CTs were assessed via the Kruskal-Wallis rank test 322 



(p < 0.05), and pairwise comparisons between the CTs were assessed with the Dunn-test (p < 323 

0.05). CTs showing similar functionalities in terms of qCA, qBA and qIBA were labelled 324 

identically in both reactors, whereas CTs showing different functionalities were labelled 325 

uniquely within one reactor. 326 

In terms of qCA, qBA, and qIBA (Figure 2), significant differences (at the 5% significance level) 327 

were observed between the determined CTs. In each reactor, there was one CT that showed a 328 

significantly higher qCA (4.13 ± 1.22 g COD·L-1·d-1 for R1 and 3.88 ± 0.97 g COD·L-1·d-1 for R2) 329 

compared to the other CTs of the same reactor (p < 0.05). In both R1 and R2 this CT was 330 

labelled as CT1. Furthermore, in each reactor, two different CTs could be identified that 331 

showed significantly higher qIBA, labelled as CT2 (1.08 ± 0.33 g COD·L-1·d-1 in R1 and 0.57 ± 332 

0.49 g COD·L-1·d-1 in R2) and CT3 (1.07 ± 0.41 g COD·L-1·d-1 in R1 and 2.87 ± 0.53 g COD·L-1·d-1 in 333 

R2). The main difference is that in both reactors CT2 does not have a significantly higher qBA 334 

compared to CT1, but CT3 does. Only in R1 there was a fourth CT4 determined, which contains 335 

the samples from a crash, where all production rates were very low. It is important to note 336 

that, although in R1 and R2 similar CTs were determined in terms of functionality, this does not 337 

automatically imply that their community compositions were similar as well. 338 

For each determined CT, samples were analysed via 16s rRNA amplicon sequencing. 339 

Sequencing data showed that CTs within each reactor have, besides different metabolic 340 

functionalities, also different taxonomic compositions (Figure 3). Additionally, equally labelled 341 

CTs in both reactors show similar taxonomic compositions. On genus level, samples from CT1 342 

in both R1 and R2 show relative abundances for Caproiciproducens of 97.98% and 97.99%, 343 

respectively. In CT2 Clostridium sensu stricto 12 became more dominant than 344 

Caproiciproducens. Although there was no significant difference in production rates observed 345 

for CT2 between R1 and R2, there was a stronger shift towards Clostridium sensu stricto 12 in 346 



R2 with abundances of 48.60% in R1 and 76.25% in R2 along with Caproiciproducens 347 

abundances of 41.38% in R1 and 6.78% in R2. In CT3, however, the abundance of C. sensu 348 

stricto 12 was lower than the abundance of Caproiciproducens (77.95% in R1, 84.81% in R2). 349 

On ASV level, 3 Caproiciproducens ASVs (1, 2 and 3) were dominant in CT1 in both reactors, 350 

while only one of the three (ASV1) was dominant in CT3. In CT2, only ASV 2 and 3 were 351 

observed in R1, while all three ASVs were observed in R2 but at very low abundances for the 352 

Caproiciproducens genus. ASV 1 and 2 have respectively a 97.02% and 99.75% BLAST similarity 353 

with Caproicibacterium lactatifermentans, which is a known CA producer from LA and glucose 354 

(Wang et al., 2022). ASV 3 has a 100.00% BLAST similarity with Ruminococcaceae bacterium 355 

CPB6, which is a known CA producer from LA (Zhu et al., 2017). In R1, CT4 contained the 356 

samples of the reactor crash at day 65, of which the community was dominated by 357 

Propionibacterium spp. (60.70%). 358 



 359 

Figure 2: Boxplots for the production rates of caproic (qCA), butyric (qBA) and iso-butyric acid (qIBA) per community 360 
type (CT), and the CT in function of time in R1 (top) and R2 (bottom). The opacity is related to the silhouette width, 361 
which indicates how well the sample belongs to its designated cluster. 362 

  363 



 364 

 365 

Figure 3: Cell concentration and community composition for each community type of each reactor. CT1 was analysed 366 
at two different time points. A) composition on genus level. B) composition on ASV level. 367 

3.3 Flow cytometry as a tool to predict production rates 368 

The accuracy of the trained random forest regression models for predicting of qCA, qBA and 369 

qIBA was assessed by comparing the predicted with the real production rates. The predicted 370 

values obtained through 5-fold nested cross-validation showed the model was able to 371 

accurately predict qCA (R1: R² = 0.87, MAE = 0.48 COD·L-1·d-1; R2: R² = 0.89, MAE = 0.40 COD·L-372 

1·d-1), qBA (R1: R² = 0.88, MAE = 0.68 COD·L-1·d-1; R2: R² = 0.82, MAE = 0.53 COD·L-1·d-1), and 373 

qIBA (R1: R² = 0.87, MAE = 0.12 COD·L-1·d-1; R2: R² = 0.94, MAE = 0.12 COD·L-1·d-1). 374 



Finally, to assess whether the FC data could be used to predict future production rates up to 2 375 

HRTs in advance, the algorithms were trained for different time intervals between flow 376 

cytometric measurement and future production rate. Since samples were mostly taken on 377 

Mondays, Wednesdays and Fridays, the time intervals chosen were multiples of 2-3 days. Since 378 

operational disturbances cannot be predicted ahead of time based on phenotypic fingerprints, 379 

data points that were influenced by operational disturbances were excluded from the dataset 380 

for predictions ahead of time, avoiding the prediction of production rates after a disturbance 381 

with FC data acquired prior to the occurrence of the disturbance. This was done to ensure the 382 

training of the algorithm was not compromised. Increasing the interval led to a gradual 383 

decrease of the R² values and increase of the MAE (Table A.5), hence leading to a decrease in 384 

accuracy of predictions further in the future. Considering qCA in R1, the R² decreased from 385 

0.87 for real-time predictions, to 0.85 for an interval of 1 HRT, and to 0.80 for 2 HRTs, while the 386 

MAE respectively first decreased from 0.48 g COD·L-1·d-1, to 0.43 g COD·L-1·d-1, and then 387 

increased to 0.55 g COD·L-1·d-1 (Figure 4). Similar behaviour was observed for qBA and qIBA in 388 

both R1 and R2. 389 



 390 

Figure 4: True versus predicted values of the production rates of caproic acid in R1, for different time intervals 391 
between flow cytometric measurement and predicted value. Top: real-time prediction; middle: 1 hydraulic retention 392 
time (HRT) interval; bottom: 2 HRTs interval. 393 

4 Discussion 394 

4.1 Lactic acid chain elongating microbiome can shift towards dominant BA and IBA 395 

production 396 

In both R1 and R2, stable LA chain elongation with high CA selectivities was established. More 397 

specifically during Period 2, CA selectivities of 61% ± 7% in R1 and 64% ± 6% in R2 were 398 

achieved, which is higher than the values reported in other studies on LA chain elongation 399 

(Candry et al., 2020; Carvajal-Arroyo et al., 2019; Duber et al., 2020; Mariën et al., 2022b; Xu et 400 

al., 2018). Substantially higher volumetric CA production rates of 17.34 ± 3.53 mmol·L-1·d-1 and 401 

16.51 ± 2.19 mmol·L-1·d-1 for R1 and R2 respectively, were achieved compared to the study by 402 

Candry et al. (2020) (ca. 6.5 mmol·L-1·d-1), where the reactors were operated under the same 403 



operational conditions but no electron acceptor such as AA was present in the feed. 404 

Additionally, there was a co-consumption of AA at a molar LA:AA ratio of 100:14 ± 4 in R1 and 405 

100:10 ± 7 in R2, while LA and AA were present in the medium at a 100:25 molar ratio. This 406 

indicates that the use of AA as external electron acceptor is beneficial for the chain elongation 407 

stability and selectivity, while the absence of AA as electron donor yields a broader spectrum 408 

with equal contribution of even and odd chain carboxylic acids (Candry et al., 2020). Several 409 

other studies have shown that the presence of an electron acceptor, like AA, enhances the LA 410 

chain elongation performance. Brodowski et al. (2022) studied the effect of the presence of 411 

external AA in LA chain elongation at different molar LA:AA ratios and found that external AA 412 

prevented destabilization of LA chain elongation caused by LA overloading and the formation 413 

of odd chain carboxylic acids, and reported approximate CA selectivities of 75%. Mariën et al. 414 

(2022b) supplemented AA as an external electron acceptor at a 100:25 molar ratio and also 415 

concluded that the addition of external AA was required for sufficient LA conversion during 416 

chain elongation. 417 

Apart from stable chain elongation during Period 2, the product spectrum had shifted during 418 

the start-up phase in Period 1 and after decreasing the HRT in Period 3. On both occasions 419 

higher BA and IBA production were observed compared to Period 2, and a net production of 420 

AA was observed instead of a net consumption. The product spectrum might be altered by 421 

changing operational parameters such as the HRT. Mariën et al. (2022b) demonstrated that a 422 

decreasing HRT can lead to a shift from CA towards BA production in an EGSB reactor, but no 423 

net AA production and major shifts towards IBA were reported. Changes in the product 424 

spectrum can also be caused by changes in the reactor microbiome. Baleeiro et al. (2021) 425 

showed that in presence of AA an MCCA producing community can consume H2 to produce BA, 426 

and that the supplementation of H2 as electron donor improved the production of both IBA 427 



and CA. In both reactors in the current study, the gas production rate and fraction of H2 428 

significantly decreased when BA and IBA production were dominant. 429 

Organisms such as acetogenic Clostridia, can utilize H2 and CO2 for acetyl-CoA production via 430 

the Wood-Ljungdahl pathway (Bengelsdorf et al., 2018). The amplicon sequencing data 431 

showed that the microbial community was dominated by Caproiciproducens during stable 432 

chain elongation, while during periods of high BA and IBA production rates, Clostridium sensu 433 

stricto 12 was present at high relative abundances. Clostridium sensu stricto 12 is closely 434 

related to Clostridium luticellarii, which is known to be able to produce butyrate and iso-435 

butyrate in the presence of H2 (Baleeiro et al., 2021; Petrognani et al., 2020). Chen et al. 436 

(2017a) showed that exogenous added BA triggered the production of IBA in methanol chain 437 

elongation and suggested that isomerization occurred as a detoxifying mechanism for the 438 

inhibitory effect of BA. However, Petrognani et al. (2020) showed that C. luticellarii is able to 439 

immediately co-produce both BA and IBA from methanol and AA, indicating that a detoxifying 440 

mechanism is not the reason for IBA production in C. luticellarii. In the current study, IBA 441 

production only occurred gradually and when BA concentrations were elevated compared to 442 

values during stable chain elongation. 443 

4.2 Chain elongation community types are connected to both performance and taxonomic 444 

changes 445 

FC fingerprinting enabled the detection of different phenotypic CTs in independent reactors 446 

based on the cell distribution over the identified GMMs. The assessment of qBA, qIBA and qCA 447 

per established CT showed that the different CTs not only have a different phenotypic 448 

composition, but also a significantly different metabolism/end-product spectrum (Figure 2). In 449 

both reactors, there was a significant difference between the CTs in terms of these production 450 

rates, and one particular CT (CT1) could be correlated with high CA production, while two 451 



other CTs (CT2, CT3) could be correlated to elevated BA and IBA production (Figure 2). Props et 452 

al. (2018) used a similar approach to determine CTs and link them to contaminations in 453 

drinking water, in combination with additional community metrics. It is important to highlight 454 

that, in contrast to their study, community typing based on the FC fingerprint did not require 455 

additional metrics to achieve a sufficient discriminatory power to differentiate different states 456 

of the reactor microbiome performance, more specifically for LA chain elongation.  457 

Besides assessing the phenotypic diversity of the different CTs, 16S rRNA gene sequencing was 458 

performed for each CT in each reactor. These results showed that each CT not only has a 459 

distinct phenotypic structure and a distinct metabolic functionality, bus also a distinct 460 

taxonomic composition (Figure 3). CTs from the different reactors with a similar functionality 461 

also show a similar distinct taxonomic composition that is different from the other CTs 462 

determined in the reactors. The CTs associated with good CA production (CT1 in both reactors) 463 

were dominated by Caproiciproducens, which is a known chain elongating organism. 464 

Clostridium sensu stricto 12 was detected in CTs associated with elevated BA and IBA 465 

production and has a 100% BLAST similarity to Clostridium luticellarii, which is able to produce 466 

IBA from methanol and acetate in presence of CO2 and H2 (Petrognani et al., 2020). However, 467 

conclusions on the metabolism of IBA production and the organisms involved cannot be made, 468 

since both genera encompass species that are able to produce both CA and BA. 469 

In a study performed by Liu et al. (2020) aiming at CA production via LA chain elongation, BA 470 

production was positively correlated with the abundance of Clostridium sensu stricto 12. 471 

Mariën et al. (2022b), investigated the effect of the volumetric loading rate on LA chain 472 

elongation and showed that shorter HRTs led to a shift towards BA and higher abundances of 473 

Clostridium sensu stricto 12. This genus was also observed in other studies on MCCA 474 

production (Baleeiro et al., 2021; Mariën et al., 2022a). In particular, Baleeiro et al. (2021) 475 



reported that Clostridium sensu stricto 12 thrived when LA and ethanol were supplemented, 476 

and that its abundance could be positively correlated with non-methanogenic hydrogen 477 

consumption. de Leeuw et al. (2020) hypothesized that Clostridium sensu stricto 12 has the 478 

ability to isomerize BA and IBA in both directions at a mildly acidic pH (5.2 and 5.5) during 479 

methanol chain elongation. The addition of BA or IBA to the process lead to an equilibrium of 480 

0.69 IBA:0.31 BA. In a study from Mariën et al (2022a) on LA chain elongation, IBA production 481 

was detected in the system until tryptone was added. At that point, the relative abundance of 482 

Clostridium sensu stricto 12 OTU (also present up until that point) decreased to < 1%. These 483 

findings indicate that Clostridium sensu stricto 12 detected in the present study might be 484 

responsible for the high BA production during Periods 1 and 2 and its isomerization to IBA, 485 

along with the decrease in H2 production potentially due to acetogenic hydrogen consumption. 486 

4.3 FC as a tool to predict future reactor performance 487 

This study has also shown that process performance parameters (i.e., production rates) can be 488 

predicted based on cytometric fingerprints. The generated models had high R²-values (> 0.80) 489 

for the production rates of BA, IBA and CA, indicating that the FC data and the used 490 

fingerprinting approach provides sufficient information for the prediction of production rates. 491 

Since microbial communities are dynamic and changes in the community composition can 492 

have an effect on the process performance later in time, the models were also trained for the 493 

prediction of production rates in future time. Predictions were made for up to two times the 494 

HRT in the future, which resulted in models with still an intermediate overall prediction 495 

performance (R² > 0.63 for qCA; > 0.47 for qBA; > 0.79 for qIBA). The further in time the 496 

predictions were made, the lower the R²-statistic and the larger the MAE. This shows that 497 

based on the cytometric fingerprint it is possible to assess instantaneous process performance 498 

with high prediction performance, and to predict short-term future performance with an 499 

intermediate level of confidence. While training of the models generated in this research was 500 



limited to the FC data obtained during a defined period of reactor operation, future data 501 

would likely allow for improved predictions both in the present and the short-term future. A 502 

similar approach was used by Heyse et al. (2021) where models were trained for the prediction 503 

of the presence and abundance of bacterial taxa from FC data, where the abundance of top 50 504 

OTUs could be predicted with R²-values of 0.35 ± 0.24, ranging between 0.00 and 0.81, and 505 

demonstrating the potential of FC in microbiome management in aquaculture. In analogy with 506 

the current study, Liu et al. (2022) recently adopted a machine learning approach for the 507 

prediction of ecophysiological functions – i.e. the C4, C6, and C8 yields and concentrations – 508 

based on taxonomic data obtained through 16S rRNA amplicon sequencing. Although the chain 509 

elongation process performance could be predicted quantitatively with a > 90% accuracy, this 510 

approach relying on 16S rRNA amplicon sequencing is more expensive and time consuming 511 

than FC, while instant analysis and data interpretation with a sufficient temporal resolution is 512 

key for a novel monitoring strategy. Since obtaining and analysing sequencing results is time 513 

consuming, it is not possible to steer the process in time. Additionally, the timely detection of 514 

changes in the process performance will rely on the sampling frequency and the HRT of the 515 

system. While changes in the phenotypic structure of the microbiome can be detected 516 

instantly via FC, key organisms can still be detected via sequencing until there is sufficient 517 

wash-out, even when they are not active anymore. FC is therefore not only a tool for a novel 518 

monitoring strategy, but it is also fast enough to be implemented as steering strategy. FC is 519 

furthermore a cheaper technology, with the potential to be implemented in-line for RT-FCM 520 

(Abu-Absi et al., 2003; Favere et al., 2021, 2020; Hammes et al., 2012).  Finally, if a crash of the 521 

system can be predicted, one might be able to adjust the feeding rate, add inoculum or stop 522 

the process to prevent excessive economic and energy losses. In contrast to the conventional 523 

approach of monitoring bioprocesses, which primarily focuses on measuring physicochemical 524 

parameters such as product concentrations, the method presented in this study offers a 525 



distinct advantage in terms of predictive power. By employing this method, operators are able 526 

to assess process performance proactively, enabling them to identify potential issues before 527 

significant fluctuations in the concentrations of the desired product, such as caproic acid, are 528 

observed. 529 

4.4 Final considerations and future outlook 530 

The current study is a first approach for the use of FC as monitoring tool of a reactor 531 

microbiome, demonstrating that it can be a powerful tool to monitor LA chain elongation and, 532 

more broadly, the performance of mixed culture bioprocesses. In this study, stable chain 533 

elongation performance (i.e., R1: 4.13 ± 1.22 g COD·L-1.d-1 and R2: 3.88 ± 0.97 COD·L-1.d-1) was 534 

observed when Caproiciproducens was the dominant genus (> 93% relative abundance). Yet, it 535 

can be prone to disturbances by which the process performance and product spectrum might 536 

change, as seen in Periods 1 and 3 of the reactors operation where the product spectrum 537 

shifted towards IBA. While the exact mechanism of IBA production in the studied system is not 538 

yet fully understood, FC coupled with cell sorting could be used in future research. Bacteria 539 

belonging to GMM mixtures that strongly contributed to the prediction of the production rates 540 

of interest in this research, could then be isolated using a cell sorter, and their metabolism 541 

further studied. 542 

The present work demonstrated that FC-based community typing is a good approach to assess 543 

the microbial health and performance of a mixed culture fermentation system. While the CT 544 

itself gives information on the production rates and product profile, the silhouette width could 545 

in future research indicate how strongly the reactor microbiome is associated with its 546 

designated CT, allowing monitoring the transition from one CT and metabolism to another. 547 

Furthermore, future work should also try to expand this approach to other LA chain elongation 548 

systems to assess whether the same CTs can be identified or if others arise, and the application 549 



potential in other bioprocesses could be tested, provided that a constant cytometric 550 

fingerprint of a stable process can be established. It is important to note that this approach 551 

becomes challenging if the genotypic diversity varies significantly over time and multiple 552 

metastable conditions or alternative stable microbiomes with the same function exist. The 553 

current study also demonstrated that the predictive regression model established here is 554 

reliable and can provide a quantitative assessment/prediction of the fitness of the process. 555 

This method has the advantage that it does not rely on taxonomic data for its prediction. The 556 

algorithm can also be trained to predict ahead of time, so that the effect of certain changes in 557 

the fingerprint can be anticipated (here up to two times the hydraulic retention time in 558 

advance with reasonable accuracy; R² > 0.63 for CA). 559 

Both approaches require a sufficiently large dataset encompassing the most commonly 560 

observed process performances and functionalities to cover the different performance states. 561 

Establishing these systems with only a limited training set may lead to limited predictive 562 

capacity or biased predictions when a certain CT emerges that has not been used in training 563 

the ML algorithm. It is for the further development therefore recommended to incorporate 564 

machine learning techniques that enable incremental training of both the predictive models 565 

and the identification of CTs, as this will allow for the monitoring system to continuously adapt 566 

and improve. However, in case of community typing the different identified CTs need to be 567 

defined and fixed as reference states, so that future samples can be compared.   568 

Compared to sequencing, FC measurements are faster (minutes vs. days) and cheaper than 569 

sequencing, and changes in phenotypes are faster detected than changes in genotypes (Props 570 

et al., 2016). While FC monitoring was done manually in this study, it can in practice be 571 

implemented in-line for real-time flow cytometric measurement (RT-FCM). During RT-FCM, 572 

reactor samples are automatically diluted, stained, incubated and measured, increasing the 573 



temporal resolution and decreasing the workload, which increases its advantages compared to 574 

sequencing (Abu-Absi et al., 2003; Favere et al., 2021, 2020; Hammes et al., 2012). When 575 

complex feedstocks are used, performing FC analysis can become challenging due to the 576 

presence of organic and inorganic impurities that can generate significant background signals, 577 

and the presence of organisms inherent to the feedstock. To overcome this issue, the effect of 578 

the constant influx of these organisms on the process needs to be studied on the one hand, 579 

while on the other hand either the substrate needs to be treated to remove the impurities, or 580 

the flow cytometric protocol needs to be improved so that the background signals can be 581 

differentiated from the other cells. 582 

5 Conclusion 583 

This study investigated the application potential of FC as a monitoring tool in mixed culture 584 

bioprocesses, more specifically LA chain elongation to CA, for which two CSTRs were operated 585 

and monitored for a period of 336 days, and during which stable chain elongation with high CA 586 

selectivity was alternated with periods of dominant BA and IBA production. Two monitoring 587 

approaches involving FC fingerprinting were studied. In a first approach, several CTs could be 588 

identified based on the fingerprint. Each CT could be linked to a specific functionality related to 589 

the production rates of the key fermentation products (i.e., qCA, qBA and qIBA) on the one 590 

hand, and to a distinct taxonomic composition on the other hand. CTs associated with a high 591 

qCA were dominated by Caproiciproducens, while dominant qBA and qIBA could be associated 592 

with the presence of C. sensu stricto 12, indicating competition between the two genera. In a 593 

second approach, FC data could be used to train random forest regression models, which 594 

enabled real-time predictions of the production rate of, amongst others, the key fermentation 595 

product CA, with a high accuracy (R² > 0.87) and up to 2 HRTs in the future with a reasonable 596 

accuracy (R² > 0.63). For the further optimisation of the studied approaches, future studies 597 



should focus on the application in fermentation systems with more complex substrates, and 598 

the implementation of incremental learning to allow the monitoring system to continuously 599 

adapt and improve. The insights obtained from this study have demonstrated the application 600 

potential flow cytometry as a monitoring tool for fermentation processes, and its predictive 601 

power compared to conventional monitoring strategies relying on physicochemical 602 

parameters. This paves the way for further advancements in this approach, facilitating 603 

enhanced bioprocess control and optimisation. Consequently, it promotes improved process 604 

stability, enhanced product quality, and increased yields. 605 

 606 
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